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Abstract. The Conference of Parties (COP) aims to address the global
warming problem through agreements for reducing emissions. However,
the current strategies fall short due to minimal efforts for emission re-
ductions driven by short-term economic considerations. To better un-
derstand under which circumstances countries may have more virtuous
behavior, we propose a static game model. In this model, the players
are represented by governments, and their actions correspond to emis-
sions levels. The utilities are a trade-off between economic benefits and
damage caused by climate change. A key feature of the game is that it
is parameterized by a state, which is precisely the state of the climate
dynamics. We conduct the Nash equilibrium analysis. In the numerical
analysis, we assess the impact of the damage function on the behavior
of the governments.

Keywords: Game theory, Climate change models, Complex systems,
Static game, Potential game

1 Introduction

Global warming is a major environmental concern. The Conference of Parties
(COP) was created to provide solutions to it. Nevertheless, one can see that
efforts to emit fewer CO2 are not very significant. On the contrary, the total of
carbon emissions keeps on increasing whereas the effects of climate change have
been made more apparent over the last decades. The objective of this paper is
to provide some insights into the complex decision-making process of networked
countries that optimize their utility functions by taking into account the dy-
namics of the global atmospheric temperature and CO2 concentration. Doing so
we provide elements that explain why the CO2 emissions do not drastically re-
duce and exhibit some modelling conditions under which CO2 reductions indeed
occur.

The state of the art on this subject contains both geophysical-type and
economic-type studies mainly based on empirical or ad-hoc strategies [15, 16].
Typical formal economic analyses do not integrate the geophysical aspect of the
problem (see [1, 3] where the temperature dynamics are ignored). A neat game
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formulation that includes examining coalition formation, financial transfers, and
cost-sharing was presented in [17]. This work provides insights into the complex-
ity of environmental cooperation, coalition stability, and the design of efficient
and stable agreements. Still, [17] only provides a game-theoretic analysis with-
out considering the temperature but only CO2 concentration dynamics. We also
note that most of the existing game-theoretic studies are based on the work of
Finus and his co-authors ([5, 6, 7]).

While the literature on climate change is quite rich, to our knowledge, no
formal game-theoretic work has been conducted where both geophysical aspects
and strategic aspects are considered and modeled mathematically. Models which
couple economic aspects and climate science are referred to as integrated assess-
ment models (IAMs). Among the most famous IAMs one can find the DICE
model introduced by the Nobel Prize winner W. Nordhaus and his collaborators
[14]. For convenience, they usually use simple climate model which matches the
elaborate and complex geophysical models used by the IPCC (Intergovernmental
Panel on Climate Change) [9].

In this study, we make the following key contributions to the field of envi-
ronmental game theory:
• We propose a novel static game that is potential and where the utility function
is a function of the geophysical state and the players’ actions.
• We provide the expression of the unique pure Nash equilibrium, in some suffi-
cient conditions, for the quadratic case functions.
• We assess numerically, the effects of the economic damage function due to cli-
mate change modeling on the behavior of the countries in terms of CO2 emissions.

The rest of the paper is organized as follows. Section 2 is dedicated to the
presentation of a simple but well-established climate model and its ingredients.
The problem analyzed in this work is formulated and the subsequent game-
theoretical analysis is provided in Section 3, where we study the existence and
the uniqueness of the Nash equilibrium in a specific case. Numerical simulations
illustrate our results in Section 4 and provide several insights or societal interest.
We conclude the paper and give some perspectives in Section 5.

2 Simple Climate Model (SCM)

Let us first present the different pieces of a simple climate model that are coupled
with the game introduced further in the paper. In our game, we are using the
climate structure of IAMs involving three key ingredients: the carbon cycle (CC),
the radiative forcing (RF), and the temperature dynamics (TD).

2.1 Carbon cycle model

In the sequel, we are using the CC model employed in [10] referred to as Joos
model. This model was designed to fit the impulse response functions to a set of
Earth System model simulations done by the CMIP5 model of IPCC. Denoting
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by C the vector of CO2 concentrations in some boxes, where a box represents,
in most of the carbon models, the proportion of carbon decaying with respect to
the half-life of carbon in these virtual boxes. We get the following linear model:

C(t+ 1) = ACC(t) + bCE(t),
CAT(t) = d⊤CC(t).

(1)

Where

AC =


1 0 0 0
0 0.9975 0 0
0 0 0.9730 0
0 0 0 0.7927

 , bC =


0.2173
0.2240
0.2824
0.2763

 , and dC =


1
1
1
1

 .
2.2 Radiative forcing

The RF represents the impact of greenhouse gas (GHG) accumulation on the
global radiation balance. The climate equation calculates the average surface tem-
perature of the earth and the average deep-sea temperature at each time step. The
relationship between the accumulation of GHGs and the increase in RF is derived
from empirical measurements. A mathematical representation is given as:

F (t) = F2×CO2
log2

(
CAT(t)

CAT,ref

)
+ FnonCO2

(t), ∀t ∈ R+, (2)

where CAT,ref is the CO2 concentration in 1750 that is considered as a reference
since it is the pre-industrial time equilibrium, F2×CO2 is a parameter fitted from
data and FnonCO2(t) is the radiative forcing caused by other GHGs. In some
models, such as FUND and PAGE, FnonCO2

(t) is modeled by the dynamics of
methane and nitrous oxide while for DICE it represents exogenous forcing. In
this work we use the exogenous forcings proposed by [11], given by:

FnonCO2(t) = f0 +min

{
f1 − f0,

f1 − f0
tf

(t− 1)

}
, ∀t ∈ R+, (3)

where f0 and f1 are respectively the forcing of GHGs other than CO2 in 2010
and in 2100 and tf is the time step.

2.3 Temperature dynamic model

The final part of an SCM is the Temperature Dynamics model. This allows us to
describe the evolution of the global atmospheric temperature based on a specific
radiative forcing. The literature on the modeling of TD is very rich and we focus
on the model proposed in [8] referred to as Geoffroy model:{

θ(t+ 1) = Aθθ(t) + bθF (t+ 1),

θAT(t) = d⊤θ θ(t).
(4)
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Where

Aθ =

[
1− (λ+ µ)/c µ/c

µ/c0 1− µ/c0

]
, bθ =

[
1/c
0

]
, and dθ =

[
1
0

]
. (5)

We highlight that the dynamics depend on some constants: c as the effective
heat capacity of the upper/mixed ocean layer, c0 as the effective heat capacity
of the oceans, λ and µ are chosen with all these constants such that they best
fit the multi-model mean of the CMIP5 set which is the model used by IPCC
[4]. In the sequel, we use the following values: c = 7.3, c0 = 106, λ = 1.13, and
µ = 0.73. Denoting the state of the system by x = (θ, C), the atmospheric CO2

concentration and the atmospheric temperature can be described as follows:

CAT(t+ 1) = CAT(x(t), a(t)) = ψC(x(t)) + b̃C

N∑
n=1

an(t), (6a)

θAT(t+1) = θAT(x(t), a(t)) = ψθ(x(t))+ b̃θ ln

(
ψC(x(t)) + b̃C

N∑
n=1

an(t)

)
, (6b)

where b̃C = d⊤CbC , b̃θ = d⊤θ bθF2×CO2
/ ln 2 are positive parameters and ψC , ψθ

are functions of the state defined as ψC(x(t)) = d⊤CACC(t) and

ψθ(x(t)) = d⊤θ Aθθ(t) + d⊤θ FnonCO2
(t)− d⊤θ bθF2×CO2

log2 CAT,ref .

3 Game-theoretic analysis

3.1 Carbon emission game model

This paper considers a static climate game Γ over a set of players N = {1, . . . , N}
that represent non-identical countries. The goal of each player is to maximize
their utility which is a trade-off between their benefits as functions of their
emissions and a weighted global damage as a function of the global atmospheric
temperature. The player’s action is the CO2 emissions that they are planning to
emit over the time step between two decisions (COP meetings). We note that emin

n

and emax
n are respectively the minimum and the maximum emissions that player

n can emit. The action set is A =
∏

n∈N An where An = [emin
n , emax

n ] ⊂ R is the
set of actions for the player n ∈ N . We shall also use a−n to denote the vector of
the actions of all the players except player n. The corresponding set of actions
is A−n. We denote by x ∈ R6 the state of the system, by an ∈ An the action
of player n, and by a ∈ A the vector of all actions. Note that the atmospheric
temperature is a function of the state and of the action i.e., θAT(x, a).

Definition 1. The utility function for the nth player is chosen to be a difference
between an individual benefit function Bn and a (weighted) global cost/damage
function D:

un(x, a) =

2∑
i=0

βi,na
i
n − wn

2∑
i=0

γiθ
i
AT(x, a) := Bn(an)− wnD (θAT(x, a)) , (7)
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where wn is a positive weight that measures the economic impact of climate
change on player n. In the sequel we denote by (un)n∈N , the family of utility
functions which defines the strategic form of the static game under study.

3.2 Existence and uniqueness of a pure Nash equilibrium

A key solution concept for the interactive situation which involves several play-
ers, each aiming to maximize its own utility function, is given by the Nash
equilibrium. A Nash equilibrium can be interpreted as a possible forecast for
such a situation where decisions are interdependent as they are for the global
carbon emission problem. An important property for a game is precisely to know
whether it possesses a pure Nash equilibrium. It turns out that, by construction,
the game under study has always a pure Nash equilibrium. This is because it
belongs to the class of weighted potential games as defined by Monderer and
Shapley [12].

A game Γ = (N ,A,U) is a weighted potential game if and only if there
exists a potential function ϕ : A 7→ R and (δn)n∈N a vector of positive weights,
such that, for all n ∈ N , an, ãn ∈ An; an ̸= ãn and a−n ∈ A−n one has
un(an, a−n)− un(ãn, a−n) = δn [ϕ(an, a−n)− ϕ(ãn, a−n)].

It can be checked that the following function ϕ is a potential for the consid-
ered game with weights (wn)n∈N :

ϕ (x, a) =

N∑
n=1

1

wn

2∑
i=0

βi,na
i
n −

2∑
i=0

γiθ
i
AT(x, a). (8)

The previous results yield the existence of at least one pure Nash equilibrium for
the quadratic case. Next, we will provide a necessary condition for uniqueness.
Actually, we consider a concave benefit function and a convex damage func-
tion, since the connection between GDP and emissions is frequently represented
through a concave function. Also, a quadratic damage convex function is mostly
used in the economic literature focusing on the consequences of climate change.

Proposition 1. Supposing that γ2 > 0 and for all n ∈ N , if

γ2b̃
2
θ b̃Cwn

emax
n

exp

(
γ1 + 2γ2ψθ(x)

2γ2b̃θ
− 1

)
− β1,n

2emax
n

< β2,n < 0. (9)

Then the pure Nash equilibrium is unique and it corresponds to all players emit-
ting to the maximum, i.e., an = emax

n , ∀n ∈ N .

Proof. If min
an∈An

B′
n(an)/wn > max

an∈An

∂ [D (θAT (x, a))] /∂an, then one has a unique

pure Nash equilibrium. Indeed, in this case, the utility functions will be strictly
increasing and then the maximum is attained when all players emit the maximum
of possible emissions. Straightforward computation shows that:

min
an∈An

B′
n(an) = min

an∈An

[β1,n + 2β2,nan]
if β2,n<0

= β1,n + 2β2,ne
max
n . (10)
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On the other hand:

∂ [D (θAT (x, a))]

∂an
=
b̃θ b̃C

[
γ1 + 2γ2

[
ψθ(x) + b̃θ ln

(
ψC(x) + b̃C

∑N
n=1 an

)]]
ψC(x) + b̃C

∑N
n=1 an

.

(11)
In this part of the proof, we will use the parameters a, b, c, d, k ∈ R that are
constants, and independent of the problem formulated before. They are used to
ease the presentation of the variation of the function. To find the maximum of
(11), we consider the case where γ2 > 0. Let us find the maximum of the function
f : R → R for a, b, c, k ∈ R∗

+, d ∈ R, given for all z ∈ R by:

f(z) =
k(d+ c ln (a+ bz))

a+ bz
.

When differentiating f with respect to z ∈ R, we find the unique root of f ′
given by z0 =

(
e(1−d/c) − a

)
/b. Then simply computing f ′

(
(e−d/c − a)/b

)
=

kbc/e(4−2d/c) > 0, and f ′
(
(e(2−d/c) − a)/b

)
= −kbc/e(4−2d/c) < 0 provides that

f ′ is strictly decreasing. We can conclude that the function f is strictly concave
and reaches its maximum at z0, given by f(z0) = kc exp (d/c− 1). Now by using
f with a = ψC(x)+ b̃C

∑N
m=1,m ̸=n am, b = b̃C , c = 2γ2b̃θ, d = γ1+2γ2ψθ(x) and

k = b̃θ b̃C , we conclude that the maximum of D′ is given by:

max
an∈An

∂ [D (θAT (x, a))]

∂an
= 2γ2b̃

2
θ b̃C exp

(
γ1 + 2γ2ψθ(x)

2γ2b̃θ
− 1

)
.

After minimizing the benefit variations and maximizing the damage variations
we get that min

an∈An

B′
n(an)/wn > max

an∈An

∂ [D (θAT (x, a))] /∂an is equivalent to:

β1,n + 2β2,ne
max
n

wn
> 2γ2b̃

2
θ b̃C exp

(
γ1 + 2γ2ψθ(x)

2γ2b̃θ
− 1

)
,

which is equivalent to (9). □

Proposition 1 basically states that looking at the short term, all the countries
will emit as much as possible as long as the damage function does not have a suf-
ficiently large impact. This can be changed either by considering less optimistic
damage functions or looking at the long-term behavior when the atmospheric
temperature is higher which will lead to larger damages.

3.3 Expression of the Nash equilibrium

In this section, the goal is to express the Nash equilibrium actions for the player.
The motivation for this is twofold; it makes interpretations much easier (e.g., the
impact of radiative forcing or the damage severity level on the behavior of the
countries) and it renders the problem of computing the equilibrium very simple
to solve. To express the NE, let us assume from now on that ϕ is strictly concave.
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The pure NE is denoted by a∗ = (a∗1, . . . , a
∗
N ) where either there exists n ∈ N

such that a∗n ∈ {emin
n , emax

n }, or a∗ is an interior NE. In the later case, the players
will tend to reduce their emissions.

We recall that the potential function is defined by (8) with the atmospheric
temperature θAT given by:

θAT (x, a) = ψθ(x) + b̃θ ln

(
ψC(x) + b̃C

N∑
n=1

an

)
. (12)

Proposition 2. If ϕ is strictly concave and differentiable, the Nash is the vector
a∗ = (a∗1, . . . , a

∗
N ) that satisfies, for all n ∈ N , the following N equations

1

wn
B′

n(an)−
∂ [D (θAT (x, a))]

∂an
= λn − λn. (KKT)

with λn, λn ≥ 0 with λ∗n(a∗n − emin
n ) = 0 and λ

∗
n(a

∗
n − emax

n ) = 0 being the KKT
multipliers with associated constraints.

Proof. The proof is straightforward: ϕ is continuous over A, then there exists
a NE, a∗. Moreover, if ϕ is strictly concave, then the NE is unique. Since the
constraints are linear we can apply the KKT conditions. □

In the proposition below, we provide sufficient conditions to express the NE.
To do so, we will need the following lemma on the zeros of the equation rs2 +
ps+ q = k ln (rs+ v).

Lemma 1. For k, p, q ∈ R, r, v ∈ R∗
+, and for all s ∈ R such that rs + v > 0,

the following equation in s:

rs2 + ps+ q = k ln (rs+ v),

• has at most one solution if rk + (2v − p)2/8 < 0,
• has at most two solutions if rk + (2v − p)2/8 = 0,
• has at most three solutions if rk + (2v − p)2/8 > 0.

When ϕ is strictly concave, we can apply the KKT conditions to find the unique
pure NE. Let us assume that ϕ is continuous on A, so there exists a pure NE,
denoted by a∗. Applying the Proposition 2, we have for every n ∈ N , a∗ verifies
(KKT). This leads to the sufficient condition of the unique interior NE given in
the following proposition.

Proposition 3. Assuming that ϕ is strictly concave with β2,n ̸= 0,∀n ∈ N , and
denoting Λn := (wn

(
λn − λn

)
− β1,n)/2β2,n. If

b̃2θ b̃
2
Cγ2

N∑
n=1

wn

β2,n
+

(
ψC(x) + b̃C

∑N
n=1 Λn

)2
8

< 0, (13)
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then the unique pure NE of the game Γ is given by a∗ = (a∗1, . . . , a
∗
N ), where for

all n ∈ N ,

a∗n = Λn +
wnb̃θ b̃C

[
γ1 + 2γ2ψθ(x) + 2γ2b̃θ ln

(
ψC(x) + b̃C S̃

)]
2β2,n

(
ψC(x) + b̃C S̃

) , (14)

where S̃ is the unique solution of the equation rs2 + ps+ q = k ln (rs+ v), with
r = b̃C , p = ψC(x) − b̃C

∑N
n=1 Λn, k = b̃2θ b̃Cγ2

∑N
n=1 β2,n/wn, v = ψC(x), and

q = −ψC(x)
∑N

n=1 Λn −
∑N

n=1 wnb̃θ b̃C (γ1 + 2γ2ψθ) /2β2,n.

Proof. Using Proposition 2, for all n ∈ N one has

1

wn
(β1,n + 2β2,na

∗
n)− [γ1 + 2γ2θAT(x, a

∗)]
∂θAT

∂an
(x, a∗) = λn − λn.

Dividing by β2,n ̸= 0 and using the notation Λn introduced in the statement, we
get that ∀n ∈ N ,

a∗n = Λn +
wnb̃θ b̃C

[
γ1 + 2γ2ψθ(x) + 2γ2b̃θ ln

(
ψC(x) + b̃C

∑N
n=1 a

∗
n

)]
2β2,n

(
ψC(x) + b̃C

∑N
n=1 a

∗
n

) . (15)

Let us introduce the notation s :=
∑N

n=1 a
∗
n. Summing (15) over n ∈ N yields:

s =

N∑
n=1

Λn +

N∑
n=1

wn

2β2,n

b̃θ b̃C

[
γ1 + 2γ2ψθ(x) + 2γ2b̃θ ln

(
ψC(x) + b̃Cs

)]
ψC(x) + b̃Cs

,

which can be re-written as rs2 + ps + q = k ln (rs+ v) with r, p, q, v, and k
given in the statement above. By using the results of the lemma 1, we conclude
that if (13) is verified then there exists at most one solution S̃ of the equation
rs2+ ps+ q = k ln (rs+ v) in

[∑N
n=1 e

min
n ,

∑N
n=1 e

max
n

]
. Thus, the NE is unique.

4 Numerical analysis

We will illustrate the previous theoretical results and the behavior of the pro-
posed model. We have implemented a code that allows us to play with the pa-
rameters, whether they are from the SCM or the benefit and damage functions.
We set N = 6 with the parameters specified in Table 1, where AOC refers to all
other countries. For the presented graphs, we will use the CC from [10] and the
TD from [8], as they are often considered the closest to the IPCC results [4, 13].

We illustrate the case where the benefit function is quadratic in an, and the
damages are quadratic and re-scaled, i.e.,

un(x, a) = GDPmax
n

(
2
an
emax
n

−
(

an
emax
n

)2

− wn [D (θAT(x, a))]
α

)
, (16)
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Player China USA EU India Russia AOC
emax
n (GtCO2/y) 11 7 4 3 2 5
GDPmax

n (109$) 14630 19290 13890 2500 1420 11640
wn 1.1847 1.1941 1.1248 0.9074 1.2866 1.1847

Table 1: Specific values for each player in 2020.

where α represents the power of the damages and measures the severity level of
climate change on the economics. The static game is played repetitively every
five years until 2100 while updating emax

n and GDPmax
n at each iteration of the

game. For more information, refer to [2].

Fig. 1: The increase of the forecast temperature due to the CO2 emissions at NE
in different scenarios.

It is interesting to note that higher α induces higher damages and conse-
quently lower CO2 emissions and smaller increases in the temperature. For large
α (e.g., α = 5), China, the USA, the EU, and AOC reduce their emissions
until they completely stop emitting (see 2). The temperatures in 2100 range
from around +3.2°C for low damages, resembling a Business-as-Usual (BAU)
scenario, to +1.6°C for high damages. These temperature levels are in line with
the projections of the IPCC [13] and correspond to the emission trajectories of
the countries. In order to prevent the over-warming of the planet by 2100 we
need to revise the modeling of the economic damages and change the strategies
accordingly.

Table 2 shows that if the damages are not significant, i.e. α is small, the
CO2 emissions of the players will not stop before 2100. Low damage hampers
the cooperation recommended by the IPCC. When α is large enough, the NE
strategies of the players are to stop emitting as soon as possible. Except for
Russia which continues to emit no matter how big is the damage, and for India
which stops emitting only when α ≥ 8. This can be explained by the fact that the
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Player α = 1 α = 2 α = 3 α = 4 α = 5 α = 6 α = 7 α = 8 α = 9 α = 10

China / / 2065 2020 2020 2020 2020 2020 2020 2020
USA / / 2075 2020 2020 2020 2020 2020 2020 2020
EU / / / 2045 2020 2020 2020 2020 2020 2020

India / / / / / / / 2095 2085 2080
Russia / / / / / / / / / /
AOC / / 2080 2025 2020 2020 2020 2020 2020 2020

Table 2: Time at which the countries stop emitting versus α (which measures
the economic damage due to climate change). The symbol / means no stopping.

benefits of India and Russia are still very big compared with the corresponding
loss. The product wnGDPmax

n has to be increased for these countries in order to
stop their emissions.

5 Conclusion

In this paper, we have introduced and analyzed a static game that provides some
insights into the strategic behavior of governments in terms of carbon emissions
with respect to climate change. Each government is assumed to implement a
trade-off between a benefit due to emitting and damage due to climate change.
The Nash equilibrium of the game being a suitable solution concept, we have
studied the existence and uniqueness of the equilibrium and also addressed the
problem of expression of the actions at equilibrium. The numerical analysis pro-
vides several insights into the carbon emission problem. For instance, it is seen
that to reach the Paris Agreement on climate (namely, maintain the tempera-
ture excess below 2 degrees), the damage to climate change has to be significant
enough. This constitutes a sufficient condition under which governments will
spontaneously reduce their emissions. Depending on the severity level of the
damage (which is measured by the exponent α), governments are incited to stop
emitting CO2 and it is shown to be possible to (roughly) forecast a time at which
a country stops emitting. The obtained times are typically higher than values
claimed publicly (e.g., 2050). To conclude this paper, we would like to mention
several extensions of the present work. First, the present problem formulation
might be enriched by considering the planning aspect for which countries con-
sider long-term utilities instead of short-term ones. Second, the emergence of
cooperation might be studied by considering other solution concepts such as
the social optimum or Nash bargaining solution. Thirdly, the damage functions
might be more individualized while maintaining the potential structure of the
game. At last, the present work can be seen as the first necessary step to be
taken to study formally repeated interactions between the players, e.g., through
a repeated or stochastic game model. In such a framework, it might be assumed
that the action and state of a country are not perfectly observed by the others,
which defines a non-trivial observation graph to be taken into account in the
equilibrium analysis.
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