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Abstract

Motivation: High-throughput single-cell molecular profiling is revolutionizing biology and medicine by unveiling the
diversity of cell types and states contributing to development and disease. The identification and characterization of
cellular heterogeneity are typically achieved through unsupervised clustering, which crucially relies on a similarity
metric.

Results: We here propose the use of Optimal Transport (OT) as a cell–cell similarity metric for single-cell omics data.
OT defines distances to compare high-dimensional data represented as probability distributions. To speed up com-
putations and cope with the high dimensionality of single-cell data, we consider the entropic regularization of the
classical OT distance. We then extensively benchmark OT against state-of-the-art metrics over 13 independent data-
sets, including simulated, scRNA-seq, scATAC-seq and single-cell DNA methylation data. First, we test the ability of
the metrics to detect the similarity between cells belonging to the same groups (e.g. cell types, cell lines of origin).
Then, we apply unsupervised clustering and test the quality of the resulting clusters. OT is found to improve cell–cell
similarity inference and cell clustering in all simulated and real scRNA-seq data, as well as in scATAC-seq and
single-cell DNA methylation data.

Availability and implementation: All our analyses are reproducible through the OT-scOmics Jupyter notebook avail-
able at https://github.com/ComputationalSystemsBiology/OT-scOmics.

Contact: laura.cantini@ens.fr or huizing@ens.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Allowing the measurement of gene expression in thousands of cells
in a single experiment, single-cell RNA sequencing (scRNA-seq) has
unveiled the diversity of the cells constituting human tissues (Stegle
et al., 2015). The possibility to assess cellular heterogeneity at a pre-
viously inaccessible resolution has profoundly impacted our under-
standing of development, of the immune system functioning, and of
many diseases (Papalexi and Satija, 2018; Potter, 2018; Rajewsky
et al., 2020). While scRNA-seq is now mature, the single-cell
technological development has shifted to the measurement of other
omics, e.g. DNA methylation, proteome and chromatin accessibility
(Lee et al., 2020; Ma et al., 2020).

A common goal in single-cell data analysis is the identification of
the cell types and cell states present in a sample (Luecken and Theis,
2019). This is typically achieved in a data-driven fashion through un-
supervised clustering (Kiselev et al., 2019; Xiong et al., 2019). Cells

with similar transcriptional profiles are assembled into clusters, which
are then annotated based on markers (Kiselev et al., 2019). As a conse-
quence, the quality of such clustering plays a critical role in the derived
biological discovery. While numerous clustering algorithms have been
proposed, they all rely on a similarity metric for categorizing individual
cells. Popular metrics include the Euclidean and Manhattan distances,
Cosine similarity and Pearson correlation (Guo et al., 2015; Kim et al.,
2019; Macosko et al., 2015; Satija et al., 2015).

Optimal Transport (OT) emerged in the last decade as a promis-
ing mathematical toolkit to analyze and compare high-dimensional
data using different variants of the Wasserstein distance (Peyr�e and
Cuturi, 2019; Santambrogio, 2015). Recently, applications of OT to
biology have been proposed (Bellazzi et al., 2021; Cao et al., 2020;
Demetci et al., 2020; Huizing et al., 2021; Schiebinger et al., 2019).
Some works use OT on cells in the context of trajectory inference
(Schiebinger et al., 2019) and alignment of unpaired (i.e. independ-
ently profiled) scRNA-seq and scATAC-seq data (Cao et al., 2020;
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Demetci et al., 2020). Others apply OT on genes in scRNA-seq data
and perform supervised cell classification, such as malignant versus
normal cells (Bellazzi et al., 2021). Of note, classical OT, as applied
by Bellazzi et al., requires solving a costly linear optimization problem
thus making computations in large single-cell data slow and sometimes
computationally intractable. In addition, the use of supervised cluster-
ing in biological applications is of limited relevance. Indeed, most of
the existing biological studies use single-cell data to discover and char-
acterize the cell populations/types present in a biological sample, a task
that is intrinsically unsupervised. We finally recently developed a joint
metric learning method simultaneously computing OT distances be-
tween both genes and cells, but not providing relevant improvements
over existing single-cell approaches (Huizing et al., 2021).

Here, we propose the use of OT as a cell–cell similarity metric for
single-cell data. In particular, we use OT with entropic regularization
(Cuturi, 2013), expected to control the systematic noise due to the
stochasticity of gene expression at single-cell level and to the presence
of dropouts. In addition, using OT with entropic regularization we
could efficiently analyze datasets with large numbers of cells using a
Graphics Processing Unit (GPU). We further extensively benchmark
OT against state-of-the-art metrics. We apply the different metrics to
single-cell data with known groups (e.g. cell types, cell lines of origin)
and we evaluate their ability to detect the similarity between cells
belonging to the same group. We then apply different unsupervised
clustering algorithms to the computed distance matrices and test the
quality of the resulting clusters. Of note, all the tests are performed in
three conditions: (i) simulated scRNA-seq data, where the effect of
the number of cells and of the size and overlap of the clusters can be
tested in-depth; (ii) real scRNA-seq data, profiled from cell lines and
colorectal tissue and (iii) other omics data, including scATAC-seq and
single-cell DNA methylation.

All the performed analyses are reproducible using the OT-
scOmics Jupyter notebook provided on GitHub (https://github.com/
ComputationalSystemsBiology/OT-scOmics). Users can also employ
OT-scOmics to test the various metrics on new single-cell data and
to evaluate the performances of other/new metrics.

2 Materials and methods

2.1 scRNA-seq data simulation
scRNA-seq data with 5000 genes and three underlying clusters have
been simulated using the R Bioconductor package Splatter (Zappia
et al., 2017). Splatter simulates scRNA-seq data using the Splat model,
built around a Gamma-Poisson distribution. Different parameters can
be tuned in the Splatter simulation. Details on the parameters used to
run Splatter are available in Supplementary Text S1.

Using simulated scRNA-seq data, we can assess in-depth the in-
fluence of different factors on the quality of the inferred cell–cell
similarities. We simulated five scRNA-seq datasets (Table 1)
obtained by varying three main factors:

1. The number of cells constituting the scRNA-seq dataset

(batchCells parameter in Splatter). Datasets with 500, 1000 and

10 000 cells are simulated. Of note, we thereby also test whether

the different metrics can be computed for large numbers of cells.

2. The overlap of the clusters (de.prob parameter in Splatter).

Overlapping and well-separated clusters are simulated varying

de.prob between 0.4 and 0.7, respectively.

3. The equal or unbalanced size of the clusters (group.prob param-

eter in Splatter). We set the probabilities of the clusters either

equal (1=3, 1=3, 1=3) or unbalanced (0.75, 0.20, 0.05). The unbal-

anced case reflects the more realistic scenario of a tissue com-

posed of a mixture of prevalent and rare cell types or states.

2.2 Single-cell omics data acquisition and

preprocessing
Several publicly available single-cell omics datasets have been
employed (Table 1). Only public datasets providing ground-truth

labels for all the profiled cells were considered. The labels are
intended to associate each cell to a specific group (e.g. cell type, cell
line of origin). Of note, labels are only used to evaluate the quality
of our results, as all the performed benchmarking is unsupervised.

For scRNA-seq data four datasets have been considered. First,
the scRNA-seq data (called ‘Liu scRNA’) present in the scCAT-seq
joint profiling of (Liu et al., 2019) containing 206 cells profiled
from three cancer cell lines (HCT116, HeLa-S3, K562). Next, a big-
ger dataset composed of 561 cells profiled from seven cell lines
(A549, GM12878, H1437, HCT116, IMR90, H1, K562) from
Li et al. (2017) (called ‘Li cell lines’). Finally, two colorectal cancer
(CRC) datasets, corresponding to primary CRC tumors and
matched normal mucosa have been also taken into account. The first
(called ‘Li Tumor’) contains 364 cells clustered into seven cell types:
B cells, endothelial cells, epithelial cells, fibroblasts, macrophages,
mast cells and T cells. The second (called ‘Li NM’) is composed of
266 cells clustered according to the same seven cell types.

Other single-cell omics are also included in our analysis: methylation
and scATAC-seq data. For scATAC-seq data we considered: (i) the
dataset included into the scCAT-seq joint profiling of Liu et al. (2019)
(called ‘Liu scATAC-seq’) composed of 206 cells extracted from three
cancer cell lines (HCT116, HeLa-S3, K562); (ii) the leukemia scATAC-
seq data from Corces et al. (2016) (called ‘Leukemia scATAC’), con-
taining 391 cells and composed of monocytes and lymphoid-primed
multipotent progenitors (LMPP) isolated from a healthy human donor,
together with leukemia stem cells (SU070_LSC, SU353_LSC) and blast
cells (SU070_Leuk, SU353_Blast), isolated from two patients with acute
myeloid leukemia. To represent single-cell DNA methylation, we con-
sidered two neuronal snmC-seq datasets from Luo et al. (2017). The
first (called ‘scMethylation mouse’) is composed of 3377 cells extracted
from mouse frontal cortical neurons clustered into 16 neuronal sub-
types. The second (called ‘scMethylation human’) is composed of 2740
cells, extracted from human frontal cortical neurons and clustered into
21 neuronal subtypes.

A summary of the considered datasets is available in Table 1.
The downloaded datasets had already undergone standard prelimin-
ary preprocessing and, following standard practices (Luecken and
Theis, 2019), we log-transformed the scRNA-seq counts and
selected the 10 000 most varying features. Alternative preprocessing
strategies for scRNA-seq (Hafemeister and Satija, 2019; Lun et al.,
2016; Yip et al., 2017) have also been tested using the code provided
in Chen et al. (2021), with no impact on the results (Supplementary
Fig. S1 and Tables S1 and S2).

2.3 Baseline metrics
We consider a single-cell omics dataset as a matrix X, whose col-
umns correspond to cells, and whose rows correspond to features
(e.g. peaks, genes). Given two cells indexed by l and m as columns
of X, different metrics are classically used to infer the similarity
between their omic profiles x ¼ X½�; l� ¼ ðx1 . . . xnÞ and
y ¼ X½�; m� ¼ ðy1 . . . ynÞ. We here focus on four state-of-the-art
metrics, henceforth called baseline metrics, and defined as

1. Euclidean distance (L2): jjx� yjj2 :¼ ð
Pn

i¼1ðxi � yiÞ2Þ1=2

2. Manhattan distance (L1): jjx� yjj1 :¼
Pn

i¼1 jxi � yij
3. Cosine similarity: cos x; yð Þ :¼ x�y

jjxjj�jjyjj ; where jj � jj is the Euclidean

norm

4. Pearson correlation: corrðx; yÞ :¼ cosðx� x; y� yÞ, where x

and y are the mean of the values of x and y, respectively.

For cosine similarity and Pearson correlation, we used the
distance-like formulation 1� cosðx; yÞ and 1� corrðx; yÞ. Of note,
these are not strictly speaking distances, in particular, they do not
respect the triangular inequality. The baseline metrics have been
computed using functions from the Python package SciPy (scipy.spa-
tial.distance): euclidean, cityblock, cosine, correlation.

Baseline metrics have been computed on the input data, after the
data preprocessing detailed in the section above. Optional per-cell
normalization and feature scaling have been also considered (Fig. 1),
but they resulted to be less performant (Supplementary Table S1).
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2.4 Optimal Transport distance
OT, as defined by Monge (1781) and Kantorovich (1942), aims at
finding a coupling between two probability distributions that mini-
mizes transportation cost. The classical OT distance, also known as
the Wasserstein distance, between two distributions a ¼ ða1 . . . anÞ
and b ¼ ðb1 . . . bnÞ is defined as the minimal cost of transportation
to morph a into b. Given a and b discrete probability distributions,
their OT distance is thus defined as

WC a; bð Þ ¼ min
P2Rn�n

þ

< P;C > ¼ min
P2Rn�n

þ

X

i;j

PijCij; (1)

with P 2 Rn�n
þ such that

P
j Pij ¼ ai and

P
i Pij ¼ bj,

where P is the coupling. According to P, the mass in the discrete
probability distribution a is thus moved from one bin to another one
in order to transform a into b. C is called ground cost and it encodes
the penalty for moving a unit of mass from one bin to another one.
Hence, C should be chosen in such a way that similar bins i and j
have a low cost Cij.

We propose the use of the OT distance to capture cell–cell simi-
larity in different single-cell omics data. For simplicity, let us con-
sider a scRNA-seq dataset ðXÞ; the same concepts apply to other
single-cell omics. Given a pair of cells l and m, as done for baseline
metrics, we consider their expression profiles, corresponding to the
vectors x ¼ X½�; l� ¼ ðx1 . . . xnÞ and y ¼ X½�;m� ¼ ðy1 . . . ynÞ. Given
that Equation (1) is defined only for discrete probability distribu-
tions, we transform x and y into two discrete probability distribu-

tions a ¼ x
xj jj j1

and b ¼ y
yj jj j1

. In the following, we refer to such a

transformation as per-cell normalization. After transformation, we
can apply Equation (1) and compute the OT distance WCða; bÞ, be-
tween a and b; which corresponds to evaluating the minimal cost
required to transform the gene expression discrete probability distri-
bution (a) of the first cell into the gene expression discrete probabil-
ity distribution (b) of the second cell. Based on Equation (1), OT
computes the distance between a pair of cells ða;bÞ by taking into
account the joint gene expression activity present in the two cells
and encouraging genes to exchange mass according to the coupling
P. This exchange of mass is expected to happen in between genes
that are related to each other, such as genes involved in the same
regulatory program. In consequence, we expect the OT similarity
between cells to not be driven by specific genes, but by the overall
activity of their regulatory programs (see Supplementary Text S2).

As discussed above, the OT distance is parametrized by the
ground cost C. The ground cost reflects the cost of moving a unit of
gene expression from a gene to another gene. The choice of the
ground cost plays a central role in the final performances of OT
and, in our case, there is no straightforward choice. Also ground
costs based on prior information (e.g. pathways) could be employed.
However, dataset/tissue specific ground costs are expected to be
able to be more performant. It is for this reason that for all couples
of genes i and j in the single-cell matrix X, we defineT
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Fig. 1. Workflow for metrics comparison. The employed procedure, from the input

preprocessed data to the performance evaluation is summarized for (A) baseline

metrics and (B) OT, respectively. The graphic contents in the figure are taken from
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Cij ¼ dðX½i; ��;X½j; ��Þ; (2)

where d corresponds to a metric among Euclidean and Manhattan
distance, Cosine similarity and Pearson correlation. For a compari-
son of the performances of these different ground costs, see
Supplementary Table S2. Of note, nonlinear distances have also
been employed to compute the ground cost in applications of OT to
single-cell (Bellazzi et al., 2021; Yang et al., 2020). We here chose
linear distances as they do not require to be adjusted based on the
omics under analysis.

Given that the number of features (e.g. genes, peaks) of single-
cell data is in the order of tens of thousands, the classical OT prob-
lem would be computationally intractable. Indeed, solving Equation
(1) relies on costly linear programming methods (Peyr�e and Cuturi,
2019). Hence, we considered the entropic regularization of the clas-
sical OT distance, also called Sinkhorn divergence (Cuturi, 2013;
Genevay et al., 2019). The entropic-regularized OT distance be-
tween two distributions a and b is defined as

WC;eða; bÞ :¼ min
P2Rn�n

þ

< C;P > þe
X

i;j
PijðlogðPijÞ � 1Þ; (3)

with P 2 Rn�n
þ such that

P
j Pij ¼ ai and

P
i Pij ¼ bj.

The first term of Equation (3) corresponds exactly to Equation
(1) with P coupling and C ground cost. The additional term corre-
sponds to the entropic regularization. Therefore, if the regulariza-
tion parameter e is set to zero, Equation (3) corresponds exactly to
Equation (1) and classical OT is obtained. Increasing values of e cor-
respond to a more diffused coupling. From a biological perspective,
we expect the introduction of the entropic regularization to allow to
control for the systematic noise due to the stochasticity of gene ex-
pression at single-cell level and for the presence of dropouts, as
motivated by the tests reported in Supplementary Table S3 and Text
S3. At the same time, the entropic regularization allows a faster exe-
cution of the algorithm thus opening to the possibility of analyzing
single-cell datasets bigger than those that can be analyzed with the
classical OT (Supplementary Table S3 and Text S3). Finally, the en-
tropic regularization, encouraging exchanges of mass in between
features, allows OT to give more importance to the relationships be-
tween features (e.g. genes), which further motivates its application
to complex data like single-cell data.

The parameter e thus plays a central role in the final performan-
ces of Sinkhorn divergence and should be carefully chosen. The ad-
vantage of the formulation at Equation (3) is that WC; e can be
efficiently computed on a GPU, thereby coping with the high dimen-
sionality of single-cell data. Not only is entropy pivotal to scale the
algorithm, but it is also important to break the curse of dimensional-
ity which makes classical OT distance extremely hard to estimate
from high-dimensional single-cell data. This phenomenon, analyzed
theoretically in Genevay et al. (2019) is supported by our analysis
(Supplementary Table S2).

An issue with Equation (3) for e > 0 is that, given two cells hav-
ing the same expression distribution (a ¼ b), WC;eða; bÞ > 0. We
thus used the debiased Sinkhorn divergence (Feydy et al., 2019) in
order to ensure a distance equal to zero for identical cells

WC;e :¼WC;eða; bÞ � WC;eða; aÞ þWC;eðb; bÞ
� �

=2: (4)

For sake of simplicity in the rest of the paper, we will use the
term OT distance to refer to the debiased Sinkhorn divergence.

As discussed above, the OT distance depends on two main
parameters: the regularization parameter e and the ground cost C.
For every dataset, we performed a grid search varying e among
1000; 5; 1; 0:5; 0:1; 0:05; 0:01 and the ground cost among
Euclidean, Manhattan, Cosine and Pearson correlation. As shown in
Supplementary Table S2, the best performances on average across
datasets and ground costs were obtained for the regularization par-
ameter e set at 0.5. We thus suggest 0.5 as default e for future users.
In contrast, the best performing ground cost C varied depending on
the analyzed data. In scRNA-seq simulated data and in single-cell
DNA methylation data, Pearson correlation achieved the best per-
formances, while on scRNA-seq and scATAC-seq data, cosine

similarity performed the best. The performances presented in
Section 3 thus correspond to this choice of e and C. The computa-
tion of the OT distance has been implemented using the Python
package PyTorch and run on a GPU. Computation times are listed
in Supplementary Table S4.

2.5 Performance evaluation
For all single-cell datasets, simulated and real, ground-truth labels
are available. For the real single-cell omics, the ground-truth labels
correspond to cell types, defined through clustering in the original
publication, or to the cell lines from which the cells have been
extracted.

We first use the C-index and Silhouette score to evaluate to
which extent the various metrics detect the similarity between cells
associated with the same label, as well as the difference between
cells with different labels (Fig. 1). The C-index (Hubert and Schultz,
1976) is an internal clustering evaluation index. Given a cell-to-cell
distance matrix, the C-index measures if the closest pairwise distan-
ces correspond to cells belonging to the same cluster. It is defined as

C ¼ S� Smin

Smax � Smin
;

where n is the number of intracluster pairwise distances, Smin is the
sum of the n smallest distances if all pairs of cells are considered,
Smax is the sum of the n largest distances out of all pairs and S is the
sum of distances over all pairs of cells form the same cluster.

Of note, the C-index is always in the interval [0, 1] and it should
be minimum in the case of a perfect clustering. To make the results
easily readable, we consider 1� C, so that the best performances are
obtained by maximizing the score. Concerning the implementation,
we used our own Python implementation of the C-index.

As a complementary evaluation, we further considered the
Silhouette score, defined as

S xð Þ ¼ EðxÞ � eðxÞ
maxðEðxÞ; eðxÞÞ ;

where EðxÞ is the average distance between the cell x and the other
cells of the same cluster and eðxÞ is the average distance between x
and cells in the closest different clusters. The distance used to com-
pute EðxÞ and eðxÞ varies among the benchmarked metrics (OT,
Euclidean, Manhattan, Cosine similarity and Pearson correlation).
The global Silhouette score is then obtained by averaging SðxÞ over
all cells. We used the Silhouette score implementation of the Python
package scikit-learn (sklearn; Pedregosa et al., 2011).

To further test the quality of the inferred cell-to-cell distance
matrices, we used them as inputs for a clustering algorithm and
assessed the agreement between the inferred clusters and the
ground-truth labels (Fig. 1). We considered clustering algorithms for
which applications to single-cell data have been already proposed
and directly applicable to the cell-to-cell distance matrices. We thus
selected hierarchical clustering, with complete linkage, and spectral
clustering (Von Luxburg, 2007; Zheng et al., 2019), both imple-
mented in scikit-learn. Regarding hierarchical clustering, we chose
complete linkage in place of average linkage, used in other single-
cell clustering works (Guo et al., 2015), because this approach pro-
vided better performances for both baseline and OT distances
(Supplementary Table S5). Concerning spectral clustering, since it
requires in input an affinity matrix, we converted the inferred dis-
tance matrices D to affinity matrices A ¼ 1�D, with D normalized
such that the maximum value is set to 1, and run the clustering algo-
rithm with default parameters. Both clustering algorithms require
the specification of the number of clusters in which the cells should
be partitioned. In addition, we considered the typical single-cell clus-
tering workflow (Luecken and Theis, 2019) composed of: (i) dimen-
sionality reduction (DR) (PCA), (ii) kNN graph construction based
on Euclidean distance and (iii) Leiden/Louvain clustering (Blondel
et al., 2008; Traag et al., 2019) of the obtained graph using Scanpy
default parameters (Wolf et al., 2018). In case of OT, we only
applied the two last steps of the workflow. Indeed, PCA relies on
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Euclidean distance and would thus negatively affect the results of
OT. The considered clustering algorithms depend on different
parameters. To apply spectral and hierarchical clustering, the user
needs to set a desired number of clusters (k). On the opposite, the
results of Leiden and Louvain depend on the resolution (r), which in-
directly affects the number of clusters. We thus set these parameters
(k, r) in an unsupervised way, by optimizing the Silhouette score
(Rousseeuw, 1987). For spectral and hierarchical clustering, we var-
ied the number of clusters (k¼3�25), while for Leiden and
Louvain we varied the resolution parameter (r¼0.25�1.5) and
chose the values maximizing the Silhouette score of the clustering.
Thereby, we can test how frequently the number of ground-truth
labels present in the data are captured by the different metrics. Of
note, the overall behavior observed when the number of clusters is
optimized is in good agreement with the results obtained by fixing
the number of clusters to the number of ground-truth labels
(Supplementary Table S5). To evaluate the quality of the obtained
clusters, we used Adjusted Rand Index (ARI) and Normalized
Mutual Information (NMI; Fig. 1).

Given U; clustering inferred from a distance matrix and V;
ground-truth labels, the ARI is defined as

ARI U;Vð Þ ¼ RIðU;VÞ � EðRIÞ
maxðRIÞ � EðRIÞ ;

where RIðU;VÞ is the Rand index, i.e. the fraction of pairs of sam-
ples that are either in the same group or in different groups in both
U and V, E RIð Þ is the expected Rand index between U and a ran-
dom V, and maxðRIÞ is the largest possible Rand index between U
and any V.

To consider a complementary score, we also used the NMI,
defined as

NMI U;Vð Þ ¼ 2 MIðU;VÞ
HðUÞ þHðVÞ ;

where MIðU;VÞ is the mutual information between U and V; i.e.

MIðU;VÞ ¼ HðUÞ �HðUjVÞ

and Hð�Þ denotes entropy. To compute ARI and NMI, we used the
corresponding scikit-learn implementations.

3 Results

Debiased entropic-regularized OT distance (see Section 2), hence-
forth called OT distance, is here proposed as a metric to infer cell–
cell similarity across different single-cell omics data. The performan-
ces of the OT distance are then benchmarked with respect to state-
of-the-art metrics, henceforth called baseline metrics, namely the
Euclidean and Manhattan distances, Cosine similarity and Pearson
correlation.

The benchmark is performed in three main contexts (Table 1).
First, simulated scRNA-seq data are considered. Data composed of
different numbers of cells are generated to test whether the metrics
scale also to high-dimensional data, as the currently available single-
cell data, and if the number of cells impacts performances. Then the
overlap and size of the clusters underlying the simulated scRNA-seq
data are also varied to challenge the various metrics in detecting less
clear and rare groupings of cells. Second, four real scRNA-seq data,

Fig. 2. Comparison of OT against Pearson correlation in cell–cell similarity inference. Barplots for C-index and Silhouette score are reported for (A) simulated scRNA-seq data

composed of 500, 1000 and 10 000 cells, with unbalanced groups and overlapping clusters; (B) four scRNA-seq datasets; (D) two single-cell DNA methylation and two

scATAC-seq data. Examples of the distance matrices obtained with OT, Pearson correlation and Euclidean distance in Liu scRNA-seq are reported in (C)
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profiled from CRC and cell lines, are considered. Finally, we further
challenged the distance measures on other single-cell omics:
scATAC-seq and single-cell DNA methylation. See Section 2 and
Table 1 for details concerning the data.

In all three contexts, ground-truth labels were available for all
cells. In simulated scRNA-seq data, the ground-truth labels have
been imposed during the data simulation (see Section 2). In real
single-cell omics, the ground-truth labels are extracted from the ori-
ginal publications. For the four profilings of cell lines (Liu scRNA,
Li cell lines, Liu scATAC and Leukemia scATAC), labels correspond
to the cell line of origin and thus reflect strong transcriptional/epi-
genetic differences. In contrast, in the case of the neuronal single-cell
DNA methylation (scMethylation mouse and scMethylation human)
and scRNA-seq from CRC samples (Li Tumor and Li NM), the
ground-truth labels reflect clusters previously identified in the data,
based on the activity of predefined markers. These last applications
are clearly more challenging, as much weaker differences exist be-
tween different cell types or states.

As summarized in Figure 1, we first tested with C-index and
Silhouette score whether the various metrics are able to detect the
similarity between cells belonging to the same group. We then
applied different unsupervised clustering algorithms to the com-
puted distance matrices and tested the quality of the resulting clus-
ters using the ARI and NMI.

3.1 Comparing OT against baseline metrics based on

cell–cell similarity detection
Figure 2 summarizes the results of the comparison between OT and
baseline metrics. Pearson correlation outperformed the other base-
line metrics on all data types. We thus used it as representative of
baseline metrics in Figure 2 and in the following. The results of alter-
native baseline metrics are available in Supplementary Table S1. Of
note, better performances of Pearson correlation with respect to
other state-of-the-art metrics had been previously observed (Kim
et al., 2019).

In all simulated data, OT outperforms all baseline metrics
(Fig. 2A), both in terms of C-index and Silhouette score. In particu-
lar, the results of OT are not impacted by the number of cells, given

that it shows a consistently performant behavior for 500, 1000 and
10 000 cells. These results also suggest that OT is scalable to high-
dimensional datasets, a crucial feature for the analysis of single-cell
data. Finally, OT achieves superior performance with highly unbal-
anced clusters, which is more realistic as biological samples are often
composed of a mixture of rare and common populations of cells,
and also with overlapping clusters, which reflects the scenario of
subpopulations of cells sharing similar transcriptional patterns, as
cell populations tracked over different developmental phases.

We then considered four scRNA-seq datasets: two of them cor-
respond to cancer cell lines (Li et al., 2017; Liu et al., 2019), while
the remaining two correspond to colorectal tumor tissue and
matched normal mucosa (Li et al., 2017). All metrics tend to per-
form better in cancer cell lines than CRC samples. This result is
most probably the consequence of the stronger transcriptional dif-
ference existing between cell lines. Overall, in all the four scRNA-
seq datasets, OT outperformed baseline metrics (Fig. 2B). The im-
provement provided by OT in cell lines is important, especially
according to Silhouette score (þ0.6 Silhouette score). To show to
which extent C-index and Silhouette score reflect a clear clustering
structure in the cell-to-cell distance matrices, we focused on the
smallest dataset, Liu scRNA (Liu et al., 2019). Figure 2C reports the
cell-to-cell distance matrices obtained for this dataset with OT dis-
tance, Pearson correlation and Euclidean distance. Cells in the
matrices are sorted based on their cell line of origin. OT powerfully
detected the similarity between cells belonging to the same cancer
cell line, showing three clear blocks of cells at distance close to zero.
In contrast, the blocks corresponding to the three cell lines are less
marked with Pearson correlation. Finally, with Euclidean distance,
the values outside the three blocks tend to be less close to one, indi-
cating a less clear separation between cells belonging to different cell
lines.

Finally, we challenged the various metrics on other single-cell
omics data (Fig. 2D). Also in this case, OT shows better perform-
ance than Pearson correlation. Overall, OT performed better than
existing metrics in the detection of cell–cell similarities in all consid-
ered datasets. See Supplementary Table S1 for the performances of
other state-of-the-art baseline metrics.

Fig. 3. Comparison of OT against Pearson correlation in hierarchical clustering. Barplots for ARI and NMI are reported for (A) simulated scRNA-seq data composed of 500,

1000 and 10 000 cells, with unbalanced groups and overlapping clusters; (B) four scRNA-seq datasets; (C) two single-cell DNA methylation and two scATAC-seq data
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3.2 Comparing OT against baseline metrics based on

hierarchical clustering
Hierarchical clustering was applied to the cell-to-cell distance matri-
ces computed with OT and Pearson correlation. In all datasets, the
number of clusters was optimized based on the Silhouette score
(Section 2). Table 1 summarizes the number of clusters obtained
across all datasets and compares them with those defined in the ori-
ginal publications. The resulting clusters were then compared with
the ground-truth labels based on ARI and NMI (Fig. 3).

In simulated data, all the five datasets contain three underlying
clusters. As described in Table 1, in four out of five cases, both OT
and Pearson correlation identified the correct number of clusters.
The only exception is represented by the dataset composed of
10 000 cells, where OT correctly detects the presence of three clus-
ters, while Pearson correlation overclustered the data, by subdivid-
ing the three groups into five clusters. According to ARI and NMI,
both Pearson correlation and OT give rise to perfect results
(Fig. 3A). Pearson correlation also led to optimal ARI and NMI
scores in the dataset of 10 000 cells, as overclustering is not captured
by these scores.

Turning to real scRNA-seq data, in Liu scRNA data, both
Pearson correlation and OT detected the correct number of clusters
(Table 1). Concerning the two CRC datasets, for Li Tumor, contain-
ing seven cell types, OT only detected three clusters while Pearson
predicted the presence of six clusters, thus missing only the rare
population of mast cells, represented by one cell. In contrast, for Li
NM, Pearson correlation dramatically overclustered the data and
inferred 23 clusters, while OT suggested the presence of nine clus-
ters. Finally, for Li cell lines, composed of seven cell lines, OT sug-
gested the presence of eight clusters, while Pearson identified 10.
Overall, in all scRNA-seq datasets, excepting Liu et al. (2019), no
distance captured exactly the numbers of clusters reported in the
corresponding publications. However, the number of clusters
inferred by OT tend to be closer to the ground-truth, while Pearson
correlation tended to highly overcluster the data. Regarding the
NMI and ARI scores, in two out of four datasets, OT performed bet-
ter than Pearson correlation (Fig. 3B), while for Liu scRNA and Li
Tumor both OT and Pearson achieved comparable performances.

In other single-cell omics data, OT still performs better than
Pearson correlation in the majority of the datasets. Regarding the
numbers of clusters, in Liu scATAC, both Pearson correlation and
OT correctly detected the presence of three clusters. In Leukemia
scATAC, composed of six cell lines, OT and Pearson correlation
predicted 3 and 25 clusters, respectively. Finally, in methylation
data, both OT and Pearson underestimated the real number of clus-
ters. As shown in Figure 3C, according to ARI and NMI values, OT
showed better performances in all datasets except Leukemia data.
Of note, Pearson correlation performed well according to ARI and
NMI for Leukemia data, but this performance is obtained consider-
ing 25 clusters instead of the five real clusters presumably present in
the data. This is a practical demonstration of the interest of inferring
the optimal number of clusters based on the Silhouette score, rather
than fixing it to the value reported in their original publication.

The improvement provided by OT for cell–cell similarity infer-
ence (Fig. 2) has an impact on clustering performances. Of note,
these results are in agreement with those observed when the number
of clusters is fixed (Supplementary Table S5). Finally, similar results
are obtained when substituting hierarchical clustering with spectral
clustering (Supplementary Text S4 and Fig. S2), suggesting that the
choice of clustering algorithm does not affect conclusions.

3.3 Comparing a typical single-cell clustering workflow

against its counterpart based on OT
Clustering in single-cell is classically performed following a typical
workflow composed of: (i) DR (PCA), (ii) kNN graph construction
based on Euclidean distance and (iii) Leiden/Louvain clustering of
the obtained graph (Luecken and Theis, 2019). We here compare
the results obtained with this typical single-cell clustering workflow
with respect to its counterpart based on OT (see Section 2 for
details). Figure 4 and Table 1 report the results obtained once the

resolution parameter for the Leiden clustering is optimized based on
the Silhouette score (Section 2). Of note, the results are not affected
by the choice of the resolution parameter (Supplementary Fig. S3).

In simulated data, the estimation of the number of clusters is less
precise than with hierarchical and spectral clustering. Overall, the
typical clustering workflow tends to more frequently overcluster the
data (Table 1). Regarding ARI and NMI scores, OT shows better
performances, reaching perfect score for three out of five datasets
(Fig. 4A).

For scRNA-seq data, both the typical clustering workflow and
OT correctly predicted the correct amount of clusters present in Liu
scRNA. The two CRC datasets contain seven cell types, correspond-
ing to our ground-truth labels. For Li Tumor, both the typical clus-
tering workflow and OT predicted the presence of two clusters. In
contrast, for Li NM, the typical clustering workflow inferred four
clusters, while OT suggested the presence of six clusters. Finally, for
Li cell lines, OT suggested the presence of nine clusters, while the
typical clustering workflow correctly identified seven clusters.
Concerning the NMI and ARI scores, OT outperformed the typical
clustering workflow in all four scRNA-seq datasets (Fig. 4B).

In other single-cell omics, OT correctly identified three clusters
for Liu scATAC data, while the typical clustering workflow found
seven clusters. Regarding Leukemia scATAC data, involving six cell
lines, both OT and the typical clustering workflow under-clustered
the data. Finally, in methylation data OT tend to be closer to the
correct number of clusters. Regarding ARI and NMI (Fig. 4C), OT
always outperforms the typical clustering workflow and obtains per-
fect performances in Liu ATAC data.

Of note, similar results are obtained when substituting the
Leiden clustering with the Louvain clustering (Supplementary Text
S5 and Fig. S4), indicating that the choice of clustering algorithm
should not affect conclusions.

3.4 Open-source implementation and distribution
To foster the reproducibility of all the results presented in this work,
we provide a Python package and Jupyter notebook covering all the
analyses performed, both available at https://github.com/
ComputationalSystemsBiology/ot-scOmics, together with all the
preprocessed single-cell data used in this study. Since computing OT
distances is computationally intensive, the code is designed to be run
on a GPU, taking advantage of the PyTorch library. For users who
do not have access to a GPU, extensive explanations are provided to
run the Jupyter notebooks on the Google Collaboratory platform
(http://colab.research.google.com/). Note that our code also allows
for CPU computations.

4 Discussion

In this study, we assessed the potential of OT to infer cell–cell simi-
larities from single-cell omics data. We extensively benchmarked
OT performances against state-of-the-art metrics. Interestingly, OT
outperformed alternative metrics in capturing cell–cell similarities in
all the 13 considered datasets. The biological relevance of this im-
provement was assessed by performing cell clustering. In all cases,
the use of OT distance resulted in improved clustering results. Of
note, different clustering algorithms have been used to test whether
the observed performances were affected by the choice of the algo-
rithm. Finally, we further challenged the metrics to detect cell–cell
similarity in other single-cell omics: scATAC-seq and single-cell
DNA methylation data. The improvement provided by OT is con-
served also when other single-cell omics are considered, despite the
high sparsity and the close-to-binary nature of scATAC-seq data (de
Souza et al., 2020; Xiong et al., 2019).

Single-cell datasets composed of a number of cells higher than
that here employed are currently available (e.g. single-cell atlases).
The scope of our analysis is to test the performances of OT and
baseline measures in inferring cell–cell similarity from single-cell
data. In this context, we are interested in reconstructing the distance
matrices comparing all possible couples of cells present in the data-
set. Such computations are quadratic in the number of cells, both in
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terms of memory and time complexity, thus preventing us to test
performances on single-cell atlases for both baseline and OT distan-
ces. However, the computation of the complete cell–cell distance
matrices is not required to cluster single-cell data, thus assuring that
a clustering based on OT, or other baseline measures, can be scaled
to high number of cells (e.g. single-cell atlases).

Our evaluation of metrics performances is dependent on the
ground-truth labels associated with the input datasets. In cell lines,
the ground-truth is well established and wide transcriptional differ-
ences exist between different cell lines. Biological samples instead
consist of cell types and states having less pronounced transcription-
al differences. What is a ground-truth in this case is thus less clear.
We here used as ground-truth the clusters identified in the original
publication of each dataset. However, such labels could be
improved. In addition, given that the original publications employ
Euclidean distance or Pearson correlation to define the labels, the
usage of such labels as ground-truth is expected to advantage these
metrics compared to alternative ones.

Of note, DR is frequently applied to reduce the noise in single-
cell data before cell clustering and further downstream analyses.
Here, we only applied DR in the context of Leiden/Louvain cluster-
ing for Euclidean distance, but not for the OT distance. Indeed, the
most popular DR approaches, such as PCA, diffusion maps, NMF
and ICA, rely on Euclidean geometry and would thus not be a good
choice prior to OT computation. The good performances provided
by OT in this work suggest that further efforts should be devoted to
design DR methods for single-cell data based on other metrics.

Finally, we applied OT to different single-cell omics in isolation.
However, different omics data presumably provide complementary
information on individual cellular states. Combining different
single-cell omics with appropriate metrics thus represent a critical
challenge in computational biology. Our results suggest that OT
could be a valuable metric for the integration of different omics
data.
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