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Abstract: Data replication constitutes an important issue in Cloud data management. In this 
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1 Introduction 

Data replication is a well-known technique that aims to 
increase data availability, reduce bandwidth consumption and 
achieve fault-tolerance. It has been commonly used in:  
(i) Database Management Systems (DBMS) (Pérez et al., 2010; 
Tos et al., 2021), (ii) parallel and distributed systems (Benoit 
and Rehn-Sonigo, 2008), (iii) mobile systems (Guerrero-
Contreras et al., 2015) and (vi) large scale systems, including 
P2P (Spaho et al., 2015) and data Grid systems (Tos et al., 
2015). However, data replication strategies proposed for these 
systems are difficult to adapt to cloud systems. They aim to 
obtain the best performance from the system by creating as 
many replicas as possible without taking into account the 
economic cost of replication (Mokadem and Hameurlain, 
2020). Creating as many replicas as possible in cloud systems 
is not realistic. This cannot be economically feasible as it can 
lead to unnecessary use of resources and reduced profits for the 
provider. Indeed, a Cloud provider aims to generate a profit 
like any economic enterprise in addition to ensuring a certain 
Quality of Service (QoS) through meeting the tenant’s 
requirements. 

On the other hand, existing data replication strategies in the 
literature have focused on the performance of read-only queries 
(Mansouri and Buyya, 2019; Tos et al., 2016) as well as the 
management of updates (Hsu et al., 2018). However, data 
replication can be costly and performance can be degraded 
when the data is updated frequently. In fact, the advantages  
of replication can be neutralised by the overhead associated 
with maintaining consistency between several replicas. 
Throughout this paper, we only focus on data replication 
strategies proposed for Online Analytical Processing (OLAP) 
applications, i.e., the consistency management is not the focus 
of this work. 

In the literature, a certain number of synthesis works have 
been interested in the enumeration and classification of the 
main data replication strategies in Cloud systems (Gilland 
Singh, 2016; Gopinath and Sherly, 2018; Milani and 
Navimipour, 2016; Mansouri and Javidi, 2019). Most of them 
have classified these strategies as: (i) static vs. dynamic 
strategies; the number of replicas and placement nodes are 
predetermined during the design phase in static strategies 
(Begum and Sirisha, 2019; Long et al., 2014) whereas replicas 
of each object are created, placed and managed dynamically 
when the system is already operational in dynamic strategies 
(Mansouri and Javidi, 2018; Tos et al., 2018), or (ii) centralised 
(Huang et al., 2014; Zhang et al., 2018) vs. decentralised 
(Mansouri and Buyya, 2019; Wei et al., 2010) replication 

strategies, depending on the mechanism for controlling the 
creation of replicas. Furthermore, these works often did not 
provide any performance evaluation. 

In this paper, we classify data replication strategies in 
Cloud systems according to several other criteria, specific to 
Cloud environments: 

1) The orientation of the profit: A replication strategy aims 
either to reduce the monetary costs paid by tenants to the 
provider or to increase the profit of the provider. Thus, 
some strategies are considered as tenant-oriented strategies 
(Limam et al., 2019; Sakr and Liu, 2012) when most of the 
proposed strategies in the literature are considered as 
provider-oriented strategies (Liu et al., 2018; Sousa and 
Machado, 2012). To the best of our knowledge, only a few 
studies (Tabet et al., 2017) take (partially) into account this 
criterion when classifying data replication strategies in 
Cloud systems. 

2) The objective function for which a data replication 
strategy is designed: Considering the fact that a data 
replication strategy aims to maximise/minimise some 
objective, it is possible to propose a classification with 
regard to the considered objective function. In this context, 
we distinguish data replication strategies that aim to:  
(a) improve data locality (Lee et al., 2015), (b) improve the 
network bandwidth locality (Mokadem and Hameurlain, 
2020), (c) reduce the cost of replication based on cost 
models (Pu et al., 2015) or economic behaviours such as 
auctions (Zhang et al., 2014).  

3) The number of tenant objectives that a replication strategy 
aims to satisfy: Data replication strategies can be classified 
as: single-objective vs. multi-objective strategies. Most of 
the existing strategies aim to satisfy a single tenant 
objective such as availability (Sun et al., 2012), energy 
consumption (Xu et al., 2015), reliability (Bui et al., 2016), 
performance (Mansouri and Buyya, 2019; Vulimiri et al., 
2015) and fault tolerance (Li et al., 2019). On the other 
hand, some strategies aim to simultaneously meet several 
tenant objectives. The design of such strategies implies 
taking into account certain compromises since satisfying 
one objective can often conflict with another objective. 
Examples of these satisfied objectives are latency and 
reliability in Hassan et al. (2009), data availability and load 
balancing in Edwin et al. (2019) and, availability, response 
time, network latency, energy consumption and load 
balancing in Long et al. (2014). 
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4) The nature of the cloud environment for which a data 
replication strategy is designed: Most of the existing 
strategies in the literature have been proposed for a single 
cloud provider (Mokadem and Hameurlain, 2020). Most 
of the time, they investigated the problem of placing 
replicas or finding the optimal number of replicas in order 
to optimise costs while meeting QoS for tenants. On the 
other hand, only some replication strategies were deployed 
on several cloud providers (Abu-Libdeh et al., 2010; 
Mansouri and Buyya, 2019; Wu et al., 2013; Khelifa et al., 
2022). In this context, most of the proposed strategies take 
advantage of price differences of different resources 
between cloud providers when deciding to replicate in 
order to satisfy the Service Level Agreement (SLA). 

5) Taking into account the economic costs of data 
replication: A significant part of the existing replication 
strategies in Cloud systems neglects the economic costs of 
data replication. Most of them aim to satisfy the tenant’s 
objectives while only reducing the cost of replication, e. g., 
storage and data transfer. Gill and Singh (2016) and Liu et 
al. (2013) mentioned cost-aware although the considered 
cost of replication is not necessarily an economic cost. On 
the other hand, only a few strategies take into account the 
economic cost of replication by modelling the replication 
cost, the provider profit, the energy consumption or 
penalty costs as monetary costs. In this paper, we focus on 
replication strategies that consider the economic profit of 
the provider (Mansouri and Buyya, 2019; Mokadem and 
Hameurlain, 2020; Wu et al., 2013) and the energy 
consumption of the provider (Alghamdi et al., 2017; Boru 
et al., 2015; Long et al., 2014; Seguela et al., 2021). 

Obviously, the proposed classification can cause some overlap, 
i.e., some strategies (Mokadem and Hameurlain, 2020;  
Wu et al., 2013) may be cited in different classes. We also 
study the impact of some important factors, e.g., bandwidth 
consumption, cloud topology, user’s access pattern and the 
number of tenants, on the performance of these strategies. In 
the performance evaluation section, we provide feature 
comparison of some strategies by measuring some important 
metrics such as the average response time, the average replica 
factor and the number of SLA violations. We measure the 
impact of some factors, e.g., the arrival rate of queries, on the 
performance and resource consumption of these strategies. The 
simulation analysis proves that strategies which take into 
account the compromise between the tenant’s objectives and 
the economic provider profit are more realistic in Cloud 
systems. 

The rest of this paper is organised as follows: Section 2 
introduces some specifications of replication strategies in cloud 
systems and the existing classifications of these strategies. 
Section 3 presents our proposed replication strategy 
classification. Section 4 points out some important factors 
when data replication strategies achieve performance. Section 5 
deals with a simulation analysis that measures the impact of 
some factors on performance. Finally, Section 6 contains 
conclusion and future work. 

2 Data replication in cloud systems:  
state of the art  

An elastic resource management is critical to minimise 
operating cost while ensuring performance during high 
loads (Hameurlain and Mokadem, 2017). For this aim, 
scaling up/down allows adding/removing resources when 
the workload increases/decreases beyond a given threshold 
(Hwang et al., 2016). In contrast, scaling out/in (that we 
consider here through data replication), adds/removes VMs 
in order to satisfy the tenant requirements. Hwang et al. 
(2016) affirmed that scaling out has lower over-provisioning 
of resources than the scaling up. In this context, the provider 
and its tenants agree on a QoS via an SLA contract. Mainly, 
an SLA includes: (a) one or several Service Level 
Objectives (SLOs), (b) a validity period, (c) a Billing Period 
(BP) during which the provider rents services to its tenants, 
(d) an agreed monetary amount paid by the tenant to the 
provider for the processing of its queries during a BP and 
(e) an agreed monetary penalty amount paid by the provider 
to its tenant in case of breach of the SLA (Sousa and 
Machado, 2012). 

Replicating data in all nodes is not realistic because of  
the storage and bandwidth constraints. In consequence, a 
replication strategy is required. Although many data replication 
strategies were proposed for classical systems, e.g., data grid 
systems, they are not suitable for cloud systems since the 
economic aspects are not taken into account. Creating as many 
replicas as possible in the Cloud may not be economically 
feasible. As a result, replication strategies in cloud systems 
must ensure certain QoS to tenants (without aiming to have the 
best QoS) while taking into account the economic profitability 
for the provider. Thus, a strategy for replicating data in cloud 
systems must not only address the classic data replication 
issues: (i) when should replication take place? (ii) what data 
should be replicated? (iii) how many replicas must be created? 
(iv) where to place these replicas? and (v) which replica is 
selected?, but also, it must take into account economic aspects 
such as the cost of replication and the provider profit. 

In the literature, a certain number of synthesis works have 
been interested in the enumeration and classification of the 
main data replication strategies in Cloud systems (Gill and 
Singh, 2016; Milani and Navimipour, 2016; Tabet et al., 2017; 
Gopinath and Sherly, 2018). Most of them classified these 
strategies as: (i) static vs. dynamic or (ii) centralised vs. 
decentralised strategies. 

2.1 Static vs. dynamic strategies 

In a static data replication strategy (Begum and Sirisha, 2019; 
Ghemawat et al., 2003; Hassan et al., 2009; Long et al., 2014; 
Zeng and Verravelli, 2014), the number of replicas for a data 
set is determined in advance during the design phase. 
Deterministic policies are applied to decide in advance the  
location of each replica and the cost associated with replication 
is directly proportional to the number of active replicas  
(Liu et al., 2013). Ghemawat et al. (2003) proposed a data  
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replication algorithm in GFS (Google File System) offering a 
reduced response time and high availability. The limitation of 
this algorithm is that a fixed number (3) of replicas is used for 
all files. This generates high consumption of resources, 
particularly in terms of storage and energy consumption (Long 
et al., 2014). MORM (Long et al., 2014) is another static 
replication strategy. It is based on an offline algorithm that 
aims to improve data availability, response time and network 
latency. Access statistics are used and the replication scheme is 
established in advance for a long period depending on the 
initial capacity of the system. In the MOE replication strategy 
(Hassan et al., 2009), a scalable method reduces storage and 
latency as well as improves data reliability. This solution 
explores a research space in which a potentially good solution 
can be found. The strategy proposed in Zeng and Verravelli 
(2014) manages the replication of metadata in order to 
minimise the average response time. An optimal load balancing 
technique is considered for large-scale Data Centres (DC). 

In a dynamic replication (Edwin et al., 2019; Kumar et al., 
2014; Lazeb et al., 2019; Mansouri et al., 2017; Tabet et al., 
2019; Tos et al., 2016; Wei et al., 2010), replicas of each object 
are created, placed and managed dynamically when the system 
is already operational. It is done according to the user’s access 
modes and the availability of resources, e.g., storage and CPU. 
In the CDRM strategy (Wei et al., 2010), a replica is placed on 
the node with the lowest blocking probability in order to reduce 
the data access overhead. A blocking probability is calculated 
on each Virtual Machine (VM) and the overloaded VMs are 
blocked for the reception of new queries. This improves load 
balancing between nodes. However, the satisfaction of the SLA 
is not taken as a decision criterion. Sousa and Machado (2012) 
proposed RepliC, a database replication strategy in a multi-
tenant environment. It dynamically adjusts the number of 
replicas by monitoring the system usage. RepliC manages the 
workload change by directing the queries to replicas with 
sufficient resources or by creating new replicas. In the PEPR 
strategy (Tos et al., 2018), a replication is considered only if: (i) 
the response time of a query, estimated before its execution, is 
greater than a threshold response time established in the SLA. 
Furthermore, (ii) the replication must be profitable for the 
provider. For this aim, the provider’s expenses and revenues 
are also estimated. However, replication is done by query, 
which generates a high replication cost. The DCR2S strategy 
(Gill and Singh, 2016) aims to create a replica for data whose 
popularity exceeds a certain threshold. Based on the concept of 
knapsack, replicas are re-replicated from more expensive DCs 
to cheaper DCs in order to reduce the cost of replication. 
Finally, the DPRS strategy (Mansouri et al., 2017) replicates 
only a small part of the frequently requested data on the best 
locations according to the number of users' interests and the 
available storage space. 

In general, static strategies are simple to implement. The 
choice of a static strategy depends in particular on the 
stability of the user’s access mode, the storage capacity of 
nodes and the available bandwidth. The static creation  
of a maximum number of replicas can guarantee the  
 
 

required performance at the cost of a high operating cost 
(Liu et al., 2013). These strategies are suitable for 
applications that predetermine user demands. However, user 
access to data varies widely in Cloud systems in addition to 
a very heterogeneous workload and bandwidth. As a result, 
dynamic replication strategies are considered more desirable 
due to the dynamic aspects of Cloud systems. However, 
they have certain drawbacks such as the difficulty of 
collecting precise execution information from all nodes 
(Long et al., 2014). 

2.2 Centralised vs. decentralised strategies 

In addition to the nature of replication, replication strategies 
have also been classified according to the mechanism of 
controlling the creation of replicas. It depends on what entity 
controls the replication decision process. Then, data replication 
strategies can be viewed as centralised vs. decentralised 
strategies. 

Each approach has its advantages and drawbacks. 
Centralised replication strategies (Begum and Sirisha, 2019; 
Huang et al., 2014; Sun et al., 2012; Zhang et al., 2018) are 
easier to implement. The strategy proposed in Zhang et al. 
(2018) is based on a central controller node that maintains an 
up-to-date global view of data in the system. This permits to 
quickly react to network dynamics and workload variations. 
However, the presence of a central authority is not ideal for 
reliability and fault tolerance since a single entity is responsible 
for all the decisions and has knowledge about every aspect of 
the Cloud system. On the other hand, decentralised replication 
strategies (Ghemawat et al., 2003; Mansouri and Buyya, 2019; 
Sousa and Machado, 2012; Tos et al., 2016; Wei et al., 2010) 
constitute a guarantee of reliability, since there is no single 
point of failure in the system. The system can behave 
predictably, even if a number of nodes are lost. However, the 
fact that some nodes may have incomplete information about 
the state of the system can lead to non-optimal results with 
excessive replications. 

2.3 Other classifications 

Other works classified these strategies according to other 
criteria. Tabet et al. (2017) provided a survey based on 15 
strategies. In addition to the static vs. dynamic classification, 
other criteria are considered, e.g., the nature of the workload 
balancing (proactive vs. reactive strategies) and the replica 
factor determination (optimal replica factor vs. dynamic 
adjustment of this factor). Tos et al. (2018) provided another 
survey that takes into account the economic impact of 
replication. However, they only focus on strategies that 
consider auction models (Zhang et al., 2018) or virtual 
economy (Bonvin et al., 2010). Except the strategy proposed in 
Tos et al. (2016), the cost models used in the mentioned 
strategies do not necessarily consider monetary costs. 
Furthermore, these strategies do not consider economic aspects 
such as the monetary profit of the provider or the cost of 
penalties paid by the provider to its tenants. 
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3 Proposed classification 

We propose another classification of data replication strategies 
in Cloud systems according to other criteria more specific to 
Cloud environments: (i) the orientation of the profit, (ii) the 
achieved objective function for which a strategy was designed, 
(iii) the number of tenant’s objectives, (iv) the nature of the 
Cloud environment for which a strategy is designed, (v) the 
consideration of economic concepts when replicating data. For 
this last criterion, we focus on (a) strategies that consider the 
economic cost of replication and the provider’s economic  
profit and (b) strategies that take into account the  
energy consumption cost. Of course, this classification can 
cause some overlap. Thus, some strategies can be cited in 
different classes. 

3.1 The orientation of the profit  

In the literature, most of the replication strategies proposed for 
cloud systems focused on the prospect of minimising the 
consumption of resources, e.g., data transfer or storage, for the 
cloud provider while satisfying the objectives of tenants (Boru 
et al., 2015; Khelifa et al., 2020; Liu et al., 2018; Sousa and 
Machado, 2012; Wei et al., 2010; Zeng and Verravelli, 2014)  . 
Then, the provider profit is increased since its expenditures are 
reduced. Sousa and Machado (2012) aimed to adjust the 
consumption of resources in a multi-tenant database 
environment. By adapting to the workload variation of the 
nodes, the queries use replicas located on less loaded nodes. 
This permits to meet the objectives of the tenants, which 
reduces SLA violations. Boru et al. (2015) aimed to reduce 
energy consumption as well as bandwidth consumption. 
Mansouri et al. (2017) replicated the most popular data based 
on the Pareto principle (80-20%), which allows a significant 
reduction in the consumption of storage resources. 

On the other hand, only some data replication work focus 
on reducing the monetary costs paid by tenants to the provider 
(Limam et al., 2019; Magalhaes and Silva, 2013; Sakr and Liu, 
2012; Sakr et al., 2011; Sharma et al., 2011; Zhao et al., 2015). 
Sakr et al. (2011) offered a provisioning tool by declaratively 
defining application-specific rules. Resources are provisioned 
adaptively according to the needs of the consumer. The 
Kingfisher resource management system (Sharma et al., 2011) 
allows a tenant to optimise their resources in terms of capacity 
by choosing the server configuration that best suits them in 
terms of performance and costs. Magalhaes and Silva (2013) 
collected application-level data and detects performance 
anomalies motivated by workload variation, resource 
consumption or application changes. However, it neglects the 
minimisation of the price paid by the tenant to its provider. 
Zhao et al. (2015) allowed a dynamic and adaptive supply of 
resources, including replicas, based on rules defined by the 
applications. It aims to satisfy the performance requirements of 
tenants while reducing the monetary cost of the resources 
allocated to each tenant. Finally, the allocation of resources to 
tenants in Limam et al. (2019) is done according to the initial 
budget of the tenant. 

3.2 The considered objective function 

An objective function is a criterion that serves to optimise 
the system performance (Mokadem and Hameurlain, 2015). 
It determines the approach of each strategy in order to 
achieve a performance objective. In the following section, 
we propose a replication strategy classification according to 
the achieved objective function: 

1) Strategies that improve data locality: Lee et al. (2015) 
exploited data popularity when deciding to replicate. Most 
of the time, data are replicated as close as possible to the 
nodes that generate the most demand, assuming that these 
data will probably remain popular in the future 
(Jayalakshmi and Ranjana, 2015). To cope with the wave 
of rapid popularity, Ridhawi et al. (2015) and Lazeb et al. 
(2021) took into account the variation in data popularity 
which peaks for a short period and then gradually 
decreases. These strategies are often based on data access 
history. This corresponds to the temporal and geographic 
localities. Other strategies even propose mechanisms for 
predicting future access based on historical access records 
in order to preventively replicate data (He et al., 2018; 
Ridhawi et al., 2015). Thus, data related to recently 
accessed data will probably be requested soon. This 
corresponds to spatial locality.   

2) Strategies that exploit the network bandwidth (NB) 
locality. These strategies aim to reduce the consumption of 
the NB by replicating on the nodes that have bigger NB 
with the tenant that requires data (Park et al., 2004). Many 
replication strategies aim to reduce the NB resource 
consumption (Ardekani and Terry, 2014; Limam et al., 
2019; Tabet et al., 2019, 2016). Mokadem and Hameurlain 
(2020) exploited the NB locality in order to reduce the 
response time of a tenant query, i.e., a replica of a required 
remote data d is placed at a node having a larger NB 
toward the node requiring d. 

3) Cost model-based strategies that reduce the replication 
cost. In such strategies (Mansouri et al., 2017; Pu et al., 
2015; Xiong et al., 2011), the replication decision is made 
accordingly to the output of a mathematical model that 
takes into account parameters such as the file access 
statistics or replica sizes. They aim to reduce the 
consumption of resources, e.g., storage or NB resources. 
In the strategy proposed in Tos et al. (2018), the 
replication decision relies on both cost model that 
estimates response time RT for a query Q and economic 
cost model that estimates the provider profit when a 
replica creation is considered. A replica creation is 
considered only if RT exceeds a threshold response time 
defined in the SLA. Then, a new replica is really created if 
and only if a node is found so that the response time SLO 
is satisfied again while this replication is profitable for the 
provider.  

4) (iv) Economic behaviours-based strategies that reduce 
the replication cost. Some strategies exploit some 
economic behaviours used in trading (Belalem et al., 2011; 
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Marcus et al., 2018; Shi et al., 2017; Zhang et al., 2018).  
They are based on some market-like mechanisms in which 
data are regarded as tradable goods. Zhang et al. (2018) 
improved data availability by exploiting an auction model 
when placing new replicas. If the desired level of 
availability is not reached, an auction is launched to 
determine the location of a new replica. The auction price 
depends on several properties, including the NB and 
available storage space. Marcus et al. (2018) aimed to 
balance the load between the nodes of the system. It is 
based on an economic model that considers data as goods, 
queries as customers and nodes as companies. The value 
of the goods is estimated based on the frequency of access 
to these data and the monetary costs that the user pays for 
the execution of the requests. 

3.3 The number of tenant’s objectives   

Most of the replication strategies proposed in the literature aim 
to guarantee a single specific objective for the tenants, e.g., 
availability (Wei et al., 2010), reliability (li et al., 2017), low 
latency (Ma and Yang, 2017), reduced response time  
(Tos et al., 2018; Khelifa et al., 2021), data durability  
(Liu et al., 2018), security (Ali et al., 2018) or reduction of the 
energy consumption (Boru et al., 2015). Other strategies aim to 
simultaneously meet several objectives for the tenants  
(Boru et al., 2015; Hassan et al., 2009; Long et al., 2014; 
Edwin et al., 2019; Mansouri and Javidi, 2018; Mokadem and 
Hameurlain, 2020). 

3.3.1 Single-objective strategies 

Data availability is the most answered objective that many data 
replication strategies aim to satisfy (Gill and Singh, 2016; Long 
et al., 2014; Liu et al., 2020). In what follows: we cite some 
strategies that aim to satisfy a single SLO objective: 

Availability: Data availability often depends on the 
availability of the nodes that host data. An overloaded node 
cannot execute tenant queries on time. As a result, it is often 
necessary to increase the number of replicas so that the 
requested data is available on less busy nodes. Wei et al. (2010) 
emphasised that having too many replicas does not necessarily 
increase availability, but rather results in a decrease in 
performance. In this context, they calculate and maintain a 
minimum number of replicas to satisfy a minimum level of 
availability. The study of the relationship between the number 
of replicas and the level of availability has also been the subject 
of the work in Sun et al. (2012). The proposed strategy 
establishes a minimum number of replicas for the most  
popular data. 

Fault tolerance: In the case of a node failure, data replicas 
available in other nodes facilitate the retrieval of that data. In 
this way, data replication significantly improves the system 
fault tolerance (Li et al., 2019; Selvi et al., 2018). Xiong et al. 
(2011) proposed a strategy called Resilient, Fault-tolerant and 
High-efficient (RFH) that allows the number of replicas to be 
adapted according to the network traffic. If a data set becomes 
popular, more replicas are created. Otherwise, unwanted 
replicas are erased to save resources. As a result, access errors 

to such replicas are reduced in the case of a failure. 
Furthermore, the cost of replication is relatively low. Mokadem 
and Hameurlain (2020) ensured fault tolerance through the 
creation of at least one replica for each data set on nodes 
geographically distributed across different regions. 

Reliability: It refers to the property that a system can run 
uninterruptedly without failure. In contrast to availability, 
reliability is defined in terms of a time interval instead of an 
instant in time. Data replication is the most widely used 
technique, along with the erasure code technique (Bui et al., 
2016), to guarantee data reliability. It allows creating and 
storing multiple replicas of data to reduce the likelihood of data 
loss. Liu et al. (2018) relied on techniques such as data 
compression to ensure data sustainability. 

Performance: Performance guarantees, e.g., in terms of 
response time, are often not offered by cloud providers as a part 
of the SLA because of the heterogeneous workloads in cloud 
systems (Mokadem and Hameurlain, 2020). For example, 
Google Cloud SQL1 only provides downtime and error 
guarantees without an RT guarantee. Thus, satisfying 
performance can often conflict with the goal of obtaining a 
maximum economic benefit at minimal operating costs (Long 
et al., 2014). Only some replication strategies integrate the 
performance objective, generally in terms of response time, in 
the SLA (Bai et al., 2013; Dabas and Aggarwal, 2019; Kumar 
et al., 2014; Li et al., 2018; Mansouri and Buyya, 2019; Sousa 
and Machado, 2012; Tose t al., 2016) . The RTRM strategy 
proposed in Bai et al. (2013) aimed to reduce the response 
time. Using a response time threshold, RTRM creates new 
replicas when it exceeds this threshold. RTRM dynamically 
predicts bandwidth and selects a replica accordingly. Kumar  
et al. (2014) improved performance by proposing a replica 
placement algorithm. Zhao et al. (2015) tenant-oriented, it 
meets the performance objective by creating replicas whenever 
the response time exceeds a threshold set in advance in the 
SLA. The PEPR strategy (tos et al., 2018) takes advantage of 
the hierarchy in terms of bandwidth in order to reduce 
bandwidth consumption and consequently reduce response 
times. Data access time is reduced in the DPRS strategy 
(Mansouri et al., 2017) due to the parallel reading of partitions. 

Reduction of energy consumption: A number of data 
replication strategies (Alghamdi et al., 2017; Boru et al., 2015; 
Edwin et al., 2019; Séguéla et al., 2019; Xu et al., 2015; Zhang 
et al., 2015) aim to reduce energy consumption. Some of them 
aim to reduce energy consumption as an objective when others 
try to reduce the carbon footprint by replicating in a greener 
DC. Some strategies take into account the profit made by 
reducing energy consumption. The strategy proposed in Boru 
et al. (2015) models the energy consumption and the network 
usage in resource consumption. If the number of data accesses 
exceeds a certain threshold, a replication is made on the DC 
which consumes the least energy and uses the least bandwidth 
than the central databases. The aim of the strategy proposed in 
Zhang et al. (2015) is to group the workload by placing replicas 
on a few nodes. Then, put on standby or even stop the inactive 
nodes. Zhang et al. (2015) reduced carbon emissions, e.g., the 
emission of greenhouse gases, thanks to the knowledge of the 
carbon footprint of each energy source and each of the sources 
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used by the DC. Then, replication takes place in DCs that 
consume less energy. 

3.3.2 Multi-objective strategies  

The strategy proposed in Hassan et al. (2009) aims to keep 
storage below certain limits, minimise latency and optimise 
reliability while trying to find a compromise between these 
objectives. The MORM strategy (Long et al., 2014) is based on 
mathematical models that aim to satisfy several objectives, 
including availability, response time, network latency, energy 
consumption and load balancing. The placement of data is done 
according to an optimisation function such as a weight 
associated to each objective and decided by the administrator. 
This function aims to capture the compromise between these 
objectives by taking into account the relationship between the 
number of replicas and performance. In the strategy proposed 
in the Iridium system (Pu et al., 2015), the query frequency and 
the data access statistics are used when placing replicas. In 
consequence, the consumption of bandwidth between DCs is 
reduced and latency is minimised. Boru et al. (2015) aimed to 
reduce both energy consumption and the use of bandwidth. The 
PEPR strategy (Tos et al., 2016) aims to reduce response time 
and ensure minimum availability. The EIMORM strategy 
proposed in Edwin et al. (2019) aimed to balance data 
availability, load balancing and the cost of replication. In order 
to balance performance and storage efficiency, Li et al. (2017) 
first stored data with replication, followed by encoding the 
replicated data through the erasure coding. Finally, Mansouri 
and Javidi (2018) aimed to improve availability and load 
balancing. 

On the other hand, even if certain strategies do not directly 
consider performance as a main objective, i.e., not specified in 
the SLA, an improvement in performance, e.g., in terms of 
reduction in response time, can be observed as a consequence 
of other targeted objectives. Lee et al. (2015) and Wei et al. 
(2010) claimed that performance can be improved by balancing 
the load between different nodes. Favouring data locality also 
reduces the consumption of network bandwidth, which 
improves system performance (Kloudas et al., 2015; Vulimiri 
et al., 2018). 

3.4 The nature of the cloud environment 

Although most of the replication strategies mentioned above 
have been proposed for a single cloud provider, some 
replication strategies were deployed on multi-provider clouds 
(Abouzamazem and Ezhilchelvan, 2013; Abu-Libdeh et al., 
2010; Bessani et al., 2013; Chen et al., 2014; Mansouri and 
Buyya, 2019; Wu et al., 2013). 

One of the first replication strategies to consider multiple 
cloud providers is the strategy proposed in the DepSky system 
(Bessani et al., 2013). However, it only deals with security 
aspects without taking into account the economic aspects such 
as the cost of replication. In the strategy proposed in 
Abouzamazem and Ezhilchelvan (2013), tenants rent services 
from several providers, according to a pricing policy and 
resource prices provided by each cloud provider. The data 

replication strategy integrated into the SpanStore system (Wu 
et al., 2013) covers several cloud providers. The price 
difference between providers is exploited in order to minimise 
costs when taking into account fault tolerance and latency 
requirements. The resource price difference is also exploited in 
Mansouri and Buyya (2019) to minimise the monetary cost of 
replication with the assumption that the workload is known in 
advance. Khelifa et al. (2022) proposed a dynamic and periodic 
data replication strategy in federated cloud systems. It aims to 
guarantee the monetary profit of a cloud provider while 
satisfying its users’ requirements in terms of response time and 
minimum availability. To identify replicas, we perform a 
periodical analysis of the users’ tasks using the spectral 
clustering technique to extract the existing correlations between 
remote data related to SLA violations. The NCC system 
proposed in Chen et al. (2014) can interconnect different 
Clouds and transparently stripe data across them. The proposed 
strategy in such system is mainly designed for providing a 
fault-tolerance when the monetary cost of repair is reduced 
compared to the erasure code technique. Liu, G. and Shen 
(2017) exploited a nonlinear integer programming model to 
maximise data availability in both types of failures and 
minimise the cost of replication. Also, it avoids the vendor 
lock-in problem, i.e., a tenant may not be free to switch from 
one provider to another. Finally, the data replication strategy 
proposed in the RACS system (Abu-Libdeh et al., 2010) 
retrieves data from the Cloud that is about to fail and move 
them to the new Cloud while the vendor lock-in problem is  
also avoided. 

Although only some data replication strategies have been 
proposed for a multi-provider cloud environment, Mansouri 
and Buyya (2019) affirmed that more and more cloud 
customers often use more than one provider. Amazon Web 
Services and Microsoft Azure are most often chosen by 
customers. The choice of one provider or another depends on 
the pricing policies applied by a particular provider. These 
public cloud service providers are often linked to existing data 
centres located across the world. 

3.5 Consideration of economic aspects 

As surprising as it may seem, a significant part of the existing 
replication strategies in Cloud systems neglects the economic 
costs related to data replication. In what follows, this is 
considered as a criterion for classifying data replication 
strategies. 

3.5.1 Replication strategies without taking into 
account the economic cost of replication 

Most of the strategies described here focus on reducing the 
consumption of the required resources during data replication 
without taking into account the economic cost of replication 
(Bai et al., 2013; Dabas and Aggarwal, 2019; Edwin et al., 
2019; Kumar et al., 2014; Lee et al., 2015; Long et al., 2014; 
Liu et al., 2013; Mansouri and Javidi, 2018; Pu et al., 2015; 
Sakr et al., 2011; Tan and Babu, 2016; Wei et al., 2010) . Most 
of them were interested in finding the optimal number of 
replicas (He et al., 2018) or replica placement (Zhang et al., 
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2015) because of their effects on performance. In the strategy 
proposed in Sakr et al. (2011), an elastic database management 
is considered. Replication decisions are based on rules that 
ignore the economic aspects. Although the RTRM strategy 
(Bai et al., 2013) aims to satisfy the response time objective, it 
neglects the economic aspects. The SWORD strategy (Kumar 
et al., 2014) minimises a new metric called the query span and 
the number of nodes involved in executing a query. This 
reduces the consumption of resources without quantifying this 
consumption from an economic point of view. It is also the 
case of the strategy proposed in Dabas and Aggarwal (2019) 
that aims to satisfy a response time guarantee without 
considering the cost of replication. Finally, the strategy 
proposed in Edwin et al. (2019) aimed to meet several 
objectives. Except the energy consumption, it does not include 
other economic costs such as the provider profit or penalty 
costs. 

3.5.2 Data replication strategies taking into account 
the economic cost of replication 

Some strategies are mentioned as taking into account the 
economic cost of data replication. However, the cost model 
used is not necessarily a monetary cost (Bonvin et al., 2010; 
Gill and Singh, 2016; Liu et al., 2013) . Skute (Bonvin et al., 
2010) is a strategy based on a virtual economy. VMs act 
autonomously and periodically announce their rental to other 
VMs. They accumulate gain by responding to requests and 
spend this gain by storing replicas on the resources specific to 
other VMs, according to their rent. The objective is to minimise 
communication costs while maximising virtual economic 
profit. Xiong et al. (2011) presented a resource management 
strategy that uses machine learning techniques to generate an 
optimal amount of virtual profit in a multi-tenant DB 
environment. They use a predictive model to determine CPU 
configuration and memory allocation, which generates 
minimum penalty costs for a given workload. Liu et al. (2013) 
affirmed that the replication cost is taken into account by 
modelling it in terms of time. This is also the case in the 
DCR2S strategy proposed in Gill and Singh (2016). 
Replication is only possible if the cost does not exceed a budget 
value. It corresponds to a value cost, initially assigned to DCs. 
Thus, the considered cost of replication is not a real monetary 
cost. In what follows, we particularly focus on: (i) strategies 
that take into account the economic profit of the provider and 
the penalties paid by the provider to its tenants while modelling 
monetary costs in their cost model and (ii) strategies that aim to 
reduce the provider’s costs from the energy consumption point 
of view. 

Data replication strategies considering the provider 
economic profit: Only a few data replication strategies (Casas 
et al., 2017; Liu and Shen, 2017; Mansouri and Buyya, 2019; 
Mokadem and Hameurlain, 2020; Tos et al., 2018; Tos et al., 
2021; Wu et al., 2013; Zeng and Verravelli, 2014; Zeng et al., 
2016) model the cost of replication and the provider profit as 
monetary costs while satisfying the tenant performance 
objective, e.g., in terms of response time. In the strategy 
proposed in the SpanStore system (Wu et al., 2013), price 
differences between different cloud providers are exploited 
during data replication to minimise replication costs when 

taking into account fault tolerance and latency requirements. 
Zeng and Verravelli (2014) taken into account the trade-off 
between the execution time and the monetary cost of 
replicating metadata. In Zeng et al. (2016), providers buy 
services from sellers in the cloud and then resell them to 
tenants. The proposed strategy aims to minimise the provider’s 
resource expenditures while maximising the use of storage 
resources for tenants. Then, the number of replicas and their 
placement depend on the compromise between performance 
and monetary cost in each node. 

The monetary provider’s expenses and incomes are also 
estimated in Tos et al. (2018) before the execution of each 
tenant query. A new replica is created only if this replication is 
profitable for the provider. In addition, the location of the 
replicas is based on the selection of the cheapest DC that meets 
the response time SLO. Casas et al. (2017) taken into account 
some characteristics of workflows such as execution time, 
dependency models and file size. The number of replicas is 
increased as long as the monetary cost of an application does 
not exceed a monetary threshold fixed in advance in the SLA. 
The replication strategy proposed in Mansouri and Buyya 
(2019) takes advantage of the heterogeneous pricing between 
DCs, in terms of storage and bandwidth, by replicating 
according to the future variation of the workload. Finally, 
replication costs and penalties are modelled as monetary costs 
included in the provider’s expenses in Mokadem and 
Hameurlain (2020). A new replica is created only if a node 
placement is found such as the response time objective is 
satisfied while this replication must be profitable for the 
provider. 

Data replication strategies considering the cost of energy 
consumption: Most of the data replication strategies cited above 
neglect the power and energy required for data replication. 
However, DCs consume a large portion of the world’s global 
electricity consumption and energy bills have become the 
second highest costs in cloud provider budgets (Zakarya and 
Gillam, 2017). This is due to the development of the internet 
and the increasing storage needs of businesses. Some studies, 
e.g., Shehabi et al. (2016) predicted that the energy 
consumption of DCs in USA will increase by 13% by 2030. 
They had already predicted that electricity consumption of DCs 
will increase by 140 billion KWh/year in 2020, which will cost 
companies 13 billion dollars/year in electricity bills and the 
emission of nearly 100 million tonnes of carbon pollution per 
year. In this context, some data replication strategies have 
focused on the energy consumption. 

The strategy proposed in Alghamdi et al. (2017) takes into 
account energy consumption in order to reduce the monetary 
cost of a user query. The provider’s profit corresponds to the 
difference between the state without replication and the state 
resulting from such replication. The authors claimed that the 
proposed algorithm reduces the total power consumption of 
data access compared to an optimal replication solution. 
Séguéla et al. (2019) compared different replication strategies, 
mainly (Boru et al., 2015), MORM (Long et al., 2014) and 
PEPR (Tos et al., 2018). The performance evaluation shown 
that the strategy proposed in Boru et al. (2015) reduced  
the provider’s expenditures at the cost of higher energy 
consumption while PEPR reduces expenditures of the provider 
without any effect on the energy consumption. In contrast, 
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MORM consumes significant energy when a high number of 
replicas are created. Finally, Seguela et al. (2021) proposed a 
static and multi objective data replication strategy that aims to 
reduce both energy consumption and expenditure of the 
provider. It leverages on heterogeneity, sleep states and 
consolidation while considering performance for tenants. 

4 Important factors for ensuring performance  
for tenants while considering the economic 
profit for the provider 

Adopting one strategy rather than another depends on several 
factors that significantly impact both tenant QoS and provider 
profit. We also need to always ensure that the benefit of a given 
strategy is higher than the cost of replication (Van Steen and 
Pierre, 2010). In this context, the cost of replication depends on 
the decision to favour one factor over others. In what follows, 
we enumerate some important factors that impact performance 
of any replication strategy in Cloud Systems. 

 Optimal granularity: Determining the appropriate data 
granularity is a very important aspect when replicating in 
order to achieve the performance objective. Van Steen and 
Pierre (2010) demonstrated that the optimal granularity 
depends on the applications. They conclude that meeting 
the performance objective requires strategies that favour 
the replication of small data units. This is also valid in 
cloud systems, especially since the performance objective 
must be respected so that the provider does not pay 
penalties to its tenants. 

 Data consistency: When data are updated frequently, 
changes should be propagated to all replicas of the system 
in order to ensure consistency. Consequently, a global 
synchronisation with appropriate protocols is necessary 
between different nodes containing these replicas  
(Chen et al., 2014). There are many consistency models 
and protocols providing different levels of performance 
guarantees (Campêlo et al., 2020). However, there is no 
universal solution and these protocols are generally not 
scalable. This is why most replication strategies with 
performance objective generally compromise on data 
consistency (Van Steen and Pierre, 2010), especially when 
the provider wants to have an economic profit.  

 Bandwidth consumption: Many replication strategies aim 
to reduce the consumption of network resources. In fact, 
more and more big data are scattered across DCs 
distributed around the globe. In consequence, replicating 
these data requires significant NB, which becomes 
increasingly expensive the further away the replicas  
are located from users that require them. For this aim, 
most of replication strategies aim to reduce bandwidth 
consumption in order to reduce the consumption of 
provider resources. 

 Access pattern: The choice of an access pattern constitutes 
an important factor that impacts performance of any 
replication strategy. To prove the impact of the access 
pattern on replication strategy performance, Mansouri  
and Javidi (2018) evaluated the performance of seven 

replication strategies under two data distributions:  
(i) uniform distribution that provides a naive baseline and 
(ii) non uniform distribution, e.g., zipf (Breslau et al., 
1999) that is designed to react to data popularity. They 
prove that the average query response time is significantly 
reduced when a given strategy is dynamically adapted to  
the users’ preferences (Mokadem and Hameurlain, 2020). 
This avoids the SLA violation, which impacts the profit of 
the provider.  

 Cloud topology: There is no standard architecture in cloud 
environments. However, it has been observed that the 
topology of a given system significantly affects the design 
of a data replication strategy for which it was designed 
(Tos et al., 2019). Some companies consider the 
transferring of all data to a single DC/cluster when 
executing a tenant query. This generates a significant data 
transfer. In order to reduce NB consumption, other 
solutions (Ardekani and Terry, 2014; Tos et al., 2016) 
model a two level hierarchy, i.e., a region is composed  
of a single DC, while optimising the cross-region data 
transfer consumption. However, links between DCs are 
heterogeneous. In consequence, most of commercial 
solutions2 as well as some recent strategies (Mokadem and 
Hameurlain, 2020; Tos et al., 2021) consider within a 
region, several DCs that communicate through an 
intermediate NB. This leads to a system topology with 
three levels: regions, DCs and nodes that host data. 

 The number of tenants: In order to improve their profits, 
providers implement a resource sharing among multiple 
tenants by consolidating various tenants’ applications on a 
single system. In return, each tenant pays the rent of 
resources to the provider according to the ‘pay as you go’ 
model, i.e., a tenant only pays what it consumes (Armbrust 
et al., 2010). Hence, serving an optimal number of tenants 
through the ‘pay as you go’ model while satisfying tenant 
objectives results in an optimal profit for the provider. 

It has been observed that trade-offs exist between these 
factors, especially when a replication strategy aims to 
satisfy the performance objective for the tenants. In 
consequence, some factors should be taken into account 
simultaneously. For example, keeping data close to the user, 
in order to reduce the access cost, should not be done at the 
expense of network congestion. Also, many works have 
concluded that a good replication strategy must be based on 
an efficient replica placement algorithm with an optimal 
number of replicas while the choice of nodes holding these 
replicas should not be done at the expense of the system 
load. On the other hand, it has been observed that a lot of 
strategies have been proposed for cloud systems. For a more 
advanced comparison between these strategies, we have 
identified, in Table 1, a non-exhaustive list of some data 
replication strategies with respect to existing and proposed 
classifications. There is not a single one that ensures all the 
tenant objectives while considering the economic aspects of 
clouds. In consequence, a good strategy could favour 
several tenant objectives while trying to find a compromise 
between the satisfaction of a certain QoS for the tenant and 
the economic profit for the provider. 
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Table 1 A comparative analysis of some data replication strategies with regard to the proposed classification 
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Ghemawat et al. (2003) Static Decentralised Provider Data Locality Single Single – – 

Hassan et al. (2009) Static Decentralised Provider Data Locality Multi Single – – 

Abu-Libdeh et al. (2010) Dynamic Decentralised Provider Data Locality Multi Multi X – 

Wei et al. (2010) Dynamic Decentralised Provider Cost Model Multi Single – – 

Bonvin et al. (2010) Dynamic Decentralised Provider Data Locality Single Single X – 

Sakr and Liu (2011) Dynamic Decentralised Tenant Cost Model Single Single – – 

Xiong et al. (2011) Dynamic Centralised Provider Cost Model Single Single X – 

Sun et al. (2012) Dynamic Centralised Provider Cost Model Single Single – – 

Bai et al. (2013) Dynamic Decentralised Provider Data Locality Multi Single – – 

Lin et al. (2013) Dynamic Decentralised Provider Cost Model Multi Single – – 

Wu et al. (2013) Dynamic Decentralised Provider NB Locality Multi Multi X – 

Long et al. (2013) Static Decentralised Provider Data Locality Multi Single – X 

Zeng and Veeravalli (2014) Static Decentralised Provider Cost Model Multi Single X – 

Kumar et al. (2014) Dynamic Decentralised Provider Data Locality Multi Single – X 

Boru et al. (2015) Dynamic Centralised Provider Data Locality Multi Single – X 

Zhao et al. (2015) Dynamic Decentralised Tenant – Multi Single X – 

Gill and Singh (2016) Dynamic Decentralised Provider Data Locality Multi Single X – 

Zeng et al. (2016) Static Decentralised Provider Cost Model Single Single X – 

Mansouri et al. (2017) Dynamic Decentralised Provider Data Locality Multi Single – – 

Edwin et al. (2017) Static Decentralised Provider Cost Model Multi Single X X 

Shi et al. (2017) Dynamic Decentralised Provider Economic Multi Multi X – 

Liu and Shen (2017) Dynamic Decentralised Provider Cost Model Multi Multi X – 

Alghamdi et al. (2017) Dynamic Decentralised Provider Cost Model Multi Single X X 

Tos et al. (2018) Dynamic Decentralised Provider NB Locality Multi Single X – 

Mansouri and Javidi (2018) Dynamic Decentralised Provider Data Locality Multi Single – – 

Sun et al. (2018) Dynamic Decentralised Provider Cost Model Multi Single – – 

Liu et al. (2018) Dynamic Decentralised Provider – Multi Single X – 

Mansouri and Buyya (2019) Dynamic Decentralised Provider Cost Model Multi Multi X – 

Limam et al. (2019) Dynamic Decentralised Tenant Cost Model Multi Single X – 

Mokadem and  
Hameurlain (2020) 

Dynamic Decentralised Provider NB Locality Multi Single X – 

 
5 Simulation analysis 

We compare the performance of five replication strategies 
proposed for cloud systems. Two of these strategies do not 
consider the economic aspects of replication: (i) the Cost-
effective Dynamic Replication Management strategy (CDRM) 
(Wei et al., 2010) considers the objective of load balancing and 
(ii) the Dynamic Popularity aware Replication Strategy 
(DPRS) (Mansouri et al., 2017) replicates only the top 20% of 
frequently accessed data on the best locations. The other three 

strategies take into account the economic cost of replication: 
(iii) the Dynamic Cost-aware Re-replication and Re-balancing 
Strategy (DCR2S) (Gill and Singh, 2016) considers the 
response time objective while an initial budget for each DC is 
fixed in the SLA (iv) the PErformance and Profit oriented data 
Replication strategy (PEPR) (Tos et al., 2018) aims to satisfy 
the response time objective when data replication can be 
considered for each query and (v) the Replication Strategy 
satisfying Performance objective while ensuring an economic 
profit for the provider in Cloud DCs (RSPC) (Mokadem and 
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Hameurlain, 2020). RSPC also meets the objective of 
minimum availability and data replication is considered per 
group of queries. 

CloudSim (Calheiros et al., 2010), a popular and open 
source cloud computing simulation tool, is used to simulate 
DCs. In our experiments, we simulated a cloud with three 
regions. Within each region, we simulated 10 DCs. Then, 1000 
heterogeneous VMs are implemented in each DC. We have 
extended CloudSim to support data replication, query 
placement and some important requirements. Thus, each VM 
has storage, memory and computing capacity. Economic 
concepts are also taken into account: (i) a tenant is charged for 
a given number of DB queries (here 1000 queries) during a 
billing period (BP) and (ii) an SLA violation occurs when the 
query response time exceeds a response time threshold (here 
100 s). The threshold value is defined based on preliminary 
experiments. 

The arrival rate of database (DB) queries follows a 
Poisson distribution. Our experiments dealt with 3000, 
12,000, 30,000 and 48,000 queries during a BP. The broker 
assigns cloudlets (associated to queries) to randomly 
selected VMs when accessing distributed relations. We 
considered a subset of TPC-H3 queries {Q4, Q10 and Q8} 
for analytical purposes. These queries have different level of 
complexity {1, 3 and 7 joins, respectively} when a query 
plan is pre-determined for each query. We call them simple, 
medium and complex queries, respectively. We simulated a 
parallel execution of queries launched simultaneously by 
several tenants. A read-only DB relation constitutes the 
granularity of replication. We dealt with a simulation since 
it allows us to directly control some parameters in order to 
understand their individual impact on performance, e.g., 
query arrival rate and NB variations. Table 2 describes the 
main parameters used in our experiments. 

Table 2 Some configuration parameters 

 Parameter Value 

#regions 
#DCs 
#VMs 

3 
10 
1000 

Average size of a relation  700 Mb 

Avg. available inter-region NB  
(delay respect.) 

500 Mb/s (150 ms respect.) 

Avg. available inter-DC NB  
(delay respect.) 

1Gb/s (50 ms respect.) 

Avg. available intra-DC NB  
(delay respect.) 

8 Gb/s (10 ms respect.) 

Average size of a relation 800 Mb 

Average VM processing capability 1500 MIPS 

Average storage capacity/ VM 10 Gb 

Billing Period (BP) duration 10 min 

#queries/ BP [3000, 48,000] 

Response time threshold 100s 

5.1 Experimental results 

We have measured the following metrics: (i) the average 
replica factor, (ii) the average measured query Response 
Time (RT) during a BP, (iii) the impact of the query arrival 
rate and user access pattern on performance, (iv) the number 
of SLA violations and (v) consumption of the provider’s 
resources. 

Figure 1 shows the average RT and Figure 2 shows the 
average replica factor obtained with the compared replication 
strategies when the data distribution is uniform. We deal with 
simple, medium and complex queries. PEPR presents the most 
important replica factor when a low number of queries are 
submitted during a BP, e.g., less than 12,000 queries. It is due 
to the fact that the replica decision is considered at the per-
query level, i.e., each time RT of a query exceeds the RT 
threshold. This generates an important overhead. The replica 
factor in CDRM, DPRS and DCR2S is more important 
compared to RSPC as it is shown in Figure 2. In fact, RSPC 
replicates data only if the SLA is not satisfied. This occurs if 
the estimated RT exceeds a RT threshold for a given number of 
times (here 10 times) or when the estimated RT exceeds a 
critical RT threshold (here, 180 s). On the other hand, CDRM 
aims to balance the workload between different nodes by 
creating more replicas. 

Figure 1 Average response time 

 

Figure 2  Average replica factor 
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When 30,000 queries are submitted during a BP (50 queries/s), 
PEPR and RSPC create the most important number of replicas 
in order to satisfy the RT objective. DPRS presents the best RT 
since it creates replicas only for the most popular data. CDRM 
does not create more replicas when a load balance is achieved. 
As long as the budget is not reached, DCR2S creates additional 
replicas in order to improve RT. When 48,000 queries are 
submitted, i.e., it corresponds to 80 queries/s, only a few 
replicas are created with DCR2S and RSPC strategies. Once 
the cost of replication exceeds the budget in DCR2S, the 
knapsack algorithm tries to optimise the cost of replication by 
re-replicating to lower cost DCs. However, load balancing is 
not taken into account and replicating outside the local region 
does not decrease the replication cost. Overloaded VMs are 
blocked from receiving new queries in CDRM and popular 
data are updated with DPRS. This generates replica creations 
outside the region receiving the queries. Hence, DCR2S, DPRS 
and especially CDRM generate a significant RT increase. 
PEPR generates a greater RT even it creates more replicas. 

In order to measure the replica factor adjustment with the 
compared strategies, we measure the average replica factor 
when a significant decrease is observed in the number of 
queries. At the end of a BP in which 48,000 queries were 
submitted, we simulate the submission of a low number of 
queries (15,000 queries) during the next BP as shown in Figure 
1. We observed that the replica factor of all strategies is 
decreased. Since the workload has decreased, all strategies 
remove some replicas in order to reduce the consumption of 
resources. The RT objective is satisfied with all strategies. 
PEPR, DCR2S and especially RSPC remove more replicas 
than CDRM and DPRS. This proves that CDRM and DPRS 
continue to use some of the previously created replicas even 
with a reduced number of queries. 

We measure the impact of the user’s access pattern on 
performance. We are interested on average response time 
obtained with the compared strategies when the data 
distribution is non uniform (here a zipf distribution), which 
better responds to data popularity. We have observed that the 
replica creation is proportional to the data popularity. 
Compared to results shown in Figure 1, the gains in terms of 
response time is around 11%, 9% and 7% with DPRS, RSPC 
and DCR2S, respectively. On the other hand, CDRM creates 
replicas based on load balancing regardless of data popularity. 

We also analyse the number of SLA violations during a 
BP. We assume that a penalty amount is paid from a tenant to 
the provider when the RT exceeds a RT threshold (here 100 s). 
Figure 3 shows a relationship between the number of submitted 
queries and the number of SLA violations during a BP. When a 
low number of queries are submitted during a BP, PEPR 
generates the most important number of SLA violations as a 
result of higher RTs while other strategies generate almost the 
same number of SLA violations. When a high number of 
queries are submitted, PEPR, CDRM and DCR2S generate 
even more SLA violations while the number of SLA violations 
with RSPC and DPRS increases slowly. The number of SLA 
violations with CDRM is 2.2 times more important than those 
generated by RSPC. 

 

Figure 3 Average number of SLA violations 

 

Finally, Figure 4 shows the NB resource consumption required 
by the compared strategies while considering the NB hierarchy. 
In these experiments, 30,000 queries were submitted during the 
BP. With RSPC, the majority of data transfers are performed in 
the intra-region level. Inter-region data transfers are performed 
only during initial replications that aim to satisfy the minimum 
availability objective. In contrast, satisfying the RT objective 
does not require inter-region data transfers. On the other hand, 
inter-region transfers are more frequent with DCR2S, DPRS 
and especially CDRM. This highly impacts RTs since inter-
region links are slower. 

Figure 4 Average NB resource consumption 

 

5.2 Discussion 

With a reduced number of queries, strategies that do not take 
into account the provider’s profit, i.e., CDRM, DCR2S and 
DPRS, create more replicas than RSPC and PEPR. In 
consequence, slightly lower response times are obtained with 
these strategies. At the cost of having a slightly higher RT 
while satisfying the RT objective, RSPC and PEPR generate 
less provider expenditure costs. 

As the number of queries increases, VMs become busier. 
CDRM satisfies only a load balancing objective which is not 
sufficient to ensure the response time objective. Based on data 
popularity, DPRS creates additional replicas. However, these  
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replicas are created outside the region that receives queries. 
This is not the case with DCR2S due to the limited initial 
budget. However, the re-replication is not sufficient to balance 
the workload. Although PEPR considers the provider’s profit, 
it generates an overhead that affects performance since a 
replication is provided per query when most of replications are 
provided per set of queries in RSPC. Then, better response 
times are obtained with RSPC. This is due to the exploitation of 
parallelism, the replication by group of queries and the replica 
placement according to the availability of the network 
bandwidth. Regarding penalty costs, RSPC and DPRS create 
more replicas to satisfy SLA, which reduces penalty costs 
compared to CDRM and DCR2S strategies. Furthermore, more 
unnecessary replicas are removed with RSPC and DPRS 
through an elastic replica factor adjustment. In consequence, 
the provider expenditure costs are reduced. With respect to 
resource consumption, RSPC and PEPR benefit from the NB 
hierarchy, which reduces the data transfer consumption. In 
contrast, DPRS and mainly CDRM require inter-region data 
transfers. Finally, RSPC and PEPR require more storage 
consumption. However, storage costs are cheaper than data 
transfer costs. 

6 Conclusions 

We provided a survey of data replication strategies in Cloud 
systems. Most of data replication studies in the literature 
classified these strategies as static vs. dynamic or centralised 
vs. decentralised strategies. Furthermore, these works often did 
not provide any performance evaluation. We propose to 
classify these strategies according to other criteria while taking 
into account some characteristics specific to Cloud systems: (i) 
the orientation of the profit (provider-oriented vs. customer-
oriented strategies), (ii) the considered objective function (data 
locality vs. availability of bandwidth vs. cost reduction), (iii) 
the number of SLO objectives included in the SLA (single-
objective vs. multi-objective strategies), (vi) the nature of the 
Cloud environment for which a strategy was designed 
(strategies for single-provider vs. multi-provider Cloud 
systems) and finally, (v) the consideration of economic costs by 
data replication strategies. Regarding the last criterion, we 
focus in particular on strategies that take into account the 
provider monetary profit and strategies that reduce the energy 
consumption. 

From this review, it has been seen that a lot of strategies 
have been proposed for cloud systems. However, there is not a 
single one that ensures all the tenant objectives while 
considering the economic aspects of clouds. Although cloud 
systems as described in Foster et al. (2008) are based on 
economics, most of the replication strategies proposed in the 
literature are only interested in reducing the costs of replication 
without focusing on economic costs of this replication. On the 
other hand, only a few strategies aim to satisfy the performance 
objective while taking into account the economic cost of 
replication, the provider’s economic profit, the energy 
consumption and the penalties paid to tenants. Furthermore, 

very few strategies integrate the provider’s monetary expenses 
into the economic cost model. 

We performed a simulation study to investigate the impact 
of some important factors on data replication performance. The 
simulation study indicates that promoting a tenant’s objective 
at the cost of the provider’s profit should not be the goal of data 
replication strategies in Cloud systems. In consequence, it is 
important to take into account the trade-off between the QoS 
satisfaction for the tenants and the provider profit for the Cloud 
provider. This constitutes a motivation for our research work. 
As a future work, we aim to design new replication strategies 
that aim to meet several tenants’ objectives including 
performance while considering the economic cost resulting 
from replication. 
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