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Abstract. The clustering of objects (individuals or variables) is one of the most
used approaches to exploring multivariate data. The two most common unsuper-
vised clustering strategies are hierarchical ascending clustering (HAC) and k-means
partitioning used to identify groups of similar objects in a dataset to divide it into
homogeneous groups.

The proposed topological clustering of variables, called TCV, studies an homo-
geneous set of variables defined on the same set of individuals, based on the notion
of neighborhood graphs, some of these variables are more-or-less correlated or linked
according to the type quantitative or qualitative of the variables. This topological
data analysis approach can then be useful for dimension reduction and variable selec-
tion. Its a topological hierarchical clustering analysis of a set of variables which can
be quantitative, qualitative or a mixture of both. It arranges variables into homoge-
neous groups according to their correlations or associations studied in a topological
context of principal component analysis (PCA) or multiple correspondence analysis
(MCA). The proposed TCV is adapted to the type of data considered, its principle
is presented and illustrated using simple real datasets with quantitative, qualitative
and mixed variables. The results of these illustrative examples are compared to those
of other variables clustering approaches.

Keywords: Hierarchical clustering, proximity measure, neighborhood graph, ad-
jacency matrix, multivariate quantitative, qualitative and mixed data analysis, dimen-
sion reduction.

1 Introduction

The objective of this article is to propose a new approach for classifying vari-
ables. This is a topological approach that is different from those that already
exist and with which it is compared.

Besides classical and well know methods devoted to the clustering of objects,
there are some approaches specifically devoted to the clustering of variables,
the Varclus classification procedure [23] implemented in the SAS software, the
ClustOfVar approach [9], the CVLC approach [29,28] for clustering variables
arround latent components and the Clustatis approach [19], but as far as we
know, none approach, is proposed in a topological context.

A clustering of variables can also be considered as a dimension reduction
approach, like a factor analysis. The purpose of the classification of variables is
to group together the variables strongly related to each other, that is to say to
separate the variables into classes of variables. It will be possible to summarize
each class of variables by a single quantitative synthetic variable.



The interest here is to understand the structures underlying the data, to
constitute a summary of the information carried by the data or to detect re-
dundancies, for example with a view to reducing number of variables in another
process.

The objective of the clustering of variables is to obtain linked and redun-
dant classes of variables. Specific algorithms have thus been developed for the
clustering of variables. To create profiles from variables grouped in a question-
naire, we can achieve this using two main types of methods: non-hierarchical
clustering such as K-means or dynamic clusters, and hierarchical clustering of
the ascending or descending type.

Similarity measures play an important role in many areas of data analysis.
The results of any operation involving structuring, clustering or classifying
objects are strongly dependent on the proximity measure chosen.

Generally the variables are homogeneous in the sense that they revolve
around a particular theme. Unlike the clustering of individuals, which is gener-
ally done from a single set of homogeneous variables relating to a single theme,
the clustering of variables can process several sets of homogeneous variables
from several different themes. The clusters of variables of the chosen partition
can be considered as a selection of variables, each cluster of variables can then
be synthesized separately using a factor analysis for example.

The TCV can be considered as a method of reduction of dimensions where
each class of correlated variables of the partition can be represented by the
synthesis variable of the variables of the class, or again, as a method of selection
of variables where each class can be represented by the significant variables of
the class.

The present study proposes a topological hierarchical clustering of variables,
with no restriction on the type, quantitatives, qualitatives or a mixture both
of them.

Several topological studies have been proposed in factorial analyses context,
discrimination analysis [4], simple and multiple correspondence analyses [2] and
principal component analysis [1] but none on clustering of variables.

Therefore, this paper focuses on unsupervised clustering of a set of variables
of any type, quantitative, qualitative or a mixture of both. The eventual asso-
ciations or correlations between the variables partly depends on the database
being used and the results of the topological clustering of these variables can
change according to the selected proximity measure. A proximity measure is a
function which measures the similarity or dissimilarity between two objects or
variables within a set.

This paper is organized as follows. In section 2, we briefly recall the basic
notion of neighborhood graphs, we define and show how to construct an adja-
cency matrix associated with a proximity measure within the framework of the
analysis of the correlation or association structure of a set of variables. Section
3 presents the principles of the TCV according to the three types of variables.
It is illustrated in section 4 using simple examples on real data. The TCV
results are compared according to the type of variables, with those of different
known clustering of variables approaches. Finally, section 5 gives concluding
remarks of this work.



2 Topological context

Topological data analysis is an approach based on the concept of the neigh-
borhood graph. The basic idea is actually quite simple, for a given proximity
measure for continuous or binary data and for a chosen topological structure,
we can match a topological graph induced on the set of objects.

Consider a set E = {x1, · · · , xj , · · ·xp, y11, · · · , y1m1 , . . . , yq1, · · · , yqmq} of
a mixture variables, p quantitative variables {x1, · · · , xj , · · ·xp} and q qualita-
tive variables {y1, · · · , yk, · · · yq}, where, m =

∑q
k=1mk is the total number of

modalities and mk denotes the number of modalities of the variable yk.
We can, by means of a proximity measure u, define a neighborhood rela-

tionship Vu to be a binary relationship on E×E. There are many possibilities
for building this neighborhood binary relationship.

Thus, for a given proximity measure u, we can build a neighborhood graph
on E, where the vertices are the variables and the edges are defined by a
property of the neighborhood relationship.

Many definitions are possible to build this binary neighborhood relationship.
One can choose the Minimal Spanning Tree (MST) [15], the Gabriel Graph
(GG) [21] or, as is the case here, the Relative Neighborhood Graph (RNG) [27].

For any proximity measure u listed in Table 9 given in the appendix, we
construct the associated adjacency binary symmetric matrix Vu of order p +
m, where, all pairs of neighboring variables in E satisfy the following RNG
property:

Vu(xk, xl) =


1 if u(xk, xl) ≤ max[u(xk, xt), u(xt, xl)];

∀xk, xl, xt ∈ E, xt 6= xk and xt 6= xl

0 otherwise.

Fig. 1. RNG structure - Euclidean proximity measure - Associated adjacency matrix

This means that if two variables xk and xl which verify the RNG property
are connected by an edge, the vertices xk and xl are neighbors.

Figure 1 shows an example in R2 of a set of eight objects, three quantitative
variables {x1, x2, x3} and five dummy variables {x41, x42, x51, x52, x53} of two
qualitative variables {x4, x5}, which verify the RNG graph structure with the
chosen proximity measure u, the Euclidean distance.



For example, for the first quantitative variable x1 and the first modality
of the first qualitative variable x41, Vu(x1, x41) = 1, it means that on the ge-
ometrical plane, the hyper-Lunula (intersection between the two hyperspheres
centered on the two variables x1 and x41) is empty.

For a given neighborhood property (MST, GG or RNG), each measure u
generates a topological structure on the objects in E which are totally described
by the adjacency binary matrix Vu.

2.1 Reference adjacency matrices

Three topological approaches are described according to the type of variables
considered, quantitative or qualitative or a mixture of both.

2.2 Quantitative variables

We assume that we have at our disposal a set {xj ; j = 1, · · · , p} of p quantitative
variables and n individuals-objects. The interest lies in whether there is a
topological correlation between all the considered variables [1].

We construct the adjacency matrix denoted by Vu? , which corresponds to
the correlation matrix. Thus, to examine the correlation structure between the
variables, we look at the significance of their linear correlation coefficient. This
adjacency matrix can be written as follows using the t-test or Student’s t-test
of the linear correlation coefficient ρ of Bravais-Pearson:

Definition 1. The reference adjacency matrix Vu? associated to reference mea-
sure u? is defined as:

Vu?(xk, xl) =

{
1 if p-value = P [ | Tn−2 | > t-value ] ≤ α ; ∀k, l = 1, p
0 otherwise.

Where p-value is the significance test of the correlation coefficient for the
two-sided test of the null and alternative hypotheses, H0 : ρ(xk , xl) = 0 vs.
H1 : ρ(xk , xl) 6= 0.

Let Tn−2 be a t-distributed random variable of Student with ν = n − 2
degrees of freedom. In this case, the null hypothesis is rejected with a p-value
less or equal a chosen α significance level, for example α = 5%. Using linear
correlation test, if the p-value be very small, it means that there is very small
opportunity that null hypothesis is correct, and consequently we can reject
it. Statistical significance in statistics is achieved when a p-value is less than
a chosen significance level of α. The p-value is the probability of obtaining
results which acknowledge that the null hypothesis is true.

2.3 Qualitative variables

We assume that we have at our disposal {yk; k = 1, .., q}, a set of q ≥ 2
qualitative variables and partitions of n =

∑q
k=1 nk individuals-objects into



mk modalities-subgroups. The interest lies in whether there is a topological
association between all these variables [4].
- Yk = Y(n,mk) the disjonctif table, data matrix associated to the mk dummy

variables of the qualitative variable yk with n rows-objects and mk columns-
modalities, we check that ∀i=1,n, Σ

mk
k=1y

k
i = 1 and Σn

i=1y
k
i = nk

- Y(n,m) = [Y1|Y2| · · · |Yq ] the indicator matrix, juxtaposition of the q binary
tables Yk, with n rows-objects and m =

∑q
k=1mk columns-modalities, we check

that Σmk
k=1y

k
i = q, ∀i and Σn

i=1Σ
mk
k=1y

k
i = nq,

- B(m,m) = tY Y the symmetric Burt matrix of the two-way cross-tabulations
of the q variables,

The dissimilarity matrice associated with a proximity measure is computed
from data given by the Burt table B. The attributes of any two points’ modal-
ities’ yk and yl in {0, 1}n of the proximity measures can be easily written and
calculated from the Burt matrix.

A contingency table is one of the most common ways to summarize cate-
gorical data. Generally, interest lies in whether there is an association between
the row variable and the column variable that produce the table; sometimes
there is further interest in describing the strength of that association. The data
can arise from several different sampling frameworks, and the interpretation of
the hypothesis of no association depends on the framework. The question of
interest is whether there is an association between the two variables.

In this case, we build the adjacency matrix Vu? , which corresponds best
to the Burt table. Thus, to examine similarities between the modalities we
examine the gap between each profile-modality and its average profile, that is,
the gap to independence. This best adjacency matrix can be written as follows:

Definition 2. The reference adjacency matrix Vu? associated to reference mea-
sure u? is defined as:

Vu?(ykr, yls) =

{
1 if Bkr lsBkr ..

≥ Bkr ..
nq2

; ∀k, l = 1, q ; r = 1,mk and s = 1,ml

0 otherwise.

Bkr ls = Σn
i=1y

kr
i y

ls
i , element of the Burt matrix that corresponds to the num-

ber of individuals who have the modality r of the variable k and the modality
s of the variable l,
Bkr .. = Σq

l=1Σ
ms
s=1bkr ls is the row margin of the modality r of the variable k,

Bkr ls
Bkr .. is the row profile of the modality r of the variable k,
Bkr ..
nq2 is the average profile of the modality r of the variable k, nq2 being the

total number.

2.4 Mixed variables

In this case, the variables for clustering can be a mixture of both quantitative
and qualitative variables.

Let {xj ; j = 1, · · · , p} and {yk; k = 1, · · · , q} be two sets with p quan-
titative variables and q qualitative variables respectively, with partitions of



n =
∑q
k=1 nk individuals-objects into mk modalities-subgroups which total

m =
∑q
k=1mk modalities. The interest lies in whether there is a topological

dependency between all the mixed variables.

Simultaneous treatment of mixed data (quantitative and qualitative) cannot
be achieved directly by conventional methods of data analysis. So, firstly we
transform qualitative data into quantitative data [5]. This transformation is
based on multivariate analysis of variance (MANOVA) and on the maximization
of the mixed criterion, proposed in terms of correlation squares by Saporta [24]
and geometrically in terms of square cosines of angles by Escofier [12]. Then
secondly, we build the adjacency matrix Vu? , associated to reference proxim-
ity measure u?, from the correlation matrix of all variables, quantitative and
transformed qualitative variables, according to the definition 1. Then secondly,
we build the adjacency matrix Vu? , associated to reference proximity measure
u?, from the correlation matrix of all variables, quantitative and transformed
qualitative variables, according to Definition 1.

3 Topological clustering of variables - Selective review

Whatever the type of the set of variables considered, the binary and symmetric
adjacency matrix build Vu? is associated with an unknown reference proximity
measure u?.

The robustness according to the α error risk chosen for the null hypothe-
sis: no linear correlation in the case of quantitative variables, or the positive
deviation from independence in the case of qualitative variables, can be stud-
ied by setting a minimum threshold in order to analyze the sensitivity of the
results. Certainly the numerical results will change, but probably not their
interpretation.

In order to describe the similarities between variables and to group them
into homogeneous groups, we apply the notion of the thémascope or structural
analysis of survey data [17], which is a methodological sequence of a clustering
method on the principal components of a factorial analysis method. In this case
here, it is a topological factorial analysis followed by a Hierarchical Ascendant
Classification (HAC). For the topological factorial analysis method, we carry
out the classical Multidimensional Scaling (MDS), namely factorial analysis on
the similarity table [8], the reference adjacency matrix Vu? associated with the
proximity measure u∗, the most appropriate measure for the considered data.

Definition 3. The Topological Clustering of Variables (TCV) consist to per-
form a HAC algorithm based on the Ward criterion1 [30], on the significant
components, of the topological multiple correspondence analysis (TMCA) if

1Aggregation based on the criterion of the loss of minimal inertia. Ward’s method
is a criterion applied in hierarchical cluster analysis; it is a general agglomerative
hierarchical clustering procedure. With the square of the Euclidean distance, this
criterion allows one to minimize the total within-cluster variance or, equivalently,
maximize the between-cluster variance.



the variables are qualitative or of the topological principal component analy-
sis (TPCA) if the variables are quantitative or a mixture of quantitative and
qualitative variables.

The TCV hierarchical approach and its dendrogram are easily programmable
from the PCA and HAC procedures of the SPAD, SAS or R software.

As for classical methods devoted to the clustering of observations, there are
many methods devoted specifically to the clustering of variables, particularly
quantitative ones. One of the most used is the Varclus procedure [23] of the SAS
software, but we can also apply the ClustOfVar procedure [9] implemented in
R, the CVLC procedure [29], clustering around latent variables or the Clustatis
procedure [19].

In the case of the TCV of quantitative variables, it is considered that two
positively correlated variables are related and that two negatively correlated
variables are related, but remote, we will therefore take into account the sign of
the correlation between variables. It should be noted that the Varclus procedure
implemented in the SAS software, dedicated to the classification of variables,
also includes this option. Varclus procedure is more precisely a Hierarchical
Descending Classification (HDC).

4 Illustration on real data of simple examples

We illustrate the TCV approach in each of the three types of variables, quan-
titative, qualitative and mixed variables.

4.1 Case of a set of quantitative variables

The illustrative data table from [13] includes 38 French brands of bottled
water described by 8 variables relating to the ion composition (mg/liter). The
data comes from the information provided on the bottle labels. The objective
is to group together these variables which form a homogeneous set of the ion
contents of French brands of bottled water. Simple statistics of these variables
are displayed in Table 1.

Table 1. Summary statistics of ion content of French brands of bottled water

Standard Coefficient of
Variable Frequency Mean Deviation (N) variation (%) Min Max
CA - Calcium 38 104.184 114.40 109.81 1.00 528.00
MG - Magnesium 38 28.105 29.50 104.95 0.00 95.00
NA - Sodium 38 115.658 210.43 181.94 0.00 968.00
K - Potassium 38 15.079 28.18 186.89 0.00 130.00
SULP - Sulphates 38 119.237 289.83 243.07 1.00 1342.00
NO3 - Nitrates 38 1.842 2.64 143.06 0.00 12.00
HC03 - Carbonates 38 561.368 696.23 124.02 4.00 3380.00
CL - Chlorides 38 40.868 75.35 184.37 0.00 387.00

Figure 2 presents the adjacency matrix Vu? associated to the proximity mea-
sure u? adapted to the data considered, is build from the correlations matrix
Table 6 given in Appendix, according to Definition 1.



The correlation circle of the two first TPCA factors gives an overview of
groups of correlated and uncorrelated variables, an HAC according to Ward’s
criterion is then applied on the TPCA principal components.

Fig. 2. Representation of the ion composition of French brands of bottled water

Fig. 3. TCV dendrogram of the ion composition of French brands of bottled water

The dendrogram cluster given in Figure 3 allows to visualize and identify
the topological structure of the variables. The aggregation indices of TCV
suggests a partition into 3 clusters of the eight variables.

The characterization of the classes by the variables, Table 2, shows with
a risk of error less than or equal to 5%, that the first cluster composed of 2
variables, Calcium and Sulfates, are positively correlated and negatively corre-
lated with the variables Sodium, Potassium, Carbonates and Chlorides. The
Nitrates variable alone constitutes the second cluster, it is negatively correlated
with the Magnesium variable. As for the third cluster, composed of 5 variables,
only 4 variables Sodium, Potassium, Carbonates and Chlorides are positively



correlated with each other, the Magnesium variable does not significantly char-
acterize this class.

Cluster Cluter 1 Cluster 2 Cluster 3
Frequency (%) 2 (25.00%) 1 (12.50%) 5 (62.50%)
Profile CA-Calcium NO3-Nitrates NA-Sodium

SULF-Sulphates K-Potassium
HCO3-Carbonates
CL-Chlorides

Anti-profile NA-Sodium MG-Magnesium
K-Potassium
HCO3-Carbonates
CL-Chlorides

Table 2. Characterization of clusters

Fig. 4. Varclus and ClustOfVar dendrograms



Fig. 5. CVLC and Clustatis dendrograms

From a dimension reduction or variable selection point of view, we can
perform in each of the three clusters, a PCA of the variables that characterize
it significantly, see Table 2. We can then keep only the first principal component
of each of the three PCAs. We thus end up with three synthetic variables of
the clusters.

For comparison, Figures 4 and 5 show dendrograms of other variables clus-
tering approaches. Note that for a 3 cluster partition, the constitution of the
clusters is the same except for the Varclus approach.

Table 3 presents the percentages of the total variance explained by the
3-cluster partition of the different approaches. The percentage of the TCV
approach is much higher than the percentages of the other four approaches, so
the TCV clusters are more homogeneous.

4.2 Case of a set of qualitative variables

To illustrate our approach from a set of qualitative variables, we consider a
study on female entrepreneurship conducted in Dakar Senegal in 2014. The



Table 3. Comparison criteria

Clustering approach TCV Varclus CVLC Clustatis ClustOfVar

R2 : Variance explained (%) 93.06 83.72 73.43 73.43 68.78

data displayed in Table 4 have been collected from 153 female of Dakar region.
The objective here is to provide a topological clustering of the demographic
characteristics of the female entrepreneurs.

In Figure 6, we can see the adjacency matrix Vu? associated to the best
adapted proximity measure u? to the considered data established from the
profile Table 7 given in Appendix, according to Definition 2.

Table 4. Burt table - Female Entrepreneurship in Dakar - Senegal

Modality Variable Age Marital status Number of children Level of study
Under 25 22 0 0 18 2 1 1 13 3 6 3 1 18
25 to 50 years 0 80 0 16 9 21 34 14 11 55 58 5 17
Over 50 0 0 51 3 8 24 16 8 35 8 30 10 11
Single 18 16 3 37 0 0 0 20 3 14 9 1 27
Divorcee 2 9 8 0 19 0 0 3 10 6 13 5 1
Monogamous bride 1 21 24 0 0 46 0 7 21 18 26 5 15
Polygamous bride 1 34 16 0 0 0 51 5 15 31 43 5 3
No children 13 14 8 20 3 7 5 35 0 0 11 5 19
From 1 to 3 children 3 11 35 3 10 21 15 0 49 0 27 9 13
More than 3 children 6 55 8 14 6 18 31 0 0 69 53 2 14
Illiterate-Primary 3 58 30 9 13 26 43 11 27 53 91 0 0
Secondary 1 5 10 1 5 5 5 5 9 2 0 16 0
Higher 18 17 11 27 1 15 3 19 13 14 0 0 46

Fig. 6. TCV : The demographic characteristics of women entrepreneurs



The representation on the first principal plane of TMCA gives a first view
of the linked groups of modalities, then, a Ward’s HAC was performed on the
TMCA principal components.

Figure 7 shows the dendrogram of the thirteen demographic characteristics
of the female entrepreneurs. We choose according the dendrogram to cut this
hierarchical tree into 3 clusters.

Fig. 7. TCV : Dendrogram of the demographic characteristics of women en-
trepreneurs

Figure 8 shows the hierarchical dendrogram obtained by the Corresp and
Cluster procedures of SAS software, its percentage of total explained inertia
(32.90%) is much lower than that of the TCV approach (87.64%) for a partition
into 3 clusters.

Fig. 8. CLUSTER - Tree Diagram of the demographic characteristics of women en-
trepreneurs



Fig. 9. ClusOfVar - Tree Diagram of the demographic characteristics of women en-
trepreneurs

Figure 9 is given as an indication and not for comparison, the ClusOfVar
approach partitions the qualitative variables and not the modalities of the
variables as is the case with the TCV and Cluster approaches.

4.3 Case of a set of mixed variables

In some real data situations, variables of a thematic are measured on different
scales with at a mixture of quantitative and qualitative variables.

Table 5. Summary Statistics and frequency distributions

Quantitative variable Frequency Mean Std Dev (N) Minimum Maximum
Urban Consumption 27 7.14 1.12 5.60 9.30
Cubic Capacity 27 1165.63 204.17 903.00 1597.00
Maximum Speed 27 154.26 21.94 115.000 200.00
Boot Volume 27 901.41 301.67 202.00 1200.00
Weight/Power 27 18.65 5.42 10.20 33.10
Length 27 3.62 0.07 3.40 3.70

Cumulative Cumulative
Qualitative variable Modality Frequency Percent Frequency Percent
Horsepower HP4 13 48.15 13 48.15

HP5 5 18.52 18 66.67
HP6 9 33.33 27 100.00

Brand Country Manufacturer French 10 37.04 10 37.04
Foreign 17 62.96 27 100.00

Price Price1 10 37.04 10 37.04
Price2 5 18.52 15 55.56
Price3 8 29.63 23 85.19
Price4 4 14.81 27 100.00

To illustrate this approach, we take the data published in [16], they cover
a sample of 27 small cars of the Belgian market. We have a homogeneous
theme of nine mixed variables of which six quantitative and three qualitative
characteristics totaling nine modalities.



The objective here is to synthesize simultaneously in the sense of correla-
tions all of these mixed characteristics. Table 5 summarizes the elementary
statistics of the mixed variables.

Figure 10 gives the adjacency matrix Vu? associated to the adapted prox-
imity measure u? for the considered data, build from the correlations matrix,
see Table 8 given in Appendix, according to Definition 1. The correlation cir-
cle of the two first TPCA factors gives an overview of groups of correlated
and uncorrelated quantitative and modalities of qualitative variables. An HAC
according to Ward’s criterion is then applied on the TPCA components rep-
resented by the dendrogram of the characteristics of small cars on the Belgian
market presented in Figure 11.

Fig. 10. Representation of the cars characteristics

Fig. 11. TCV - Car characteristics dendrogram



The TCV percentage of total explained inertia is equal to 78.94% for the
partition into 4 classes.

Fig. 12. ClusOfVar - Car characteristics dendrogram

Figure 12 presents, as an indication and not for comparison, the tree dia-
gram of hierarchical clusters of the ClustOfVar approach; the latter considers
the qualitative variables and not their modalities.

5 Conclusion

This paper proposes a new topological method of clustering of variables which
enriches the methods of data analysis within the framework of the clustering
of a set of quantitative or qualitative variables or a mixture of both. The
results the proposed topological approach of classifying variables, based on the
notion of neighborhood graph, are as well as good, or event better according
to the R square than those of the existing methods. This approach is be easily
implemented on SAS, SPAD or R software. Future work consists in extending
this topological approach to other methods of data analysis, in particular in
the context of evolutionary data analysis, both in the concept of a factorial
analysis and that of a clustering as well individuals and variables.



6 Appendix

Table 6. Pearson correlation matrix (p-values)

Variable CA MG NA K SULF NO3 HCO3 CL
CA 1.0000

MG 0.6672 1.0000
(< .0001)

NA 0.0042 0.5649 1.0000
(0.9757) (< .0001)

K 0.1072 0.6703 0.8817 1.0000
(0.4358) (< .0001) (< .0001)

SULF 0.8997 0.5629 -0.0957 -0.0546 1.0000
(< .0001) (< .0001) 0.4872 0.6923

NO3 -0.0473 -0.1756 -0.0830 -0.1529 -0.1288 1.0000
(0.7317) (0.1998) 0.5469 0.2650 0.3486

HCO3 0.1491 0.6583 0.9474 0.8866 -0.0573 -0.0541 1.0000
0.2774 (< .0001) (< .0001) (< .0001) 0.6776 0.6947

CL 0.0578 0.52094 0.5646 0.7187 -0.0276 -0.1053 0.4794 1.0000
0.6749 (< .0001) (< .0001) (< .0001) 0.8406 0.4443 (0.0002)

Table 7. Row and Average profiles

Row-Profiles Age Marital status Number of child Level of study
Under 25 years 0.25 0 0 0.205 0.023 0.011 0.011 0.148 0.034 0.068 0.034 0.011 0.205
25 to 50 years 0 0.25 0 0.050 0.028 0.066 0.106 0.044 0.034 0.172 0.181 0.016 0.053
Over 50 years 0 0 0.25 0.015 0.039 0.118 0.078 0.039 0.172 0.039 0.147 0.049 0.054
Single 0.122 0.108 0.020 0.25 0 0 0 0.135 0.020 0.095 0.061 0.007 0.182
Divorcee 0.026 0.118 0.105 0 0.25 0 0 0.040 0.132 0.079 0.171 0.066 0.013
Monogamous 0.005 0.114 0.130 0 0 0.25 0 0.038 0.114 0.098 0.141 0.027 0.082
Polygamous 0.005 0.167 0.078 0 0 0 0.25 0.025 0.074 0.152 0.211 0.025 0.015
No children 0.093 0.100 0.057 0.143 0.021 0.050 0.036 0.25 0 0 0.079 0.036 0.136
From 1 to 3 child 0.015 0.056 0.179 0.015 0.051 0.107 0.077 0 0.25 0 0.138 0.046 0.066
More than 3 child 0.022 0.199 0.029 0.051 0.022 0.065 0.112 0 0 0.25 0.192 0.007 0.051
Illiterate-Primary 0.008 0.159 0.082 0.025 0.036 0.071 0.118 0.030 0.074 0.146 0.25 0 0
Secondary 0.016 0.078 0.156 0.016 0.078 0.078 0.078 0.078 0.141 0.031 0 0.25 0
Superior 0.098 0.092 0.060 0.147 0.005 0.082 0.016 0.103 0.071 0.076 0 0 0.25
Average profile 0.036 0.131 0.083 0.061 0.031 0.075 0.083 0.057 0.080 0.113 0.149 0.026 0.075



Table 8. Pearson correlation matrix (p-values)
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Table 9. Some proximity measures for continuous and binary data

Measure Distance and Dissimilarity for continuous data

Euclidean uEuc(x, y) =
√∑p

j=1(xj − yj)2

Manhattan uMan(x, y) =
∑p
j=1 |xj − yj |

Minkowski uMinγ (x, y) = (
∑p
j=1 |xj − yj |

γ)
1
γ

Tchebychev uTch(x, y) = max1≤j≤p |xj − yj |

Normalized Euclidean uNE(x, y) =
√∑p

j=1
1

σ2
j

[(xj − xj)− (yj − yj)]2

Cosine dissimilarity uCos(x, y) = 1−
∑p
j=1

xjyj√∑p
j=1

x2
j

√∑p
j=1

y2
j

= 1− <x,y>
‖x‖‖y‖

Canberra uCan(x, y) =
∑p
j=1

|xj−yj |
|xj |+|yj |

Pearson Correlation uCor(x, y) = 1−
(
∑p
j=1

(xj−x)(yj−y))
2∑p

j=1
(xj−x)2

∑p
j=1

(yj−y)2
= 1− (<x−x,y−y>)2

‖x−x‖2‖y−y‖2

Squared Chord uCho(x, y) =
∑p
j=1(
√
xj −

√
yj)

2

Doverlap measure uDev(x, y) = max(
∑p
j=1 xj ,

∑p
j=1 yj)−

∑p
j=1min(xj , yj)

Weighted Euclidean uWEu(x, y) =
√∑p

j=1 αj(xj − yj)2

Gower’s Dissimilarity uGow(x, y) = 1
p

∑p
j=1 | xj − yj |

Shape Distance uSha(x, y) =
√∑p

j=1[(xj − xj)− (yj − yj)]2

Size Distance uSiz(x, y) =|
∑p
j=1(xj − yj) |

Lpower uLpoγ (x, y) =
∑p
j=1 |xj − yj |

γ

Where, p is the dimension of space, x = (xj)j=1,...,p and y = (yj)j=1,...,p two points in Rp, xj the mean,σj

the Standard deviation, αj = 1
σ2
j

and γ > 0.

Measure Similarity and Dissimilarity for binary data

Jaccard s1 = a
a+b+c u1 = 1− s1

Dice, Czekanowski s2 = 2a
2a+b+c u2 = 1− s2

Kulczynski s3 = 1
2 ( a
a+b + a

a+c ) u3 = 1− s3
Driver, Kroeber and Ochiai s4 = a√

(a+b)(a+c)
u4 = 1− s4

Sokal and Sneath 2 s5 = a
a+2(b+c)

u5 = 1− s5
Braun-Blanquet s6 = a

max(a+b,a+c)
u6 = 1− s6

Simpson s7 = a
min(a+b,a+c)

u7 = 1− s7
Kendall, Sokal-Michener s8 = a+d

a+b+c+d u8 = 1− s8
Russell and Rao s9 = a

a+b+c+d u9 = 1− s9
Rogers and Tanimoto s10 = a+d

a+2(b+c)+d
u10 = 1− s10

Pearson φ s11 = ad−bc√
(a+b)(a+c)(d+b)(d+c)

u11 =
1−s11

2

Hamann s12 = a+d−b−c
a+b+c+d u12 =

1−s12
2

Sokal and Sneath 5 s13 = ad√
(a+b)(a+c)(d+b)(d+c)

u13 = 1− s13

Michael s14 =
4(ad−bc)

(a+d)2+(b+c)2
u14 =

1−s14
2

Baroni, Urbani and Buser s15 = a+
√
ad

a+b+c+
√
ad

u15 = 1− s15
Yule Q s16 = ad−bc

ad+bc u16 =
1−s16

2

Yule Y s17 =
√
ad−
√
bc√

ad+
√
bc

u18 =
1−s18

2

Sokal and Sneath 4 s18 = 1
4 ( a
a+b + a

a+c + d
d+b + d

d+c ) u18 = 1− s18
Gower and Legendre s19 = a+d

a+
(b+c)

2
+d

u19 = 1− s19

Sokal and Sneath 1 s20 =
2(a+d)

2(a+d)+b+c
u20 = 1− s20

Where, a =| X ∩ Y | is the number of attributes common to both points x and y, b =| X − Y | is the number
of attributes present in x but not in y, c =| Y − X | is the number of attributes present in y but not in x and
d =| X ∩ Y | is the number of attributes in neither x or y and | . | the cardinality of a set.
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