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Synopsys 
 
 Like in most inverse problems, where causes have to be inferred from consequences, 
estimating brain activity from scalp electrophysiological data requires a model. Many 
EEG/MEG biophysical models have been developed over the last few decades, mostly since 
the inception of whole head MEG and high density EEG systems. These so-called forward 
models map neuronal activity onto sensor signals. In this chapter, we briefly cover the main 
variants and components of these models. They mostly differ by the way they represent 
neuronal populations, and the way they account for individual anatomy and physical 
properties. They range from simple (analytical) models to more realistic (numerical) ones. 
While there is still room for improvement, the question of whether more complex forward 
models are useful can now be addressed empirically using Bayesian model comparison. 
  



 
 
 
 This chapter is made of three sections. The first section describes our current 
knowledge of what most contributes to EEG/MEG signals and how laws of physics enable us 
to quantify this contribution. The second section covers the main steps and assumptions that 
yield the computation of EEG/MEG forward models. It also stresses the main factors of 
uncertainty in this computation. Finally, the third section emphasizes the difference between 
the complexity of forward model computation and (probabilistic) model complexity. This 
notion becomes particularly important when one wants to evaluate different forward models 
of EEG/MEG data.  
 

 
I. The origin of EEG and MEG signals 

 
a. From microscopic (single neuron) activity to macroscopic (population level) 

currents 
 
 Neurons have the property to be electrically excitable, to produce and to propagate 
nerve impulses. Neuronal activity expresses as transmembrane electric currents, which 
contribute to the macroscopic electric potential differences and magnetic fields measurable 
on scalp and its vicinity. 
Pyramidal and stellate cells are the two main types of neurons. They mostly differ in shape 
and orientation relative to the cortical surface. Whatever their functional specialization, their 
typical structure consists of a cell body (soma) surrounded by dendritic branches and 
extending in a nerve fiber, the axon, which projects onto other neurons through synaptic 
junctions (Fig.1).  
The neuron’s membrane contains pores that are selectively permeable to ions. 
 
 

 
 
Fig.1.  Schematic view of the neuron’s structure. 
 
 



In the absence of excitation, continuous ionic exchanges across the pores maintain the 
membrane potential Vm at a resting value:Vm =Vr =Vint ra −Vextra ≈ −70mV . 
Typical dendrites receive inputs from pre-synaptic neurons by way of a chemical exchange 
called neurotransmission. Fixation of released neurotransmitters on post-synaptic 
receptors triggers the opening of specific pores, allowing for ionic movements across the 
membrane. These currents cause the post-synaptic (membrane) potentials (PSP). 
Synaptic integration of PSP over time and space results in an action potential (AP) 
propagating along the axon towards the apical dendrites, upon condition that a depolarization 
threshold has been reached ( mVVV tm 50−≈> ). Excitatory synapses tend to evoke a local 
membrane depolarization (Vm >Vt ), whereas inhibitory synapses cause local membrane 
hyperpolarization (Vm <Vt ). 
 
From the extracellular medium, a site along the membrane where ions move into the cell 
corresponds to a sink current (current disappearance), whereas a site where ions go out of 
the cell defines a source current (current appearance). Transmembrane and intracellular 
currents are grouped together at the micro- (neuronal) scale and more generally at the meso- 
(cell assembly) scale to form the primary currents pJ , often described as currents related 
to postsynaptic activity. They produce an electric field in the medium, which in turn gives rise 
to conduction currents EJe σ= , also referred to as volume or secondary currents. In every 
point within the head, the electric current can be described as EJJ p σ+= . 
Source and sink current distributions on the membrane can be modeled by multipolar 
(Taylor) developments (Mosher, Leahy, Shattuck and Baillet, 1999). Simple dipole models 
capture well the contribution of PSPs (Koles, 1998), whereas APs are well described by 
quadrupole models whose contribution decreases rapidly with distance and can be neglected 
in the context of EEG and MEG (Crouzeix, 2001) (Fig. 2). Furthermore, approximately 
50,000 neurons with simultaneous activity and similar orientation are required to be picked 
up by MEG and EEG sensors (Pernier, 2007). Consequently, it is usually assumed that only 
the primary currents produced by a synchronous population of neurons with a preferred 
orientation such as the pyramidal cells contribute to the electric potentials and magnetic 
fields measurable on scalp (Crouzeix, 2001; Nunez, 1981).  

 
Fig.2. Schematic view of neuronal current distributions. An excitatory synapse creates a local sink current, which 
induces primary currents across the membrane and within the cell. The conducting currents close the loop in the 
extracellular space, hence creating a distribution of source currents along the membrane. In the same way, an 
inhibitory synapse creates a source current. 
 
 
 



 
b. From macroscopic currents to observed electric and magnetic fields 

 Predicting the electric ( E ) and magnetic ( B ) fields produced by neuronal activity on 
EEG and MEG sensors requires solving Maxwell’s equations in head tissues. In their general 
form, Maxwell’s equations write: 
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where J and ρ indicate the volume density of current and volume density of charge, 
respectively. ε  and µ  are the electric permittivity and magnetic permeability of the medium, 
respectively. 
 
The head is composed of several tissues with various conductivities and therefore can be 
described as a finite inhomogeneous conducting volume. It is commonly accepted that ε  
and µ  are equal to free space value (ε0 and µ0 respectively) (Malmivuo and Plonsey, 1995). 
Given the frequency spectra of EEG and MEG signals is much below 1 kHz, capacitive 
effects can be neglected (Schwan and Kay, 1957). The duration of the electromagnetic wave 
propagation (from neuronal sources to sensors) is negligible compared to physiological time 
constants, hence scalp measures appear as instantaneous and synchronous, and the quasi-
static approximation holds (Plonsey and Heppner, 1967). Under this regime, Maxwell’s 
equations simplify as follows: 
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The electric and magnetic fields are now decoupled and importantly, the forward computation 
has become independent of time. The later means that only the location, orientation and 
amplitude of the neuronal sources need to be known to compute the sensor signals. 
 
Since the electric potential simply relates to the electric field by 


E r, t( ) = −grad
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(1.3) 

 
and accounting for Ohm’s law, the law of conservation of charge and Biot-Savart’s law which 
relates magnetic fields to the underlying currents, equations (1.2) yield the following 
formulations for the electric potential V(r,t) and the magnetic field B(r,t) distributions, given a 
time-varying source distribution Jp(r,t) and tissue conductivity σ(r): 
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at spatial location r and time t. Difference between EEG and MEG data generated by the 
same underlying sources are illustrated in Fig.3. 

 



 
Fig.3. a). Current dipole with electric field lines (red) and magnetic field lines (green). Because of different 
conductivities in different head tissues, current lines are distorted when they cross tissue boundaries (figure 
adapted from [2]).b) Scalp topography of real EEG data (auditory evoked response N100). c) Corresponding 
scalp topography of MEG data (from simultaneously recorded EEG and MEG responses to auditory tones). 
  



II. The main forward model assumptions 
 
 A forward model of EEG and MEG data calls for a description of the neuronal current 
distribution (referred to as the source distribution), a specification of the conducting 
properties of the head tissues and some information about the sensors (locations and 
orientations in the case of MEG). A large number of models have been proposed in the 
literature. They differ by the realism with which they account for the physical and geometrical 
properties of head tissues. In other words, the practicality of deriving EEG and MEG forward 
models often boils down to trading off between the complexity of computing a fine individual 
structural and physical model, and the accuracy of the ensuing forward prediction. In addition, 
contrary to simple models, complex ones will not have analytical solutions and numerical 
approximations will be needed.  
 

a. The source model 
 
 At the macro-scale, the coherent activity of a neuronal assembly is most commonly 
modeled by an equivalent current dipole (ECD) (Fig. 3a). Higher order models have also 
been explored (Nolte and Curio, 2000), mostly as an attempt to better capture the extent of 
active cortical areas. However, such models introduce a higher number of unknown 
parameters that are also difficult to interpret. Nevertheless, quadrupoles may be of interest, 
particularly in MEG, to model the complex fields generated by extended and deep cortical 
sources (Jerbi et al., 2004). 
 
Two main approaches can be distinguished when considering the ECD as a unitary source 
model: 
 
• The dipolar approach relies on the assumption that a fairly small number of ECDs 
(fixed a priori, typically less than 8) contribute simultaneously and significantly to the scalp 
data. Each ECD is fully described by 6 parameters, 3 for its location and 3 for its orientation 
and magnitude. This yields a well-conditioned system where the number of unknown 
parameters to be fitted is smaller than the number of independent data points (which at each 
point in time roughly corresponds to the number of sensors). 

 
• The distributed or imaging approach relaxes the strong constraint on the number of 
active regions. A few thousands ECDs are typically used to model the entire source space 
with fixed positions, either distributed over a 3D regular grid covering the whole brain volume 
or limited to the cortical sheet with a possible normal orientation constraint. For the latter, 
only each ECD magnitude is left to be estimated, yielding a linear but ill-conditioned system 
to be solved. A unique solution to the ill-posed EEG/MEG inverse problem will be obtained 
here by incorporating additional constraints about the source configuration (see Chapter 331). 
This source model enables one to produce images of cortical or brain activity, which makes 
statistical inference at the subject or group level more tractable and more sensitive (Mattout, 
Henson and Friston, 2007; Litvak and Friston, 2008). 
 

b. The head model 
 

 This is another critical part of the forward model. It embeds our knowledge and 
assumptions on head tissue geometry and conducting properties.   
 

• Head geometry models 
 
Spherical models are the simplest ones, consisting of concentric spheres with 
homogeneous and isotropic conductivity in each compartment or layer (Rush and Driscoll, 
1968; de Munck, van Dijk and Spekreijse, 1988). Although the head is not spherical, these 
models are attractive because of the ensuing exact analytic expressions for the electric 
potential and magnetic field on the head surface. They have been extensively evaluated 
empirically. 



The "3 shell" model distinguishes between the scalp, skull and brain layers with radius ratio 
and isotropic conductivities as proposed in (Rush and Driscoll, 1969). It is largely used for 
EEG and available in most routine softwares.  
Since the magnetic permeability is homogenous over tissues and volume currents barely 
contribute to the external magnetic field, spherical models appear more suitable for MEG 
than EEG. MEG spherical models are blind to volume currents contributions but present the 
advantage that neither tissue conductivity knowledge nor the radius of the sphere is needed. 
The "overlapping spheres" model, which refines the single sphere model by fitting a sphere 
to each sensor location, provides a better MEG forward solution (Huang, Mosher and Leahy, 
1999). 
 
Realistic models are numerical models that have been mostly developed for EEG, to better 
account for the shape and electrical properties of the tissues, namely their electrical 
conductivity as with the Boundery Element Method (BEM) (Hämäläinen and Sarvas, 1989) 
and their anisotropy as with the Finite Element Method (FEM) (Marino et al., 1993) or the 
Finite Difference Method (FDM) (Lemieux, McBride and Hand, 1996).  
The BEM relies on surface meshes derived from MRI segmentation and assigns each layer 
with homogenous and isotropic conductivity. Studies comparing spherical and BEM models 
in EEG and MEG obtained better source estimates using BEM for dipoles below the 
supratemporal plane (Yvert et al., 1997; Crouzeix, Yvert, Bertrand and Pernier, 1999).FEM 
and FDM rely on 3D meshes where each finite element can be ascribed with a different, 
anisotropic conductivity tensor matrix. Models then differ in their number of compartments, 
conductivity values, anisotropic ratios and tensor orientations. The latter can be derived from 
Diffusion Tensor Imaging (DTI) (Tuch et al., 2001). 
 
We refer the reader to (Rush and Driscoll, 1969; Sarvas, 1987; Meijs, Weier, Peters and van 
Oosterom, 1989; Hämäläinen et al., 1993; Mosher, Leahy and Lewis, 1999) for a detailed 
description of the forward model computation, under the spherical assumption (analytic form) 
and the more realistic assumption (numerical form). 
 

• Head tissue conductivities 
 
Individual conductivity values are of high importance, particularly for realistic models.  
Estimations from dead tissues have proved very different from in vivo values and first in vivo 
observations have come from anaesthetized animals (Robillard and Poussart, 1977). More 
recently, in vivo measures have been made possible in humans thanks to the advent of 
Electric Impedance Tomography (EIT) (Ferree, Eriksen and Tucker, 2000; Gonçalves et al., 
2000) as well as Diffusion Tensor Imaging (DTI) (Tuch et al., 1999) but these techniques can 
still hardly be used routinely. Hence empirical values reported in experimental studies are 
largely used as a first approximation (Rush and Driscoll, 1968). Several studies based on 
simulated data have compared the relative sensitivity of EEG and MEG forward solutions to 
conductivities. Critically, EEG is highly sensitive to the brain/skull conductivity ratio (Vallaghé 
and Clerc, 2009) as well as to white matter anisotropy (Güllmar, Haueisen and Reichenbach, 
2010). MEG is particularly sensitive to brain tissue conductivity (Gencer and Acar, 2004; Van 
Uitert and Johnson, 2003) and white matter anisotropy (Güllmar, Haueisen and Reichenbach, 
2010). 
 

c. Sensor registration 
 
Sensor description relative to the head model is achieved by means of a spatial 
transformation based on head landmarks (least-square fitting) or head surface (surface-
matching methods) or both, identified in both the MRI and the electrophysiological coordinate 
systems. 
 
Various sources of errors are associated with sensor coregistration, particularly landmark 
identification on MR images, electrode and landmark digitization and head movements 
during MEG acquisition. Typically, coregistration errors range between 5 and 10 mm 
(Whalen, Maclin, Fabiani and Gratton, 2008; Hillebrand and Barnes, 2011), with moderate 



consequences on EEG inverse solutions (Wang and Gotman, 2001; Acar and Makeig, 2013) 
but potentially dramatic effects on MEG ones (Hillebrand and Barnes, 2003). Interestingly, 
uncertainty about the forward model, due to coregistration, could be accounted for in the 
source reconstruction process thanks to probabilistic or Bayesian methods (López, Penny, 
Espinosa and Barnes, 2012). 
 
 
 
 
III. Empirical evaluation of forward model assumptions 

 
a. From forward to generative models 

 
 The forward relationship between source parameters 𝜃 and observed EEG or MEG 
data 𝑌 is of the general form 
 

𝑌 = 𝐿(𝜃)
 

(3.1) 
 
where 𝐿 indicates the lead-field operator and embodies all the pre-cited anatomical and 
biophysical assumptions one needs to account for in the forward model. Data   
𝑌 is a 𝑁 ∗   𝑇 matrix, where 𝑁 is the number of sensors and 𝑇 the number of time samples. 𝜃 
is a 𝑃-long vector made of all source location, orientation and amplitude parameters. 
 
Forward models have in themselves barely no interest; they are only useful and even 
mandatory when one aims at reconstructing brain activity from scalp recordings, that is 
inverting equation (3.1) to estimate 𝜃. Contrary to the forward computation of 𝐿, this inverse 
problem is ill-posed and requires additional (prior) information or constraints to ensure a 
unique solution (see chapter 331). Two types of additional assumptions can be specified: 
assumptions about measurement noise and prior knowledge about parameters 𝜃 . In 
particular, when source locations are fixed as in distributed approaches, equation (3.1) 
becomes linear: 
 

𝑌 = 𝐿. 𝜃 +   𝜀
 

(3.2) 
 
where 𝐿  is the 𝑁 ∗ 𝑃  lead-field (or gain) matrix operator and 𝜀  models an additive 
measurement noise which is usually assumed to follow a Gaussian distribution with zero 
mean and a fully known or parameterized variance structure (Mattout et al., 2006). 
 
This highlights the fact that solving the inverse problem requires the specification of not only 
the lead-field operator 𝐿 but also of the prior distributions over noise 𝜀 and parameters 𝜃. 
Altogether, those assumptions make a full generative model, which could be used to 
simulate realistic EEG or MEG data. 
 
The probabilistic or Bayesian framework is very much appropriate to define and invert 
generative models. Indeed, probabilistic distributions can flexibly describe our knowledge or 
uncertainty about a phenomenon. Moreover, advanced inference techniques have been 
developed to invert complex probabilistic models (see chapter 325). 
 

b. Bayesian (forward) model comparison 
 
 Importantly, the Bayesian framework enables formal model comparison given 
empirical observations. Since the forward model is part of the generative model, Bayesian 
model comparison offers a principled way to compare forward model assumptions, as long 
as all other assumptions (namely priors over noise and source parameters) are kept the 
same for each compared generative model, and provided that all models are fitted to the 
same dataset. 
 



This is a recent and important extension to previous evaluation approaches of EEG and 
MEG forward models which mostly rested on numerical simulations (Crouzeix et al., 1999; 
Vatta et al., 2010; Acar and Makeig, 2013) and on a few empirical measures using 
biophysical phantoms (Leahy et al., 1998; Baillet et al., 2001). 
 
Bayesian model comparison rests on computing the model evidence 𝑝 𝑌 𝑀  (see chapter 
328). The higher the model evidence, the better the model. A useful approximation to the log-
evidence is the Free energy (𝐹 ) (Penny, 2012). It can be obtained using variational 
techniques (see Chapter 327) and has already been used to compare forward models of 
EEG and MEG data. 
Namely, it could show that canonical cortical meshes may carry sufficient structural 
information to solve the MEG inverse problem (Mattout, Henson and Friston, 2007; Henson, 
Mattout, Phillips and Friston, 2009). 
 

c. A note on model complexity 
 
 Given data 𝑌 and model 𝑀 with parameters 𝜃, the free energy writes 
 

𝐹 =    ln 𝑝 𝑌 𝜃,𝑀 ! − 𝐾𝐿 𝑞 𝜃 𝑝 𝜃 𝑀
 

(3.3) 
 
where 

• 𝑝 𝑌 𝜃,𝑀  and 𝑝 𝜃 𝑀  are the likelihood and prior distributions, respectively. They 
fully define the generative model 𝑀. 

• 𝑞 𝜃  is the approximate posterior distribution over model parameters (the outcome of 
the inverse inference process). 

• KL is the Kullback-Leibler divergence which can be interpreted as a statistical 
distance between two distributions. Here, it quantifies the distance between the 
posterior and the prior distribution over 𝜃. 

 
Importantly, the first term in equation (3.3) corresponds to model accuracy, while the second 
term quantifies model complexity. In the general case of Gaussian distributions, this term 
writes 
 
𝐾𝐿 𝑞 𝜃 𝑝 𝜃 𝑀 =    12 ln 𝐶𝜃   −  

1
2 ln 𝐶𝜃 𝑌   +  

1
2 𝜇𝜃 𝑌−𝜇𝜃

𝑇
𝐶𝜃

−1 𝜇𝜃 𝑌−𝜇𝜃 + 𝑇𝑟𝑎𝑐𝑒 𝐶𝜃
−1𝐶𝜃 𝑌 +   𝑐𝑠𝑡

 
(3.4) 

 
where 𝜇! , 𝐶!  and 𝜇! ! , 𝐶! !  are the mean and variance of the prior and posterior 
distributions, respectively. 
 
Given those equations, changing the lead-field operator by moving from a simple spherical 
head model to a more realistic one might increase the free energy in two ways:  

− by improving the fit of the data (increasing model accuracy); 
− by reducing model complexity through a posterior distribution that would decrease the 

above Kullback-Leibler divergence. Namely, this could be the case if the realistic 
model would yield a smaller posterior correlation between parameters (Penny, 2012). 

 
Importantly, this means that a more realistic model, although more complex in a computing 
sense (because it requires the fine extraction of individual anatomical and biophysical 
features) might yield a significantly higher free energy. 
 
However, this will be the case only if such a model offers a more realistic and higher spatial 
resolution that the data can accommodate. In other words, whether it is worth deriving a fine 
and realistic head model for source reconstruction depends on the spatial precision that the 
data can offer. 
In (Henson et al., 2009), using data from a face perception MEG experiment; it was shown 
that a BEM model should be preferred to a spherical one, provided individually-defined inner 
skull and scalp meshes were used. 
 



Finally, beside head models, Bayesian model comparison can also be used to evaluate the 
ability of EEG and MEG data to inform advanced source models based on neural masses. 
Recent developments of Dynamic Causal Models to study brain effective connectivity have 
led to more biologically plausible models of neuronal populations. As an example, a recent 
study suggests that EEG data can distinguish between the dynamics of local neuronal 
excitatory and inhibitory subpopulations (Moran et al., 2013). 
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