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Towards QoS Prediction based on Temporal
Transformers for 10T Applications

Aroosa Hameed, John Violos, Aris Leivade&ziior Member, IEEE Nina Santi, Rmy Giinblatt, Nathalie
Mitton (Member, IEEE

Abstract—Internet of Things (IoT) devices generate a tremen- Edge resources needed for each 10T application depends on
dous amount of time series data that is extremely dynamic, the volume of the data generated from the loT devices. This

heterogeneous and time dependent. Such types of dafa infroduce e 4tes an important challenge related to the accurate workload
signi cant challenges for the real-time prediction of QoS metrics th hout i f 0T licati

of 10T applications with different traf ¢ characteristics. To this (e.g. throug pu_) profing o gn _O app 'Cfa lon.

end, in this paper, we propose a temporal transformer model and At the same time, 10T applications consist of heterogeneous

a uni ed system to predict several QoS metrics of heterogeneous devices that send data of different contexts, with different
loT applications when they communicate with the Edge of the reporting frequencies usually over a random access channel
network. The transformer model also leverages an attention generating thus, high interference levels [4]. All these add

module to provide a solution for both short-term and long-term N Is of lexity when it to th dicti f
sequence prediction of QoS metrics that allows to better extract several levels of compliexily when It comes 1o the prediction o

any time dependencies. In particular, in our framework, we rstly  typical Key Performance Indicators (KPIs) in loT. Regarding
generate a set of datasets containing real-time traf ¢ information the reporting frequency, loT devices follow very dynamic
of ve different 10T applications such as Heating, Ventilation, and  models ranging from periodic to event-based transmissions.
Air Conditioning (HVAC), lighting, Voice over Internet Protocol Hence, the feature of time dependence make such data differ-

(VoIP), surveillance and emergency response using the 802.15.4 . .
access technology and the RPL routing protocol. Following, we ent and more challenging than traditional data. Therefore, each

perform the data cleaning, downsampling and pre-processing of 10T application, when generating/of oading data, will have
the datasets and we construct the QoS datasets, which includedifferent instantaneous Quality of Service (QoS) behavior,
four QoS metrics, namely throughput, packet delivery ratio, which will be time dependent. Hence, it is necessary to

packet loss ratio and Ie_ltency. Fir_1a||y, we evalqate the transformer propose an ef cient model that will analyze and predict the
model through extensive experimentation using both short-term . . . .
QoS metrics using loT time series data.

and long-term dependencies and we show that our model can A . g : )
guarantee a robust performance and accurate QOS prediction_ A time series data is a series of data pOIntS that are ordered

. . by their chronological order. Time dependency is a very
Index Terms—Deep learning, Edge computing, Internet of . . . :
Things, QoS prediction, time series, transformer important fegture of thg loT time series data, since data are
becoming widespread in an 10T context [5]. Accordingly, the
time feature is affecting the way prediction and analysis of
. INTRODUCTION IoT data is done. One way to predict the data at a next time
HE number of Internet of Things (loT) applications havetep is to use the data from previous time steps in the short
considerably increased, while generating a tremendogisiong past [6]. Therefore, there is huge interest in analyzing
amount of data. According to Cisco, the number of connectéte 10T traf ¢ pro les by applying various machine learning
devices will reach up to 14.7 billion by 2023 [1]. The devicegechniques [7].
are expected to continuously generate large volumes of dat@or example, several studies applied traditional time series
requiring extensive analysis to capture valuable informatieigorithms or deep learning models to predict the 10T trafc
that can help in the intelligent decision making. However, thsehavior [8]-[23]. In the studies [8]-[17], the authors applied
device's CPU, memory, and disk capacity restricts the dagverse deep learning algorithms such as Recurrent Neural
processing on the device itself. Thus, the data and the analygigwork (RNN), Convolutional Neural Network (CNN), Long
processing have to be of oaded to more resource powerf8hort-Term Memory (LSTM), attention mechanism, regression
platforms, such as the newly introduced Edge Computingchniques and stochastic gradient descent for the prediction
[2]. Edge computing can facilitate the data processing veey either speci ¢ or a set of QoS metrics. Nonetheless, various
close to the source of the data, reducing thus the oversdsearch gaps can be identi ed in these existing studies. Firstly,
latency perceived. In this way also, the processing burdeniris[8]-[13] several QoS prediction mechanisms are presented,
shifted/of oaded to the Edge of the network through a procesgwever, without considering any time dependencies. Sec-
that is called task of oading [3]. However, the amount obndly, for the works [14]-[17], only a simple traf ¢ prediction

) ) is provided, without predicting typical QoS metrics found in
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casting task. These works proposed various learning netwotke related work into two distinct categories: i) deep learning
such as Temporal Convolutional Network (TCN), DeepARmnodels for QoS prediction and ii) deep learning models for
LSTNet and an improved versions of LSTM as stacked LSTigeneral time series forecasting.
and bidirectional LSTMs for time series forecasting problems.
However, this set of works lacks the ability to handle both
the short and long-term dependencies at the same time, wl’ﬁte
training over long sequences of data degrades the accuracy ofhe authors in [8], predicted the delay using a nonlinear
the prediction. autoregressive exogenous (NARX) RNN following both a
To overcome the above described research gaps of #iegle-step and a multi-step ahead prediction. The prediction
current studies, we deploy ve different 10T applications t@ccuracy is measured using MSE, RMSE and MAPE metrics.
investigate four different QoS metrics. Moreover, this researétowever, they used a simulated dataset of an loT environment.
also investigates the multivariate prediction of QoS metrics féurthermore, the delay metric is also predicted in [9] using a
each application. Last but not least, a novel model that makgigiple Deep Neural Network (DNN) consisting of forward
an ef cient use of the time features of the 10T applicationwith backward passes and also providing the analysis of
and accurately predicts their QoS behavior, in a dynamiyperparameters, which presented good results such as size
network environment, is proposed. The model also investiga®fstraining data, number of layers, number of neurons in
the short and long input sequence dependencies without @agh layer and epochs. The features utilized by this work
performance degradation. To this end, the main contributionere extracted from the application layer, MAC layer and
of this paper can be summarized as follows: physical layer of the network. The authors in [10] proposed a
We consider 5 different 10T smart building applicationé!€ep leaming model that predicts the throughput, delay, and
that present different requirements in terms of number BfCket loss of an loT communication system. The proposed
devices, packet length, context of message, and messHidel consists of three Iayers:_The rst layer mclude_s a
frequency transmission. We deploy the applications mr};ur.aI network for the Internet as it represents the transmission
real testbed [24] comprised of approximately 300 lofnedium between different networks in an loT system. The
devices and generate data over an IEEE 802.15.4 acce®gond layer consists of a number of neural network for each
network. access network such as Wireless Sensor Networks (WSN),
We provide the predictions of four major QoS metric&adio Frequency Identi cation (RFID) network and Mobile
such as Throughput, Packet Delivery Ratio (PDR), Packdfli-noc Network (MANET) in an loT system. This layer
Loss Ratio (PLR) and Latency. As multivariate timé)rgdlcts the |nd|\{|dual performance of each network. The
series forecasting poses a challenge of how to captl}hérd layer comprises the last neural network mode_l which
and leverage the dependencies among multiple variabliSs used to predict the nal performance of the entire 10T

we provide both univariate and multivariate multi-ste§yStém. The work in [11] attempted to predict the throughput
prediction for all four QoS metrics of the ve loT using a Convolutional Neural Network (CNN) with the target

applications under consideration. vectorigation technique as their throughput distri.bu'tion was
We design and implement a QoS prediction mechanis?ﬁ”tral'zed a_n_d concgntrated on sev_era_l va_lues. This is why and
based on Temporal Transformers that models tempopaprderp mitigate th!s centralized distribution they resorted to
dependencies within input sequences consisting of |@Tvector|;at|on technique. Howeyer, the dataset was generated
data and that is able to handle the long input sequendEM & simulated factory scenario.

with the attention module to make prediction. The model Fan et al. [14] proposed a deep learning based Recurrent
accurately provides the multi-step QoS prediction and iNeural Network (RNN) model using an attention mechanism

observations. were fed into the RNN and attention network to calculate

e extrinsic correlations and to provide the nal prediction.
presents the related work and current limitations. Section | Ihe proposed model, called Urbar_lE_dge, used four d|ffer_ent
gives a detailed information on the challenges of 10T tim: atasets S.UCh as traf ¢ volume, b”"d".‘g.“C“pa.”Cy' eIegtnc-
|é¥1_and Air Quality Index (AQI) consisting of time series
sed sensor readings. The results proved that the proposed
I@rbanEdge model outperforms several baseline methods such

Deep Learning for QoS Prediction

The rest of the paper is organized as follows: Section

eration of the considered loT applications. Section V prese

the proposed model along with its algorithmic form an . i
asymptotic analysis. Section VI provides the experimentati&? Autoregresswe Integrated Moving Average (ARIMA), Vec-
setup and illustrates the results and the efciency of tht r(eggtsoerg?reHS()S\;vOeT/éYA;E()e’r:iSsTmea\r/]gniSsi?:ger;;z;i(()a-nstegrléirl]gri
proposed solution. Finally, Section VII concludes the PaPCTor the training of the RNN and the model also requires a high
bandwidth for the transfer of the monitoring metrics.
The authors in [15], proposed EdgeLSTM, which is an
In the pertinent literature, there are various studies either fedge-based deep learning system that utilizes grid LSTM
the prediction of 10T traf ¢ along with the QoS metrics or foralong with Support Vector Machine (SVM). The pipeline of
the general time series forecasting task using machine learnihg framework followed a data processing, a hyperparameter
or deep learning approaches. Thus, in this section we divigelection, and a construction of multi-class SVM models to be

Il. RELATED WORK



trained using four different datasets. The output was to get te Limitations of the Related Work

results for four different tasks such as data prediction, networkag stated in Section I, the limitations of the above men-
maintenance, anomaly detection and mobility managemefigned works can be summarized as follows:

Abdellah et al. [16] performed the prediction of throughput of
IoT traf c in a 5G communication network using an LSTM
network. The dataset is generated using an loT traf ¢ genera-
tor. The features of the dataset includes the timestamp, bytes
count and packets count. Finally, the authors in [17] proposed
the forecasting of 10T trafc by using a stochastic gradient
descent algorithm and a neural network architecture called

gaNE;’. Th? ?jatasg_tl usgxd Itr'] thf. paperdctq nS|s:s of fe?tures SUCh traf ¢ or QoS attributes as a univariate forecast [11], [14]
as obluscated mobile identi cation and imestamp of recoras. - 5 ,q [15]. However, multivariate prediction can capture

There are also few recent studies that applied regression 54 use the dependencies among multiple variables to
based approaches [12], [13], to predict throughput and packet predict the future QoS at a speci ¢ time step.
delivery ratio (PDR), since regression based techniques tend to The existing studies based on neural networks are mostly
be a light weight alternative for the prediction of QoS metrics.  gesigned for a short-term sequence prediction setting
However, most of the loT data used for the QoS prediction [18]-[22]. Speci cally, RNN based models have the van-

consist of time series sequences which are better predicted jghing gradient problem which prevents the training over
using deep learning approaches, such as Recurrent Neural Net- |5ng sequences of data.

works (RNN) or Long Short-Term Memory (LSTM) networks
that are speci cally designed for handling time series data.

Most of the studies provide the prediction of the loT
traf ¢ type and do not predict the QoS attributes [14]-
[17]. There are only few studies that provide the QoS
prediction [8]-[13]. However, these works have not thor-
oughly examined the actual prediction task with respect
to time, especially in emerging 10T application scenarios.
Some of the existing studies provide the prediction of IoT

In this work, we solve the above mentioned challenges as
follows: (i) Firstly, we provide the detailed prediction of four
QoS metrics such as throughput, packet delivery ratio (PDR),
packet loss ratio (PLR) and latency for ve heterogeneous IoT
applications such as HVAC, WolP, lighting, surveillance and
emergency application; (ii) Secondly, we provide the multistep

Regarding the time series data forecasting, various ndijediction of each QoS in both univariate and multivariate
ral network based methods are developed for sequencettings; (iii) Thirdly, to overcome the vanishing gradient
sequence learning. Specically, RNNs are well suited fdproblem in the training of long QoS data sequences, we are
the time series forecasting as they consist of a memory céfroducing a temporal transformer architecture. To the best
that can be used to recall things from the past. Howevéf, our knowledge, this is the rst work which provides a
as explained before, the vanishing gradient problem persi§@nsformer based QoS prediction for IoT applications.
over the longer time series sequences. A variant of RNN is
LSTM [18] that uses a gating mechanism for controlling an |ll. PROBLEM FORMULATION OF QOS PREDICTION

access to memory cell and mitigates the vanishing gradienfn this section, we describe and formulate the QoS pre-
problem. There is also a stacked LSTM model [19] for the timction pr0b|em, when we have mu|tip|e QoS metrics such
series prediction. This model stacks LSTM Iayers on top gfs throughput, PDR, PLR and latency to be predicted and
each other to learn longer dependencies. Another extensiop§en 10T devices belonging to different IoT applications
LSTM is the bidirectional LSTM [20] in which two models arecommunicate with an Edge infrastructure. In particular, the 10T
trained. The rst model is used for Iearning the input Sequen@@pﬁcations are represented by theAet fal; ap; as; a4; asg
and the second learns the reverse of that sequence. where a; represents the rst loT app"catior&z represents
Furthermore, a Temporal Convolutional Network (TCNjhe second IoT application and so on. Similarly, the set
which combines the dilations and residual connections with = fd;}ll;dgz;:::;dg‘i g represents the data generated by each
the causal convolutions needed for autoregressive predictita application Wheredg11 represents the rst dataset in the
was proposed in [21]. The authors showed that TCN performsettD and it is generated by the loT applicatian. The dg!
better than RNN models for time series forecasting taskdenotes then™ dataset generated and it is for tH& loT
Salinas et al. [22] proposed a model called DeepAR for probpplication wheren <=5 andi <=5 as data is generated
abilistic forecasting using autoregressive recurrent networks ve different 10T applications. Furthermore, each network
that learns from historical data of all time series in the datas#dtaset generated for a@f loT application is constituted
and provides the forecasting results. Another deep learning a sending and receiving information which is denoted as
model for multivariate time series forecasting, was propos& = f(u3 ;sk );(u3,;s3,); (u3,;s3.); (ua,;sa,); (U3, ;s3.)9
in [23] called Long- and Short-term Time-series NetworM/here(u;l;sgl) represents the pair of sending and receiv-
(LSTNet). This work combined the convolutional layer alongng information for loT applicationa;. More speci cally,
with recurrent layer to learn both local patterns and long-terbh = fugl;ugl; n uialg denotes the set of the transmitting
dependencies among multi-dimensional input variables. It alsdormation by the 10T devices of the IoT applicatian.
incorporated the autoregressive linear model along with a ndsimilarly, S = fsgl;sgl;:::;sglg represents the set of the
linear model to make the framework more robust for the tinmeceiving information at the Edge server side, wheje is

series which violate scale changes. thej" receiving information of theé™ 10T application.

B. Deep Learning for Time Series Forecasting



Regarding the features used, theld&t denotes the featuresalert with relevant contextual information to a control system
related to the transmitting data in the network by the lofo remedy the situation2) Heating, Ventilation and Air
devices as:UF = fus,;us,;us,;Us,; U, U, Whereus, Conditioning (HVAC): The HVAC system provides various
denotes the timestamp at which the packet is sent;is the handling systems inside the building by controlling factors
sensor node ID that is sending the packgt; represents the such as temperature, humidity etc., in order to provide the
size of the UDP payload in bytes;, is the IPv6 destination necessary comfort and indoor air quality to the occupants.
address (we use an 802.15.4 access network with 6LoWPAR); Surveillance: The surveillance systems involve cameras,
Us, is the destination pory, is the actual payload in a hex-monitoring and sensor devices that are used to provide the
adecimal format. In a similar way, the s8F represents the required physical security at a speci c locatiat). Voice over
features related to the receiving information at the Edge serVer(VolP): The VolP systems are used for providing automatic
side and is further expressed 8 = fs,;st,;S¢,:S1,0, help desks or interactive voice recognitid). Lighting: The
where s, represents the timestamp at which the packet lighting systems can be used to provide information regarding
received; s;, is the IPv6 address from which the packetoom occupancy, while also reducing the total energy con-
originates;ss, denotes the receiver port on which the packetumption of the building.
has been received; angl, is the hexadecimal payload of All of the above applications coexist in the same build-
the packet. Given the setdF and SF, we computed the ing and generate data at the same time. This can create a
QoS datasets for each IoT application. The throughput y&ry dynamic environment, especially when a random access
represented a®) = fof;3;:qfg where of is the i™  channel is considered that can create QoS uncertainties due
throughput value at timestantpsuch that0 <t<T , where to interference and re-transmissions. For each of the loT
T represents the total timestamps for which data are generaigsplications, the experiment involves three types of entities,
The packet deliver ratio is representedras fpi; p3; i P'g  or nodes, namely:
where p! is thei™ PDR value at timestamp. The packet
loss ratio is denoted a& = fel;€3;:::; elg, wheree! is the
i PLR value at timestamp. Lastly, the latency is denoted
asL = fI};13;::;1tg, wherel! is thei" latency value at
timestampt.

In the Time Series Forecasting (TSF) setting, et =
fx1;x?;:;;xNg" represent the multivariate QoS time series
with N variables,T as timestamp an&k 2 RT N. When
N =1 it becomes a univariate time series problem which can
be represented, for the throughpgtfor example, as thé™"
univariate QoS time series, given A§ = fxi;x3;::;xlg 2
Q" wherex! is thei™ value of the QoS metric collected
at a timestampg. Given theX and a xed window size ,

with 2 N, this time series is split into a xed length : i . L
input asX = f(x§;x5 Xt ) (xR k) Directed Acyclic Graphs (DODAGS) with a role similar

(x‘l+i;x‘2+i+1 ;xk* Ygsuch thatd <t < T , 8i 2 N and Fo the ISP “box” for residential users that have_e_m
K= T _ interface connected to the Internet and another providing
Wi-Fi connectivity. For the experiment purposes, the
total number of border routers is kept constant for each
of the individual application, however it may vary as it
is a modi able parameter.

3) SENSORS The sensors are nodes that are used to gen-

1) SERVER This entity (node) represents a UDP server
which collects and receives all of the information re-
garding the packet exchanges in the network. For all
of the experiments, one central server is used, which is
accessible through the internet via an IPv6 connection.

2) BORDERROUTERS The sensor nodes are connected to
the internet via border routers which have two interfaces.
The rst interface is connected to the internet and the
second is connected to the sensors network, using the
802.15.4 as an access protocol and the IPv6 Routing
Protocol for Low power and Lossy Networs (RPL)
as the routing protocol. More speci cally, the border
routers are the roots of the RPL's Destination Oriented

Given the input time sequence &e}; x5 ;:x!* g X,

we consider the task of predicting either only one step ahead
value, such as to predict the value xo‘f:l*l or multistep
values i.e.,h number of future values of QoS a§ =

ogedtl ovnnn T 1. T H t H H
Irfl’ XZI ""}X'{L 1+’1xh g (;Nlth h2 I\_lrsndxtlhtrymg Ito p;edllct erate data following a speci c distribution, as shown in
€ value olx',; —, and so on. 1hus, the goalis 1o fearn Table 1, according to the ve loT applications mentioned
a precise forecasting model & : X ) ! Xin¢+ ) by

earlier. The sensor data are transmitted to the server
using the 802.15.4 technology via the RPL routing
mechanism. Further, each sensor can also be used to

minimizing some loss function.

IV. EDGE COMPUTING INFRASTRUCTURE ANDDATASET relay packets to border routers, if it lies on the shortest
CONSTRUCTION path between a sensor and the DODAG root. Each sensor
A. Applications and Edge Computing Infrastructure can have several DODAG parents, creating multiple

Five different loT applications and their respective datasets possible paths to the border routers.

are considered in this work. These applications ajeEmer- We have de ned a heterogeneous set of parameters for each
gency ResponseThe emergency system is used to monioT application to perform the data generation experiments.
tor the critical areas of the building such as gas pipes ®hese parameters include the number of sensors, number of
re alarms. If a situation occurs where the pipelines readhorder routers, duration, packet length in bytes, generation
high pressure, which may cause an explosion, then the Itype of packets, lambda value of their generation type and
devices at a specic location will detect this and send atime period in seconds, as shown in Table I. The only common



TABLE |

EXPERIMENTATION'S PARAMETERS

Scenario No. of sensors  No. of routers  Duration (s) Packet Length (B) Generation Type Lambda Period (s)
Surveillance 10 3 10090 127 Exponential 196.74 —
Emergency Response 40 5 10090 127 Hybrid 0.0333 30.0

HVAC 100 5 10090 60 Periodic — 260.0

Lighting 100 5 10090 30 Exponential 0.00208 —

VolP 10 1 10090 127 Hybrid 15.74 0.063532

parameter among the ve applications is the duration of the
experimentation, since the applications coexist at the same
time. The generation type represents the distribution according
to which application data are generated. If it is exponential,
as for surveillance and lighting applications, then the packets
generated by each node follow an exponential distribution
using the parameter Lambda. If the generation type is Periodic
i.e., for HVAC, then the packets are generated periodically
according to the Period parameter. If the generation type is2)
hybrid i.e., for emergency response and VolP applications,
then data follow a hybrid generation according to an expo- 3)
nential distribution that follows a speci ¢ Lambda value and

a periodic pattern. This behavior creates another level of QoS
uncertainty that can lead to considerable traf ¢ uctuations, 4)
as well as spectrum and resource requirements. More details
regarding the testbed and the dataset generation can be found
in [25]. 5)

B. Feature Engineering 6)

The dataset generated for the ve different 0T applications
provide the receiving and transmitting information of the
packets within the network. Each application has its own
database with UDP and server tables. The UDP table con-
tains information about packets as they are transmitted by.
the sensors and the Server table contains information abouz)
packets as they are received by the server. The raw features
are highlighted in Table II.

TABLE I
DESCRIPTION OF RAW FEATURES IN DATASET

8)
Data Feature Description
Transmitting nodename name of sensor node
data (UDP) timestamp time at which the packet is sent
payloadsize  size of the UDP payload, in bytes
dest address destination IPv6 address
dest port contains the destination port 9)
payload hexadecimal identi er of the packet
Receiving timestamp time at which the packet is received
Data (Server) |IPv6address source IPv6 address
receiverport  port on which the packet is received
payload hexadecimal identi er of the packet

In order to extract the most useful features from the given
raw data, we engineered several features as described below:

1) Timestamp: It is the time that is associated with each

always possible to calculate the QoS metrics for each
nanosecond as in most of the nanosecond timestamps
we did not have any sending or receiving packets in the
network that was causing the generation of many null
values for the QoS datasets. Thus, each of the below
described features are computed for a time intetval
of 5 milliseconds without however losing signi cant
information.

timesirst _pack : It is the time at which the rst packet

is transmitted in a speci ¢ time interval & ms.

time jast _pack : It is the time at which the last packet is
transmitted to the server in a speci c time interval ®f
ms.

totalyans _pack : It is the total number of packets trans-
mitted by a node during a specic time interval 6&f

ms.

totalec_pack : It is the total number of packets received
by the server during a speci ¢ time interval 6fms.
Packet Delivery Ratio (PDR): It is the ratio of the
received packets to the transmitted packets per node for
every 5 ms and it is given as:

total rec _pack

PDR = 100

1
total trans _ pack ( )
Packet Loss Ratio (PLR): It is the ratio of the lost
packets to the received packets at the server side and
it is given as:

total loss _pack

100
total yec _pack

PLR = @)

Throughput: It is the rate of the total number of received
packets (or their size) over a time period of 5 ms:

. total rec _pack (3)
time last _pack
Transmission Latency: It is the average time taken by
a transmitted packet to be successfully received at the
receiving side over a time period of 5 ms and is given

as:

Throughput =

time first _pack

time trans _pack )

(4)

(time rec _pack
Latency = — =3k =P

total yrans _pack

packet in the network. Initially, data were collected anf- Data Preprocessing

added to the raw dataset at a nanosecond granularityEach application dataset is stored in a SQLite3 database
However, we changed the granularity of the datasahd compressed with the zstd compression algorithm. We
from 1 nanosecond to 5 milliseconds, to better captunestly decompress the dataset and read the sql table in the
the QoS metrics uctuations. For example, it was natsv format. Then we engineer the QoS related features and



create a second QoS dataset for each of the I0oT applicatioms2017 for machine translation tasks [26] [27]. However,
However, before the QoS datasets are fed to our proposeel do not use the decoder part of the base transformer for
transformer models for training or validation purposes, sevetlke following reasons. Firstly, the decoder module in the
preprocessing operations are applied to re ne their qualityansformer architecture is suitable when the output sequence
and thereby the QoS forecasting performance. In particullength is not prede ned such as for generative tasks e.g.,
we remove any outliers that are caused by some unseemmgchine translation in Natural Language Processing (NLP) or
situations in the datasets. There are also some missing vals@smarization tasks. In contrast, in this work, the task is to
in the QoS dataset because it may occur that no packets fredict the future throughput, PDR, PLR or latency in de ned
transmitted and received for some time intervals. For instantiene steps. Secondly, using only the encoder part makes the
the HVAC and lighting applications are generating packeoposed work suitable for solving several types of problems
with very low frequencies, as can be seen in Table I. For tifier 10T applications, such as classi cation, regression and
particular applications, the missing values are lled by averaggnerative tasks. Finally, the main purpose of the proposed
values of their respective features. temporal transformer is to learn the short as well as the
Finally, the features of each application dataset is normébng-term dependency of the Throughput, PDR, PLR and
ized in a particular range using the min-max normalizatidiatency with the time domain. Thus, in our case, the temporal

given as: transformer consists of temporal inputs, positional embedding
X normalized = —>Xmin (5) and encoder modules, while the QoS prediction will be the
Xmax  Xmin nal output.

wherex is the original QoS value of the metric/feature under

consideration (e.g. TthUthUt’ PDR, PLR and I‘atencyr%entioned earlier, we are solving both the univariate and
Xmin rep_resents.the minimum value of that fegture ARk ._multivariate QoS prediction. Therefore, the input to the trans-
denotes its maximum value. Thus, the normalized data I'ef&mer in these two cases will be different according to the
the range from 0 to 1. number of the sequential values to be predicted, as described
in Section lll. For the temporal transformer input, a rolling
window strategy is applied for the QoS metric prediction.
This section discusses the overview of the proposed tempg-case of a univariate prediction, the individual sequence of
ral transformer for the QoS time series prediction betwegfner throughput, PDR, PLR or latency is taken as series. In
the 10T devices and the Edge server. Following, the nexgntrast for the multivariate prediction, all possible features
paragraphs discuss the details of the proposed model @shg with their timestamps are inserted as series input.

1) Input and Output of the Temporal TransformeAs

V. PROPOSEDTEMPORAL TRANSFORMERFRAMEWORK

present the description of each of its modules. Following, the series are divided into a number of observations
with a length that is speci ed by the selected window size and
A. Overview of Proposed Framework they are shifted iteratively with a step size of 1.

Given the ability of temporal transformer models to get Fig. 2 illustrates the process of sampling the univariate
the time dependencies of a dataset, we proposed a frameweagut. There are two parameters that are used to control the
which adopts the bene ts of the particular model to processlling window strategy: i) the rolling window size which is 8,
and estimate the QoS metrics for IoT applications in ais each of the rolling window sample has a length of 8 data
edge environment. In the proposed framework as shown gamples; ii) the number of steps to be forecasted which is
Fig. 1, we rst generate the real loT data for ve differentpasically a forecast horizon, which in the particular example
applications as discussed already in the section IV.A. Thas, 3. Given the rolling window samples as an input to the
our second step is to take all of these raw datasets adéhporal transformer, the model can predict the QoS metrics
engineer the new useful features as discussed in section \NoBthe forecast horizon based on the windows of the previous
Then we process these data by performing data cleaniggmples. It is to be noted that the window size and forecast
data down-sampling and data normalization. Then the neéigrizon parameters used in Fig. 2 were selected for illustration
pre-processed QoS datasets for the ve IoT applications gs@rposes.
divided into training sets, validation sets, and testing sets. The | the above example, a univariate prediction is performed.
totgl_experimentati(_)n duration is lasted a_bout one week. Tl?ﬁis means that if throdghput is the targeted QoS metric to
training sets contam_the_ data genergted in the st ve dayge predicted, the rolling window samples will contain only
while the bOt.h.Of va||dat|qn qnd testing sets contain one dzﬂ){roughput series along with their timestamps. In case of
data. The training and validation datasets are used to CONSUMCL; 2 riate prediction, the throughput will be predicted based
the optimal transformer network by selecting the appropriaje, e previous time steps of all involved features, namely
hyperparameters. Finally, after the temporal transformer moggl 414 transmitted messages, total received messz;ges, PDR,
is trained, the QoS metric prediction results are obtained B\LR, latency and throughput itself. This means that the win-

using the testing dataset. dowing samples are created using multiple features. However,

the output generated by the transformer model will be the

B. Temporal Transformers forecast throughput value. The same procedure will be applied

The base of our proposed temporal transformer lies in tfer other QoS metric predictions, such as, PDR, PLR and
transformer encoder architecture which was initially proposéatency.
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Fig. 1. Overview of Proposed System for QoS Prediction

Rolling window sample Forecast Horizon weights are required to be trained. The sinusoidal encoding is
. described as follows:
Oﬂ{xﬂ ’x;’” x3t+2 x4t+3 x5r74 ‘xéﬁj x7r+6 x8t+7 x91+8
s Q. se S+1 1+2 |y 143 |yect+4 +5 [yt +6 g7 |xgt*S 1+9 . oS
£ 2 420" st g s ’xa’ X770 |xg ‘M) X10 PEgos2i = sm(p—.); O<pos<N 1 (6)
5 pos: 10000 2i=dmoq )
seqs [x+2 x5 sttt ’xézﬁ 76 g7 g8 | xpg*9 |10 ‘ mof
|
— === [ Fged _ 0S
Poszl‘zo{'lal 7f&| Attention 1§ | Forward 1 i P Epos; 2i+1 = COS( 00002p — ); O<pos<N 1
Encoding Module Network Predicted Values 1 i +1=0nod) 7
Encoder Module Vg8 | yig'™d yuf*m‘ . . . ( )
whereP E denotes the positional encodimpsis the position
Transformer Model index of the time step of the input sequence and its range lies

between 0 andN, which is the length of the input sequence.
2i represents the even dimensionsdgfq and2i +1 denotes
the odd dimensions of thdéqq , Which is the dense vector of
each input time step provided by the input layer.

2) QoS Positional Encoding:The position and order of  The positional encoding of each input sequence is added
the input sequence are very important elements for the Qpé&sition-wise with the output of the input layer as shown
prediction. Therefore, RNNs (such as LSTM) take the ord@f Fig. 2. This is then passed to the encoder module of the
of sequence inherently. The transformer on the other hamgmporal transformer.
lies on the attention mechanism in order to learn the Iong—3) Encoder Module: The encoder module consists of a
term dependencies and to speed up the training time. In %@ck of encoders, and all are identical to each other in term of
attention mechanism, the attention scores are computed fortglir architecture. The input of the encoder is rstly passed to
of the time steps as we will discuss in the next subsection. {fle multi-head attention module that looks at the QoS values
case the time steps are not distinguished, the attention scajgsn as<! and Xt2+1 in the input sequencseq as shown in
will be the same for all of the time steps. Hence, we need {qq. 2. |t then provides the attention scores between these two
incorporate the positional information of the time steps befotgos values and continues with the same way for other QoS
giving the input to the transformer. values in all other input sequences. These attention scores are

The positional encoding is the dimensional vector generatimwarded to the Add & Normalization layers, as shown in
for each time step that describes the position information Kg. 1. These layers are used to stabilize the hidden states
the input sequence. In this work, we applied the sinusoiddynamics of the network and to reduce the training times.
positional encoding because the positional encoding providethally, the output of the normalization layer is fed to the
by this scheme is xed for each time step and no addition&ed forward network. Each of the layers and sub-layers in the

Fig. 2. Overview of univariate input and output of prediction



encoder module also have residual connections. We provitigorithm 1 QoS Prediction Algorithm
more details for the encoder module, in the rest of this Section.Input: QoS training data set such dsf;; ds™ ; :;; d'* g
a) Multi-head attention: The main part of the trans- D" | validation data seD'® and testing data sé st
former architecture is the Multi-Head Attention (MHA) mech- 1. setm  build_model(D"a" ;pva')
anism. The attention is based on the scaled dot product tha®. settuner =~ RandomSearch(m; obj; max ; search )
is used to compute the weights among the throughput, PDR// obj is the objective of tuner which is to increase the
PLR or latency values in the input sequence as shown in Figvalidation accuracymax; are the maximum trials and
1 and it is computed as follows: searchy are the search trials.
3. setmodel  BestModel(tuner; num )
T numy, is the number of model rch he tuner.
Attention (Q;K;V') = softmax (%lfjjk)v (®) Z suethTstgr;[/ ) rl%oggl:fci)t (D?rtzllﬁ S ISDe"i' ?ept(?értlse e
5.setY  model:predict(D )
Traditionally, Q, K and V represent the query, key and Qutput: Future values of QoS asY =
value in the attention mechanism. In this wof®,implies a fyl vty Lylg
certain value of QoS such as throughput, PDR, PLR or latency
within the input sequence at a speci c time st&prepresents
another QoS value within the input sequence, ahds the
impact of the relation between the two QoS values within t
same input sequence at their speci ¢ time steps and positionsOur proposed QoS prediction algorithm (Algorithm 1) con-
Finally, thedy represents the dimension of the key. sists of either univariate or multivariate inputs that can be
In this work, by using the scaled dot product betwégn a QoS dataset in form of training data, validation data and
andK , the attention scores are obtained between various Q@Sting data. The rst step is to build the transformer model
values and then compressed with the softmax functionalitysing thebuild_model() function, which takes the training
Lastly, the matrix multiplication (dot product) witly is and validation data as input. Following, the random search
performed. The above described attention process is perfornmedgerformed with the keras tuner to search the number of
multiple times i.e., with a multi-head attention as shown in Egqnodels, using the RandomSearch() function, which takes the
(9). transformer model as an object, the search objective, the max
h, = Attention (QWiQ; KW K vwY) 9) trials allowed and the number of trials per search as an input.
Then, theBestModel() function takes th@¢uner object and
In the above equatiot; represents thE" number of attention the total number of search models by the tuner as input and
heads, withi 2 R; WiQ is the linear transformation of theit returns the best model which has the highest validation
query of thei™™ attention headWX is the linear transforma- accuracy across all models given by tReandomSearch()
tion of the key of theé™ attention head anw/,¥ is the linear function. Lastly, the best selected model is trained for a
transformation of the value of tH&" attention head. speci ¢ number of epochs using tHé () function and the
Following, the concatenation of multiple attentions is don&al prediction of the QoS values are provided dsusing the
by using Eq. (10) in order to represent the importance betweRfigdict() function.
two QoS values in terms of their correlations. Algorithm 2 depicts the temporal transformer model and
it consists of the three main modules described above: 1)
MultiHead (Q;K;V ) = concat(hs; hy;::;;h, )W (10) INPUT_EMBEDDING , which takes as an input the training
dataset, the sequence length of the input and the dimension

where concat represents the concatenation operation of th@ed to represent the input sequence vector. This module
attention headsn denotes the total number of heads, wheng ysed to take the input into a specic tensor shape for

n 2 R, andW? is the linear transformation of the concatenateghe transformer along with providing the positional encoding
output. of the time series input as well. In this module, rstly the
b) Feed Forward Neural NetworkEinally, the last com- input layer is applied, which instantiates a tensor for the
ponent is the Feed Forward Network (FFN), which consistémporal input sequence of the training dataset so that the input
of the linear transformations and the conv1D layer with thgequence is passed to the transformer model. Following, the
Recti ed Linear Unit (ReLU) activation function. The FFN iSpositiona| _encoding() function provides the position value
given as: for each of the input in the input sequence and lastly the
Add() layer of keras is used to provide the addition of the input
FFEN (X) = Relu(0;xW1 + b)W, + b, (11) along with their position values. This layer also returns as an
output theemhbes, which are the embedding results. PN-
whereW; andW, are the weightsh, andb, are the biases; CODER_MODULE consists of two main procedures namely,
and x is the output of the multi-head attention which isVulti-Head Attention and Feed Forward Network. The MHA
normalized by the Add & Normalization layer. The result oprocedure is from line 4 to line 7 and the FFN procedure
the Feed Forward Network along with the output of the Add & from line 8 to line 10. In MHA, rstly, the normalization
Normalization layer provides the nal prediction result usindayer is applied to normalize the embedding results, which
a simple Dense (output) layer. are passed to the next layer which is tMdHA () layer that

h%‘ Algorithm Description



Algorithm 2 Temporal Transformer Algorithm D. Complexity Analysis

INPUT_EMBEDDING(D"" ; pos; dim) Proposition 1:The computational complexity of Algorithm
/I D" s the training dataset instancems is the input 1 js O(n2d).

sequence length ardim is the dimension representation.  Proof: Line 1 of Algorithm 1 uses thebuild_model()

1. setinput  Input _Layer (D" ) function, which is the temporal transformer model and its
2. setpos P ositional _encoding(pos; dim) time complexity isO(n?d) as it is represented and proved
3. setemhbes  Add(input; pos) by the proposition 3 Following, line 2 takesO(n) as
Output: emBes . Module 1 RandomSearch() searched alh number of models for the

worst scenario and line 3 takes a constant amount of time i.e.,
ENCODER_MODULE( emhes , hs, nump,drae , fil , Ks, Q(l). Next, themodel:fit () function in line 4 take®©(t) tim_e_
act) in the Worst_ case, whetterepresents the length _of tr_le training
/I emhes is the output of Module 1hs is the size of dataset which is always more than the validation dataset.

the headnumy, is the number of heads usethye is the Lastly,. line 5 predicts the QoS for a gi\(en testing.datase.t in

dropout ratefil is the number of ltersiks is the kernel O(ng times. Hence, the overall complexity o; Algorithm 1 is:

size andact is the activation function. O(n®d) + O(n) + O(1) + O(t) + O(n) = O(nd).

4. setx  layer_norm (emhes) Proposition 2: The computational complexity of IN-

5. setx  MHA (hs:nUMp: drae ; X) PUT_EMBEDDING is O(nd). _

6. setx  dropout(x) P_roof: !n the_INPUT_E_MBEDDING module of Algqnthm

7.setres  x+input  MHA 2, line 1 is a simple assignment statement, as the input layer
is used to instantiate the tensor of s2&@" and it takes

O(1). The computational complexity of line 2 depends on

8. setx  layer_Norm(res) the length of the input sequence sayand the dimension

9. setx  layer_ConviD(fil;k _s;act;Xx) representation of the input sequence sagnd thus, it takes

10. setx  dropout(d_rate; x) O(nd). Lastly, line 3 is performing an addition operation using

Output:(x, res) . Module 2 the Add() layer. Its complexity depends on the number of input
sequences and the length of tensor provided by line 1. Since

OUTPUT_MODULE( x, res) the Add() layer takes as input a list of tensors, which all have

the same shape, and returns a single tensor, the number of in-
put sequences and the length of tensor provided by line 1 are of
11. setx  layer_GlobalAvgP oolinglD (x) the same Iepgth and thu; the complexitpig). Accordingly,

12. setx  layer_Dense(x) .the. overa_lll time complexity oNPUT_EMBEDDING module

13. setx  Add(x:res) is linear |:§.,O(1) + O(nd) + O(n)_ = O(nd). _

14. setx  layer_Norm(x) Proposition 3: T'he cozmputatlonal complexity of EN-
Output: x . Module 3 CODERMODULE is Q(n d). .

Proof: The computational complexity of the encoder module
depends on the MHA and FFN. The complexity of MHA pro-
cedure isO(n?d). Line 4 is the normalization of the previous
layer and take®©(n). Line 5 takesO(n?d) since it performs
the dot product in the self attention mechanism ofnahy d
matrix multiplied by ad by n matrix. resulting in arO(n?d)
also takes as an input the size of the head, the numbercomplexity. Lines 6 and 7 take3(n) time each because line
heads and the dropout rate and it returns the attention scog® applying a dropout operation tonumber of neurons and
Following the dropout function is applied using the dropouine 7 is performing an addition operation which is performed
layer of keras and then the residual connection is computedO(n) time. Next, lines 8-10 depend on the number of
by adding the output from the dropout layer with the initiallters, kernel size and previous layer outputs and thus, in the
input. Next, is the FFN which takes as input the residualorst case scenario these lines will exhibit a complexity of
connection valueses and it passes them to the normalizatio®(n) + O(nd) + O(n) = O(nd). Lastly, we will haveN
layer. The results of the normalization layer along with theumber of encoder modules which are executed in parallel to
Iters, kernel dimensions and activation function are passewrform the computations. Hence, the overall complexity of
to the ConvlD layer and the nal dropout is performed. 3ENCODERMODULE is O(n?d) + O(nd) = O(n?d).
OUTPUT_MODULE is used to provide the nal prediction Accordingly, the overall complexity of the proposed tempo-
of the dataset. It takes the previous layer output keaJong ral transformer model depends on the complexity of its three
with the residual connection value i.ees as an input. Firstly, modules. As we have proved, module 1 gives a complexity
thex is passed to th&lobalAvgP oolinglD () layer, which is of O(nd) and module 2 gives a complexity @(n?d). The
used speci cally for the temporal data and it takes the avera@dJ TPUT_MODULE (module 3) presents a linear complexity
among all time steps. Then, the output is passed to the Densdg(JO(n) as all layers in lines 11-14 depend on the length
layer, the Add() layer, and the layerorm() functions, in order of the output of the previous layer and perform basic opera-
to get the predicted values of QoS as an output. tions such as average, activation, addition and normalization

Il x is the output of Module 2 ancks is the results of MHA
module within the Module 2.
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which take in the worst cas©(n) time. Thus, the time that begins from $0.218 per training hour for a general purpose
complexity of Algorithm 2 is represented in terms ofas: machine with 4GB of RAMS
O(nd) + O(n?d) + O(n) = O(n?d).
VI. PERFORMANCEEVALUATION
A. Model Implementation and Frameworks

1) Evaluation setupEach dataset is zero-mean normalized

The implementation cost of the proposed framework cafhd standardized. Under the time series prediction settings, we
be divided into three parts; the model infrastructure, the datsecast the four following QoS metrics as: (i) Throughput; (ii)
support and the deployment cost. The model infrastructure cegRr: (jii) PLR and (iv) Latency. Additionally, the prediction
includes the physical resources required to run the proposggerformed in two time series settings as: (i) Univariate and
model at the edge and provide timely and accurate QoS predigr Multivariate. The window size for both settings is set to
tions. A commodity computer has suf cient computing powelhe 30. The total data generation lasted seven days. All of
memory, and storage for the inference, data preprocessing gl ve datasets are divided into three parts as follows: i)
the parameter storage of the temporal transformer. Similartigining dataset, which contains the rst ve days of data; ii)
also the answer for the metering process in the UDP server thafidation dataset, which contains the sixth day data and iii)
collects the information of packet exchanges in the netwoRgsting dataset which contains the seventh day data. All of
Both services can be deployed and run in the same commodig models were trained and tested on two compute clusters
computer. Regarding the networking requirements, these gffered by Compute Canada namely, Cedar and Beluga. For
limited to the transfer of some kilobytes of monitoring datghe Beluga cluster, we trained, validated and tested the models
per minute between border routers and the UDP server. TBig a NVIDIA V100 with 16GB GPU and for the cedar cluster,
is an insigni cant overhead in the edge infrastructure. we utilized the NVIDIA P100 with 16GB GPU respectively.

Data support costs concern the costs of developing a dat®2) Evaluation Metrics:We used three metrics to measure
pull script with the corresponding preprocessing modules sugie prediction performance of our proposed method against
as data cleaning, down-sampling and normalization. This 4§ of the baseline methods as described below, namely the
a one-time cost incurred by a data engineer to develop Raot Mean Square Error (RMSE), Mean Square Error (MSE)
extract-transform-load pipeline in order to extract the meand Mean Absolute Error (MAE). For all of these metrics
surements and provide them in the appropriate format % smaller value indicates a better prediction performance.
the temporal transformer. The deployment cost concerns MI&E is the sum of the absolute value of differences between
labor cost of a data engineer to deploy the model in thRe actual QoS values representedypsand predicted QoS
commodity computer that runs at the edge. This labor cogilues represented s, divided by the total number of QoS
also includes all the con gurations, testing and preparatigiredictions as de ned below:
steps needed to install and run the operating system, various 0
software, the python modules, the dependencies and establish MAE = 1 ivi Vi (12)
the communication with the rest of the infrastructure. n - .

. To add up the three types_ of QOStS and calculate the tong is an average of the squared errors between the predicted
implementation cost, we begin with the cost of model infra 0S values and the targeted (actual) QoS values divided by

tructure that comes down to a commodity computer Wh'Chf e total number of QoS predictions. RMSE is the square root

approximately $1.008. In the implementation cost we shouldOf MSE as given below:

also add the electricity cost which is approximately $160.16

E. Implementation Cost

per year.? and the maintenance cost which ranges from $40 X 2

to $90 per hour for the work of a techniciah The data MSE = n o %) (13)
support cost is signi cantly higher due to the work of the data v n=1

engineer. We estimate a senior data engineer can implement u X

the proposed model, the data preprocessing and the extract- RMSE = tl v ¥)? (14)
transform-load process in one man-month which results in a L)

cost close to $9.649. The deployment cost is reduced to the . .
3) Baselines: For comparison purposes, we evaluate our

manual work of a network engineer that will integrate and . .
roposed model against the most popular deep learning models

run the python scripts |n.the edge infrastructure. This V\gorkjﬁat are appropriate for time series prediction, as presented
calculated to last approximately one week and costs $1°66 : . T

. .—1n Section II.B. The baseline models are the following: i)
Last but not least, we should not underestimate the tram'%lti-layer Perceptron (MLP) is a feed forward network

cost of the temporal transformer. Google cloud incurs a Char\%ich consists of an input layer, an output layer and multiple
hidden layers. This network is fully connected, which means

1 N i = 1 . . . .
hups:/fwww.amazon.com/Workstation-Pc/s?k=Workstation*P¢  the jdentical units in each layer called neurons are connected to
https://www.pcmag.com/how-to/power-hungry-pc-how-much-electricity- every neuron in the next Iayer in a network sjt)acked LSTM
computer-consumes ) - ’ )
3https://www.thumbtack.com/p/computer-repair-prices is composed of multiple LSTM layers that are stacked in a

“https://www.indeed.com/career/data-engineer/salaries
Shttps://www.indeed.com/career/network-engineer/salaries Shttps://cloud.google.com/vertex-ai/pricing
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TABLE Ill
HYPERPARAMETERS USED IN ALL METHODS FOR THE UNIVARIATE THROUGHPUT PREDICTION ACROSS ALL DATASETS

Models Hyperparameters Min. value | Max. value Best selected value
HVAC \VolP Lighting | Emergency| Surveillance
MLP Number of neurons 8 512 64 392 288 40 504
Dropout rate 0 0.5 0.1 0.3 0.2 0.1 0.1
Learning rate le-2 le-4 0.01 0.0001 0.001 0.001 0.0001
Stacked LSTM Number of neurons 8 128 24 72 104 96 16
Dropout rate 0 0.5 0.4 0.001 0.1 0.4 0.4
Learning rate le-2 le-4 0.001 | 0.0001 0.01 0.0001 0.0001
Number of layers 2 6 3 2 4 3 5
Bidirectional LSTM Number of neurons 8 512 32 16 24 64 352
Dropout rate 0 0.5 0.5 0.4 0.1 0.1 0.2
Learning rate le-2 le-4 0.01 0.01 0.01 0.001 0.001
Temporal Transforme head size 4 256 28 32 128 4 2
Number of heads 4 32 6 18 24 4 3
Dropout rate 0 0.5 0.2 0.5 0.2 0.5 0.2
Number of transformer blocks 4 16 16 8 4 4 2
Linear layer neurons 4 128 96 84 52 64 116
Linear layer dropout 0 0.5 0.2 0.5 0.2 0.5 0.2
Filter dimensions 4 64 96 28 52 64 8
Number of attention layers 1 15 4 5 2 2 3

multi-layer and a fully connected architecture. The stacking 4) Hyper-parameter Tuning: For the hyper-parameter
of LSTM is done in such a way that the result of each LSTMearch and tuning, we performed a random search of the search
layer is used as an input for the subsequent LSTM layer space using the keras tuner. In particular, for all methods and
the stack, iii) Bidirectional LSTM is a combination of a all datasets, the input length of the input time series sequence
bidirectional RNN with an LSTM network. In this particularis set as 30. In other words, the rolling window sample is set
architecture, the input sequence is processed in a forwardt@be 30, which we believe is a suf cient value for long-term
well as in a backward direction in each of the network layerprediction. The hyperparameters that were searched for the
The details of how MLP, stacked LSTM and bidirectionabaseline models consist of the number of neurons, dropout
LSTM work is provided in the Appendix of this documentrate, learning rate and number of layers. For the stacked
iv) LSTNet is a multivariate time series prediction framework. STM, the number of neurons were selected from the range 8
proposed in [23], that models the short and long-term tempotal 128 with a step of 8. For the MLP and bidirectional LSTM,
patterns with Deep Neural Networks. This particular modéhe number of neurons were selected between 8 and 512, with
uses the Convolution Neural Network and the Recurrent Netlre same step. For the dropout rate, the value is taken from the
ral Network along with the auto regressive component for th@, 0.1, 0.2, 0.3, 0.4, Ogrange with the default value set to be
extraction of the short-term local dependency patterns amob® whereas, the learning rate was selected fronf ilee2, le-
variables and the long-term patterns for time series patterns.3dle-4 set for all baseline methods. Additionally, the number
compare our proposed framework with this existing LSTNetf layers was selected between 2 to 6 for the stacked LSTM.
model, we have used the same con guration that the autharsstly, for the baseline method found from the literature i.e.,
provided in term of their architecture. LSTNet, we used the already provided hyperparameters in
For the univariate prediction, we used the MLP, stackdd3].
LSTM and bidirectional LSTM as our baseline methods and For the proposed temporal transformer model, we have ne-
for the multivariate prediction, we used the stacked LSTMuned the following hyperparameters: head size, number of
bidirectional LSTM and LSTNet as baseline methods. We habheads, dropout rate, number of transformer blocks, number of
used only one method from the literature i.e., LSTNet becauseurons for the linear layers, dropout rate for the linear layers,
to the best of our knowledge there is no other existing methdter dimensions and number of attention layers. The search
that can provide the QoS prediction, while handling the longpace set for each of the hyperparameters is set as follows.
term dependencies at the same time in an edge computifay the head size, the minimum value was set at 4 and the
environment. In contrast, LSTNet was designed speci callpaximum at 256 with a step size of 4. For the number of
for time series forecasting while providing a multivariate preheads, an optimal value was found within the range of 4 to
diction. Furthermore, the MLP did not provide good accurac32 with a step of 2. The dropout rate was selected between 0
in case of a multivariate prediction and we have excludedand 0.5 with a step size of 0.1 and the number of transformer
for the second part of the evaluation. Finally, it should blelocks was chosen from the ranigg, 8, 12, 1. For the linear
noted that we have also considered some traditional time sefager, which is included as part of the transformer architecture,
methods such as Autoregressive Integrated Moving Averatlpe number of neurons was selected between 4 and 128 with
(ARIMA), Simple Exponential Smoothing (SES) and Prophet step of 8 and their dropout rate was chosen between 0 and
However, all these forecasting techniques presented a pOd with a step of 0.1.
accuracy performance and therefore, we decided not to includdRegarding the neural network optimizer, the Adam opti-
them in our performance evaluation. mizer was used for all baseline methods and for our trans-
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TABLE IV
STATISTICAL CHARACTERISTICS OFQOS DATASETS FOR ALLIOT APPLICATIONS

QoS Throughput PDR PLR Latency
Metrics Mean S.D Median Mean SD Median Mean S.D Median Mean S.D Median
HVAC 0.253958 0.204743 0.190762 0.331391 0.390711 0.000033 0.232914 0.237775 0.124958 0.044852 0.058928 0.029333
\VoIP 0.323644 0.108589 0.304021 0.532645 0.207119 0.548382 0.501071 0.060243 0.494923 0.004661 0.001512 0.004562

Lighting 0.164938 0.185021 0.094540 0.100024 0.226347 0.000000 0.038439 0.101123 0.000000 0.041879 0.075346 0.011554
Emergency  0.061513 0.061542 0.043207 0.258011 0.226774 0.173908 0.134196 0.127102 0.085104 0.066475 0.073212 0.031021
Surveillance  0.337204 0.167844 0.330451 0.290765 0.126342 0.294597 0.079721 0.128798 0.035209 0.380338 4.870949 0.000468

former model. As random search is performed to select thable V shows the MAE, MSE and RMSE achieved by the
best values for the hyperparameters, the total number of tribsseline methods and transformer model. As it can be seen, the
considered for this search is 5 with an epoch value of 10®ansformer model worked well for the throughput prediction
Finally, keras tuner selected the best trial that gave the bastcompared to the other models across all datasets. We have
set of hyperparameters for all of the application datasetdso plotted the MSE and MAE values of all methods in Figs.
Table Il summarizes the hyperparameters and the best selecgteahd 5 to better illustrate the results. It should be noted that
value from keras tuner for all ve application datasets. It ithe y axis of both gures goes from large values towards small
to be noted that the same hyperparameters with the sawadues and we also include the data points for the transformer
corresponding search range were used for both univariate anddel to better position its ef ciency.

multivariate prediction. However, due to space constraints andOur rst observation, is that all applied models give the
illustration purposes, Table Il provides the hyper-parametiyast values for all error metrics for the emergency appli-
tuning of the univariate prediction. The hyper-parameter tunirgition followed by the lighting application. In contrast, for
for the multivariate prediction is provided in the Appendix othe surveillance application, the models achieve higher error

this document. values followed by the VolP and HVAC applications. The
main reason for having less accurate results for surveillance,
B. Explanatory Data Analysis VoIP and HVAC applications is that the datasets of these

. . : applications contain several extreme values also known as
In this part, we provide the explanatory analysis of the

applications' datasets along with their properties. The stat%ytliers' Hence, as deep leaming models do not learn easily
P 9 prop : ch extreme values, such behavior can cause performance

tical _propernes of ca ch dataset are presented in Table_ I§§gradation. We can also detect the outliers from the statistical
In Fig. 3, the density plots for each of the QoS metrics

L . rti f th hown in Table IV. For instan
within each dataset are also presented. The density pl [opetes of the datasets as sho able or instance,

S . o
are used to observe the distribution of the datasets with oF the surveillance application, the throughput dataset has a

nin interval. For the emeraen lication. we h sf%mdard deviation value of 0.167844 and a mean value of
continuous interval. ~or the emergency appication, we nha .337204. This is because the more extreme outliers exist in

a _po_sitively skewed distribgtion for all four QS metrics an dataset, the more the standard deviation is affected with
this is because the mean in the datasets of throughput, P Spect to the mean value. Similarly, for the VoIP and HVAC

. . e
PLR and latency are greater than their median values. '_fe{)rplications, the standard deviations are also highly affected as

the HVAC application, the throughput, PLR and latency a'S[ ey appear to be 0.108589 and 0.204743 respectively, while

exhibit a skewed distribution and more spec caIIy. a .”gh heir corresponding mean values are 0.323644 and 0.253958.
skewness however, PDR presents a multi-modal distribution S S
In contrast, for the lighting and emergency applications,

as it has three different peaks. For the lighting application ch Kind of extreme values appear more frequent and cannot
the throughput and latency both datasets are rightly skew 8 X . PP . que
€' considered outliers, as the outliers by their nature are

but PDR and PLR are both multi-modal datasets. For the

surveillance application, the throughput is multi-modal with?"® events that happen in a dataset. Therefore, the deep

more than 12 modes, PDR exhibits a normal distributiorI1earn|ng models adapt better to those frequent extreme events

PLR and latency both are rightly skewed. Lastly, for the Vollt-p some extend and produce better performance for the lighting
- o ' and emergency datasets as compared to the other application
application, we have a normal distribution for all of the thre

1, We Jatasets.
0S metrics i.e., throughput, PDR and PLR, however, the . . .
Q ghp To better understand which model is able to capture this

latency dataset is slightly skewed towards right as the mear%i

n- - . .
latency data i.e., 0.004661 is slightly higher than the medi rT)hawor more accurately, we shift our focus on Figs. 4_and .
value i.e., 0.004562. t becomes apparent that the temporal transformer provides the

least error in the prediction of throughput values as compared
to all other algorithms and for all datasets. This happens for
C. Results the following two reasons: (i) For a longer input window
1) Univariate time series forecastingFor the univariate size, also called input sequence length, i.e., 30 in this work,
TSF, we included a representative range of the 5 loT datastite prediction ability of the deep learning models decreases,
to ensure the diversity and applicability of our transformewxhich leads to a rise in the error metrics. This also reveals
model with respect to the dimensionality and length of the real problem faced by the time series forecasting. However,
time series samples, as well as the number of samplesr transformer model is well suited for solving such long
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Fig. 3. Probability distribution plots of QoS data for all 10T applications

TABLE V
UNIVARIATE FORECASTING RESULTS FOR THROUGHPUTBEST RESULTS ARE HIGHLIGHTED IN BOLD

Methods MLP Stacked LSTM Bidirectional LSTM Temporal Transformer

Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
HVAC 3.91e-3 2.1le-5 4.60e-3 3.56e-3 2e-5 4.48e-3 4.57e-3 2.82e-5 53128e-3 1.17e-5 3.42e-3
\VoIP 4.20e-3 3.49e-5 591e-3 2.89e-3 1.53e-5 3.92e-3 2.87e-3 1.52e-5 3.9887e-3 4.27e-6 2.07e-3

Lighting 1.62e-3 6.13e-6 2.47e-3 1.83e-3 6.67e-6 2.58e-3 1.87e-3 6.52e-6 2.58e63e-4 1.49e-6 1.22e-3
Emergency 1.29e-3 6.86e-6 2.62e-3 1.3e-3 6.88e-6 2.62e-3 1.28e-3 6.87e-6 2.6Rd3-4 30e-8 1.73e-4
Surveillance  6.22e-2  6.92e-3 8.32e-2 2.76e-2 2.03e-3 4.5e-2 1.28e-2 7.74e-4 2.7BRGe-2 7.72e-4 2.78e-2

TABLE VI
UNIVARIATE FORECASTING RESULTS FORPDR,BEST RESULTS ARE HIGHLIGHTED IN BOLD

Methods MLP Stacked LSTM Bidirectional LSTM Temporal Transformer
Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
HVAC 4.41e-3  2.60e-5 5.10e-3 4.40e-3 2.65e-5 5.15e-3 4.35e854e-5 5.04e-3 4.15e-3 2.73e-5 5.23e-3
\VolP 2.71e-5 1.0e-9 3.16e-5 23le-5 1.0e-9 293e-5 243e-5 9.47e-10 3.0&He-5 8.55e-10 2.93e-5

Lighting 2.47e-4 1.40e-7 3.74e-4 2.64e-4 1.44e-7 3.80e-4 2.65e-4 137e-7 3.70e-4 2.63e-37e-7 3.70e-4
Emergency  1.32e-4  3.0e-8 1.73e-4 1.32e-4  3.0e-8 1.73e-4 1.3le-4 2.9e-8 1.7898e-5 9.0e-9 9.73e-5
Surveillance  3.20e-5 2.0e-9 3.89e-5 2.05e-5 1.0e-9 2.65e-5 3.40e-5 1.96e-9 442085 6.96e-10 2.53e-5

13
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TABLE VII
UNIVARIATE FORECASTING RESULTS FORPLR,BEST RESULTS ARE HIGHLIGHTED IN BOLD

Methods MLP Stacked LSTM Bidirectional LSTM Temporal Transformer
Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
HVAC 2.76e-5 1.22e-9 3.50e-5 2.36e-5 8.37e-10 2.89%e-5 2.72e-5 1.16e-9 3.41@27e-5 8.10e-10 2.84e-5
VolP 2.39%e-5 1.0e-9 3.32e-5 2.6le-5 1.30e-9 3.60e-5 1.77e-5 1.0e-9 2.42&50e-5 5.82e-10 2.4le-5
Lighting 2.74e-6 3.74e-11  6.12e-6 3.80e-6 3.37e-11  5.8le-6 3.86e-6  3.32e-11  5.76e-6 3.75%:3e-11  5.76e-6
Emergency  1.83e-12 5.40e-24 2.32e-12 2.16e-12  7.5e-24  2.74e-12 1.88e-12 53e-24 23280212 5.2e-24 2.30e-12
Surveillance  2.33e-3 5.46e-6 2.34e-3 2.67e-5 1.65e-9 4.06e-5 4.76e-4 2.45e-7 49625 e-5 1.39%e-9 3.73e-5
TABLE VI
UNIVARIATE FORECASTING RESULTS FORLATENCY, BEST RESULTS ARE HIGHLIGHTED IN BOLD
Methods MLP Stacked LSTM Bidirectional LSTM Temporal Transformer
Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
HVAC 2.47e-02 9.07e-04 3.01e-02 2.60e-02 9.26e-4  3.04e-02 2.31e-02 7.27e-04 2.702de-03 1.56e-05 3.95e-03
\VolP 9.69E-01 5.58e+02 2.36e+01 1.34e-03 2.75e-06 1.66e-03  1.42e-03 3.14e-06 1.77e272-03 2.28e-6 1.51e-03
Lighting 4.45e-02  4.09e-03  6.40e-02 4.44e-02 4.04e-03 6.36e-02 4.4166e-2 4.04e-03 6.3@3@2-02 1.09e-03  3.30e-02
Emergency  4.63e-02 3.73e-03  6.10e-02  4.90e-02 4.07e-03 6.38e-02 4.84e-02 4.06e-03 6.378@202 2.67e-03 5.17e-02
Surveillance  2.74e-04  1.20e-07  3.46e-04 2.76e-04 2.35e-06 1.53e-03  2.63e-04 1.15e-07 3.3D&4Et04 3.16e-08 1.78e-04
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Fig. 4. MSE of univariate throughput prediction across all datasets
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Fig. 5. MAE of univariate throughput prediction across all datasets

Following, the results for the PDR prediction are presented
in Table VI. As it can be seen, once more the transformer
model performed better for almost all of the applications.
Nonetheless, there are two applications for which other models
also provide promising results and these are: (i) for the HVAC
dataset the bidirectional LSTM provides the least MSE and
RMSE values as 2.54e-5 and 5.04e-3. The reason that the
transformer could not match these values are probably because
our model tried to learn the outliers and this had an impact on
the relation between the features as provided by the attention
module of the transformer, which can lead to higher errors
than the bidirectional LSTM model. At the same time, MSE
and RMSE are more sensitive to the outliers as the squaring
of high errors will lead to lower performance; (ii) for the
lighting application, MLP provides the least MAE value i.e.,
2.47e-4, however, its MSE and RMSE are also affected by
the outliers. Nonetheless, the impact of the outliers for the
particular application was less on the transformer model which
led to the least attained MSE and RMSE values.

Next for illustration purposes, in Fig. 6 we also plot
the predicted values (orange curves) and the collected true
values (blue curves) for the PDR dataset of the surveillance
application. In order to not further increase the length of the
paper, we have just selected the surveillance application as it
has more uctuations and presents a more interesting behavior
for the QoS metrics prediction. From the gure, we notice that
the PDR data is usually noisy which means that we have peaks
and troughs (i.e., fall of data points in downward direction).
This means that the PDR of the surveillance application is
sometimes higher and sometimes very lower than the normal
pattern. This is because of the exponential distribution pattern
of the application and the high network contention, since the

sequence dependency problems and thus, exhibiting a superst of the 10T devices belonging to other applications may
performance for the throughput prediction; (ii) The attentiomansmit at the same time. From this, we can deduct that the
mechanism in the transformer architecture allows to leapgaks and troughs are not normal patterns of the dataset and
the relation of temporal and positional features to specitherefore, it is not necessary that all peaks and troughs appear
throughput values at each timestamp and emphasizes on ther one after another by following a specied and periodic

importance.

behavior. Given this type of uctuating dataset, we see from
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150ms, 470ms, 550ms and 790ms time instances. These spikes
can by attributed to high network contention time instances
which can lead to an increased packet loss. Nonetheless, the
transformer was able to closely follow the unusual uctuations
between the time period from 450 ms to 900 ms. This is due
to the fact that the particular model can capture the time series
features with long-term time dependency easily.

Following, we provide the univariate latency results for the
ve |oT applications in Table VIII. As it can be seen, the
temporal transformer model performs better for all of the
datasets and in terms of all error metrics as compared to the
baseline methods. From Table VIII, we have the following

Fig. 6. PDR prediction for surveillance application observations: (1) The latency datasets of all applications
are positive (right) skewed. The distribution is right skewed
because of the lower bound in the dataset. So if the lower
bound of the dataset is extremely low relative to the rest
of the data, then this will cause the data to be skewed
right. The lower bound for an application reveal that lower
latency is experienced during the transmission of the packets.
Furthermore, the emergency application followed by lighting
and HVAC have more extreme smaller values for latency as
their standard deviations is less distant from their mean value
than the surveillance and VoIP applications. However, this
does not affect the performance of the proposed temporal
transformer model and it always outer-performs the baseline
methods for all skewed datasets in term of all error metrics.
(2) The second observation is that the second best model is

Fig. 7. PLR prediction for surveillance application the bidirectional LSTM as it performed well for 3 out of 5
applications after the transformer model. The reason is that
the particular model is able to learn the input sequence in both

the gure that the the transformer model predicts the peaksrward and backward direction. However, for the proposed
and troughs of data adequately and this is mainly becausey@hsformer model the dependencies among input sequence
the attention module within the transformer that learns VERQfe better learned using the attention module of the model.
well about the temporal and pOSitional features (i.e., at which Overa”, our proposed tempora| transformer model achieves
timestamp certain PDR values appear in the input sequeng@d best performance on 18 out of 20 settings for MAE, on
of the time series dataset over the long input sequences. 19 out of 20 settings for MSE, and on 19 out of 20 settings
Following, we provide the univariate PLR results for théor the RMSE case. Notably, for the throughput prediction,
ve loT applications in Table VII. As it can be seen, thethe transformer can increase the performance by 28% for
transformer model provides the least error values for almost BNAC, 42% for VoIP, 41% for lighting, 89% for emergency
datasets for this particular QoS metric as well. However, twgnd 2% for the surveillance applications from the second
particular cases are drawn from these results: 1) for the lightipgst performing model in terms of MAE. Furthermore, for
application, the MLP model provides the least MAE, yet, MSkhe MSE, we noticed an improvement of up to 96% and

and RMSE are higher than the transformer model and tf& the RMSE, we noticed an improvement of up to 93%.

reason for such behavior is the same as the one explainedfor the PDR prediction, the transformer model enhanced the

the PDR case; 2) for the emergency application, all algorithrperformance by decreasing the MAE by 5% for HVAC, 0.43%

provide the best accuracy performance with respect to the otk@r VoIP, 38% for emergency and 2% for the surveillance
four applications. The reason for this is that the particulaipplication from the second best performing baseline method,
dataset is not affected by outliers as the standard deviatigcept the lighting application in which the MLP improved
value i.e., 0.127102 does not deviate a lot from the mean vaki@ error rate by 6% in comparison to the transformers for the

i.e., 0.134196. Nonetheless, the transformer model providesisons we discussed above. Moreover, for the PLR prediction,

the best performance and for these types of applications. the transformers can reduce the MAE by 2% to 4% for the
Once more, we plot the actual vs. predicted values for tfieur applications, but once more the MLP shows a slightly

PLR data of the surveillance application only in Fig. 7, as it hdsetter performance for the lighting applications. Finally, for the

more uctuating patterns compared to the other applicationsatency predicted, the transformers provided an improvement

In general, we can see that the transformer model can captof@&5% for HVAC, 5% for VoIP, 47% for lighting, 17% for the

very well the general behavior of the PLR dataset. There ésnergency and 41% for the surveillance application than the
only just a small difference between the actual and predictedcond best performing model in term of MAE. Additionally,
values when there are small PLR spikes as noticed at the 50ths, proposed transformer provides 17% to 98% improvement
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TABLE IX
MULTIVARIATE FORECASTING RESULTS FOR THROUGHPUTBEST RESULTS ARE HIGHLIGHTED IN BOLD

Methods LSTNet Stacked LSTM Bidirectional LSTM Temporal Transformer
Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
HVAC 8.74e-2 7.63e-1 8.73e-1 4.34e-3 2.8le-5 5.30e-3 3.38ei3l7e-5 3.42e-3 3.35e-3 1.71e-5 4.14e-3
VolP 4.10e-2 3.91e-1 6.25e-1 4.27e-3 3.32e-5 5.76e-3 2.91e-3 1.55e-5 3.94e83e-3 1.48e-5 3.85e-3

Lighting 4.46e-2 6.88e-1 8.29e-1 1.90e-3 7.18e-6 2.68e-3 1.89e-3 7.17e-6 2.68e85e-3 7.10e-6 2.66e-3
Emergency  9.65e-2 1.45e-1 3.8le-1 1.64e-3 7.7le-6 2.78e-3 1.26e-3 6.72e-6 2.508%-3 6.67e-6 2.50e-3
Surveillance  8.60e-3  9.14e-2 3.02e-1 1.28e-2 7.73e-4 2.78e-2 4.29e-3 3.65e-5 6.0284x-3 1.55e-5 3.93e-3

TABLE X
MULTIVARIATE FORECASTING RESULTS FORPDR,BEST RESULTS ARE HIGHLIGHTED IN BOLD

Methods LSTNet Stacked LSTM Bidirectional LSTM Temporal Transformer

Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
HVAC 437e-2 5.07e-1 7.12e-1 3.07e-4 1.16e-7 3.41le-4 3.04eH15e-7 3.39e-4 2.94e-4 1.3le-7 3.62e-4
\VoIP 2.84e-2 3.52e-1 5.93e-1 2.64e-5 1.12e-9 3.35e-5 2.31le-5 8.58e-10 2.92e3%e-5 8.57e-10 2.90e-5

Lighting 2.03e-2 6.54e-1 8.09e-1 2.70e-4 1.37e-7 3.70e-4 2.65e#37e-7 3.70e-4 2.52e-4 1.40e-7 3.74e-4
Emergency 3.39e-2 6.58e-1 8.1le-1 1.32e-4  2.96e-8 1.72e-4 1.64e-4  4.57e-8 2.1WM84-4  2.80e-8 1.67e-4
Surveillance  1.63e-2 2.11e-1 4.59e-1 2.08e-5 7.28e-10 2.70e-5 3.72e-5 2.29e-9 4.706ée-5 7.20e-10 2.69e-5

application has the long-term uctuating patterns and our
transformer model is the most suitable approach for capturing
and predicting this long-term behavior.

Similarly, Table X shows that the temporal transformer
achieves the least MAE values for all applications in terms
of PDR. However, there are two cases for which bidirectional
LSTM achieves the least performance in terms of MSE and
RMSE values and these are for the lighting and HVAC
applications. There are several reasons for this. Firstly, such
application datasets contain extreme values for speci ¢ times-
tamps. Secondly, the PDR data of these two applications are
smaller compared to the other applications and the transformer
requires a larger number of training samples compared to

Fig. 8. MAE of multivariate throughput prediction across all datasets the other baseline methods. Thirdly, the good performance
of the bidirectional LSTM can be attributed to the fact that
it runs the given input sequence in two ways from past to

in term of MSE and 9% to 85% improvement in terms of th&ture and future to past. Thus, it is able to better learn even

RMSE metric. for datasets that have smaller number of training samples.

2) Multivariate time series forecastingn this part of the However, the transformers can closely follow the performance
section, we present the obtained results under the multivarigfethe bidirectional LSTM even in these situations. This can
setting. Regarding the multivariate throughput prediction, the corroborated by Fig. 9, which presents the MAE metric for
prediction results are provided in Table IX. To better illustrat@ll applications and it can be concluded that the transformer
these results w.r.t. MAE, we plot them as well in Fig. 8. Similaperformed consistently well, followed by the stacked LSTM
to the univariate setting, the scale for MAE is logarithmic antdr the emergency and surveillance applications and by the
goes from high i.e., 1.00E+00 to small values i.e., 1.00idirectional LSTM for the HVAC, VoIP and lighting appli-

03. From this plot, it is shown that the LSTNet methogations. Speci cally, the proposed temporal transformers can

provides the worst performance i.e., the highest MAE for dgad to a decrease in the MAE error that ranges from 1% to
of the applications and this is because the particular methocbf as compared to the second best baseline method.
unable to deal with the dynamic periodic patterns or the non-Moreover, we provide the results of the PLR prediction
periodic patterns of our datasets. However, the bidirectiorial Table XI. Over again, the transformer model is the most

LSTM presents a good performance, similar to the one dbminant approach. Only for the VoIP application the stacked

our proposed temporal transformer model. Speci cally, theSTM presents a better performance in terms of MSE and
transformer model provides 1% improvement for HVAC an&MSE, however the transformer model provides the least

VoIP application, 2% improvement for lighting and emerMAE. This is because the stacked LSTM can also learn

gency applications and a noticeably 32% improvement for tikemplicated nonlinear dependencies between time steps and
surveillance application as compared to the best performibgtween multiple time series. These types of dependencies
baseline method. The reason for the major improvement ¢an be easily produced when irregular network conditions are
the surveillance application dataset is that the surveillansarfaced due to interference and available bandwidth reduction
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TABLE XI
MULTIVARIATE FORECASTING RESULTS FORPLR,BEST RESULTS ARE HIGHLIGHTED IN BOLD

Methods LSTNet Stacked LSTM Bidirectional LSTM Temporal Transformer
Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
HVAC 5.24e-2 4.75e-1 6.89e-1 3.92e-5 2.09e-9 457e-5 4.73e-5 4.0e-9 6.33683B9e-5 2.09e-9 4.57e-5
VolP 3.77e-2 3.87e-1 6.22e-1 2.21e-5 3.37e-5 1.14e-9 5.04e-5 5.93e-9 7.71e-5 2.20e-5 3.3%-5 1.15e-9

Lighting 4.03e-2 6.85e-1 8.28e-1 3.94e-6 3.33e-11 5.77e-6 4.14e-6  3.55e-11  5.968:84e-6  3.32e-11  5.76e-6
Emergency 2.93e-2 6.27e-1 7.9le-1 1.90e-12 5.68e-24 2.38e-12 1.88e-12 6.27e-24 2.50812-12 5.64e-24 2.37e-12
Surveillance  8.6e-3  1.06e-1 3.26e-1  2.44e-4 6.07e-7 2.46e-4 1.12e-3 2.0e-6 1.42e80e-5 8.34e-10  2.89e-5

TABLE XII
MULTIVARIATE FORECASTING RESULTS FORLATENCY, BEST RESULTS ARE HIGHLIGHTED IN BOLD
Methods LSTNet Stacked LSTM Bidirectional LSTM Temporal Transformer
Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
HVAC 8.40e-2 2.81e0 1.66e0 2.56e-2 9.28e-4 3.05e-2 2.32e-2 7.81e-4 2.79€@27e-2 7.33e-4 2.71e-2
\VolP 2.41e-2 2.68e-1 5.052e-1 1.35e-3 2.853e-6 1.69e-3 1.35e-3 2.85e-6 1.696:24e-4 1.18e-6 1.09e-3

Lighting 7.13e-2 1.52e0 1.23e0 3.55e-2 2.56e-3 5.06e-2 3.63e-2 2.56e-3 5.06@-27e-2 1.07e-3 3.27e-2
Emergency 4.18e-2 6.65e-1 8.10e-1 6.35e-2 6.75e-3 8.22e-2  4.77e-02 3.88e-03 6.23e882-02 2.26e-03 4.75e-02
Surveillance  2.41e-02 2.68e-01 5.05e-01 2.53e-04 1.16e-07 3.40e-04 2.49e-04 9.66e-08 3.11&6&=04 3.26e-08 1.81le-04

univariate or multivariate on the prediction of the QoS metrics,
we observed that our proposed model performed better in
the univariate setting than the multivariate. This is because
there are only 4 univariate cases and 8 multivariate cases in
which our proposed transformer model performed worse than
the other models. It is to be noted that multivariate models
are good to model interesting inter-dependencies however, in
the expense of an additional complexity. One of the reason
for this behavior is that some IoT application's QoS dataset
may include outliers which can more adversely affect the
multivariate than the univariate forecasts. Moreover, it is easier
to spot and control outliers in the univariate context. Also, the
QoS datasets showed a nonlinear behavior w.r.t. time thus, the
univariate setting can handle the non-linearities more properly
than the multivariate model. Therefore, it is better to use the
Fig. 9. MAE of multivariate PDR prediction across all datasets univariate setting for predicting each of the individual QoS in
real 10T application scenario.

in the 10T networks.

Lastly, Table XII presents the results for the multivariate
latency QoS for all of the applications. It can be seen that the
proposed model outer-performs all the baselines for all appli-In this work, we investigated the QoS prediction problem
cations and in terms of all metrics. The second best performihy formulating it as a univariate and multivariate time se-
baseline method is bidirectional as it gives reasonable resules forecasting problem. A new framework was introduced
for 4 out of 5 applications. Once more, the LSTNet methatthat promotes an ef cient QoS prediction for a number of
shows poor performance compared to the rest of the meth@dexisting and heterogeneous 0T applications that stress the
and this is because it is unable to capture all the dependend@®E access network creating several levels of QoS uncertainty.
among input sequences and other QoS features in the datad#es. rstly generated ve different real time datasets for

To conclude, regarding MAE, there is 1% to 92% improve-IVAC, lighting, VoIP, surveillance and emergency response
ments provided by our transformer model. Furthermore, fapplications. Following, we presented a novel transformer-
latency, there is 2% to 37% improvement in term of MAEbased architecture, which learns temporal representations and
6% to 66.25% in term of MSE and 3% to 42% in term ofheir complex dependencies in a long-term fashion, for the
RMSE provided by our proposed temporal transformer modefediction of four important QOS metrics, namely, throughput,
compared with the second best performing baseline meth&DR, PLR and latency. The transformer architecture leverages
Finally, our proposed transformer model achieves the bdke attention mechanism, which is effective at modelling
performance on 20 out of 20 settings for the MAE case, atithe series. Finally, we performed an extensive experimental
on 16 out of 20 settings for the MSE and RMSE respectivelgyaluation in which we proved that our proposed temporal
for the multivariate forecasting task. transformer achieves superior performance for almost all of the

Regarding the impact of the problem setting as eithere 10T applications and for both univariate and multivariate

VIl. CONCLUSION
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