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Abstract—Internet of Things (IoT) devices generate a tremen-
dous amount of time series data that is extremely dynamic,
heterogeneous and time dependent. Such types of data introduce
significant challenges for the real-time prediction of QoS metrics
of IoT applications with different traffic characteristics. To this
end, in this paper, we propose a temporal transformer model and
a unified system to predict several QoS metrics of heterogeneous
IoT applications when they communicate with the Edge of the
network. The transformer model also leverages an attention
module to provide a solution for both short-term and long-term
sequence prediction of QoS metrics that allows to better extract
any time dependencies. In particular, in our framework, we firstly
generate a set of datasets containing real-time traffic information
of five different IoT applications such as Heating, Ventilation, and
Air Conditioning (HVAC), lighting, Voice over Internet Protocol
(VoIP), surveillance and emergency response using the 802.15.4
access technology and the RPL routing protocol. Following, we
perform the data cleaning, downsampling and pre-processing of
the datasets and we construct the QoS datasets, which include
four QoS metrics, namely throughput, packet delivery ratio,
packet loss ratio and latency. Finally, we evaluate the transformer
model through extensive experimentation using both short-term
and long-term dependencies and we show that our model can
guarantee a robust performance and accurate QoS prediction.

Index Terms—Deep learning, Edge computing, Internet of
Things, QoS prediction, time series, transformer

I. INTRODUCTION

THE number of Internet of Things (IoT) applications have
considerably increased, while generating a tremendous

amount of data. According to Cisco, the number of connected
devices will reach up to 14.7 billion by 2023 [1]. The devices
are expected to continuously generate large volumes of data
requiring extensive analysis to capture valuable information
that can help in the intelligent decision making. However, the
device’s CPU, memory, and disk capacity restricts the data
processing on the device itself. Thus, the data and the analysis
processing have to be offloaded to more resource powerful
platforms, such as the newly introduced Edge Computing
[2]. Edge computing can facilitate the data processing very
close to the source of the data, reducing thus the overall
latency perceived. In this way also, the processing burden is
shifted/offloaded to the Edge of the network through a process
that is called task offloading [3]. However, the amount of
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Edge resources needed for each IoT application depends on
the volume of the data generated from the IoT devices. This
creates an important challenge related to the accurate workload
(e.g. throughput) profiling of an IoT application.

At the same time, IoT applications consist of heterogeneous
devices that send data of different contexts, with different
reporting frequencies usually over a random access channel
generating thus, high interference levels [4]. All these add
several levels of complexity when it comes to the prediction of
typical Key Performance Indicators (KPIs) in IoT. Regarding
the reporting frequency, IoT devices follow very dynamic
models ranging from periodic to event-based transmissions.
Hence, the feature of time dependence make such data differ-
ent and more challenging than traditional data. Therefore, each
IoT application, when generating/offloading data, will have
different instantaneous Quality of Service (QoS) behavior,
which will be time dependent. Hence, it is necessary to
propose an efficient model that will analyze and predict the
QoS metrics using IoT time series data.

A time series data is a series of data points that are ordered
by their chronological order. Time dependency is a very
important feature of the IoT time series data, since data are
becoming widespread in an IoT context [5]. Accordingly, the
time feature is affecting the way prediction and analysis of
IoT data is done. One way to predict the data at a next time
step is to use the data from previous time steps in the short
or long past [6]. Therefore, there is huge interest in analyzing
the IoT traffic profiles by applying various machine learning
techniques [7].

For example, several studies applied traditional time series
algorithms or deep learning models to predict the IoT traffic
behavior [8]-[23]. In the studies [8]-[17], the authors applied
diverse deep learning algorithms such as Recurrent Neural
Network (RNN), Convolutional Neural Network (CNN), Long
Short-Term Memory (LSTM), attention mechanism, regression
techniques and stochastic gradient descent for the prediction
of either specific or a set of QoS metrics. Nonetheless, various
research gaps can be identified in these existing studies. Firstly,
in [8]-[13] several QoS prediction mechanisms are presented,
however, without considering any time dependencies. Sec-
ondly, for the works [14]-[17], only a simple traffic prediction
is provided, without predicting typical QoS metrics found in
an IoT context. Thirdly, no multivariate prediction of QoS
is provided for the studies [11], [14] and [15], which is an
important element to capture the dependencies among multiple
QoS metrics. Additionally, some works, such as [18]-[23],
applied deep learning specifically for the time series fore-
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casting task. These works proposed various learning networks
such as Temporal Convolutional Network (TCN), DeepAR,
LSTNet and an improved versions of LSTM as stacked LSTM
and bidirectional LSTMs for time series forecasting problems.
However, this set of works lacks the ability to handle both
the short and long-term dependencies at the same time, while
training over long sequences of data degrades the accuracy of
the prediction.

To overcome the above described research gaps of the
current studies, we deploy five different IoT applications to
investigate four different QoS metrics. Moreover, this research
also investigates the multivariate prediction of QoS metrics for
each application. Last but not least, a novel model that makes
an efficient use of the time features of the IoT applications
and accurately predicts their QoS behavior, in a dynamic
network environment, is proposed. The model also investigates
the short and long input sequence dependencies without any
performance degradation. To this end, the main contributions
of this paper can be summarized as follows:

• We consider 5 different IoT smart building applications
that present different requirements in terms of number of
devices, packet length, context of message, and message
frequency transmission. We deploy the applications in a
real testbed [24] comprised of approximately 300 IoT
devices and generate data over an IEEE 802.15.4 access
network.

• We provide the predictions of four major QoS metrics
such as Throughput, Packet Delivery Ratio (PDR), Packet
Loss Ratio (PLR) and Latency. As multivariate time
series forecasting poses a challenge of how to capture
and leverage the dependencies among multiple variables,
we provide both univariate and multivariate multi-step
prediction for all four QoS metrics of the five IoT
applications under consideration.

• We design and implement a QoS prediction mechanism
based on Temporal Transformers that models temporal
dependencies within input sequences consisting of IoT
data and that is able to handle the long input sequences
with the attention module to make prediction. The model
accurately provides the multi-step QoS prediction and its
temporal relation with its preceding QoS values from past
observations.

The rest of the paper is organized as follows: Section II
presents the related work and current limitations. Section III
gives a detailed information on the challenges of IoT time
series data. Section IV summarizes the real time dataset gen-
eration of the considered IoT applications. Section V presents
the proposed model along with its algorithmic form and
asymptotic analysis. Section VI provides the experimentation
setup and illustrates the results and the efficiency of the
proposed solution. Finally, Section VII concludes the paper.

II. RELATED WORK

In the pertinent literature, there are various studies either for
the prediction of IoT traffic along with the QoS metrics or for
the general time series forecasting task using machine learning
or deep learning approaches. Thus, in this section we divide

the related work into two distinct categories: i) deep learning
models for QoS prediction and ii) deep learning models for
general time series forecasting.

A. Deep Learning for QoS Prediction

The authors in [8], predicted the delay using a nonlinear
autoregressive exogenous (NARX) RNN following both a
single-step and a multi-step ahead prediction. The prediction
accuracy is measured using MSE, RMSE and MAPE metrics.
However, they used a simulated dataset of an IoT environment.
Furthermore, the delay metric is also predicted in [9] using a
simple Deep Neural Network (DNN) consisting of forward
with backward passes and also providing the analysis of
hyperparameters, which presented good results such as size
of training data, number of layers, number of neurons in
each layer and epochs. The features utilized by this work
were extracted from the application layer, MAC layer and
physical layer of the network. The authors in [10] proposed a
deep learning model that predicts the throughput, delay, and
packet loss of an IoT communication system. The proposed
model consists of three layers: The first layer includes a
neural network for the Internet as it represents the transmission
medium between different networks in an IoT system. The
second layer consists of a number of neural network for each
access network such as Wireless Sensor Networks (WSN),
Radio Frequency Identification (RFID) network and Mobile
Ad-hoc Network (MANET) in an IoT system. This layer
predicts the individual performance of each network. The
third layer comprises the last neural network model which
is used to predict the final performance of the entire IoT
system. The work in [11] attempted to predict the throughput
using a Convolutional Neural Network (CNN) with the target
vectorization technique as their throughput distribution was
centralized and concentrated on several values. This is why and
in order to mitigate this centralized distribution they resorted to
a vectorization technique. However, the dataset was generated
from a simulated factory scenario.

Fan et al. [14] proposed a deep learning based Recurrent
Neural Network (RNN) model using an attention mechanism
for the IoT data processing at the Edge. All input time series
were fed into the RNN and attention network to calculate
the extrinsic correlations and to provide the final prediction.
The proposed model, called UrbanEdge, used four different
datasets such as traffic volume, building occupancy, electric-
ity and Air Quality Index (AQI) consisting of time series
based sensor readings. The results proved that the proposed
UrbanEdge model outperforms several baseline methods such
as Autoregressive Integrated Moving Average (ARIMA), Vec-
tor Autoregression (VAR), LSTM and Sequence-to-Sequence
(Seq2Seq). However, there is the vanishing gradient problem
for the training of the RNN and the model also requires a high
bandwidth for the transfer of the monitoring metrics.

The authors in [15], proposed EdgeLSTM, which is an
Edge-based deep learning system that utilizes grid LSTM
along with Support Vector Machine (SVM). The pipeline of
this framework followed a data processing, a hyperparameter
selection, and a construction of multi-class SVM models to be



3

trained using four different datasets. The output was to get the
results for four different tasks such as data prediction, network
maintenance, anomaly detection and mobility management.
Abdellah et al. [16] performed the prediction of throughput of
IoT traffic in a 5G communication network using an LSTM
network. The dataset is generated using an IoT traffic genera-
tor. The features of the dataset includes the timestamp, bytes
count and packets count. Finally, the authors in [17] proposed
the forecasting of IoT traffic by using a stochastic gradient
descent algorithm and a neural network architecture called
gaNET. The dataset used in the paper consists of features such
as obfuscated mobile identification and timestamp of records.

There are also few recent studies that applied regression
based approaches [12], [13], to predict throughput and packet
delivery ratio (PDR), since regression based techniques tend to
be a light weight alternative for the prediction of QoS metrics.
However, most of the IoT data used for the QoS prediction
consist of time series sequences which are better predicted
using deep learning approaches, such as Recurrent Neural Net-
works (RNN) or Long Short-Term Memory (LSTM) networks,
that are specifically designed for handling time series data.

B. Deep Learning for Time Series Forecasting

Regarding the time series data forecasting, various neu-
ral network based methods are developed for sequence-to-
sequence learning. Specifically, RNNs are well suited for
the time series forecasting as they consist of a memory cell
that can be used to recall things from the past. However,
as explained before, the vanishing gradient problem persists
over the longer time series sequences. A variant of RNN is
LSTM [18] that uses a gating mechanism for controlling an
access to memory cell and mitigates the vanishing gradient
problem. There is also a stacked LSTM model [19] for the time
series prediction. This model stacks LSTM layers on top of
each other to learn longer dependencies. Another extension to
LSTM is the bidirectional LSTM [20] in which two models are
trained. The first model is used for learning the input sequence
and the second learns the reverse of that sequence.

Furthermore, a Temporal Convolutional Network (TCN)
which combines the dilations and residual connections with
the causal convolutions needed for autoregressive prediction,
was proposed in [21]. The authors showed that TCN performed
better than RNN models for time series forecasting tasks.
Salinas et al. [22] proposed a model called DeepAR for prob-
abilistic forecasting using autoregressive recurrent networks
that learns from historical data of all time series in the dataset
and provides the forecasting results. Another deep learning
model for multivariate time series forecasting, was proposed
in [23] called Long- and Short-term Time-series Network
(LSTNet). This work combined the convolutional layer along
with recurrent layer to learn both local patterns and long-term
dependencies among multi-dimensional input variables. It also
incorporated the autoregressive linear model along with a non-
linear model to make the framework more robust for the time
series which violate scale changes.

C. Limitations of the Related Work

As stated in Section I, the limitations of the above men-
tioned works can be summarized as follows:

• Most of the studies provide the prediction of the IoT
traffic type and do not predict the QoS attributes [14]-
[17]. There are only few studies that provide the QoS
prediction [8]-[13]. However, these works have not thor-
oughly examined the actual prediction task with respect
to time, especially in emerging IoT application scenarios.

• Some of the existing studies provide the prediction of IoT
traffic or QoS attributes as a univariate forecast [11], [14]
and [15]. However, multivariate prediction can capture
and use the dependencies among multiple variables to
predict the future QoS at a specific time step.

• The existing studies based on neural networks are mostly
designed for a short-term sequence prediction setting
[18]-[22]. Specifically, RNN based models have the van-
ishing gradient problem which prevents the training over
long sequences of data.

In this work, we solve the above mentioned challenges as
follows: (i) Firstly, we provide the detailed prediction of four
QoS metrics such as throughput, packet delivery ratio (PDR),
packet loss ratio (PLR) and latency for five heterogeneous IoT
applications such as HVAC, VoIP, lighting, surveillance and
emergency application; (ii) Secondly, we provide the multistep
prediction of each QoS in both univariate and multivariate
settings; (iii) Thirdly, to overcome the vanishing gradient
problem in the training of long QoS data sequences, we are
introducing a temporal transformer architecture. To the best
of our knowledge, this is the first work which provides a
transformer based QoS prediction for IoT applications.

III. PROBLEM FORMULATION OF QOS PREDICTION

In this section, we describe and formulate the QoS pre-
diction problem, when we have multiple QoS metrics such
as throughput, PDR, PLR and latency to be predicted and
when IoT devices belonging to different IoT applications
communicate with an Edge infrastructure. In particular, the IoT
applications are represented by the set A = {a1, a2, a3, a4, a5}
where a1 represents the first IoT application, a2 represents
the second IoT application and so on. Similarly, the set
D = {d1a1

, d2a2
, ..., dmai

} represents the data generated by each
IoT application where d1a1

represents the first dataset in the
set D and it is generated by the IoT application a1. The dmai

denotes the mth dataset generated and it is for the ith IoT
application where m <= 5 and i <= 5 as data is generated
for five different IoT applications. Furthermore, each network
dataset generated for an ith IoT application is constituted
by a sending and receiving information which is denoted as
D = {(u1

a1
, s1a1

), (u2
a2
, s2a2

), (u3
a3
, s3a3

), (u4
a4
, s4a4

), (u5
a5
, s5a5

)}
where (u1

a1
, s1a1

) represents the pair of sending and receiv-
ing information for IoT application a1. More specifically,
U = {u1

a1
, u2

a1
, ..., uj

a1
} denotes the set of the transmitting

information by the IoT devices of the IoT application a1.
Similarly, S = {s1a1

, s2a1
, ..., sja1

} represents the set of the
receiving information at the Edge server side, where sja1

is
the jth receiving information of the ith IoT application.
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Regarding the features used, the set UF denotes the features
related to the transmitting data in the network by the IoT
devices as: UF = {uf1 , uf2 , uf3 , uf4 , uf5 , uf6} where uf1

denotes the timestamp at which the packet is sent; uf2 is the
sensor node ID that is sending the packet; uf3 represents the
size of the UDP payload in bytes; uf4 is the IPv6 destination
address (we use an 802.15.4 access network with 6LoWPAN);
uf5 is the destination port; uf6 is the actual payload in a hex-
adecimal format. In a similar way, the set SF represents the
features related to the receiving information at the Edge server
side and is further expressed as SF = {sf1 , sf2 , sf3 , sf4},
where sf1 represents the timestamp at which the packet is
received; sf2 is the IPv6 address from which the packet
originates; sf3 denotes the receiver port on which the packet
has been received; and sf4 is the hexadecimal payload of
the packet. Given the sets UF and SF , we computed the
QoS datasets for each IoT application. The throughput is
represented as Q = {q11 , q22 , ..., qti} where qti is the ith

throughput value at timestamp t, such that 0 < t < T , where
T represents the total timestamps for which data are generated.
The packet deliver ratio is represented as P = {p11, p22, ..., pti}
where pti is the ith PDR value at timestamp t. The packet
loss ratio is denoted as E = {e11, e22, ..., eti}, where eti is the
ith PLR value at timestamp t. Lastly, the latency is denoted
as L = {l11, l22, ..., lti}, where lti is the ith latency value at
timestamp t.

In the Time Series Forecasting (TSF) setting, let X =
{x1, x2, ..., xN}T represent the multivariate QoS time series
with N variables, T as timestamp and X ∈ RT×N . When
N = 1 it becomes a univariate time series problem which can
be represented, for the throughput Q for example, as the ith

univariate QoS time series, given as XT
i = {x1

1, x
2
2, ..., x

t
i} ∈

QT where xt
i is the ith value of the QoS metric collected

at a timestamp t. Given the X and a fixed window size τ ,
with τ ∈ N, this time series is split into a fixed length
input as X = {(xt

1, x
t+1
2 , .., xt+τ

τ ), (xt+1
1 , xt+2

2 , .., xt+τ
τ ), ...,

(xt+i
1 , xt+i+1

2 , .., xk+τ
τ )} such that 0 < t < T , ∀i ∈ N and

k = T − τ .
Given the input time sequence as {xt

1, x
t+1
2 , .., xt+τ

τ } ⊂ X ,
we consider the task of predicting either only one step ahead
value, such as to predict the value of xt+τ+1

τ+1 or multistep
values i.e., h number of future values of QoS as X̃ =
{x̃t

1, x̃
t+1
2 , ..., x̃T−1

h−1 , x̃
T
h }, with h ∈ N and x̃t

1 trying to predict
the value of xt+τ+1

τ+1 , and so on. Thus, the goal is to learn
a precise forecasting model as M : Xt,τ(i) → X̃t,h(i+τ) by
minimizing some loss function.

IV. EDGE COMPUTING INFRASTRUCTURE AND DATASET
CONSTRUCTION

A. Applications and Edge Computing Infrastructure

Five different IoT applications and their respective datasets
are considered in this work. These applications are: 1) Emer-
gency Response: The emergency system is used to moni-
tor the critical areas of the building such as gas pipes or
fire alarms. If a situation occurs where the pipelines reach
high pressure, which may cause an explosion, then the IoT
devices at a specific location will detect this and send an

alert with relevant contextual information to a control system
to remedy the situation. 2) Heating, Ventilation and Air
Conditioning (HVAC): The HVAC system provides various
handling systems inside the building by controlling factors
such as temperature, humidity etc., in order to provide the
necessary comfort and indoor air quality to the occupants.
3) Surveillance: The surveillance systems involve cameras,
monitoring and sensor devices that are used to provide the
required physical security at a specific location. 4) Voice over
IP (VoIP): The VoIP systems are used for providing automatic
help desks or interactive voice recognition. 5) Lighting: The
lighting systems can be used to provide information regarding
room occupancy, while also reducing the total energy con-
sumption of the building.

All of the above applications coexist in the same build-
ing and generate data at the same time. This can create a
very dynamic environment, especially when a random access
channel is considered that can create QoS uncertainties due
to interference and re-transmissions. For each of the IoT
applications, the experiment involves three types of entities,
or nodes, namely:

1) SERVER: This entity (node) represents a UDP server
which collects and receives all of the information re-
garding the packet exchanges in the network. For all
of the experiments, one central server is used, which is
accessible through the internet via an IPv6 connection.

2) BORDER ROUTERS: The sensor nodes are connected to
the internet via border routers which have two interfaces.
The first interface is connected to the internet and the
second is connected to the sensors network, using the
802.15.4 as an access protocol and the IPv6 Routing
Protocol for Low power and Lossy Networs (RPL)
as the routing protocol. More specifically, the border
routers are the roots of the RPL’s Destination Oriented
Directed Acyclic Graphs (DODAGs) with a role similar
to the ISP “box” for residential users that have an
interface connected to the Internet and another providing
Wi-Fi connectivity. For the experiment purposes, the
total number of border routers is kept constant for each
of the individual application, however it may vary as it
is a modifiable parameter.

3) SENSORS: The sensors are nodes that are used to gen-
erate data following a specific distribution, as shown in
Table I, according to the five IoT applications mentioned
earlier. The sensor data are transmitted to the server
using the 802.15.4 technology via the RPL routing
mechanism. Further, each sensor can also be used to
relay packets to border routers, if it lies on the shortest
path between a sensor and the DODAG root. Each sensor
can have several DODAG parents, creating multiple
possible paths to the border routers.

We have defined a heterogeneous set of parameters for each
IoT application to perform the data generation experiments.
These parameters include the number of sensors, number of
border routers, duration, packet length in bytes, generation
type of packets, lambda value of their generation type and
time period in seconds, as shown in Table I. The only common



5

TABLE I
EXPERIMENTATION’S PARAMETERS

Scenario No. of sensors No. of routers Duration (s) Packet Length (B) Generation Type Lambda Period (s)
Surveillance 10 3 10090 127 Exponential 196.74 —
Emergency Response 40 5 10090 127 Hybrid 0.0333 30.0
HVAC 100 5 10090 60 Periodic — 260.0
Lighting 100 5 10090 30 Exponential 0.00208 —
VoIP 10 1 10090 127 Hybrid 15.74 0.063532

parameter among the five applications is the duration of the
experimentation, since the applications coexist at the same
time. The generation type represents the distribution according
to which application data are generated. If it is exponential,
as for surveillance and lighting applications, then the packets
generated by each node follow an exponential distribution
using the parameter Lambda. If the generation type is Periodic
i.e., for HVAC, then the packets are generated periodically
according to the Period parameter. If the generation type is
hybrid i.e., for emergency response and VoIP applications,
then data follow a hybrid generation according to an expo-
nential distribution that follows a specific Lambda value and
a periodic pattern. This behavior creates another level of QoS
uncertainty that can lead to considerable traffic fluctuations,
as well as spectrum and resource requirements. More details
regarding the testbed and the dataset generation can be found
in [25].

B. Feature Engineering

The dataset generated for the five different IoT applications
provide the receiving and transmitting information of the
packets within the network. Each application has its own
database with UDP and server tables. The UDP table con-
tains information about packets as they are transmitted by
the sensors and the Server table contains information about
packets as they are received by the server. The raw features
are highlighted in Table II.

TABLE II
DESCRIPTION OF RAW FEATURES IN DATASET

Data Feature Description
Transmitting node name name of sensor node
data (UDP) timestamp time at which the packet is sent

payload size size of the UDP payload, in bytes
dest address destination IPv6 address
dest port contains the destination port
payload hexadecimal identifier of the packet

Receiving timestamp time at which the packet is received
Data (Server) IPv6 address source IPv6 address

receiver port port on which the packet is received
payload hexadecimal identifier of the packet

In order to extract the most useful features from the given
raw data, we engineered several features as described below:

1) Timestamp: It is the time that is associated with each
packet in the network. Initially, data were collected and
added to the raw dataset at a nanosecond granularity.
However, we changed the granularity of the dataset
from 1 nanosecond to 5 milliseconds, to better capture
the QoS metrics fluctuations. For example, it was not

always possible to calculate the QoS metrics for each
nanosecond as in most of the nanosecond timestamps
we did not have any sending or receiving packets in the
network that was causing the generation of many null
values for the QoS datasets. Thus, each of the below
described features are computed for a time interval t
of 5 milliseconds without however losing significant
information.

2) timefirst pack: It is the time at which the first packet
is transmitted in a specific time interval of 5 ms.

3) timelast pack: It is the time at which the last packet is
transmitted to the server in a specific time interval of 5
ms.

4) totaltrans pack: It is the total number of packets trans-
mitted by a node during a specific time interval of 5
ms.

5) totalrec pack: It is the total number of packets received
by the server during a specific time interval of 5 ms.

6) Packet Delivery Ratio (PDR): It is the ratio of the
received packets to the transmitted packets per node for
every 5 ms and it is given as:

PDR =
totalrec pack

totaltrans pack
∗ 100 (1)

7) Packet Loss Ratio (PLR): It is the ratio of the lost
packets to the received packets at the server side and
it is given as:

PLR =
totalloss pack

totalrec pack
∗ 100 (2)

8) Throughput: It is the rate of the total number of received
packets (or their size) over a time period of 5 ms:

Throughput =
totalrec pack

timelast pack − timefirst pack
(3)

9) Transmission Latency: It is the average time taken by
a transmitted packet to be successfully received at the
receiving side over a time period of 5 ms and is given
as:

Latency =

∑
t pack(timerec pack − timetrans pack)

totaltrans pack
(4)

C. Data Preprocessing

Each application dataset is stored in a SQLite3 database
and compressed with the zstd compression algorithm. We
firstly decompress the dataset and read the sql table in the
.csv format. Then we engineer the QoS related features and
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create a second QoS dataset for each of the IoT applications.
However, before the QoS datasets are fed to our proposed
transformer models for training or validation purposes, several
preprocessing operations are applied to refine their quality
and thereby the QoS forecasting performance. In particular,
we remove any outliers that are caused by some unseemly
situations in the datasets. There are also some missing values
in the QoS dataset because it may occur that no packets are
transmitted and received for some time intervals. For instance,
the HVAC and lighting applications are generating packets
with very low frequencies, as can be seen in Table I. For the
particular applications, the missing values are filled by average
values of their respective features.

Finally, the features of each application dataset is normal-
ized in a particular range using the min-max normalization
given as:

X normalized =
x− xmin

xmax − xmin
(5)

where x is the original QoS value of the metric/feature under
consideration (e.g. Throughput, PDR, PLR and Latency),
xmin represents the minimum value of that feature and xmax

denotes its maximum value. Thus, the normalized data lie in
the range from 0 to 1.

V. PROPOSED TEMPORAL TRANSFORMER FRAMEWORK

This section discusses the overview of the proposed tempo-
ral transformer for the QoS time series prediction between
the IoT devices and the Edge server. Following, the next
paragraphs discuss the details of the proposed model and
present the description of each of its modules.

A. Overview of Proposed Framework

Given the ability of temporal transformer models to get
the time dependencies of a dataset, we proposed a framework
which adopts the benefits of the particular model to process
and estimate the QoS metrics for IoT applications in an
edge environment. In the proposed framework as shown in
Fig. 1, we first generate the real IoT data for five different
applications as discussed already in the section IV.A. Then,
our second step is to take all of these raw datasets and
engineer the new useful features as discussed in section IV.B.
Then we process these data by performing data cleaning,
data down-sampling and data normalization. Then the new
pre-processed QoS datasets for the five IoT applications are
divided into training sets, validation sets, and testing sets. The
total experimentation duration is lasted about one week. The
training sets contain the data generated in the first five days,
while the both of validation and testing sets contain one day
data. The training and validation datasets are used to construct
the optimal transformer network by selecting the appropriate
hyperparameters. Finally, after the temporal transformer model
is trained, the QoS metric prediction results are obtained by
using the testing dataset.

B. Temporal Transformers

The base of our proposed temporal transformer lies in the
transformer encoder architecture which was initially proposed

in 2017 for machine translation tasks [26] [27]. However,
we do not use the decoder part of the base transformer for
the following reasons. Firstly, the decoder module in the
transformer architecture is suitable when the output sequence
length is not predefined such as for generative tasks e.g.,
machine translation in Natural Language Processing (NLP) or
summarization tasks. In contrast, in this work, the task is to
predict the future throughput, PDR, PLR or latency in defined
time steps. Secondly, using only the encoder part makes the
proposed work suitable for solving several types of problems
for IoT applications, such as classification, regression and
generative tasks. Finally, the main purpose of the proposed
temporal transformer is to learn the short as well as the
long-term dependency of the Throughput, PDR, PLR and
latency with the time domain. Thus, in our case, the temporal
transformer consists of temporal inputs, positional embedding
and encoder modules, while the QoS prediction will be the
final output.

1) Input and Output of the Temporal Transformer: As
mentioned earlier, we are solving both the univariate and
multivariate QoS prediction. Therefore, the input to the trans-
former in these two cases will be different according to the
number of the sequential values to be predicted, as described
in Section III. For the temporal transformer input, a rolling
window strategy is applied for the QoS metric prediction.
In case of a univariate prediction, the individual sequence of
either throughput, PDR, PLR or latency is taken as series. In
contrast for the multivariate prediction, all possible features
along with their timestamps are inserted as series input.
Following, the series are divided into a number of observations
with a length that is specified by the selected window size and
they are shifted iteratively with a step size of 1.

Fig. 2 illustrates the process of sampling the univariate
input. There are two parameters that are used to control the
rolling window strategy: i) the rolling window size which is 8,
as each of the rolling window sample has a length of 8 data
samples; ii) the number of steps to be forecasted which is
basically a forecast horizon, which in the particular example
is 3. Given the rolling window samples as an input to the
temporal transformer, the model can predict the QoS metrics
of the forecast horizon based on the windows of the previous
samples. It is to be noted that the window size and forecast
horizon parameters used in Fig. 2 were selected for illustration
purposes.

In the above example, a univariate prediction is performed.
This means that if throughput is the targeted QoS metric to
be predicted, the rolling window samples will contain only
throughput series along with their timestamps. In case of
multivariate prediction, the throughput will be predicted based
on the previous time steps of all involved features, namely
the total transmitted messages, total received messages, PDR,
PLR, latency and throughput itself. This means that the win-
dowing samples are created using multiple features. However,
the output generated by the transformer model will be the
forecast throughput value. The same procedure will be applied
for other QoS metric predictions, such as, PDR, PLR and
latency.
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Fig. 1. Overview of Proposed System for QoS Prediction

Fig. 2. Overview of univariate input and output of prediction

2) QoS Positional Encoding: The position and order of
the input sequence are very important elements for the QoS
prediction. Therefore, RNNs (such as LSTM) take the order
of sequence inherently. The transformer on the other hand,
lies on the attention mechanism in order to learn the long-
term dependencies and to speed up the training time. In the
attention mechanism, the attention scores are computed for all
of the time steps as we will discuss in the next subsection. In
case the time steps are not distinguished, the attention scores
will be the same for all of the time steps. Hence, we need to
incorporate the positional information of the time steps before
giving the input to the transformer.

The positional encoding is the dimensional vector generated
for each time step that describes the position information in
the input sequence. In this work, we applied the sinusoidal
positional encoding because the positional encoding provided
by this scheme is fixed for each time step and no additional

weights are required to be trained. The sinusoidal encoding is
described as follows:

PEpos,2i = sin(
pos

10000(2i/dmod)
), 0 < pos < N − 1 (6)

PEpos,2i+1 = cos(
pos

10000(2i+ 1/dmod)
), 0 < pos < N − 1

(7)
where PE denotes the positional encoding. pos is the position
index of the time step of the input sequence and its range lies
between 0 and N , which is the length of the input sequence.
2i represents the even dimensions of dmod and 2i+1 denotes
the odd dimensions of the dmod, which is the dense vector of
each input time step provided by the input layer.

The positional encoding of each input sequence is added
position-wise with the output of the input layer as shown
in Fig. 2. This is then passed to the encoder module of the
temporal transformer.

3) Encoder Module: The encoder module consists of a
stack of encoders, and all are identical to each other in term of
their architecture. The input of the encoder is firstly passed to
the multi-head attention module that looks at the QoS values
such as xt

1 and xt+1
2 in the input sequence seq1 as shown in

Fig. 2. It then provides the attention scores between these two
QoS values and continues with the same way for other QoS
values in all other input sequences. These attention scores are
forwarded to the Add & Normalization layers, as shown in
Fig. 1. These layers are used to stabilize the hidden states
dynamics of the network and to reduce the training times.
Finally, the output of the normalization layer is fed to the
feed forward network. Each of the layers and sub-layers in the
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encoder module also have residual connections. We provide
more details for the encoder module, in the rest of this Section.

a) Multi-head attention: The main part of the trans-
former architecture is the Multi-Head Attention (MHA) mech-
anism. The attention is based on the scaled dot product that
is used to compute the weights among the throughput, PDR,
PLR or latency values in the input sequence as shown in Fig.
1 and it is computed as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (8)

Traditionally, Q, K and V represent the query, key and
value in the attention mechanism. In this work, Q implies a
certain value of QoS such as throughput, PDR, PLR or latency
within the input sequence at a specific time step. K represents
another QoS value within the input sequence, and V is the
impact of the relation between the two QoS values within the
same input sequence at their specific time steps and positions.
Finally, the dk represents the dimension of the key.

In this work, by using the scaled dot product between Q
and K, the attention scores are obtained between various QoS
values and then compressed with the softmax functionality.
Lastly, the matrix multiplication (dot product) with V is
performed. The above described attention process is performed
multiple times i.e., with a multi-head attention as shown in Eq.
(9).

hi = Attention(QWQ
i ,KWK

i , V WV
i ) (9)

In the above equation, hi represents the ith number of attention
heads, with i ∈ R; WQ

i is the linear transformation of the
query of the ith attention head; WK

i is the linear transforma-
tion of the key of the ith attention head and WV

i is the linear
transformation of the value of the ith attention head.

Following, the concatenation of multiple attentions is done
by using Eq. (10) in order to represent the importance between
two QoS values in terms of their correlations.

MultiHead(Q,K, V ) = concat(h1, h2, ..., hn)W
0 (10)

where concat represents the concatenation operation of the
attention heads; n denotes the total number of heads, where
n ∈ R, and W 0 is the linear transformation of the concatenated
output.

b) Feed Forward Neural Network: Finally, the last com-
ponent is the Feed Forward Network (FFN), which consists
of the linear transformations and the conv1D layer with the
Rectified Linear Unit (ReLU) activation function. The FFN is
given as:

FFN(x) = Relu(0, xW1 + b1)W2 + b2 (11)

where W1 and W2 are the weights; b1 and b2 are the biases;
and x is the output of the multi-head attention which is
normalized by the Add & Normalization layer. The result of
the Feed Forward Network along with the output of the Add &
Normalization layer provides the final prediction result using
a simple Dense (output) layer.

Algorithm 1 QoS Prediction Algorithm

Input: QoS training data set such as: {dt1, dt+1
2 , .., dt+τ

τ } ⊂
Dtrain, validation data set Dval and testing data set Dtest

1. set m← build model(Dtrain, Dval)
2. set tuner ← RandomSearch(m, obj,maxtr, searchtr)
// obj is the objective of tuner which is to increase the
validation accuracy; maxtr are the maximum trials and
searchtr are the search trials.
3. set model← BestModel(tuner, numm)
// numm is the number of models search by the tuner.
4. set history ← model.fit(Dtrain, Dval, epochs)
5. set Ỹ ← model.predict(Dtest)
Output: Future values of QoS as Ỹ =
{yt1, yt+1

2 , ..., yT−1
h−1 , y

T
h }

C. Algorithm Description

Our proposed QoS prediction algorithm (Algorithm 1) con-
sists of either univariate or multivariate inputs that can be
a QoS dataset in form of training data, validation data and
testing data. The first step is to build the transformer model
using the build model() function, which takes the training
and validation data as input. Following, the random search
is performed with the keras tuner to search the number of
models, using the RandomSearch() function, which takes the
transformer model as an object, the search objective, the max
trials allowed and the number of trials per search as an input.
Then, the BestModel() function takes the tuner object and
the total number of search models by the tuner as input and
it returns the best model which has the highest validation
accuracy across all models given by the RandomSearch()
function. Lastly, the best selected model is trained for a
specific number of epochs using the fit() function and the
final prediction of the QoS values are provided as Ỹ using the
predict() function.

Algorithm 2 depicts the temporal transformer model and
it consists of the three main modules described above: 1)
INPUT EMBEDDING, which takes as an input the training
dataset, the sequence length of the input and the dimension
used to represent the input sequence vector. This module
is used to take the input into a specific tensor shape for
the transformer along with providing the positional encoding
of the time series input as well. In this module, firstly the
input layer is applied, which instantiates a tensor for the
temporal input sequence of the training dataset so that the input
sequence is passed to the transformer model. Following, the
positional encoding() function provides the position value
for each of the input in the input sequence and lastly the
Add() layer of keras is used to provide the addition of the input
along with their position values. This layer also returns as an
output the embres, which are the embedding results. 2) EN-
CODER MODULE consists of two main procedures namely,
Multi-Head Attention and Feed Forward Network. The MHA
procedure is from line 4 to line 7 and the FFN procedure
is from line 8 to line 10. In MHA, firstly, the normalization
layer is applied to normalize the embedding results, which
are passed to the next layer which is the MHA() layer that
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Algorithm 2 Temporal Transformer Algorithm
INPUT EMBEDDING(Dtrain, pos, dim)
// Dtrain is the training dataset instances, pos is the input
sequence length and dim is the dimension representation.
1. set input← Input Layer(Dtrain)
2. set pos← Positional encoding(pos, dim)
3. set embres ← Add(input, pos)
Output: embres ▷ Module 1

ENCODER MODULE(embres, hs, numh,drate, fil, ks,
act)
// embres is the output of Module 1; hs is the size of
the head; numh is the number of heads used; drate is the
dropout rate; fil is the number of filters; ks is the kernel
size and act is the activation function.
4. set x← layer norm(embres)
5. set x←MHA(hs, numh, drate, x)
6. set x← dropout(x)
7. set res← x+input ▷ MHA

8. set x← layer Norm(res)
9. set x← layer Conv1D(fil, k s, act, x)
10. set x← dropout(d rate, x)
Output:(x, res) ▷ Module 2

OUTPUT MODULE(x, res)
// x is the output of Module 2 and res is the results of MHA
module within the Module 2.
11. set x← layer GlobalAvgPooling1D(x)
12. set x← layer Dense(x)
13. set x← Add(x, res)
14. set x← layer Norm(x)
Output: x ▷ Module 3

also takes as an input the size of the head, the number of
heads and the dropout rate and it returns the attention scores.
Following the dropout function is applied using the dropout
layer of keras and then the residual connection is computed
by adding the output from the dropout layer with the initial
input. Next, is the FFN which takes as input the residual
connection values res and it passes them to the normalization
layer. The results of the normalization layer along with the
filters, kernel dimensions and activation function are passed
to the Conv1D layer and the final dropout is performed. 3)
OUTPUT MODULE is used to provide the final prediction
of the dataset. It takes the previous layer output i.e., x along
with the residual connection value i.e., res as an input. Firstly,
the x is passed to the GlobalAvgPooling1D() layer, which is
used specifically for the temporal data and it takes the average
among all time steps. Then, the output is passed to the Dense()
layer, the Add() layer, and the layer norm() functions, in order
to get the predicted values of QoS as an output.

D. Complexity Analysis
Proposition 1: The computational complexity of Algorithm

1 is O(n2d).
Proof : Line 1 of Algorithm 1 uses the build model()

function, which is the temporal transformer model and its
time complexity is O(n2d) as it is represented and proved
by the proposition 3. Following, line 2 takes O(n) as
RandomSearch() searched all n number of models for the
worst scenario and line 3 takes a constant amount of time i.e.,
O(1). Next, the model.fit() function in line 4 takes O(t) time
in the worst case, where t represents the length of the training
dataset which is always more than the validation dataset.
Lastly, line 5 predicts the QoS for a given testing dataset in
O(n) times. Hence, the overall complexity of Algorithm 1 is:
O(n2d) +O(n) +O(1) +O(t) +O(n) = O(n2d).

Proposition 2: The computational complexity of IN-
PUT EMBEDDING is O(nd).

Proof : In the INPUT EMBEDDING module of Algorithm
2, line 1 is a simple assignment statement, as the input layer
is used to instantiate the tensor of size Dtrain and it takes
O(1). The computational complexity of line 2 depends on
the length of the input sequence say n and the dimension
representation of the input sequence say d and thus, it takes
O(nd). Lastly, line 3 is performing an addition operation using
the Add() layer. Its complexity depends on the number of input
sequences and the length of tensor provided by line 1. Since
the Add() layer takes as input a list of tensors, which all have
the same shape, and returns a single tensor, the number of in-
put sequences and the length of tensor provided by line 1 are of
the same length and thus the complexity is O(n). Accordingly,
the overall time complexity of INPUT EMBEDDING module
is linear i.e., O(1) +O(nd) +O(n) = O(nd).

Proposition 3: The computational complexity of EN-
CODER MODULE is O(n2d).

Proof: The computational complexity of the encoder module
depends on the MHA and FFN. The complexity of MHA pro-
cedure is O(n2d). Line 4 is the normalization of the previous
layer and takes O(n). Line 5 takes O(n2d) since it performs
the dot product in the self attention mechanism of an n by d
matrix multiplied by a d by n matrix. resulting in an O(n2d)
complexity. Lines 6 and 7 takes O(n) time each because line
6 is applying a dropout operation to n number of neurons and
line 7 is performing an addition operation which is performed
in O(n) time. Next, lines 8-10 depend on the number of
filters, kernel size and previous layer outputs and thus, in the
worst case scenario these lines will exhibit a complexity of
O(n) + O(nd) + O(n) = O(nd). Lastly, we will have N
number of encoder modules which are executed in parallel to
perform the computations. Hence, the overall complexity of
ENCODER MODULE is O(n2d) +O(nd) = O(n2d).

Accordingly, the overall complexity of the proposed tempo-
ral transformer model depends on the complexity of its three
modules. As we have proved, module 1 gives a complexity
of O(nd) and module 2 gives a complexity of O(n2d). The
OUTPUT MODULE (module 3) presents a linear complexity
of O(n) as all layers in lines 11-14 depend on the length
of the output of the previous layer and perform basic opera-
tions such as average, activation, addition and normalization
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which take in the worst case O(n) time. Thus, the time
complexity of Algorithm 2 is represented in terms of n as:
O(nd) +O(n2d) +O(n) = O(n2d).

E. Implementation Cost

The implementation cost of the proposed framework can
be divided into three parts; the model infrastructure, the data
support and the deployment cost. The model infrastructure cost
includes the physical resources required to run the proposed
model at the edge and provide timely and accurate QoS predic-
tions. A commodity computer has sufficient computing power,
memory, and storage for the inference, data preprocessing and
the parameter storage of the temporal transformer. Similar is
also the answer for the metering process in the UDP server that
collects the information of packet exchanges in the network.
Both services can be deployed and run in the same commodity
computer. Regarding the networking requirements, these are
limited to the transfer of some kilobytes of monitoring data
per minute between border routers and the UDP server. This
is an insignificant overhead in the edge infrastructure.

Data support costs concern the costs of developing a data
pull script with the corresponding preprocessing modules such
as data cleaning, down-sampling and normalization. This is
a one-time cost incurred by a data engineer to develop an
extract-transform-load pipeline in order to extract the mea-
surements and provide them in the appropriate format to
the temporal transformer. The deployment cost concerns the
labor cost of a data engineer to deploy the model in the
commodity computer that runs at the edge. This labor cost
also includes all the configurations, testing and preparation
steps needed to install and run the operating system, various
software, the python modules, the dependencies and establish
the communication with the rest of the infrastructure.

To add up the three types of costs and calculate the total
implementation cost, we begin with the cost of model infras-
tructure that comes down to a commodity computer which is
approximately $1.000 1. In the implementation cost we should
also add the electricity cost which is approximately $160.16
per year. 2 and the maintenance cost which ranges from $40
to $90 per hour for the work of a technician 3. The data
support cost is significantly higher due to the work of the data
engineer. We estimate a senior data engineer can implement
the proposed model, the data preprocessing and the extract-
transform-load process in one man-month which results in a
cost close to $9.649 4. The deployment cost is reduced to the
manual work of a network engineer that will integrate and
run the python scripts in the edge infrastructure. This work is
calculated to last approximately one week and costs $1.665 5.
Last but not least, we should not underestimate the training
cost of the temporal transformer. Google cloud incurs a charge

1https://www.amazon.com/Workstation-Pc/s?k=Workstation+Pc
2https://www.pcmag.com/how-to/power-hungry-pc-how-much-electricity-

computer-consumes
3https://www.thumbtack.com/p/computer-repair-prices
4https://www.indeed.com/career/data-engineer/salaries
5https://www.indeed.com/career/network-engineer/salaries

that begins from $0.218 per training hour for a general purpose
machine with 4GB of RAM. 6

VI. PERFORMANCE EVALUATION

A. Model Implementation and Frameworks

1) Evaluation setup: Each dataset is zero-mean normalized
and standardized. Under the time series prediction settings, we
forecast the four following QoS metrics as: (i) Throughput; (ii)
PDR; (iii) PLR and (iv) Latency. Additionally, the prediction
is performed in two time series settings as: (i) Univariate and
(ii) Multivariate. The window size for both settings is set to
be 30. The total data generation lasted seven days. All of
the five datasets are divided into three parts as follows: i)
training dataset, which contains the first five days of data; ii)
validation dataset, which contains the sixth day data and iii)
testing dataset which contains the seventh day data. All of
the models were trained and tested on two compute clusters
offered by Compute Canada namely, Cedar and Beluga. For
the Beluga cluster, we trained, validated and tested the models
on a NVIDIA V100 with 16GB GPU and for the cedar cluster,
we utilized the NVIDIA P100 with 16GB GPU respectively.

2) Evaluation Metrics: We used three metrics to measure
the prediction performance of our proposed method against
all of the baseline methods as described below, namely the
Root Mean Square Error (RMSE), Mean Square Error (MSE)
and Mean Absolute Error (MAE). For all of these metrics
a smaller value indicates a better prediction performance.
MAE is the sum of the absolute value of differences between
the actual QoS values represented as yj and predicted QoS
values represented as yj , divided by the total number of QoS
predictions as defined below:

MAE =
1

n

n∑
n=1

|yj − yj | (12)

MSE is an average of the squared errors between the predicted
QoS values and the targeted (actual) QoS values divided by
the total number of QoS predictions. RMSE is the square root
of MSE as given below:

MSE =
1

n

n∑
n=1

(yj − yj)
2 (13)

RMSE =

√√√√ 1

n

n∑
n=1

(yj − yj)
2 (14)

3) Baselines: For comparison purposes, we evaluate our
proposed model against the most popular deep learning models
that are appropriate for time series prediction, as presented
in Section II.B. The baseline models are the following: i)
Multi-layer Perceptron (MLP) is a feed forward network,
which consists of an input layer, an output layer and multiple
hidden layers. This network is fully connected, which means
the identical units in each layer called neurons are connected to
every neuron in the next layer in a network, ii) stacked LSTM
is composed of multiple LSTM layers that are stacked in a

6https://cloud.google.com/vertex-ai/pricing
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TABLE III
HYPERPARAMETERS USED IN ALL METHODS FOR THE UNIVARIATE THROUGHPUT PREDICTION ACROSS ALL DATASETS

Models Hyperparameters Min. value Max. value Best selected value
HVAC VoIP Lighting Emergency Surveillance

MLP Number of neurons 8 512 64 392 288 40 504
Dropout rate 0 0.5 0.1 0.3 0.2 0.1 0.1
Learning rate 1e-2 1e-4 0.01 0.0001 0.001 0.001 0.0001

Stacked LSTM Number of neurons 8 128 24 72 104 96 16
Dropout rate 0 0.5 0.4 0.001 0.1 0.4 0.4
Learning rate 1e-2 1e-4 0.001 0.0001 0.01 0.0001 0.0001

Number of layers 2 6 3 2 4 3 5
Bidirectional LSTM Number of neurons 8 512 32 16 24 64 352

Dropout rate 0 0.5 0.5 0.4 0.1 0.1 0.2
Learning rate 1e-2 1e-4 0.01 0.01 0.01 0.001 0.001

Temporal Transformer head size 4 256 28 32 128 4 2
Number of heads 4 32 6 18 24 4 3

Dropout rate 0 0.5 0.2 0.5 0.2 0.5 0.2
Number of transformer blocks 4 16 16 8 4 4 2

Linear layer neurons 4 128 96 84 52 64 116
Linear layer dropout 0 0.5 0.2 0.5 0.2 0.5 0.2

Filter dimensions 4 64 96 28 52 64 8
Number of attention layers 1 15 4 5 2 2 3

multi-layer and a fully connected architecture. The stacking
of LSTM is done in such a way that the result of each LSTM
layer is used as an input for the subsequent LSTM layer in
the stack, iii) Bidirectional LSTM is a combination of a
bidirectional RNN with an LSTM network. In this particular
architecture, the input sequence is processed in a forward as
well as in a backward direction in each of the network layers.
The details of how MLP, stacked LSTM and bidirectional
LSTM work is provided in the Appendix of this document.
iv) LSTNet is a multivariate time series prediction framework
proposed in [23], that models the short and long-term temporal
patterns with Deep Neural Networks. This particular model
uses the Convolution Neural Network and the Recurrent Neu-
ral Network along with the auto regressive component for the
extraction of the short-term local dependency patterns among
variables and the long-term patterns for time series patterns. To
compare our proposed framework with this existing LSTNet
model, we have used the same configuration that the authors
provided in term of their architecture.

For the univariate prediction, we used the MLP, stacked
LSTM and bidirectional LSTM as our baseline methods and
for the multivariate prediction, we used the stacked LSTM,
bidirectional LSTM and LSTNet as baseline methods. We have
used only one method from the literature i.e., LSTNet because
to the best of our knowledge there is no other existing method
that can provide the QoS prediction, while handling the long-
term dependencies at the same time in an edge computing
environment. In contrast, LSTNet was designed specifically
for time series forecasting while providing a multivariate pre-
diction. Furthermore, the MLP did not provide good accuracy
in case of a multivariate prediction and we have excluded it
for the second part of the evaluation. Finally, it should be
noted that we have also considered some traditional time series
methods such as Autoregressive Integrated Moving Average
(ARIMA), Simple Exponential Smoothing (SES) and Prophet.
However, all these forecasting techniques presented a poor
accuracy performance and therefore, we decided not to include
them in our performance evaluation.

4) Hyper-parameter Tuning: For the hyper-parameter
search and tuning, we performed a random search of the search
space using the keras tuner. In particular, for all methods and
all datasets, the input length of the input time series sequence
is set as 30. In other words, the rolling window sample is set
to be 30, which we believe is a sufficient value for long-term
prediction. The hyperparameters that were searched for the
baseline models consist of the number of neurons, dropout
rate, learning rate and number of layers. For the stacked
LSTM, the number of neurons were selected from the range 8
to 128 with a step of 8. For the MLP and bidirectional LSTM,
the number of neurons were selected between 8 and 512, with
the same step. For the dropout rate, the value is taken from the
{0, 0.1, 0.2, 0.3, 0.4, 0.5} range with the default value set to be
0.5 whereas, the learning rate was selected from the {1e-2, 1e-
3, 1e-4} set for all baseline methods. Additionally, the number
of layers was selected between 2 to 6 for the stacked LSTM.
Lastly, for the baseline method found from the literature i.e.,
LSTNet, we used the already provided hyperparameters in
[23].

For the proposed temporal transformer model, we have fine-
tuned the following hyperparameters: head size, number of
heads, dropout rate, number of transformer blocks, number of
neurons for the linear layers, dropout rate for the linear layers,
filter dimensions and number of attention layers. The search
space set for each of the hyperparameters is set as follows.
For the head size, the minimum value was set at 4 and the
maximum at 256 with a step size of 4. For the number of
heads, an optimal value was found within the range of 4 to
32 with a step of 2. The dropout rate was selected between 0
and 0.5 with a step size of 0.1 and the number of transformer
blocks was chosen from the range {4, 8, 12, 16}. For the linear
layer, which is included as part of the transformer architecture,
the number of neurons was selected between 4 and 128 with
a step of 8 and their dropout rate was chosen between 0 and
0.5 with a step of 0.1.

Regarding the neural network optimizer, the Adam opti-
mizer was used for all baseline methods and for our trans-
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TABLE IV
STATISTICAL CHARACTERISTICS OF QOS DATASETS FOR ALL IOT APPLICATIONS

QoS Throughput PDR PLR Latency
Metrics Mean S.D Median Mean S.D Median Mean S.D Median Mean S.D Median
HVAC 0.253958 0.204743 0.190762 0.331391 0.390711 0.000033 0.232914 0.237775 0.124958 0.044852 0.058928 0.029333
VoIP 0.323644 0.108589 0.304021 0.532645 0.207119 0.548382 0.501071 0.060243 0.494923 0.004661 0.001512 0.004562

Lighting 0.164938 0.185021 0.094540 0.100024 0.226347 0.000000 0.038439 0.101123 0.000000 0.041879 0.075346 0.011554
Emergency 0.061513 0.061542 0.043207 0.258011 0.226774 0.173908 0.134196 0.127102 0.085104 0.066475 0.073212 0.031021
Surveillance 0.337204 0.167844 0.330451 0.290765 0.126342 0.294597 0.079721 0.128798 0.035209 0.380338 4.870949 0.000468

former model. As random search is performed to select the
best values for the hyperparameters, the total number of trials
considered for this search is 5 with an epoch value of 100.
Finally, keras tuner selected the best trial that gave the best
set of hyperparameters for all of the application datasets.
Table III summarizes the hyperparameters and the best selected
value from keras tuner for all five application datasets. It is
to be noted that the same hyperparameters with the same
corresponding search range were used for both univariate and
multivariate prediction. However, due to space constraints and
illustration purposes, Table III provides the hyper-parameter
tuning of the univariate prediction. The hyper-parameter tuning
for the multivariate prediction is provided in the Appendix of
this document.

B. Explanatory Data Analysis

In this part, we provide the explanatory analysis of the
applications’ datasets along with their properties. The statis-
tical properties of each dataset are presented in Table IV.
In Fig. 3, the density plots for each of the QoS metrics
within each dataset are also presented. The density plots
are used to observe the distribution of the datasets with a
continuous interval. For the emergency application, we have
a positively skewed distribution for all four QoS metrics and
this is because the mean in the datasets of throughput, PDR,
PLR and latency are greater than their median values. For
the HVAC application, the throughput, PLR and latency also
exhibit a skewed distribution and more specifically a right
skewness however, PDR presents a multi-modal distribution
as it has three different peaks. For the lighting application,
the throughput and latency both datasets are rightly skewed,
but PDR and PLR are both multi-modal datasets. For the
surveillance application, the throughput is multi-modal with
more than 12 modes, PDR exhibits a normal distribution,
PLR and latency both are rightly skewed. Lastly, for the VoIP
application, we have a normal distribution for all of the three
QoS metrics i.e., throughput, PDR and PLR, however, the
latency dataset is slightly skewed towards right as the mean in
latency data i.e., 0.004661 is slightly higher than the median
value i.e., 0.004562.

C. Results

1) Univariate time series forecasting: For the univariate
TSF, we included a representative range of the 5 IoT datasets
to ensure the diversity and applicability of our transformer
model with respect to the dimensionality and length of the
time series samples, as well as the number of samples.

Table V shows the MAE, MSE and RMSE achieved by the
baseline methods and transformer model. As it can be seen, the
transformer model worked well for the throughput prediction
as compared to the other models across all datasets. We have
also plotted the MSE and MAE values of all methods in Figs.
4 and 5 to better illustrate the results. It should be noted that
the y axis of both figures goes from large values towards small
values and we also include the data points for the transformer
model to better position its efficiency.

Our first observation, is that all applied models give the
least values for all error metrics for the emergency appli-
cation followed by the lighting application. In contrast, for
the surveillance application, the models achieve higher error
values followed by the VoIP and HVAC applications. The
main reason for having less accurate results for surveillance,
VoIP and HVAC applications is that the datasets of these
applications contain several extreme values also known as
outliers. Hence, as deep learning models do not learn easily
such extreme values, such behavior can cause performance
degradation. We can also detect the outliers from the statistical
properties of the datasets as shown in Table IV. For instance,
for the surveillance application, the throughput dataset has a
standard deviation value of 0.167844 and a mean value of
0.337204. This is because the more extreme outliers exist in
the dataset, the more the standard deviation is affected with
respect to the mean value. Similarly, for the VoIP and HVAC
applications, the standard deviations are also highly affected as
they appear to be 0.108589 and 0.204743 respectively, while
their corresponding mean values are 0.323644 and 0.253958.

In contrast, for the lighting and emergency applications,
such kind of extreme values appear more frequent and cannot
be considered outliers, as the outliers by their nature are
rare events that happen in a dataset. Therefore, the deep
learning models adapt better to those frequent extreme events
to some extend and produce better performance for the lighting
and emergency datasets as compared to the other application
datasets.

To better understand which model is able to capture this
behavior more accurately, we shift our focus on Figs. 4 and 5.
It becomes apparent that the temporal transformer provides the
least error in the prediction of throughput values as compared
to all other algorithms and for all datasets. This happens for
the following two reasons: (i) For a longer input window
size, also called input sequence length, i.e., 30 in this work,
the prediction ability of the deep learning models decreases,
which leads to a rise in the error metrics. This also reveals
a real problem faced by the time series forecasting. However,
our transformer model is well suited for solving such long



13

Fig. 3. Probability distribution plots of QoS data for all IoT applications

TABLE V
UNIVARIATE FORECASTING RESULTS FOR THROUGHPUT, BEST RESULTS ARE HIGHLIGHTED IN BOLD

Methods MLP Stacked LSTM Bidirectional LSTM Temporal Transformer
Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
HVAC 3.91e-3 2.11e-5 4.60e-3 3.56e-3 2e-5 4.48e-3 4.57e-3 2.82e-5 5.31e-3 2.57e-3 1.17e-5 3.42e-3
VoIP 4.20e-3 3.49e-5 5.91e-3 2.89e-3 1.53e-5 3.92e-3 2.87e-3 1.52e-5 3.9e-3 1.67e-3 4.27e-6 2.07e-3

Lighting 1.62e-3 6.13e-6 2.47e-3 1.83e-3 6.67e-6 2.58e-3 1.87e-3 6.52e-6 2.55e-3 9.63e-4 1.49e-6 1.22e-3
Emergency 1.29e-3 6.86e-6 2.62e-3 1.3e-3 6.88e-6 2.62e-3 1.28e-3 6.87e-6 2.62e-3 1.43e-4 30e-8 1.73e-4
Surveillance 6.22e-2 6.92e-3 8.32e-2 2.76e-2 2.03e-3 4.5e-2 1.28e-2 7.74e-4 2.78e-2 1.26e-2 7.72e-4 2.78e-2

TABLE VI
UNIVARIATE FORECASTING RESULTS FOR PDR, BEST RESULTS ARE HIGHLIGHTED IN BOLD

Methods MLP Stacked LSTM Bidirectional LSTM Temporal Transformer
Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
HVAC 4.41e-3 2.60e-5 5.10e-3 4.40e-3 2.65e-5 5.15e-3 4.35e-3 2.54e-5 5.04e-3 4.15e-3 2.73e-5 5.23e-3
VoIP 2.71e-5 1.0e-9 3.16e-5 2.31e-5 1.0e-9 2.93e-5 2.43e-5 9.47e-10 3.08e-5 2.31e-5 8.55e-10 2.93e-5

Lighting 2.47e-4 1.40e-7 3.74e-4 2.64e-4 1.44e-7 3.80e-4 2.65e-4 1.37e-7 3.70e-4 2.63e-4 1.37e-7 3.70e-4
Emergency 1.32e-4 3.0e-8 1.73e-4 1.32e-4 3.0e-8 1.73e-4 1.31e-4 2.9e-8 1.71e-4 8.06e-5 9.0e-9 9.73e-5
Surveillance 3.20e-5 2.0e-9 3.89e-5 2.05e-5 1.0e-9 2.65e-5 3.40e-5 1.96e-9 4.43e-5 2.0e-5 6.96e-10 2.53e-5
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TABLE VII
UNIVARIATE FORECASTING RESULTS FOR PLR, BEST RESULTS ARE HIGHLIGHTED IN BOLD

Methods MLP Stacked LSTM Bidirectional LSTM Temporal Transformer
Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
HVAC 2.76e-5 1.22e-9 3.50e-5 2.36e-5 8.37e-10 2.89e-5 2.72e-5 1.16e-9 3.41e-5 2.27e-5 8.10e-10 2.84e-5
VoIP 2.39e-5 1.0e-9 3.32e-5 2.61e-5 1.30e-9 3.60e-5 1.77e-5 1.0e-9 2.42e-5 1.70e-5 5.82e-10 2.41e-5

Lighting 2.74e-6 3.74e-11 6.12e-6 3.80e-6 3.37e-11 5.81e-6 3.86e-6 3.32e-11 5.76e-6 3.75e-6 3.32e-11 5.76e-6
Emergency 1.83e-12 5.40e-24 2.32e-12 2.16e-12 7.5e-24 2.74e-12 1.88e-12 5.3e-24 2.32e-12 1.80e-12 5.2e-24 2.30e-12
Surveillance 2.33e-3 5.46e-6 2.34e-3 2.67e-5 1.65e-9 4.06e-5 4.76e-4 2.45e-7 4.96e-4 2.57e-5 1.39e-9 3.73e-5

TABLE VIII
UNIVARIATE FORECASTING RESULTS FOR LATENCY, BEST RESULTS ARE HIGHLIGHTED IN BOLD

Methods MLP Stacked LSTM Bidirectional LSTM Temporal Transformer
Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
HVAC 2.47e-02 9.07e-04 3.01e-02 2.60e-02 9.26e-4 3.04e-02 2.31e-02 7.27e-04 2.70e-02 3.36e-03 1.56e-05 3.95e-03
VoIP 9.69E-01 5.58e+02 2.36e+01 1.34e-03 2.75e-06 1.66e-03 1.42e-03 3.14e-06 1.77e-03 1.27e-03 2.28e-6 1.51e-03

Lighting 4.45e-02 4.09e-03 6.40e-02 4.44e-02 4.04e-03 6.36e-02 4.4166e-2 4.04e-03 6.36e-02 2.34e-02 1.09e-03 3.30e-02
Emergency 4.63e-02 3.73e-03 6.10e-02 4.90e-02 4.07e-03 6.38e-02 4.84e-02 4.06e-03 6.37e-02 3.86e-02 2.67e-03 5.17e-02
Surveillance 2.74e-04 1.20e-07 3.46e-04 2.76e-04 2.35e-06 1.53e-03 2.63e-04 1.15e-07 3.39e-04 1.54e-04 3.16e-08 1.78e-04

Fig. 4. MSE of univariate throughput prediction across all datasets

Fig. 5. MAE of univariate throughput prediction across all datasets

sequence dependency problems and thus, exhibiting a superior
performance for the throughput prediction; (ii) The attention
mechanism in the transformer architecture allows to learn
the relation of temporal and positional features to specific
throughput values at each timestamp and emphasizes on their
importance.

Following, the results for the PDR prediction are presented
in Table VI. As it can be seen, once more the transformer
model performed better for almost all of the applications.
Nonetheless, there are two applications for which other models
also provide promising results and these are: (i) for the HVAC
dataset the bidirectional LSTM provides the least MSE and
RMSE values as 2.54e-5 and 5.04e-3. The reason that the
transformer could not match these values are probably because
our model tried to learn the outliers and this had an impact on
the relation between the features as provided by the attention
module of the transformer, which can lead to higher errors
than the bidirectional LSTM model. At the same time, MSE
and RMSE are more sensitive to the outliers as the squaring
of high errors will lead to lower performance; (ii) for the
lighting application, MLP provides the least MAE value i.e.,
2.47e-4, however, its MSE and RMSE are also affected by
the outliers. Nonetheless, the impact of the outliers for the
particular application was less on the transformer model which
led to the least attained MSE and RMSE values.

Next for illustration purposes, in Fig. 6 we also plot
the predicted values (orange curves) and the collected true
values (blue curves) for the PDR dataset of the surveillance
application. In order to not further increase the length of the
paper, we have just selected the surveillance application as it
has more fluctuations and presents a more interesting behavior
for the QoS metrics prediction. From the figure, we notice that
the PDR data is usually noisy which means that we have peaks
and troughs (i.e., fall of data points in downward direction).
This means that the PDR of the surveillance application is
sometimes higher and sometimes very lower than the normal
pattern. This is because of the exponential distribution pattern
of the application and the high network contention, since the
rest of the IoT devices belonging to other applications may
transmit at the same time. From this, we can deduct that the
peaks and troughs are not normal patterns of the dataset and
therefore, it is not necessary that all peaks and troughs appear
the one after another by following a specified and periodic
behavior. Given this type of fluctuating dataset, we see from
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Fig. 6. PDR prediction for surveillance application

Fig. 7. PLR prediction for surveillance application

the figure that the the transformer model predicts the peaks
and troughs of data adequately and this is mainly because of
the attention module within the transformer that learns very
well about the temporal and positional features (i.e., at which
timestamp certain PDR values appear in the input sequence)
of the time series dataset over the long input sequences.

Following, we provide the univariate PLR results for the
five IoT applications in Table VII. As it can be seen, the
transformer model provides the least error values for almost all
datasets for this particular QoS metric as well. However, two
particular cases are drawn from these results: 1) for the lighting
application, the MLP model provides the least MAE, yet, MSE
and RMSE are higher than the transformer model and the
reason for such behavior is the same as the one explained for
the PDR case; 2) for the emergency application, all algorithms
provide the best accuracy performance with respect to the other
four applications. The reason for this is that the particular
dataset is not affected by outliers as the standard deviation
value i.e., 0.127102 does not deviate a lot from the mean value
i.e., 0.134196. Nonetheless, the transformer model provides
the best performance and for these types of applications.

Once more, we plot the actual vs. predicted values for the
PLR data of the surveillance application only in Fig. 7, as it has
more fluctuating patterns compared to the other applications.
In general, we can see that the transformer model can capture
very well the general behavior of the PLR dataset. There is
only just a small difference between the actual and predicted
values when there are small PLR spikes as noticed at the 50ms,

150ms, 470ms, 550ms and 790ms time instances. These spikes
can by attributed to high network contention time instances
which can lead to an increased packet loss. Nonetheless, the
transformer was able to closely follow the unusual fluctuations
between the time period from 450 ms to 900 ms. This is due
to the fact that the particular model can capture the time series
features with long-term time dependency easily.

Following, we provide the univariate latency results for the
five IoT applications in Table VIII. As it can be seen, the
temporal transformer model performs better for all of the
datasets and in terms of all error metrics as compared to the
baseline methods. From Table VIII, we have the following
observations: (1) The latency datasets of all applications
are positive (right) skewed. The distribution is right skewed
because of the lower bound in the dataset. So if the lower
bound of the dataset is extremely low relative to the rest
of the data, then this will cause the data to be skewed
right. The lower bound for an application reveal that lower
latency is experienced during the transmission of the packets.
Furthermore, the emergency application followed by lighting
and HVAC have more extreme smaller values for latency as
their standard deviations is less distant from their mean value
than the surveillance and VoIP applications. However, this
does not affect the performance of the proposed temporal
transformer model and it always outer-performs the baseline
methods for all skewed datasets in term of all error metrics.
(2) The second observation is that the second best model is
the bidirectional LSTM as it performed well for 3 out of 5
applications after the transformer model. The reason is that
the particular model is able to learn the input sequence in both
forward and backward direction. However, for the proposed
transformer model the dependencies among input sequence
are better learned using the attention module of the model.

Overall, our proposed temporal transformer model achieves
the best performance on 18 out of 20 settings for MAE, on
19 out of 20 settings for MSE, and on 19 out of 20 settings
for the RMSE case. Notably, for the throughput prediction,
the transformer can increase the performance by 28% for
HVAC, 42% for VoIP, 41% for lighting, 89% for emergency
and 2% for the surveillance applications from the second
best performing model in terms of MAE. Furthermore, for
the MSE, we noticed an improvement of up to 96% and
for the RMSE, we noticed an improvement of up to 93%.
For the PDR prediction, the transformer model enhanced the
performance by decreasing the MAE by 5% for HVAC, 0.43%
for VoIP, 38% for emergency and 2% for the surveillance
application from the second best performing baseline method,
except the lighting application in which the MLP improved
the error rate by 6% in comparison to the transformers for the
reasons we discussed above. Moreover, for the PLR prediction,
the transformers can reduce the MAE by 2% to 4% for the
four applications, but once more the MLP shows a slightly
better performance for the lighting applications. Finally, for the
latency predicted, the transformers provided an improvement
of 85% for HVAC, 5% for VoIP, 47% for lighting, 17% for the
emergency and 41% for the surveillance application than the
second best performing model in term of MAE. Additionally,
the proposed transformer provides 17% to 98% improvement
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TABLE IX
MULTIVARIATE FORECASTING RESULTS FOR THROUGHPUT, BEST RESULTS ARE HIGHLIGHTED IN BOLD

Methods LSTNet Stacked LSTM Bidirectional LSTM Temporal Transformer
Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
HVAC 8.74e-2 7.63e-1 8.73e-1 4.34e-3 2.81e-5 5.30e-3 3.38e-3 1.17e-5 3.42e-3 3.35e-3 1.71e-5 4.14e-3
VoIP 4.10e-2 3.91e-1 6.25e-1 4.27e-3 3.32e-5 5.76e-3 2.91e-3 1.55e-5 3.94e-3 2.87e-3 1.48e-5 3.85e-3

Lighting 4.46e-2 6.88e-1 8.29e-1 1.90e-3 7.18e-6 2.68e-3 1.89e-3 7.17e-6 2.68e-3 1.85e-3 7.10e-6 2.66e-3
Emergency 9.65e-2 1.45e-1 3.81e-1 1.64e-3 7.71e-6 2.78e-3 1.26e-3 6.72e-6 2.59e-3 1.23e-3 6.67e-6 2.50e-3
Surveillance 8.60e-3 9.14e-2 3.02e-1 1.28e-2 7.73e-4 2.78e-2 4.29e-3 3.65e-5 6.04e-3 2.91e-3 1.55e-5 3.93e-3

TABLE X
MULTIVARIATE FORECASTING RESULTS FOR PDR, BEST RESULTS ARE HIGHLIGHTED IN BOLD

Methods LSTNet Stacked LSTM Bidirectional LSTM Temporal Transformer
Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
HVAC 4.37e-2 5.07e-1 7.12e-1 3.07e-4 1.16e-7 3.41e-4 3.04e-4 1.15e-7 3.39e-4 2.94e-4 1.31e-7 3.62e-4
VoIP 2.84e-2 3.52e-1 5.93e-1 2.64e-5 1.12e-9 3.35e-5 2.31e-5 8.58e-10 2.92e-5 2.31e-5 8.57e-10 2.90e-5

Lighting 2.03e-2 6.54e-1 8.09e-1 2.70e-4 1.37e-7 3.70e-4 2.65e-4 1.37e-7 3.70e-4 2.52e-4 1.40e-7 3.74e-4
Emergency 3.39e-2 6.58e-1 8.11e-1 1.32e-4 2.96e-8 1.72e-4 1.64e-4 4.57e-8 2.14e-4 1.31e-4 2.80e-8 1.67e-4
Surveillance 1.63e-2 2.11e-1 4.59e-1 2.08e-5 7.28e-10 2.70e-5 3.72e-5 2.29e-9 4.79e-5 2.06e-5 7.20e-10 2.69e-5

Fig. 8. MAE of multivariate throughput prediction across all datasets

in term of MSE and 9% to 85% improvement in terms of the
RMSE metric.

2) Multivariate time series forecasting: In this part of the
section, we present the obtained results under the multivariate
setting. Regarding the multivariate throughput prediction, the
prediction results are provided in Table IX. To better illustrate
these results w.r.t. MAE, we plot them as well in Fig. 8. Similar
to the univariate setting, the scale for MAE is logarithmic and
goes from high i.e., 1.00E+00 to small values i.e., 1.00E-
03. From this plot, it is shown that the LSTNet method
provides the worst performance i.e., the highest MAE for all
of the applications and this is because the particular method is
unable to deal with the dynamic periodic patterns or the non-
periodic patterns of our datasets. However, the bidirectional
LSTM presents a good performance, similar to the one of
our proposed temporal transformer model. Specifically, the
transformer model provides 1% improvement for HVAC and
VoIP application, 2% improvement for lighting and emer-
gency applications and a noticeably 32% improvement for the
surveillance application as compared to the best performing
baseline method. The reason for the major improvement in
the surveillance application dataset is that the surveillance

application has the long-term fluctuating patterns and our
transformer model is the most suitable approach for capturing
and predicting this long-term behavior.

Similarly, Table X shows that the temporal transformer
achieves the least MAE values for all applications in terms
of PDR. However, there are two cases for which bidirectional
LSTM achieves the least performance in terms of MSE and
RMSE values and these are for the lighting and HVAC
applications. There are several reasons for this. Firstly, such
application datasets contain extreme values for specific times-
tamps. Secondly, the PDR data of these two applications are
smaller compared to the other applications and the transformer
requires a larger number of training samples compared to
the other baseline methods. Thirdly, the good performance
of the bidirectional LSTM can be attributed to the fact that
it runs the given input sequence in two ways from past to
future and future to past. Thus, it is able to better learn even
for datasets that have smaller number of training samples.
However, the transformers can closely follow the performance
of the bidirectional LSTM even in these situations. This can
be corroborated by Fig. 9, which presents the MAE metric for
all applications and it can be concluded that the transformer
performed consistently well, followed by the stacked LSTM
for the emergency and surveillance applications and by the
bidirectional LSTM for the HVAC, VoIP and lighting appli-
cations. Specifically, the proposed temporal transformers can
lead to a decrease in the MAE error that ranges from 1% to
5% as compared to the second best baseline method.

Moreover, we provide the results of the PLR prediction
in Table XI. Over again, the transformer model is the most
dominant approach. Only for the VoIP application the stacked
LSTM presents a better performance in terms of MSE and
RMSE, however the transformer model provides the least
MAE. This is because the stacked LSTM can also learn
complicated nonlinear dependencies between time steps and
between multiple time series. These types of dependencies
can be easily produced when irregular network conditions are
surfaced due to interference and available bandwidth reduction
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TABLE XI
MULTIVARIATE FORECASTING RESULTS FOR PLR, BEST RESULTS ARE HIGHLIGHTED IN BOLD

Methods LSTNet Stacked LSTM Bidirectional LSTM Temporal Transformer
Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
HVAC 5.24e-2 4.75e-1 6.89e-1 3.92e-5 2.09e-9 4.57e-5 4.73e-5 4.0e-9 6.33e-5 3.89e-5 2.09e-9 4.57e-5
VoIP 3.77e-2 3.87e-1 6.22e-1 2.21e-5 3.37e-5 1.14e-9 5.04e-5 5.93e-9 7.71e-5 2.20e-5 3.39e-5 1.15e-9

Lighting 4.03e-2 6.85e-1 8.28e-1 3.94e-6 3.33e-11 5.77e-6 4.14e-6 3.55e-11 5.96e-6 3.84e-6 3.32e-11 5.76e-6
Emergency 2.93e-2 6.27e-1 7.91e-1 1.90e-12 5.68e-24 2.38e-12 1.88e-12 6.27e-24 2.50e-12 1.87e-12 5.64e-24 2.37e-12
Surveillance 8.6e-3 1.06e-1 3.26e-1 2.44e-4 6.07e-7 2.46e-4 1.12e-3 2.0e-6 1.42e-3 1.89e-5 8.34e-10 2.89e-5

TABLE XII
MULTIVARIATE FORECASTING RESULTS FOR LATENCY, BEST RESULTS ARE HIGHLIGHTED IN BOLD

Methods LSTNet Stacked LSTM Bidirectional LSTM Temporal Transformer
Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
HVAC 8.40e-2 2.81e0 1.66e0 2.56e-2 9.28e-4 3.05e-2 2.32e-2 7.81e-4 2.79e-2 2.27e-2 7.33e-4 2.71e-2
VoIP 2.41e-2 2.68e-1 5.052e-1 1.35e-3 2.853e-6 1.69e-3 1.35e-3 2.85e-6 1.69e-3 9.24e-4 1.18e-6 1.09e-3

Lighting 7.13e-2 1.52e0 1.23e0 3.55e-2 2.56e-3 5.06e-2 3.63e-2 2.56e-3 5.06e-2 2.27e-2 1.07e-3 3.27e-2
Emergency 4.18e-2 6.65e-1 8.10e-1 6.35e-2 6.75e-3 8.22e-2 4.77e-02 3.88e-03 6.23e-02 3.88e-02 2.26e-03 4.75e-02
Surveillance 2.41e-02 2.68e-01 5.05e-01 2.53e-04 1.16e-07 3.40e-04 2.49e-04 9.66e-08 3.11e-04 1.56e-04 3.26e-08 1.81e-04

Fig. 9. MAE of multivariate PDR prediction across all datasets

in the IoT networks.
Lastly, Table XII presents the results for the multivariate

latency QoS for all of the applications. It can be seen that the
proposed model outer-performs all the baselines for all appli-
cations and in terms of all metrics. The second best performing
baseline method is bidirectional as it gives reasonable results
for 4 out of 5 applications. Once more, the LSTNet method
shows poor performance compared to the rest of the methods
and this is because it is unable to capture all the dependencies
among input sequences and other QoS features in the datasets.

To conclude, regarding MAE, there is 1% to 92% improve-
ments provided by our transformer model. Furthermore, for
latency, there is 2% to 37% improvement in term of MAE,
6% to 66.25% in term of MSE and 3% to 42% in term of
RMSE provided by our proposed temporal transformer model
compared with the second best performing baseline method.
Finally, our proposed transformer model achieves the best
performance on 20 out of 20 settings for the MAE case, and
on 16 out of 20 settings for the MSE and RMSE respectively,
for the multivariate forecasting task.

Regarding the impact of the problem setting as either

univariate or multivariate on the prediction of the QoS metrics,
we observed that our proposed model performed better in
the univariate setting than the multivariate. This is because
there are only 4 univariate cases and 8 multivariate cases in
which our proposed transformer model performed worse than
the other models. It is to be noted that multivariate models
are good to model interesting inter-dependencies however, in
the expense of an additional complexity. One of the reason
for this behavior is that some IoT application’s QoS dataset
may include outliers which can more adversely affect the
multivariate than the univariate forecasts. Moreover, it is easier
to spot and control outliers in the univariate context. Also, the
QoS datasets showed a nonlinear behavior w.r.t. time thus, the
univariate setting can handle the non-linearities more properly
than the multivariate model. Therefore, it is better to use the
univariate setting for predicting each of the individual QoS in
real IoT application scenario.

VII. CONCLUSION

In this work, we investigated the QoS prediction problem
by formulating it as a univariate and multivariate time se-
ries forecasting problem. A new framework was introduced
that promotes an efficient QoS prediction for a number of
coexisting and heterogeneous IoT applications that stress the
IoT access network creating several levels of QoS uncertainty.
We firstly generated five different real time datasets for
HVAC, lighting, VoIP, surveillance and emergency response
applications. Following, we presented a novel transformer-
based architecture, which learns temporal representations and
their complex dependencies in a long-term fashion, for the
prediction of four important QOS metrics, namely, throughput,
PDR, PLR and latency. The transformer architecture leverages
the attention mechanism, which is effective at modelling
time series. Finally, we performed an extensive experimental
evaluation in which we proved that our proposed temporal
transformer achieves superior performance for almost all of the
five IoT applications and for both univariate and multivariate
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settings, as compared with several competitive time series
baseline methods.

As future work, we aim to explore alternative attention
techniques, such as sparse attention or compressed attention
and investigate their impact on the accuracy achieved. Fur-
thermore, we would like to predict several key QoS metrics,
when mobile IoT devices are considered by the applications,
thus creating another level of uncertainty in the overall com-
munication.
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After his thesis, he spent 6 months in the ”FUN” Inria team in Lille /
Villeneuve d’Ascq, where he worked with Nathalie Mitton on edge computing
resource allocation for dynamic networks. His research topics focus on
networks, especially wireless and mobile networks, as well as distributed and
autonomous systems such as robots or drone networks or IOT networks. He
is also very interested in privacy and security, especially when dealing with
the aforementioned topics.

Nathalie Mitton received the MSc and PhD. degrees
in Computer Science from INSA Lyon in 2003
and 2006 respectively. She received her Habilita-
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