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Abstract
Defining meaningful distances between samples
in a dataset is a fundamental problem in machine
learning. Optimal Transport (OT) lifts a distance
between features (the “ground metric”) to a ge-
ometrically meaningful distance between sam-
ples. However, there is usually no straightfor-
ward choice of ground metric. Supervised ground
metric learning approaches exist but require la-
beled data. In absence of labels, only ad-hoc
ground metrics remain. Unsupervised ground
metric learning is thus a fundamental problem
to enable data-driven applications of OT. In this
paper, we propose for the first time a canonical
answer by simultaneously computing an OT dis-
tance between samples and between features of a
dataset. These distance matrices emerge naturally
as positive singular vectors of the function map-
ping ground metrics to OT distances. We provide
criteria to ensure the existence and uniqueness of
these singular vectors. We then introduce scal-
able computational methods to approximate them
in high-dimensional settings, using stochastic ap-
proximation and entropic regularization. Finally,
we showcase Wasserstein Singular Vectors on a
single-cell RNA-sequencing dataset.

1. Introduction
Machine learning tasks like information retrieval and classi-
fication require a notion of distance between samples in a
dataset X ∈ Rn×m. In particular, we will study the case of
single-cell RNA-sequencing data (scRNA-seq).
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Figure 1. How to jointly define a distance A between features and a
distance B between samples? Wasserstein Singular Vectors define
natural Wasserstein distances (A,B) in an unsupervised manner.

Discrete histograms In scRNA-seq data, the sample
xi ∈ Rm

+ represents the expression value of all genes in
the i-th cell. This motivates two key assumptions in this
paper: (i) samples are positive, which is natural when quanti-
fying presence and quantity of physical objects (ii) samples
can be normalized to discrete histograms, which is natural
when the distribution over features (e.g. genes) is more
important than the total mass. Indeed, gene expression in
scRNA-seq data is usually normalized in some way as part
of preprocessing (Luecken & Theis, 2019).

Optimal Transport distances Optimal Transport
(OT) (Monge, 1781; Kantorovich, 1942) offers a geomet-
rically meaningful distance between discrete probability
distributions, and has recently emerged as a useful tool for
machine learning applications (Frogner et al., 2015; Rolet
et al., 2016). Contrarily to the Euclidean distance, OT does
not compare distributions bin by bin. Instead, OT lifts a
ground pairwise distance matrix A ∈ Rm×m

+ between the m
features to the “Wasserstein” OT distance between normal-
ized samples ai := xi/∥xi∥1. It optimizes a transport plan
P ∈ Rm×m encoding the displacement of mass between
the two m-dimensional histograms ai, aj .

WA(ai, aj) := min
P∈Rm×m

+

∑
k,ℓ Pk,ℓAk,ℓ s.t.

{
P1m = ai,

P⊤
1m = aj .

From supervised to unsupervised ground metric learn-
ing The crucial aspect of successful application of OT in
ML is the design of a metric A which encodes the geometric
relationships between features. In a supervised setting, one
might take advantage of so-called ground metric learning
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methods (Cuturi & Avis, 2014). In an unsupervised set-
ting, one usually resorts to some ad-hoc choice of ground
cost. For instance the Word Mover Distance (Kusner et al.,
2015) uses Euclidean distances on Word2Vec embeddings
(Mikolov et al., 2013). Similarly, the Gene Mover Distance
(Bellazzi et al., 2021) uses Euclidean distances on Gene2Vec
embeddings (Du et al., 2019).

In this work, we take a radically different route, by requiring
that Ak,ℓ is itself a Wasserstein distance between histograms
bk and bℓ ∈ Rn

+. The most intuitive case is to consider ai
(resp. bk) to be the normalized row i (resp. column k) of
a dataset X ∈ Rn×m

+ . We will thus refer to ai as a sample
and bk as a feature.

An intuitive way to motivate our method is to consider a
bootstrapping approach. Given some initial (for instance
random) metric B, one can compute Ak,ℓ = WB(bk, bℓ).
But there is no reason to stop here, and the metric B can be
“improved” by updating Bi,j = WA(ai, aj). By continuing
this process of successively updating A and B, one could
hope to reach a limit where the pair of distance matrices
(A,B) satisfies the following fixed point equation

Ak,ℓ = 1
λWB ( bk, bℓ ), Bi,j = 1

µWA ( ai, aj ), (1)

Distance between features Samples

Features Distance between samples

where (λ, µ) ∈ R2
+ are scaling factors. This corresponds

to casting ground metric learning as a non-linear singular
vectors problem. In this work, we study theoretical prop-
erties (in particular existence and uniqueness) as well as
the practical relevance of Wasserstein Singular Vectors for
machine learning.

1.1. Previous works

Optimal Transport While the initial proposal of
Monge (Monge, 1781) formulates the OT problem as an
optimal matching problem, its modern and tractable for-
mulation by Kantorovich (Kantorovich, 1942) is a linear
program detailed in the Introduction. Besides its use to
define matchings and couplings between distributions, the
main feature of OT is that the transportation value induces a
geometric distance on the space of probability distributions.
This “Wasserstein” distance is thus parameterized by the
underlying ground cost between pairs of points. We refer
to the monographs (Villani, 2003; Santambrogio, 2015) for
a detailed account of the theory of OT, and (Peyré et al.,
2019) for its computational aspects. OT distances have been
used for applications as diverse as image retrieval (Rubner
et al., 2000), brain imaging (Gramfort et al., 2015; Janati
et al., 2020), natural language processing (Kusner et al.,

2015; Yurochkin et al., 2019), and generative models (Ar-
jovsky et al., 2017; Tolstikhin et al., 2017). In recent years,
many applications of OT to single-cell biology have been
proposed (Hashimoto et al., 2016; Schiebinger et al., 2019;
Bellazzi et al., 2021; Huizing et al., 2021; Tong et al., 2021).

Entropic regularization Entropic regularization of OT
allows to scale to high-dimensional machine learning prob-
lems. It approximates OT distances using Sinkhorn’s algo-
rithm, which has quadratic complexity and streams well on
GPU architectures. Entropic regularization was put forward
in the seminal paper by Cuturi (Cuturi, 2013), who also em-
phasizes the smoothing effect, which is crucial when using
Sinkhorn as a loss function to train deep learning models.
Another benefit of this regularization is that it suffers less
from the curse of dimensionality, as proved in (Genevay
et al., 2019; Mena & Weed, 2019). This approach is also
pivotal to scale our unsupervised metric learning method to
tackle high-dimensional problems, for instance in genomics.

Metric Learning Metric learning is most often framed as
the supervised problem of minimizing (resp. maximizing)
the distance between points in a same (resp. different) class.
Existing approaches are reviewed in (Kulis et al., 2012;
Bellet et al., 2013). It is necessary to restrict the class of
distances to make the problem tractable. The most common
option is arguably to consider the class of Mahalanobis
distances, which generalize the Euclidean distance and are
equivalent to computing a vectorial embedding of the data
points. See for instance (Xing et al., 2002; Weinberger
et al., 2006; Davis & Dhillon, 2008). One can apply these
methods for histogram data, or use instead of Euclidean
distances more adapted discrepancies on the simplex, such
as Chi-squared (Noh, 2012; Yang et al., 2015) and geodesic
distances (Le & Cuturi, 2015). These methods however
fail to capture the geometric nature of the problem, where
histograms correspond to discrete distributions viewed as
sums of localized Dirac masses.

OT Ground Metric Learning This geometry is leveraged
in (Cuturi & Avis, 2014) by introducing the problem of
supervised OT ground metric learning and developing a
nearest-neighbor based algorithm to solve it. This approach
is further refined in (Wang & Guibas, 2012), which drops the
triangular inequality constraint (as we do in our approach).
It is possible to restrict the class of ground metrics, for
instance using Mahalanobis (Xu et al., 2018; Kerdoncuff
et al., 2021) or geodesic distances (Heitz et al., 2020) to
develop more efficient learning schemes. (Zen et al., 2014)
simultaneously perform ground metric learning and matrix
factorization, and this finds applications to NLP (Huang
et al., 2016). Metric learning can also be performed through
adversarial optimization, where the metric is maximized
over to perform generative model training (Genevay et al.,
2018b), discriminant analysis (Flamary et al., 2018) and to
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define robust transportation distances (Paty & Cuturi, 2019;
Niles-Weed & Rigollet, 2019). Note that when imposing
only convex constraints, adversarial ground metric learning
is a concave maximization problem which finds applications
in the modeling of crowd congestion phenomena (Benman-
sour et al., 2010). Another related question is the inverse
problem of estimating a ground cost from the observation of
matchings or couplings (Galichon & Salanié, 2020; Stuart &
Wolfram, 2020; Li et al., 2019; Paty & Cuturi, 2020). This
supervised metric learning problem can be regularized us-
ing sparsity or low-rank constraints, as explained in (Dupuy
et al., 2019; Carlier et al., 2020). Finally, “hierarchical
OT” (Yurochkin et al., 2019; Abrishami et al., 2020) uses
OT to define the ground cost of a matching problem, using
an intermediate level of meta-features.

1.2. Contributions

Our main contribution is the introduction in Section 2 of
Wasserstein singular vectors as the positive singular vectors
of monotone homogeneous “distance maps”. The associated
theoretical contributions, Theorem 2.3 and Theorem 2.5,
state conditions ensuring the existence and uniqueness of
such singular vectors.

Our second set of contributions allows to scale the method
to large datasets. We first introduce in Section 3 a stochastic
algorithm similar in spirit to Projected Stochastic Gradient
Descent. Theorem 3.1 guarantees a convergence rate of
O(log t/

√
t) under certain conditions. We then explain in

Section 4 how to scale and parallelize this method even
further by leveraging entropic regularization through the
Sinkhorn algorithm. Proposition 4.4 shows that in the large
regularization limit, our method computes metrics associ-
ated to 1-D and 2-D embeddings along the leading principal
component axes.

Section 5 demonstrates the potential of Wasserstein Singular
Vectors compared to ad-hoc applications of Optimal Trans-
port, by studying a single-cell RNA-sequencing dataset.

A Python package implementing all algorithms in this paper
is available at github.com/gjhuizing/wsingular. Optimal
Transport distances were computed using the open-source
POT library (Flamary et al., 2021). Appendix A lists the
experiments’ computation times and resources.

Notations

We denote Dm ⊂ Rm×m
+ the set of pairwise distance matri-

ces. In other words, A ∈ Dm if (i) Ak,ℓ = 0 ⇐⇒ k = ℓ,
(ii) Ak,ℓ ≤ Ak,s + As,ℓ (iii) Ak,ℓ = Aℓ,k. Its closure
D̄m := {A ∈ Rm×m

+ s.t. A = A⊤,diag(A) = 0} is a
set of pseudo-distances.

2. Unsupervised Wasserstein Metric Learning
This section introduces the singular vectors of the Wasser-
stein distance map. Fortunately, this non-linear singular
vector problem enjoys many desirable properties.

2.1. Wasserstein Singular Vectors

Wasserstein distance map The following map lifts a
ground metric A ∈ Dm to a pairwise distance matrix
ΦA(A) ∈ Dn. A norm R operates as a regularizer to enforce
strict positivity of the computed distances.

ΦA(A)i,j := WA(ai, aj) + τ∥A∥∞R(ai − aj) (2)

The map B ∈ Dn 7→ ΦB(B) ∈ Dm is defined similarly.

Role of regularization τ Let us insist that in practice our
method can be applied in the unregularized setting τ = 0,
but some of the theoretical claims require τ > 0. Other
types of regularization could be considered, for instance a
matrix with zeros on the diagonal and ones elsewhere.

Wasserstein singular vectors With this notation, our
ground metric learning solves for a pair A ∈ Dm and
B ∈ Dn of Wasserstein singular vectors satisfying

∃(λ, µ) ∈ (R∗
+)

2 s.t. ΦB(B) = λA, ΦA(A) = µB, (3)

which corresponds to (1) when τ = 0. The case m = n and
A = B corresponds to the computation of an eigenvector
A = B of ΦA with eigenvalue λ = µ.

Power iterations algorithm The de-facto standard algo-
rithm to extract singular vectors are “power iterations”

At+1 :=
ΦB(Bt)

∥ΦB(Bt)∥∞
, Bt+1 :=

ΦA(At+1)

∥ΦA(At+1)∥∞
. (4)

The complexity of performing a single power iteration is
O(n2m2(n log(n) +m log(m))), since the computation of
a single Wasserstein distance in Rn

+ is O(n3 log n) (Bon-
neel et al., 2011). To cope with large scale datasets, we
propose in Section 3 and 4 to use stochastic optimization
and entropic regularization.

Remark 2.1. A remarkable property of this algorithm is
that, in cases where the singular vector is unique (which is
observed in practice and proved below for large τ ), even
if the initialization Bt=0 is chosen arbitrarily, it converges
toward a distance matrix (so in particular it satisfies the
triangular inequality at convergence).

2.2. Theoretical Properties

Properties of the Wasserstein distance map Non-linear
singular vectors problems are notoriously difficult to study.

https://github.com/gjhuizing/wsingular
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Fortunately, as explained in the Proposition 2.2, the Wasser-
stein distance map is a so-called topical mapping (i.e. posi-
tive and monotone) (Lemmens & Nussbaum, 2012). These
mappings can be thought as non-linear generalizations of
Markov chains. Problem (3) is thus an instance of a non-
linear Perron-Frobenius problem, for which, contrarily to
generic problems, existence and uniqueness of positive so-
lutions is in general rather the rule than the exception. This
explains in large part the practical success of our approach.

The following proposition lists some useful properties of
the Wasserstein distance map ΦA.

Proposition 2.2. (i) ΦA is positively 1-homogeneous and
monotone. (ii) ΦA is continuous on Dm (iii) ΦA is
(1+2τkR)-Lipschitz onDm with regards to the ∥·∥∞ norm,
where the constant kR > 0 is such that R(·) ≤ kR∥·∥1.

Proof. (i) 1-homogeneity and monotony of ΦA follows
from the definition. (ii) Note that ΦA is a vector-valued
concave function (each coordinate being an infimum of
linear forms) and hence is continuous on Rm×m. Actu-
ally, as we now show, it is Lipschitz for ℓ∞. (iii) Let us
prove that ΦA is Lipschitz continuous for the ℓ∞ norm
on Dm. Firstly, since R(ai − aj) ≤ kR∥ai − aj∥1 and
|∥A∥∞ − ∥A′∥∞| ≤ ∥A− A′∥∞, we have

|ΦA(A)i,j − ΦA(A′)i,j | ≤
|WA(ai, aj)−WA′(ai, aj)|+ 2τkR∥A− A′∥∞

Secondly, with Γ(a, a′) the set of valid couplings,

|WA(a, a
′)−WA′(a, a′)|

= | min
P∈Γ(a,a′)

⟨P,A⟩ − min
P ′∈Γ(a,a′)

⟨P ′,A′⟩|

≤ ∥A− A′∥∞.

Indeed, |min(u)−min(v)| ≤ max |u− v| and ∥P∥1 = 1.
So ΦA is (1 + 2τkR)-Lipschitz.

Existence of singular vectors The following proposition
ensures the existence of positive (i.e. true distances) singular
vectors. Its proof can be found in Appendix B. Note that the
ℓ∞ bound of Proposition 2.2 implies that all singular values
are smaller than 1 + 2τkR.

Theorem 2.3. When τ > 0, there exist positive singular
vectors (A,B) ∈ Dm ×Dn solving the problem (3).

Existence in the case τ = 0 Extending Theorem 2.3 to
the unregularized case is an open problem, and is out-of-
reach using classical non-linear Perron-Frobenius theorems
such as (Akian et al., 2016; 2018), which do not apply. The
following remark exhibits solutions for a special case of the
unregularized problem.

Remark 2.4 (Block-diagonal matrices). Let us consider
the case τ = 0 and a dataset X = diag(Xp), a block-
diagonal matrix where Xp ∈ Rnp×mp

+ . Let A and B be
its normalizations along rows and columns respectively.
Then all matrices (A,B) ∈ D̄m × D̄n of the form A =
(cp,q1mp×mq

)p,q and B = (cp,q1np×nq
)p,q for the same

cp ̸=q ∈ R∗
+ and cp,p = 0 are dominant singular vectors with

associated singular value 1. Indeed, the optimal transport
plans for these ground costs also follow this block structure.

Uniqueness of singular vectors If the dataset is too sparse
and τ = 0, one cannot hope to have uniqueness of the lead-
ing singular vectors. In fact, the previous remark exhibits
an infinity of singular vectors when X is block-diagonal.
It does not seem obvious to guarantee uniqueness by an a
priori condition depending only on (A,B). The following
proposition gives an a posteriori way to check the unique-
ness of singular vectors inside Dm ×Dn. In the numerical
simulations of Section 2.3, we checked a posteriori that the
computed singular vectors are indeed unique.

Theorem 2.5. Let (A,B) ∈ Dm×Dn a pair of Wasserstein
Singular Vectors. We consider P (ai, aj) and P (bk, bℓ) opti-
mal coupling solutions of the OT problems for the costs A
and B respectively. These optimal couplings induce a graph
on {(i, j), (k, ℓ)} by linking

(k, ℓ)→ (i, j) when P (ai, aj)k,ℓ > 0

(i, j)→ (k, ℓ) when P (bk, bℓ)i,j > 0.

If there exist optimal couplings such that this graph is
strongly connected, then (A,B) are the unique Wasserstein
singular vectors.

Proof. Let us consider Φ : (A,B) 7→ (ΦB(B),ΦA(A))
which maps Dm × Dm to itself. We use Theorem 7.5
of (Akian et al., 2016). It requires that the semi-differential
of Φ at (A,B) has itself a unique positive eigenvector in
Dm ×Dn. In fact, this eigenvector is also (A,B).

From the envelope theorem, upper-gradients of the concave
function A 7→ WA(ai, aj) are the elements P (ai, aj) (so
if the optimal coupling is unique, then this map is differen-
tiable). The semi-differential Ψ of Φ is then a block anti-
diagonal matrix defining the graph detailed in the statement
of the theorem. The (linear) Perron-Frobenius theorem for
positive linear operators ensures the existence of a unique
positive eigenvector of Ψ if this graph is connected.

Convergence of power iterations In the case of linear
positive maps, Perron-Frobenius theory ensures the conver-
gence of (4) toward the unique positive singular vectors at
a linear rate. Unfortunately, this result does not hold in
general for the case of non-linear maps, and ΦA is only non-
expansive (and not necessarily contracting). The following
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Figure 2. Illustration on the 1-D torus. (top, left) histograms whose translations form B1, B2, B3 ; (bottom, left) distance maps c1, c2, c3
associated to the singular vectors B1, B2, B3 for varying values of τ ; (top, right) functions h1, h2, h3 generating the datasets ; (bottom,
right) convergence rate of the power iterations for τ = 0.1, according to the dH metric.

proposition, proved in Appendix C, states that for large
enough regularization, uniqueness and linear convergence
are maintained.

Proposition 2.6. For τ large enough, the singular vectors
are unique and the power iterations (4) converge linearly
for ∥·∥∞. When τ →∞, the singular vectors converge to
Ak,ℓ ∝ R(bk − bℓ) and Bi,j ∝ R(ai − aj).

The numerical simulations of Section 2.3 suggest that
uniqueness and linear rates always hold in practical cases.

2.3. Numerical illustration on translated histograms

Generating translated histograms We generate three syn-
thetic datasets X1, X2, X3 ∈ Rn×m by translating three
different templates. We define the datasets by [Xp]i,k :=
hp(i/n − k/m), and Ap (resp. Bp) is obtained by nor-
malizing Xp along rows (resp. columns). By translational
invariance of the problem, the singular vectors A1, A2 and
A3 are of the form (Ap)k,l = (cp)k−l where cp = (Ap)0,·
are periodic 1-D functions. The same argument applies to
the singular vectors B1, B2 and B3. The templates h1, h2,
h3 are three different periodic functions on the 1-D torus
(we use periodic boundary conditions). We use n = 100
samples and m = 80 features.

Wasserstein singular vectors We compute the Wasserstein
singular vectors for different values of τ . Figure 2 displays
the templates and the corresponding singular vectors A1,
A2 and A3 obtained through power iterations. B1, B2 and
B3 are symmetric and can be found in Appendix D. These
results demonstrate that the learned metrics integrate geo-
metrical properties (symmetries, multi-modalities, etc.) of
the input datasets. For unimodal Gaussian-like distributions,
the learned metric is close to | sin(i/n− j/n)|, but exhibits
non-monotonic behavior for multi-modal distributions.

Convergence rates Figure 2 also reports in logarithmic
scale the convergence rate of power iterations according
to the Hilbert metric dH(B,B′) := ∥log(B/B′)∥V where
∥Z∥V := max(Z)−min(Z). This speed is always linear,
suggesting that the maps ΦAp are contracting and that the
singular vectors are unique (which is confirmed by running
several initializations in Dn, and through condition 2.5).
The contractance rate (which is the slope of the error curves)
is dependent on the geometry of the templates hp. We also
observed a steeper slope for larger values of τ .

3. Large Scale Stochastic Power Iterations
As n or m grows, the complexity of the power iterations (4)
becomes prohibitive. In order to work around this issue we
propose a stochastic power iteration scheme similar in spirit
to stochastic gradient descent, which updates a single (or
several if applied in a mini-batch setting) randomly chosen
distance value at each step. This speeds up each iteration
and leverages the correlations in the dataset.

Stochastic power iterations For some decreasing step size
αt and a scaling factors λ̃t, µ̃t > 0, we define

At+1 := Π((1− αt)At + αtÃt),

Bt+1 := Π((1− αt)Bt + αtB̃t),

where (B̃t)i,j :=

{
ΦA(At)i,j/µ̃t if (i, j) = (it, jt),

(Bt)i,j otherwise.

We define Π(A) := A/∥A∥∞ and (it, jt) is is drawn uni-
formly at random in {1, . . . , n}2. It is the index updated
at each step. Ãt is computed by an analogous update rule,
with µ̃t replaced by λ̃t.

Convergence of stochastic power iterations The follow-
ing theorem, proved in Appendix E, guarantees that for a
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large enough regularization parameter τ , these iterations
converge to a pair of Wasserstein Singular Vectors. In prac-
tice, we observe that these iterations converge even for arbi-
trary small τ and for λ̃t = µ̃t = 1.

Theorem 3.1. For αt = 1/
√
t, for constant scaling factors

λ̃t ≤ τ mink ̸=l R(bk − bl) and µ̃t ≤ τ mini ̸=j R(ai − aj),
and for τ large enough, the stochastic power iterations de-
fined above converge to a pair (A,B) ∈ Dm×Dn of positive
singular vectors with a convergence rate of O(log(t)/

√
t).

Remark 3.2 (Adaptive selection of λ̃t and µ̃t). Tuning the
values of the parameters λ̃t and µ̃t is crucial to improving
the convergence. Ideally, they should be as close as possible
to the (unknown) singular values (λ, µ). Instead of fixing
these scaling factors prior to running the algorithm, we
propose using an estimation of the singular values. When
using mini-batching, i.e. updating several indices (i, j) ∈ I
at each iteration, one can use a least square estimate,

µ̃t+1 = (1− αt)µ̃t + αt

∑
i,j∈I ΦA(At)i,j(Bt)i,j∑

i,j∈I(Bt)2i,j
,

and similarly for λ̃t+1. We found that in practice, (λ̃t, µ̃t)
quickly converges to the singular values (λ, µ).

1e-8

1e-6

1e-4

0.01

1

Figure 3. Convergence rates dH(Bt,B∞) of stochastic updates.

Numerical illustration on translated histograms Figure 3
illustrates the convergence of stochastic power iterations in
practice by comparing the approximated Wasserstein Singu-
lar Vectors for the synthetic experiments of Section 2.3 with
the true singular vectors obtained using the non-stochastic
power iterations (4). We used the approach outlined in Re-
mark 3.2. As expected, the stochastic power iterations yield
the same result as classical power iterations.

4. Parallelization With Entropic
Regularisation

To further speed up the method, we propose to use the
entropic regularization of Optimal Transport (Cuturi, 2013).

Sinkhorn’s algorithm Entropic OT can be computed effi-
ciently in O(n2/η2) using Sinkhorn’s algorithm (detailed

in Appendix F) at the expense of an approximation of or-
der η (Altschuler et al., 2017). Beside speeding up the
computation of OT, this enables embarrassingly parallel
computations of the distance map on GPUs (Cuturi, 2013)
and also reduces the curse of dimensionality which plagues
OT (Genevay et al., 2018a).

Remark 4.1. The theoretical guarantees listed above apply
to entropic OT with Euclidean ground costs, but not nec-
essarily to the setting described in this paper. However, in
practice we observed that the benefits of Sinkhorn’s algo-
rithm were maintained in our situation.

4.1. Sinkhorn divergence map

Sinkhorn divergence Entropic regularized OT is defined

Wε
A(ai, aj) := min

P∈Γ(ai,aj)
⟨P,A⟩+ ε∥A∥∞⟨P, logP ⟩.

This quantity suffers from a bias, which is removed by using
instead the Sinkhorn divergence (Genevay et al., 2018b)

W̄ε
A(ai, aj) :=Wε

A(ai, aj)− 1
2 (W

ε
A(ai, ai)+Wε

A(aj , aj)) .

This debiasing is crucial to ensure that W̄ε
A(ai, ai) = 0, and

it also reduces the approximation error to |W̄ε
A − W̄A| ∼

ε2 (Chizat et al., 2020).

Sinkhorn divergence map Similarly to the map defined
in (2), we define the Sinkhorn divergence map as

Φε
A(A ∈ Dm)i,j := W̄ε

A(ai, aj) + τ∥A∥∞R(ai − aj),

and similarly for Φε
B . It reduces to (2) when ε = 0.

Sinkhorn singular vectors By analogy with (3) we define
Sinkhorn singular vectors as A,B such that

∃(λ, µ) ∈ R∗
+
2 s.t. Φε

B(B) = λA, Φε
A(A) = µB, (5)

Remark 4.2 (Positivity property). The map Φε is 1-
homogeneous and monotone, but it is unclear that it always
maps onto positive matrices. It is proved in (Feydy et al.,
2019) that it is the case if e−A/(ε∥A∥∞) is a positive kernel
(i.e. has positive eigenvalues). While it is unclear that such
a condition is maintained during power iterations, we ob-
served numerically that it is still the case in practice. We
show below that this is true in the limit ε→ +∞.

4.2. Connection with PCA when ε→∞

Maximum Mean Discrepancy limit For simplicity, let
us consider the case τ = 0. We show in proposition 4.3
below that when ε→∞, our method operates over the set
of squared Euclidean matrices

A ∈ Km ⊂ Dm ⇐⇒ ∃(uk ∈ Rd)mk=1,Ak,ℓ = ∥uk−uℓ∥22.
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Note that these matrices can be equivalently defined
as conditionally negative matrices with zero diagonal,
see (Schölkopf & Smola, 2002).

Proposition 4.3. One has Φ∞
A : Km → Kn where

Φ∞
A (A) := lim

ε→∞
Φε

A(A)=(− 1
2 ⟨A(ak − aℓ), ak − aℓ⟩)k,ℓ.

This property shows that in the large ε limits Φ∞
A is actually

a linear map which computes Maximum Mean Discrep-
ancies (Gretton et al., 2012) (a.k.a. Euclidean distances
between probability distributions).

Connection with PCA For the sake of simplicity in the
exposition, let us now assume A = B⊤. In this case, (3) is a
classical linear singular vectors problem. While in general,
ensuring existence of positive singular vectors is non-trivial,
the following proposition, proved in Appendix G, shows
that this is the case for Φ∞

A .

Proposition 4.4 (Connection with PCA). Let us denote
Ã := A − A1m1

⊤
m/m the centered matrix. For any pair

(u, v) of singular vectors of Ã with singular value λ,

A = ((vk − vℓ)
2)k,ℓ ∈ Km, B = ((ui − uj)

2)i,j ∈ Kn

are singular vectors of (Φ∞
A ,Φ∞

B ), with singular value 2λ2.

This proposition shows that for ε = +∞ a set of positive
singular vectors is obtained as simply squared Euclidean
distances over 1-D principal component embeddings of the
data. Entropic regularization thus draws a link between
our novel set of OT-based metric learning techniques and
classical dimensionality reduction methods. This frames
Sinkhorn singular vectors as a well-posed problem regard-
less of the value of ε.

5. Metric Learning for Single-Cell Genomics
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Figure 4. UMAP projection of the cells of a scRNA-seq dataset
using the singular vector B, with cells colored by cell type.

scRNA-seq data Single-cell RNA sequencing (scRNA-seq)
is a high-throughput sequencing technology enabling the

measurement of gene expression levels at single-cell res-
olution (Stegle et al., 2015). The analysis of scRNA-seq
data has offered unprecedented insights in cellular hetero-
geneity and disease mechanisms (Tanay & Regev, 2017;
Yuan et al., 2017). scRNA-seq data can be represented as a
matrix of integer expression levels with cells on rows and
genes on columns. One of the main uses of scRNA-seq is to
identify cell populations through clustering or visualization.
But these tasks rely on some notion of distance between
cells. The most popular clustering and visualization tools,
in particular Scanpy (Wolf et al., 2018) and Seurat (Stuart
et al., 2019), rely on Euclidean distances on PCA embed-
dings of cells. Embeddings can also be provided by deep
learning models like scVI (Gayoso et al., 2022). A good
metric on the space of genes is also important because the
phenotype of a cell is determined by the joint activity of all
its expressed genes.

Optimal Transport distances between cells In order to
take advantage of the biological relationships between genes,
OT distances between cells have recently been proposed.
The Gene Mover Distance (Bellazzi et al., 2021) is defined
similarly to the Word Mover Distance (Kusner et al., 2015):
the authors use as a ground cost the Euclidean distance
between precomputed Gene2Vec (Du et al., 2019) embed-
dings. (Huizing et al., 2021) use a Sinkhorn divergence with
a cosine distance between genes (i.e. vectors of cells) as a
ground cost. In the present paper we compute OT distances
using the Python package POT (Flamary et al., 2021).

Dataset A commonly analyzed scRNA-seq dataset is the
“PBMC 3k” dataset produced by 10X Genomics, obtained
through the function pbmc3k of Scanpy (Wolf et al., 2018).
Details on preprocessing and cell type annotation are given
in Appendix H. The processed dataset contains m = 1030
genes and n = 2043 cells, each belonging to one of 6
immune cell types: ‘B cell’, ‘Natural Killer’, ‘CD4+ T cell’,
‘CD8+ T cell’, ‘Dendritic cell’ and ‘Monocyte’. The cell
populations are heavily unbalanced. In addition, for each
cell type we consider the set of canonical marker genes given
by Azimuth (Hao et al., 2021), i.e. genes whose expression
is characteristic of a certain cell type.

Evaluation We use the annotation on cells (resp. on marker
genes) to evaluate the quality of distances between cells
(resp. between marker genes). We report in Table 1 and
Table 2 the Average Silhouette Width (ASW), computed us-
ing the function silhouette score of Scikit-learn (Pe-
dregosa et al., 2011). In addition, we visualize both of these
distances using a 2-D UMAP projection (McInnes et al.,
2018). We compare (i) Euclidean distances on PCA embed-
dings (ii) Euclidean distances on Kernel PCA embeddings
using Scikit-learn’s implementation with kernel=’rbf’
(iii) Euclidean distances on scVI (Gayoso et al., 2022) em-
beddings using default values (iv) Gene Mover Distance
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Figure 5. 2-D UMAP projection of marker genes, using the computed distances. Marker genes are colored by associated cell type, and
other genes are faded out. Left, the Euclidean distance on Gene2Vec (Du et al., 2019) embeddings. Right, the singular vector A.

(v) Sinkhorn divergence (ε = .1) with a cosine distance
between genes as a ground cost (vi) Wasserstein Singular
Vectors (τ = 0.001, ε = 0.1), approached by 15 power iter-
ations, which we found in this case to lead to better results
than the stochastic power iterations. Note that for large regu-
larisation ε, as shown in Section 4, the Wasserstein Singular
Vectors are themselves (squared) Euclidean distances on
PCA embeddings.

Results The results in Table 1 and Table 2 suggest that our
method improves over all considered baselines. Figure 4
and Figure 5 shows the UMAP projection of the cells and
the genes in the dataset. The Wassersein Singular Vectors
clearly outperform the other metrics in terms of Average
Silhouette Widths, both in the context of cells and of genes.
Interestingly, in the case of marker genes we outperform
the Euclidean distance on Gene2Vec embeddings, which
are meant to contain “semantic” information about genes.
These scores are also validated by the UMAP projection,
where cells and marker genes cluster according to cell type.
These results motivate further research in the biological im-
plications of Wasserstein Singular Vectors. Let us highlight
that we compute distances between cells or genes, but that
we do not produce embeddings like PCA or scVI. In ad-
dition, scVI can handle complex tasks like the removal of
unwanted sources of variation (Gayoso et al., 2022) which
we do not consider in this article.

Table 1. Average Silhouette Width for cells

Method ASW
PCA / ℓ2 0.238
Kernel PCA / ℓ2 0.241
scVI embedding / ℓ2 0.168
Sinkhorn 0.003
Gene Mover Distance 0.066
WSV (ours) 0.348

Table 2. Average Silhouette Width for marker genes

ℓ2 Gene2Vec / ℓ2 WSV (ours)
-0.005 0.0186 0.136

6. Conclusion and Perspectives
Wasserstein Singular Vectors define a pair of “intrinsic”
ground metrics associated to a given dataset. This elegantly
solves the problem of unsupervised ground metric learning
without resorting to ad hoc embeddings. Numerical results
on single-cell RNA sequencing suggest that these metrics
encode salient geometric structures of the data. This opens
several avenues for future works, in particular an in-depth
theoretical analysis when τ = 0 and ε > 0. Our method
can be extended to unbalanced optimal transport (Liero
et al., 2015; Chizat et al., 2018), which has proved useful
to increase the robustness of the metric for the analysis of
biological sequencing datasets (Schiebinger et al., 2019).
Lastly, our initial results regarding stochastic approximation
of Wasserstein Singular Vectors would greatly benefit from
further developments enabling better convergence rates.
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A. Computation Times and Numerical Resources
CPU computations were performed on a Dell Latitude 5420 with an 8 core 11th Gen Intel(R) Core(TM) i7-1165G7 @
2.80GHz CPU. GPU computations were performed on Nvidia V100 SXM2 32 Go GPUs.

50 pairs of Wasserstein power iterations for the synthetic datasets in Section 2.3 run in about three minutes on CPU.

15 pairs of Sinkhorn (ε = 0.1) power iterations for the single-cell dataset in Section 5 run in about 1h50mn on GPU.

B. Proof of Theorem 2.3 (Existence of Singular Vectors)
We consider the set

Kρ
n := {B ∈ Dn s.t. ∥B∥∞ = 1,∀i ̸= j,Bi,j ≥ ρ}

Let (A,B) ∈ Kρ
m ×Kρ

n. A classical result states that

ρ

2
∥a− a′∥1 ≤WA(a, a

′) ≤ 1
2∥a− a′∥1

Thus with (A′,B′) =

(
ΦB(B)
∥ΦB(B)∥∞

,
ΦA(A)
∥ΦA(A)∥∞

)
,

ρ

2
∥bk − bℓ∥1 + τR(bk − bℓ) ≤ ΦB(B)k,ℓ ≤ 1

2∥bk − bℓ∥1 + τR(bk − bℓ)

and
ρ

2
∥ai − aj∥1 + τR(ai − aj) ≤ ΦA(A)i,j ≤ 1

2∥ai − aj∥1 + τR(ai − aj).

Equivalence of norms implies k−R∥·∥1 ≤ R(·) ≤ k+R∥·∥1. With γA :=
mini ̸=j∥ai − aj∥1
maxi̸=j∥ai − aj∥1

and γB :=
mink ̸=ℓ∥bk − bℓ∥1
maxk ̸=l∥bk − bℓ∥1

,

∀k ̸= ℓ,A′
k,ℓ ≥

ρ+ 2τk−R
1 + 2τk+R

γB and ∀i ̸= j,B′
i,j ≥

ρ+ 2τk−R
1 + 2τk+R

γA.

This shows that for

0 < ρ ≤ min

(
2γAτk

−
R

2τk+R + 1− γA
,

2γBτk
−
R

2τk+R + 1− γB

)
one has (A′,B′) ∈ Kρ

m × Kρ
n. So for such ρ, the function (A′,B′) 7→

(
ΦB(B)
∥ΦB(B)∥∞

,
ΦA(A)
∥ΦA(A)∥∞

)
is a continuous map

from the locally contractible compact Kρ
m ×Kρ

n to itself so using the Brouwer theorem, it has a fixed point, which is a pair
of singular vectors of (ΦA, ΦB).

C. Proof of Proposition 2.6 (Uniqueness of Singular Vectors for Large τ )
Denoting s = 1/τ , we consider the map

ΨA(A) :=
∥A∥∞U + sWA(A)
∥∥A∥∞U + sWA(A)∥∞

on the set of ∥A∥∞ = 1, where U := (R(ai − aj))i,j is constant and WA(A) := (WA(ai, aj))i,j . Since WA is 1-Lipschitz,
and ∥A∥∞ = 1, one needs to study the contractance of

W 7→ U + sW

∥U + sW∥∞
.

One can explicitly compute the derivative of this map, which is O(s), so that ΨA is itself contractant for s small enough.
This shows that (A,B) 7→ (ΨB(B),ΨA(A)) is also contractant, which implies uniqueness of the singular vector and linear
convergence for ∥·∥∞ of the power iterations.
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Figure 6. (left, top) Translated histograms template defining Bp (left, bottom) One element of the singular vector Ap (right, top) Translated
histograms template defining Ap (right, bottom) One element of the singular vector Bp.

D. Additional Figure for the Numerical Illustration of Section 2.3
Figure 6 shows that as predicted, the singular vectors Ap and Bp are identical up to rescaling.

E. Proof of Convergence for the Stochastic Power Iterations of Section 3.1
Proof. We follow steps similar to the proof of (Nemirovski et al., 2009) for projected stochastic gradient descent. The
theorem supposes τ large enough, so we can consider a pair of unique Wasserstein Singular Vectors (A⋆,B⋆). We study the
quantity E[ℓt] where ℓt := ∥At −A⋆∥22. The proof for ∥Bt − B⋆∥22 is identical. We consider a constant scaling factor λ̃. Let
us start by defining

(Tt)k,ℓ =

{
(At)k,ℓ − ΦB(Bt)k,ℓ/λ̃ if (k, ℓ) = (kt, ℓt)

0 otherwise

and T⋆ := p(A⋆ − ΦB(B⋆)/λ̃) where p = 1
mn is the probability for an element to be updated.

By definition of the power iterations, At+1 = Π(At − αtTt).

By definition of the Wasserstein Singular Vectors, A⋆ = Π(A⋆ − αtT⋆).

Thus,
∥At+1 − A⋆∥22 = ∥Π(At − αtTt)−Π(A⋆ − αtT⋆)∥22.

The value of λ̃ proposed in the theorem ensures that ∥At − αtTt∥∞ ≥ 1 and ∥A⋆ − αtT⋆∥∞ ≥ 1.

The theorem of projection on a convex (the unit sphere for the norm ∥·∥∞) then ensures that

∥At+1 − A⋆∥22 ≤ ∥(At − A⋆)− αt(Tt − T⋆)∥22.

Decomposing the squared norm, we get

∥(At − A⋆)− αt(Tt − T⋆)∥22 =

ℓt − 2αt⟨At − A⋆,Tt − T⋆⟩+ α2
t ∥Tt − T⋆∥22.

The middle term can be simplified when taking its expectation:

Et[⟨At − A⋆,Tt − T⋆⟩] =

pℓt −
p

λ̃
⟨At − A⋆,W(Bt)−W(B⋆)⟩ ≥ (1− L/λ̃)pℓt,

for some constant L, since W is 1-Lipschitz with regards to the infinite norm as proved earlier. The last term can be bounded
as well:

∥Tt − T⋆∥22 ≤ ∥Tt∥22 + ∥T⋆∥22 ≤ 2pmax(1, τ∥RB∥∞/λ̃).
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Calling that term M , we have finally

Et[ℓt+1] ≤
(
1− 2αtp

(
1− L/λ̃

))
× ℓt + α2

tM.

In the next steps we assume τ big enough for p
(
1− L/λ̃

)
to be positive and name the quantity Q.

Let us note that an overly pessimistic upper bound for L is m, which would require a very large value of τ . However, this
upper-bound of L is obtained by juggling between different norms. In practice, the algorithm converges for arbitrarily small
values of τ . This suggests a much smaller constant, that does not depend on the data’s dimensionality.

Taking the expectation over all times t,

E[ℓt+1] ≤ (1− 2αtQ)× E[ℓt] + α2
tM.

Reformulating,
2αtQE[ℓt] ≤ E[ℓt]− E[ℓt+1] + α2

tM.

Summing along t = 1...T ,

min
t=1...T

E[ℓt] ≤

(
T∑

t=1

αt

)−1(
ℓ1
2Q

+
M

2Q

T∑
t=1

α2
t

)
.

For αt = 1/
√
t, we thus have classically a convergence rate of O(log(t)/

√
t)

F. Sinkhorn Algorithm
The Sinkhorn cost can be computed by the dual formula

W ε
A(ai, aj) = ε (⟨log(u), ai⟩+ ⟨log(v), aj⟩ − ⟨Kv, u⟩) ,

where K := exp(− A
ε∥A∥∞

) and (u, v) are obtained by iterating the following Sinkhorn fixed point

u← ai
K⊤v

and v ← aj
Ku

.

This allows one to compute with precision ε the n2 entries of Φε
A(A) in O((mn)2/ε2) operations (Altschuler et al., 2017),

using a parallelizable algorithm that is well suited for GPU computations.

G. Proof of Proposition 4.4 (Connection with PCA)
Proof. We define the operator mapping correlation kernels to Euclidean distance

∆(K) := −(K +K⊤) + diag(K)1T
n + 1ndiag(K)⊤.

One has the convenient formula
Φ∞

A (A) = −∆(A⊤A A).

Let the centering operator J := Idn − 1n×n/n, which satisfies J2 = J and ker(J) = Span(1n).

Let u ∈ Rn and v ∈ Rm be a pair of singular vectors, so that there exists λ ∈ R such that

AJu = λv and JA⊤v = λu.

By linearity and using the fact that

ker(Φ∞
A ) = {C s.t. C = −C⊤} ∪ {a1⊤

n + 1nb
⊤}
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one has

Φ∞
A (∆(vv⊤)) = −2Φ∞

A (vv⊤)

= 2∆(A⊤vv⊤A)

= 2∆(JA⊤vv⊤AJ)

= 2λ2∆(uu⊤),

where we used the fact that ∆(JKJ) = ∆(K). The same reasoning for Φ∞
B yields the advertised result.

H. Details on Data Processing
We recovered the ‘pbmc3k’ dataset using the function pbmc3k of Scanpy (Wolf et al., 2018). Cell types were annotated
using the Azimuth (Hao et al., 2021) web tool, which projects it onto large-scale reference atlases. We removed the cluster
‘other T cells’ and cells for which the annotation was less than 90% confident. Cells were selected using a standard quality
filtering pipeline. The data was CPM-normalized, log1p-transformed, and then the 1000 most varying genes were selected.
To those genes we added the canonical markers given in the documentation of Azimuth (Hao et al., 2021).


