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Introduction

Discrete groups have been an important part of the theory of von Neumann algebras since its very beginning. Taking advantage of their algebraic or geometric properties, one can build interesting families of examples and counter-examples of von Neumann algebras, and get some insight into crucial structural properties like property (T) or approximation properties. In the last ten years, there has been an increasing number of results showing that discrete quantum groups can also produce interesting examples of von Neumann algebras. In this work, we continue this program by initiating the study of abelian subalgebras in von Neumann algebras of discrete quantum groups.

The importance of abelian subalgebras in the study of von Neumann algebras has been long known and, as already mentioned, group von Neumann algebras have played an important role in that history. For instance, the subalgebra generated by one of the generating copies of Z inside the von Neumann algebra of the free group F 2 was proved by J. Dixmier to be maximal abelian [START_REF] Dixmier | Sous-anneaux abéliens maximaux dans les facteurs de type ni[END_REF], and by S. Popa to be maximal injective [START_REF] Popa | Maximal injective subalgebras in factors associated with free groups[END_REF], thus answering a long-standing question of R.V. Kadison. The fact that the subalgebra comes from a group inclusion was crucial there.

Another example of abelian subalgebra in free group factors is the so-called radial (or laplacian) subalgebra, which is the one generated by the sum of the generators and their inverses. This subalgebra does not come from a subgroup, hence the aforementioned techniques do not apply. S. Radulescu introduced in [START_REF] Radulescu | Singularity of the radial subalgebra of L(FN ) and the Pukànsky inavriant[END_REF] tools to prove that this subalgebra, which was already known to be maximal abelian by work of S. Pytlik [START_REF] Pytlik | Radial functions on free groups and a decomposition of the regular representation into irreducible components[END_REF], is singular. His techniques were later used again to prove that the radial subalgebra is maximal amenable [START_REF] Cameron | The radial masa in a free group factor is maximal injective[END_REF]. For more background on maximal abelian subalgebras we refer to the book [START_REF]Finite von neumann algebras and masas[END_REF].

In this paper, we study the analogue of the radial subalgebra in free quantum group factors. More precisely, we consider the free orthogonal quantum group of Kac type O + N and, inside its von Neumann algebra L ∞ (O + N ), the subalgebra generated by the characters of irreducible representations. Recall that O + N is a compact quantum group introduced in [START_REF] Wang | Free products of compact quantum groups[END_REF], whose discrete dual is a quantum analogue of a free group.

In particular L ∞ (O + N ) plays the role of a free group factor L(F N ). This analogy, dating back to the seminal works of T. Banica [START_REF] Banica | Théorie des représentations du groupe quantique compact libre O(n)[END_REF], [START_REF]Le groupe quantique compact libre U (n)[END_REF], has been supported since then by further work of several authors who proved that the von Neumann algebra L ∞ (O + N ), for N 3, indeed shares many properties with free group factors: • it is a full factor with the Akemann-Ostrand property [START_REF] Vaes | The boundary of universal discrete quantum groups, exactness and factoriality[END_REF],

• it has the Haagerup property [START_REF] Brannan | Approximation properties for free orthogonal and free unitary quantum groups[END_REF] and the completely contractive approximation property [START_REF] Freslon | Examples of weakly amenable discrete quantum groups[END_REF],

• it is strongly solid [START_REF] Isono | Examples of factors which have no Cartan subalgebras[END_REF] and has property strong HH [START_REF] Fima | On a cocycle in the adjoint representation of the orthogonal free quantum groups[END_REF],

• it satises the Connes embedding conjecture [START_REF] Brannan | The Connes embedding property for quantum group von Neumann algebras[END_REF].

As far as the radial subalgebra is concerned, the techniques of S. Radulescu do not apply in the quantum case, because there is no clear way to mimic the construction of the so-called Radulescu basis. However, the properties of the radial algebra mentioned previously can all be proved using another tool which we briey explain. Consider, for n ∈ N, the element w n ∈ L(F N ) which is the sum of all words of length n. Then, if x, x are two words of length k and y, y are two other words of length n, we have (x -x )w l , w l (y -y ) 2 min(k + 1, n + 1).

This estimate can be proved by elementary counting arguments, similar to the ones in [START_REF] Sinclair | The Laplacian masa in a free group factor[END_REF]Sec 4]. It can then be used to prove maximal abelianness and singularity in one shot. We will use the same strategy here. Elements of the form x -x with x and x of the same length k form a basis of the orthogonal of the radial subalgebra in L(F N ), in the quantum case their role will be played by the coecients u k ξη of an irreducible representation u k with respect to vectors ξ, η such that ξ is orthogonal to η. As already mentioned, the role of w l will be played by the character χ l of the irreducible representation u l note however that w l 2 = 2N (2N -1) l-1 in L 2 (F N ), whereas χ l 2 = 1 in L 2 (O + N ). The estimate analogous to (1) that we will prove and use in the present article is then stated as follows (see Theorem 4.3): χ l u k ξ ,η , u n ξ,η χ l Kq max(l,l ) , with q ∈]0, 1[. From this we will deduce all the results announced in the abstract.

Let us now outline the content of the paper. In Section 2, we recall some facts on compact quantum groups and in particular on free orthogonal quantum groups. Since the geometry of their representation theory will be crucial in the computations, we have to make some conventional choices and give the corresponding explicit formulae for several related objects.

Section 3 and 4 form the core of the paper. There we prove the announced estimate for scalar products of coecients and characters. The proof, presented in Section 4, is quite technical and relies on properties of the so-called Jones-Wenzl projections which are of independent interest and are established in Section 3.

Eventually, we prove in Section 5 all our structural results on the radial subalgebra, namely that it is maximal abelian, mixing and has spectral measure equivalent to the Lebesgue measure. The proofs here are very simple using the main estimate and the arguments are certainly well-known to experts in von Neumann algebras. Since however people interested in discrete quantum groups may not be so familiar with it, we give full proofs. The paper ends with some remarks on the results of this work.

Acknowledgments. The rst author was partially supported by the ERC advanced grant "Noncommutative distributions in free probability".

Preliminaries

In this section we give the basic denitions and results needed in the paper. All scalar products will be left-linear and we will denote by B(H) the algebra of all bounded operators on a Hilbert space H. When considering an operator X ∈ B(H 1 ⊗ H 2 ), we will use the leg-numbering notations,

X 12 := X ⊗ 1, X 23 := 1 ⊗ X and X 13 := (Σ ⊗ 1)(1 ⊗ X)(Σ ⊗ 1),
where Σ :

H 1 ⊗ H 2 → H 2 ⊗ H 1 is the ip map.
For any two vectors ξ, η ∈ H, we dene a linear form ω ξη : B(H) → C by ω ξη (T ) = T (ξ), η .

2.1. Compact quantum groups. We briey review the theory of compact quantum groups as introduced by S.L. Woronowicz in [START_REF] Woronowicz | Compact quantum groups, Symétries quantiques[END_REF]. In the sequel, all tensor products of C*-algebras are spatial and we denote ⊗ the tensor product of von Neumann algebras. Denition 2.1. A compact quantum group G is a pair (C(G), ∆) where C(G) is a unital C*-algebra and

∆ : C(G) → C(G) ⊗ C(G) is a unital * -homomorphism such that (∆ ⊗ id) • ∆ = (id ⊗∆) • ∆ and the spaces span{∆(C(G))(1 ⊗ C(G))} and span{∆(C(G))(C(G) ⊗ 1)} are both dense in C(G) ⊗ C(G).
According to [START_REF] Woronowicz | Compact quantum groups, Symétries quantiques[END_REF]Thm 1.3], any compact quantum group G has a unique Haar state h ∈ C(G) * , satisfying

(id ⊗h) • ∆(a) = h(a).1 (h ⊗ id) • ∆(a) = h(a).1
for all a ∈ C(G). Let (L 2 (G), π h , Ω) be the associated GNS construction and let C red (G) be the image of C(G) under the GNS representation π h . It is called the reduced C*-algebra of G and its bicommutant in B(L 2 (G)) is the von Neumann algebra of G, denoted by L ∞ (G). To study this object, we will use representations of compact quantum groups. Denition 2.2. A representation of a compact quantum group G on a Hilbert space H is an operator

u ∈ L ∞ (G)⊗B(H) such that (∆ ⊗ id)(u) = u 13 u 23 .
It is said to be unitary if the operator u is unitary. Denition 2.3. Let G be a compact quantum group and let u and v be two representations of G on Hilbert spaces H u and H v respectively. An intertwiner (or morphism) between u and v is a map T ∈ B(H u , H v ) such that v(id ⊗T ) = (id ⊗T )u. The set of intertwiners between u and v will be denoted by Hom(u, v).

A representation u is said to be irreducible if Hom(u, u) = C. id and it is said to be contained in v if there is an injective intertwiner between u and v. We will say that two representations are equivalent (resp. unitarily equivalent) if there is an intertwiner between them which is an isomorphism (resp. a unitary). Let us dene two fundamental operations on representations. Denition 2.4. Let G be a compact quantum group and let u and v be two representations of G on Hilbert spaces H u and H v respectively. The direct sum of u and v is the diagonal sum of the operators u and v seen as an element of

L ∞ (G) ⊗ B(H u ⊕ H v ). It is a representation denoted by u ⊕ v. The tensor product of u and v is the element u 12 v 13 ∈ L ∞ (G) ⊗ B(H u ⊗ H v ). It is a representation denoted by u ⊗ v.
The theory of representations of compact groups can be generalized to this setting (see [START_REF] Woronowicz | Compact quantum groups, Symétries quantiques[END_REF]Section 6]). If u is a representation of G on a Hilbert space H and if ξ, η ∈ H, then

u ξη = (id ⊗ω ξη )(u) ∈ C(G) is called a coecient of u.
Theorem 2.5 (Woronowicz). Every representation of a compact quantum group is equivalent to a unitary one. Every irreducible representation of a compact quantum group is nite-dimensional and every unitary representation is unitarily equivalent to a sum of irreducible ones. Moreover, the linear span of the coecients of all irreducible representations is a dense Hopf * -subalgebra of C(G) denoted by Pol(G).

Irreducible representations.

Let Irr(G) be the set of equivalence classes of irreducible unitary representations of G. For α ∈ Irr(G), we will denote by u α a representative of the class α and by H α the nite-dimensional Hilbert space on which u α acts. The scalar product induced by the Haar state can be easily computed on coecients of irreducible representations by [25, Eq. 6.7]:

u α ξη , u β ξ η = δ α,β ξ, ξ η , Q α η d α
where Q α is a positive matrix determined by the representation α and d α = Tr(Q α ) = Tr(Q -1 α ) > 0 is called the quantum dimension of α. Note that in general, d α is greater than dim(H α ). However, it is easy to see that the two dimensions agree if and only if Q α = id. When this is the case for all α ∈ Irr(G) we say that G is of Kac type.

Because the coecients of irreducible representations are dense in C(G), it is enough to understand products of those coecients to describe the whole C*-algebra structure of C(G). For simplicity, we will assume from now on that for any two irreducible representations α and β, every irreducible subrepresentation appears with multiplicity one (this assumption will always be satised when considering free orthogonal quantum groups). For such a subrepresentation γ of α ⊗ β, let v α,β γ be an isometric intertwiner from

H γ to H α ⊗ H β . Then, (1) u α ξη u β ξ η = γ⊂α⊗β u γ (v α,β γ ) * (ξ⊗ξ ),(v α,β γ ) * (η⊗η )
.

Note that even though v α,β γ is only dened up to a complex number of modulus one, the sesquilinearity of the scalar product ensures that the expression above is independent of this phase. We will also use the projection

P α,β γ ∈ B(H α ⊗ H β ) onto the γ-homogeneous component, P α,β γ = v α,β γ v α,β * γ
, which is again independent of the choice of v α,β γ . For any α ∈ Irr(G), there is a unique (up to unitary equivalence) irreducible representation, called the contragredient representation of α and denoted by α, such that Hom(ε, α ⊗ α) = {0} = Hom(ε, α ⊗ α), ε denoting the trivial representation (i.e. the element 1 ⊗ 1 ∈ L ∞ (G) ⊗ C). We choose morphisms t α ∈ Hom(ε, α ⊗ α) and s α ∈ Hom(ε, α ⊗ α) connected by the conjugate equation

(id α ⊗s * α )(t α ⊗ id α ) = id α ,
and normalized so that s α = t α = √ d α . Then, t α is unique up to a phase and s α is determined by t α . The morphism t α induces a conjugate-linear isomorphism j α : H α → H α such that, setting j α (ξ) = ξ, t α = dim(Hα) i=1 e i ⊗ e i for any orthonormal basis (e i ) i of H α . Note that j α need not be a multiple of a conjugate-linear isometry in general this is however the case if G is of Kac type. Let us also record the general fact that the map v α,β γ : H γ → H β ⊗ H α dened by ξ → Σ(v α,β γ (ξ)) ¯⊗ī s an isometric morphism from γ to β ⊗ α. In particular, when there is no multiplicity in the fusion rules v α,β γ coincides with v β,α γ up to a complex number of modulus one.

2.3. Free orthogonal quantum groups. We will be concerned in the sequel with the free orthogonal quantum groups introduced by S. Wang and A. van Daele in [START_REF] Wang | Free products of compact quantum groups[END_REF] and [START_REF] Van Daele | Universal quantum groups[END_REF]. This subsection is devoted to briey recalling their denition and main properties. Denition 2.6. For N ∈ N, we denote by C(O + N ) the universal unital C*-algebra generated by N 2 selfadjoint elements (u ij ) 1 i,j N such that the matrix u = (u ij ) is unitary. For Q ∈ GL N (C), we denote by C(O + (Q)) the unital C*-algebra generated by N 2 elements (u ij ) 1 i,j N such that the matrix u = (u ij ) is unitary and QuQ -1 = u, where u = (u * ij ). One can check that there is a unique * -homomorphism ∆ : One can show that the compact quantum group O + (Q) is of Kac type if and only if Q is a scalar multiple of a unitary matrix. Although all results of this article apply to general free orthogonal quantum groups of Kac type with N 3, we will restrict for simplicity to the case of O + N see Section 5 for comments about the non-Kac type. The representation theory of free orthogonal quantum groups was computed by T. Banica in [1]: Theorem 2.8 (Banica). The equivalence classes of irreducible representations of O + N are indexed by the set of integers (u 0 being the trivial representation and u 1 = u the fundamental one), each one is isomorphic to its contragredient and the tensor product is given inductively by

C(O + (Q)) → C(O + (Q)) ⊗ C(O + (Q)) such that for all i, j, ∆(u ij ) = N i,j=0 u ik ⊗ u kj .
u 1 ⊗ u n = u n+1 ⊕ u n-1 . If N = 2, then d n = n + 1. Otherwise, d n = q n+1 -q -n-1 q -q -1 ,
where q + q -1 = N and 0 q 1. Moreover,

O + N is of Kac type, hence d n = dim(H n ). Remark 2.9.
There is an elementary estimate on d n given by q -n (1 -q 2 ) d n q -n /(1 -q 2 ) . We will use it several times in the sequel without refering to it explicitly.

To be able to do computations, we will use a particular set of representatives of the irreducible representations. More precisely, let H 1 = C N be the carrier space of the fundamental representation u = u 1 . Then, for each n ∈ N, we let H n be the unique subspace of H ⊗n 1 on which the restriction of u ⊗n is equivalent to u n . We denote by id n the identity of H n .

It is easy to check that the map t 1 = N i=1 e i ⊗e i satises the requirements for the distinguished morphism t u ∈ Hom(ε, u ⊗ u) as dened in the previous subsection, with ū = u and s 1 = t 1 . We x this choice in the rest of the article and we set

t n = (P n ⊗ P n )(t 1 ) 1,2n (t 1 ) 2,2n-1 . . . (t 1 ) n,n+1 ∈ H n ⊗ H n .
We then have s n = t n , j n • j n = id n , and j n is a conjugate linear unitary. The standard trace on B(H n ) is given by

Tr n (f ) = t * n (f ⊗ id)t n and the normalized trace by tr n (f ) = d -1 n Tr n (f ). Moreover, writing again ζ = j n (ζ) for ζ ∈ H n we have t * n (ζ ⊗ id n ) = ζ * and t * n (id n ⊗ζ) = s * n (id n ⊗ζ) = ζ * .
We will denote by P n the orthogonal projection from H ⊗n 1 onto H n , sometimes called the Jones-Wenzl projection. Note that if a + b = n, then P n (P a ⊗ P b ) = P n , so that we may also see P n as an element of

B(H a ⊗ H b ).
In other words we have, with the notation of the previous subsection, P n = P a,b n for any a, b such that a + b = n. The sequence of projections (P n ) n∈N satises the so-called Wenzl recursion relation (see for instance [START_REF] Frenkel | Canonical basis in tensor products and graphical calculus for Uq(sl2)[END_REF]Eq 3.8] or [20, Eq 7.4]):

(2)

P n = (P n-1 ⊗ id 1 ) + n-1 l=1 (-1) n-l d l-1 d n-1 id ⊗(l-1) 1 ⊗t 1 ⊗ id ⊗(n-l-1) 1 ⊗t * 1 (P n-1 ⊗ id 1 ).
We also record the following obvious fact, which will be used frequently in the sequel without explicit reference: for any a, b we have

(id a ⊗t 1 ⊗ id b ) * P a+b+2 = 0. Indeed the image of (id a ⊗t 1 ⊗ id b ) * is contained in H a ⊗ H b which has no component equivalent to H a+b+2 .
A rst application is the following reduced form of the Wenzl relation above, which is actually the original relation presented in [START_REF] Wenzl | On sequences of projections[END_REF]:

(3)

P n = (P n-1 ⊗ id 1 ) - d n-2 d n-1 (P n-1 ⊗ id 1 ) id ⊗(n-2) 1 ⊗t 1 t * 1 (P n-1 ⊗ id 1 ).
We also have a reected version as follows:

(4)

P n = (id 1 ⊗P n-1 ) - d n-2 d n-1 (id 1 ⊗P n-1 ) t 1 t * 1 ⊗ id ⊗(n-2) 1
(id 1 ⊗P n-1 ).

Manipulating the Jones-Wenzl projections

In this section we establish two results concerning the sequence of projections P n in the representation category of O + N . The rst one studies partial traces of these projections, while the second one is a kind of generalization of Wenzl's recursion relation. 

x a,b = (id a ⊗ tr b )(P a+b ) = d -1 b (id a ⊗t * b )(P a+b ⊗ id b )(id a ⊗t b ) ∈ B(H α
) is a scalar multiple of the identity because it is an intertwiner and u a is irreducible. Of course, the same holds for (tr b ⊗ id c )(P b+c ) ∈ B(H c ). However in general x a,b,c = (id a ⊗ tr b ⊗ id c )(P a+b+c ) is not a scalar multiple of the identity. In fact, an easy explicit computation already shows that x 1,1,1 ∈ B(H 1 ⊗ H 1 ) is a non-trivial linear combination of the identity and the ip map, in particular it is not even an intertwiner. Proposition 3.2, which is the main result of this subsection, shows that when b tends to +∞, the partially traced projection x a,b,c becomes asymptotically scalar.

To prove this, we need a lemma concerning the following construction: for a linear map f ∈ B(H k ), we dene its rotated version ρ(f ) by

ρ(f ) = (P k ⊗ t * 1 )(id 1 ⊗f ⊗ id 1 )(t 1 ⊗ P k ) ∈ B(H k ).
Diagrammatically, this transformation is represented as follows:

¦ ¥ ¤ § p p p p p p p p p p p p p k p k ρ(f ) = f
In the sequel, . HS will denote the non-normalized Hilbert-Schmidt norm, i.e.

f 2 HS = Tr(f * f ). Lemma 3.1. For any f ∈ B(H k ), Tr(ρ(f )) = (-1) k-1 Tr(f )/d k-1 . Moreover, we have ρ(f ) HS f HS .
Proof. For k = 1 we have

Tr(ρ(f )) = t * 1 (id ⊗2 1 ⊗t * 1 )(id ⊗2 1 ⊗f ⊗ id 1 )(id 1 ⊗t 1 ⊗ id 1 )t 1 = t * 1 (f ⊗ id 1 )(t * 1 ⊗ id ⊗2 1 )(id 1 ⊗t 1 ⊗ id 1 )t 1 = t * 1 (f ⊗ id 1 )t 1 = Tr(f ).
On diagrams, computing the trace correspond to connecting upper and lower points pairwise by non-crossing lines on the left or on the right. Representing this by dotted lines for clarity, the computation above can be pictured as follows:

¤ § ¦ ¥ f = Tr(ρ(f )) = = Tr(f ) f
When k 2, we rst perform the transformation

Tr(ρ(f )) = Tr((P k ⊗ t * 1 )(id 1 ⊗f ⊗ id 1 )(t 1 ⊗ id ⊗k 1 )) = Tr((id ⊗k-1 1 ⊗t * 1 )(P k ⊗ id 1 )(id 1 ⊗f )(t 1 ⊗ id ⊗k-1 1 
))

which can be diagrammatically represented as follows:

p p p p p p p p p p p p p p p p p p ¤ § ¦ ¥ ¤ § ¦ ¥ Tr(ρ(f )) = = f f p k p k
Then, we use the adjoint of Wenzl's formula [START_REF]Le groupe quantique compact libre U (n)[END_REF]. The term with P k-1 ⊗ id 1 yields

Tr (id

⊗(k-1) 1 ⊗t * 1 )(P k-1 ⊗ id ⊗2 1 )(id 1 ⊗f )(t 1 ⊗ id ⊗(k-1) 1 ) = Tr (P k-1 ⊗ t * 1 )(id 1 ⊗f )(t 1 ⊗ id ⊗(k-1) 1 
) .

This vanishes because the range of f is contained in H k and id

⊗(k-2) 1 ⊗t * 1 is an intertwiner to H ⊗(k-2) 1
, which contains no subrepresentation equivalent to H k . The terms from (2) with l > 1 also vanish because (id

⊗(l-1) 1 ⊗t * 1 ⊗ id ⊗(k-l-1) 1 
⊗t 1 ⊗ id 1 )(id 1 ⊗f ) = 0 for the same reason as before. Hence, we are left with

Tr(ρ(f )) = (-1) k-1 d k-1 Tr (P k-1 ⊗ t * 1 )(t * 1 ⊗ id ⊗(k-2) 1 ⊗t 1 ⊗ id 1 )(id 1 ⊗f )(t 1 ⊗ id ⊗(k-1) 1 ) = (-1) k-1 d k-1 Tr P k-1 (t * 1 ⊗ id ⊗(k-1) 1 )(id 1 ⊗f )(t 1 ⊗ id ⊗(k-1) 1 ) = (-1) k-1 d k-1 Tr(f ).
Here is the diagrammatic computation:

p p p p p p p p p p p p p p p p p p ¤ § ¤ § ¦ ¥ ¦ ¥ ¤ § ¦ ¥ p k-1 f f = p k-1 = Tr(f ).
For the Hilbert-Schmidt norm, we have

Tr(ρ(f ) * ρ(f )) = Tr (t * 1 ⊗ P k )(id 1 ⊗f * ⊗ id 1 )(P k ⊗ t 1 t * 1 )(id 1 ⊗f ⊗ id 1 )(t 1 ⊗ P k ) Tr (t * 1 ⊗ id ⊗k 1 )(id 1 ⊗f * ⊗ id 1 )(id ⊗k 1 ⊗t 1 t * 1 )(id 1 ⊗f ⊗ id 1 )(t 1 ⊗ id ⊗k 1 ) = Tr (t * 1 ⊗ id ⊗k-1 1 ⊗t * 1 )(id 1 ⊗f * ⊗ id ⊗2 1 )(id ⊗k 1 ⊗t 1 t * 1 ⊗ id 1 )(id 1 ⊗f ⊗ id ⊗2 1 )(t 1 ⊗ id ⊗k-1 1 ⊗t 1 ) = Tr (t * 1 ⊗ id ⊗k-1 1 )(id 1 ⊗f * )(id 1 ⊗f )(t 1 ⊗ id ⊗k-1 1 ) = Tr(f * f ). Proposition 3.2. Assume that N > 2.
Let a, b, c ∈ N and consider the operator

x a,b,c = (id a ⊗ tr b ⊗ id c )(P a+b+c ) : H a ⊗ H c → H a ⊗ H c .
Then, there exist two constants λ a,c > 0 and D a,c > 0 depending only on N , a and c such that

x a,b,c -λ a,c (id a ⊗ id c ) D a,c q b .
In particular x a,b,c → λ a,c (id a ⊗ id c ) as b → ∞.

Proof. For convenience, the proof will be done with the non-normalized trace, and hence we consider the

non-normalized operator X a,b,c = (id a ⊗ Tr b ⊗ id c )(P a+b+c ) = d b x a,b,c
. We rst observe that

(Tr a ⊗ Tr c )(X a,b,c ) = Tr(P a+b+c ) = d a+b+c = d b q -a-c + O(q b )
and accordingly set

λ a,c = q -a-c /d a d c and X a,b,c = X a,b,c -d b λ a,c (id a ⊗ id c ).
With this notation, we have Tr(X a,b,c ) = O(q b ) and we want to show that X a,b,c D a,c . We will prove that

|(Tr a ⊗ Tr c )(X a,b,c f )| D a,c f HS for any f ∈ B(H a ⊗ H c )
. Moreover any such f can be decomposed into a multiple of the identity and a map with zero trace, and since the estimate is satised for f = id by our choice of λ a,c we can assume , and we use Wenzl's formula (2) to write

(Tr a ⊗ Tr c )(f ) = 0. Eventually, we note that in this case (Tr a ⊗ Tr c )(X a,b,c f ) = (Tr a ⊗ Tr c )(X a,b,c f ).
Tr(X a,b,c f ) = Tr((P a+b+c-1 ⊗ id 1 )f 13 ) a+b+c-1 l=1 (-1) a+b+c-l d l-1 d a+b+c-1
Tr (id

⊗(l-1) 1 ⊗t 1 ⊗ id ⊗(a+b+c-l-1) 1 ⊗t * 1 )(P a+b+c-1 ⊗ id 1 )f 13 .
Moreover, one can factor P a ⊗ P b ⊗ P c out of the right side of (P a+b+c-1 ⊗ id 1 )f 13 . Since P k (id

⊗t 1 ⊗ id) = 0 on H ⊗(k-2) 1
, we see that (P a ⊗ P b ⊗ P c )(id

⊗(l-1) 1 ⊗t 1 ⊗ id ⊗(a+b+c-l-1) 1 
) = 0 if l = a and l = a + b. Hence there are only three terms to bound in the expression above.

The rst term is equal to

Tr((P a+b+c-1 ⊗ id 1 )f 13 ) = Tr(X a,b,c-1 f ),
where f = (id a ⊗ id c-1 ⊗ Tr 1 )(f ) satises Tr(f ) = 0 and f HS √ d 1 f HS . For l = a, we use the trivial bound

d a-1 d a+b+c-1 × f 13 HS × t 1 2 × P a+b+c-1 ⊗ id 1 HS = d 3/2 1 d a-1 √ d b d a+b+c-1 f HS .
For l = a+b, if we denote the term we are interested in by Y , we have, with

f = f (1) ⊗f (2) ∈ B(H a )⊗B(H c ), Y = Tr (id ⊗(a+b-1) 1 ⊗t 1 ⊗ id ⊗(c-1) 1 ⊗t * 1 )(P a+b+c-1 ⊗ id 1 )f 13 = Tr (id ⊗(a+b+c-2) 1 ⊗t * 1 )(P a+b+c-1 ⊗ id 1 )f 13 (id ⊗(a+b-1) 1 ⊗t 1 ⊗ id ⊗(c-1) 1 ) = Tr (id ⊗(a+b+c-2) 1 ⊗t * 1 )(P a+b+c-1 ⊗ (t * 1 ⊗ id 1 )(id 1 ⊗t 1 ))f 13 (id ⊗(a+b-1) 1 ⊗t 1 ⊗ id ⊗(c-1) 1 ) = Tr (id ⊗(a+b+c-2) 1 ⊗t * 1 )([(P a+b+c-1 ⊗ t * 1 )(f 13 ⊗ id 1 )(id (a+b-1) 1 ⊗t 1 ⊗ id ⊗c 1 )] ⊗ id 1 )(id ⊗(a+b+c-2) 1 ⊗t 1 ) = Tr (P a+b+c-1 ⊗ t * 1 )(f (1) ⊗ id b-1 ⊗f (2) ⊗ id 1 )(id ⊗(a+b-1) 1 ⊗t 1 ⊗ id ⊗c 1 )
= Tr(P a+(b-1)+c f 13 ) = Tr(X 

p a+b+c-1 f (1) f (2) f (2) f (2) 
p a+b+c-1

f (1) p a+b+c-1 f (1) 

= =

We recognize indeed ρ(f (2) ) in the last diagram. The projections P c included in the denition of ρ(f (2) ) do not appear on the diagram since they are absorbed by P a+b+c-1 (through the trace for one of them), but they must be taken into account. Summing up, we have

(5) | Tr(X a,b,c f )| | Tr(X a,b,c-1 f )| + d a+b-1 d a+b+c-1 | Tr(X a,b-1,c f )| + d 3/2 1 d a-1 √ d b d a+b+c-1
f HS .

We will now proceed by induction on c with the following induction hypothesis H(c): "for all a ∈ N there exists a constant D a,c such that for all b ∈ N and all f ∈ B(H a ⊗ H c ) satisfying

Tr(f ) = 0 we have | Tr(X a,b,c f )| D a,c f HS ".
Recall that H(0) holds with D a,c = 0 because X a,b,0 is an intertwiner, hence a multiple of the identity. Now we take c > 0, we assume that H(c -1) holds and we apply it to the rst term in the right-hand side of Equation [START_REF] Brannan | The Connes embedding property for quantum group von Neumann algebras[END_REF]. Notice that

d a-1 √ d b d a+b+c-1 d a-1 q a+c-1 K d a-1 d c
for some constant K depending only on q. Since moreover .

f HS √ d 1 f HS , this yields | Tr(X a,b,c f )| ( d 1 D a,c-1 + d 3/2 1 d a-1 ) f HS + d a+b-1 d a+b+c-1 | Tr(X a,b-1,c f )|. We set D = max( √ d 1 D a,c-1 + d 3/2 1 d a-1 ,
Using the inequality f HS f HS , as well as the estimate d x /d y q y-x for x < y and the fact that |q| < 1 if N > 2, we see that H(c) holds :

| Tr(X a,b,c f )| D f HS b l=0 q lc D f HS ∞ l=0 q lc .
It is clear from the beginning of the proof that the Proposition 3.2 has the following equivalent formulation, which we will use for the proof of Theorem 4. 

A variation on Wenzl's recursion formula.

The second result can be called a "higher weight" version of Wenzl's recursion formula [START_REF] Brannan | Approximation properties for free orthogonal and free unitary quantum groups[END_REF]. As a matter of fact, let ζ = ζ (1) ⊗ζ (2) be a vector in

H 2 ⊂ H 1 ⊗H 1 . Then, the map f = ζ (2) ζ (1) 
* ∈ B(H 1 ) has trace 0, so that applying Tr 1 (f • ) ⊗ id n-1 to both sides of Equation ( 4) yields

(ζ * (1) ⊗ id n-1 )P n (ζ (2) ⊗ id n-1 ) = - d n-2 d n-1 P n-1 (ζ (1) ζ * (2) ⊗ id n-2 )P n-1 .
What we are going to prove is a similar equality but with ζ being any highest weight vector, i.e. ζ ∈ H p+q ⊂ H p ⊗ H q for arbitrary p and q.

Lemma 3.4. Let ζ ∈ H p+q be decomposed as

ζ = ζ (1) ⊗ ζ (2) ∈ H p ⊗ H q and ζ = ζ (1) ⊗ ζ (2) ∈ H q ⊗ H p .
For all n p + q, there exist α n p,q ∈ C such that

(ζ (1) * ⊗ id n-p )P n (ζ (2) ⊗ id n-q ) = α n p,q P n-p (ζ (1) ζ * (2) ⊗ id n-p-q )P n-q (6) (id n-p ⊗ζ (1) * )P n (id n-q ⊗ζ (2) ) = α n p,q P n-p (id n-p-q ⊗ζ (1) ζ * (2) )P n-q . (7)
Moreover, there exist constants C p,q > 0 such that for all n ∈ N, C p,q |α n p,q | 1.

Proof. Let us rst note that the second equality follows from the rst one by conjugation, hence we will only focus on the rst one. If p = 0, then

P n (ζ (2) ⊗ id n-q ) = P n (ζ (2) ⊗ id n-q )P n-q = P n (ζ (1) ⊗ id n-q )P n-q
and the result is proved with α n 0,q = 1 for all n. Similarly, the result holds for q = 0 with α n p,0 = 1. We will proceed by induction on p and q with the induction hypothesis H N : "For any p, q with p + q N , there exists a constant C p,q > 0 such that for all n ∈ N, there is a constant α n p,q such that Equations ( 6) and ( 7) hold and C p,q |α n p,q | 1."

As we have seen, H 0 and H 1 hold, so let us assume H N and consider p, q 1 such that p + q = N + 1. In order to use the induction hypothesis, we rene the decompositions of ζ in the following way:

ζ (1) = ζ (11) ⊗ ζ (12) ∈ H p-1 ⊗ H 1 , ζ (1) = ζ (1) (1) ⊗ ζ (1) (2) ∈ H 1 ⊗ H p-1 , ζ (2) = ζ (21) ⊗ ζ (22) ∈ H 1 ⊗ H q-1 , ζ (2) = ζ (2) (1) ⊗ ζ (2) (2) ∈ H q-1 ⊗ H 1 .
Applying the map (ζ (1) * ⊗ id n-p )( • )(ζ (2) ⊗ id n-q ) to Wenzl's formula (4), the rst term on the right-hand side reads

(ζ (12) * ⊗ ζ (11) * ⊗ id n-p )(id 1 ⊗P n-1 )(ζ (21) ⊗ ζ (22) ⊗ id n-q ) = ζ (12) * (ζ (21) )(ζ (11) * ⊗ id n-p )P n-1 (ζ (22) ⊗ id n-q ).
Consider the linear map T : H p-1 ⊗H q-1 → B(H n-q , H n-p ) dened by T (x⊗y) = (x * ⊗id n-p )P n-1 (y⊗id n-q ). Then, the term above equals

T ζ (12) * (ζ (21) )(ζ (11) ⊗ ζ (22) ) = T ((id p-1 ⊗t * 1 ⊗ id q-1 )(ζ)) .
The argument of T in the right-hand side vanishes because ζ is a highest weight vector, so that the whole term vanishes. Coming back to (4) and setting L = (ζ (1) * ⊗ id n-p )P n (ζ (2) ⊗ id n-q ), we thus have 11) * ⊗ id n-p )P n-1 (ζ (12) ζ (21) * ⊗ id n-2 )P n-1 (ζ (22) ⊗ id n-q ). Now we apply H N to ζ (1) (with p = p -1, q = 1) and to ζ (2) (with p = 1, q = q -1) to get

L = - d n-2 d n-1 (ζ (1) * ⊗ id n-p )(id 1 ⊗P n-1 )(t 1 t * 1 ⊗ id n-2 )(id 1 ⊗P n-1 )(ζ (2) ⊗ id n-q ) = - d n-2 d n-1 (ζ (11) * ⊗ id n-p )P n-1 (ζ (12) * ⊗ id n-1 )(t 1 t * 1 ⊗ id n-2 )(ζ (21) ⊗ id n-1 )P n-1 (ζ (22) ⊗ id n-q ) = - d n-2 d n-1 (ζ ( 
L = - d n-2 d n-1 α n-1 p-1,1 α n-1 1,q-1 P n-p (ζ (1) 
(1)

ζ (1) * (2) ⊗ id n-p-1 )P n-2 P n-2 (ζ (2) 
(1) ζ

(2) *

(2) ⊗ id n-q-1 )P n-q .

The last step is to apply again the induction hypothesis. To do this, we need to rene once more our decomposition by setting

ζ = η (1) ⊗ η (2) ⊗ η (3) ∈ H 1 ⊗ H p+q-2 ⊗ H 1 η (2) = η (21) ⊗ η (22) ∈ H p-1 ⊗ H q-1 η (2) = η (2) (1) ⊗ η (2) (2) ∈ H q-1 ⊗ H p-1 .
Note that in the above computations we can replace everywhere ζ

(1) , ζ

(2) , ζ

(1) and ζ

(2) respectively by η (1) , η (21) , η (22) and η (3) . Thus, applying H N to η (2) (with p = p -1, q = q -1) yields

L = - d n-2 d n-1 α n-1 p-1,1 α n-1 1,q-1 α n-2 p-1,q-1 P n-p (η (1) ⊗ id n-p-1 ) P n-p-1 (η (2) 
(1) η

(2) *

(2) ⊗ id n-p-q )P n-q-1 (η (3) * ⊗ id n-q-1 )P n-q

= - d n-2 d n-1 α n-1 p-1,1 α n-1 1,q-1 α n-2 p-1,q-1 P n-p (η (1) ⊗ η (2) (1) )(η (3) * ⊗ η (2) * (2) ) ⊗ id n-p-q P n-q = - d n-2 d n-1 α n-1 p-1,1 α n-1 1,q-1 α n-2 p-1,q-1 P n-p (ζ (1) ζ * (2) ⊗ id n-p-q )P n-q .
This proves Equation ( 6) for p and q and as mentioned in the beginning of the proof, Equation ( 7) follows by conjugation. Moreover, we see that

|α n p,q | d n-2 d n-1 C p-1,1 C 1,q-1 C p-1,q-1 1 d 1 C p-1,1 C 1,q-1 C p-1,q-1 > 0 hence H N +1
holds and the proof is complete.

The key estimate

We now turn to the main technical result of this article, Theorem 4.3, which concerns the behaviour of the scalar product χ l u k ξ η , u n ξη χ l as l, l tend to +∞. Its proof will span the whole of this section. We start by recalling two technical lemmata from the literature on free orthogonal quantum groups. The rst one gives a norm estimate for some explicit intertwiners in tensor products of irreducible representations. For any four integers l, k, m and a such that k + l = m + 2a, the map

V l,k m * = P m (id l-a ⊗t * a ⊗ id k-a ) is an intertwiner from H l ⊗ H k to H m , hence there is a scalar κ l,k m such that v l,k m = κ l,k m V l,k
m is an isometric intertwiner. The scalar κ l,k m can be explicitly computed, see [START_REF] Vergnioux | The property of rapid decay for discrete quantum groups[END_REF]. However, we will only need the following consequence of this computation. Lemma 4.1. There exists a constant B a , depending only on a and N , such that for all k, l and m = k+l-2a

we have κ l,k m B a .
1. computation of the scalar product as a sum S = S m in the category of representations, 2. simplication of S m into T m , 3. expression of T m as a trace, 4. application of Lemma 3.4 to reduce the trace, 5. application of Proposition 3.2 to estimate the trace, [START_REF] Cameron | Mixing subalgebras of nite von Neumann algebras[END_REF]. backtracking of all approximations.

Step 1. We compute the products and the scalar product using the formulae given in Subsection 2.2:

S = χ l u k ξ η , u n ξη χ l = d l i=1 d l j=1 u l e i e i u k ξ η , u n ξη u l e j e j = d l i=1 d l j=1 +∞ m=0 u m v l,k * m (e i ⊗ξ ),v l,k * m (e i ⊗η ) , u m v n,l * m (ξ⊗e j ),v n,l * m (η⊗e j ) = d l i=1 d l j=1 +∞ m=0 1 d m v l,k * m (e i ⊗ ξ ), v n,l * m (ξ ⊗ e j ) v n,l * m (η ⊗ e j ), v l,k * m (e i ⊗ η ) = d l i=1 d l j=1 +∞ m=0 1 d m v l,k * m (e i ⊗ ξ ), v n,l * m (ξ ⊗ e j ) v k,l * m (η ⊗ e i ), v l ,n * m (e j ⊗ η) = +∞ m=0 1 d m v l,k m ⊗ v k,l m * • (Σ ⊗ Σ) (ξ ⊗ t l ⊗ η ), v n,l m ⊗ v l ,n m * (ξ ⊗ t l ⊗ η) . ( 8 
)
Let us denote by S m the m-th term in brackets in [START_REF] Dixmier | Sous-anneaux abéliens maximaux dans les facteurs de type ni[END_REF] and note that it can only be non-zero if u m is a subrepresentation of both u k ⊗ u l and u n ⊗ u l . This means that there are integers a and b such that l + k = m + 2a and n + l = m + 2b.

Note that l -n + b -a = l -k + a -b and let us denote by c this number. To estimate S m , we will use the explicit formula for the intertwiners given in Subsection 2.3:

v l,k m * = κ kl m P m (id l-a ⊗t * a ⊗ id k-a ), v k,l m * = κ kl m P m (id k-a ⊗t * a ⊗ id l-a ), v l ,n m * = κ nl m P m (id l -b ⊗t * b ⊗ id n-b ), v n,l m * = κ nl m P m (id n-b ⊗t * b ⊗ id l -b ).
so that (8) becomes:

S m = κ kl m 2 κ nl m 2 (P m ⊗ P m ) id l-a ⊗t * a ⊗ id ⊗2 k-a ⊗t * a ⊗ id l-a (Σ ⊗ Σ)(ξ ⊗ t l ⊗ η ) , (P m ⊗ P m ) id n-b ⊗t * b ⊗ id ⊗2 l -b ⊗t * b ⊗ id n-b (ξ ⊗ t l ⊗ η) .
Step 2. Let us set, for 0 µ, µ m,

S m µ,µ = (P l-a,k-a µ ⊗ P k-a,l-a µ ) id l-a ⊗t * a ⊗ id ⊗2 k-a ⊗t * a ⊗ id l-a (Σ ⊗ Σ)(ξ ⊗ t l ⊗ η ) , (P n-b,l -b µ ⊗ P l -b,n-b µ ) id n-b ⊗t * b ⊗ id ⊗2 l -b ⊗t * b ⊗ id n-b (ξ ⊗ t l ⊗ η) so that S m = (κ kl m ) 2 (κ nl m ) 2 S m m,m .
If µ or µ is strictly less than m, then we know by Lemma 4.2 that there is a constant A depending only on N such that either

P l-a,k-a µ P n-b,l -b µ Aq l-a-(n-b) or P k-a,l-a µ P l -b,n-b µ Aq l-a-(n-b) .
This gives the bound |S m µ,µ | A t l t l q c = A √ d l √ d l q c which will be used in the end to estimate S m . Let us expand back the vectors t l = e l t ⊗ e l t and t l = e l s ⊗ e l s , and we introduce

T m = d l t=1 d l s=1 id l-a ⊗t * a ⊗ id ⊗2 k-a ⊗t * a ⊗ id l-a (e l t ⊗ ξ ⊗ η ⊗ e l t ) , id n-b ⊗t * b ⊗ id ⊗2 l -b ⊗t * a ⊗ id n-b ) (ξ ⊗ e l s ⊗ e l s ⊗ η) so that S m = (κ kl m ) 2 (κ nl m ) 2 (T m -S m µ,µ )
, where the sum rune over all (µ, µ ) = (m, m).

Step 3. The problem is now to estimate T m , using the following tensor decomposition of the vectors ξ, η, ξ and η in Sweedler's notation:

ξ = ξ (1) ⊗ ξ (2) ∈ H n-b ⊗ H b , η = η (1) ⊗ η (2) ∈ H n-b ⊗ H b , ξ = ξ (1) ⊗ ξ (2) ∈ H a ⊗ H k-a , η = η (1) ⊗ η (2) ∈ H a ⊗ H k-a .
Because t * a (x ⊗ y) = y * (x), we get

T m = d l t=1 d l s=1 id l-a ⊗ξ * (1) (e l t ) ⊗ ξ (2) ⊗ η (2) ⊗ η * (1) ⊗ id l-a (e l t ) , ξ (1) ⊗ ξ * (2) ⊗ id l -b (e l s ) ⊗ id l -b ⊗η * (2) (e l s ) ⊗ η (1) = d l t=1 d l s=1 ξ * (1) ⊗ id l-a-(n-b) ⊗ξ * (1) (e l t ) ⊗ η * (1) ⊗ id l-a-(n-b) ⊗η * (1) (e l t ) , ξ * (2) ⊗ id l -b-(k-a) ⊗ξ * (2) (e l s ) ⊗ η * (2) ⊗ id l -b-(k-a) ⊗η * (2) (e l s ) = d l t=1 d l s=1 ξ * (1) ⊗ id c ⊗ξ * (1) (e l t ), ξ * (2) ⊗ id c ⊗ξ * (2) (e l s ) × η * (1) ⊗ id c ⊗η * (1) (e l t ), η * (2) ⊗ id c ⊗η * (2) (e l s )
. The properties of conjugate vectors imply that

η * (1) ⊗ id c ⊗η * (1) (e l t ), η * (2) ⊗ id c ⊗η * (2) (e l s ) = η * (2) ⊗ id c ⊗η * (2) (e l s ), η * (1) ⊗ id c ⊗η * (1) (e l t ) .
Making this change in the last expression of T m and using the fact that x, Se l s T e l s , y = x, SP l T * y enables to simplify the sum over s, yielding

T m = d l t=1 ξ * (1) ⊗ id c ⊗ξ * (1) (e l t ), ξ * (2) ⊗ id c ⊗ξ * (2) P l η (2) ⊗ id c ⊗η (2) η * (1) ⊗ id c ⊗η * (1) (e l t ) = Tr ⊗l P l ξ (1) ξ * (2) ⊗ id c ⊗ξ (1) ξ * (2) P l η (2) η * (1) ⊗ id c ⊗η (2) η * (1) 
,

where Tr ⊗l denotes the non-normalized trace on H ⊗l 1 .

Step 4. We cannot apply Corollary 3.3 to T m because there are two highest weight projections instead of one. We will therefore use Lemma 3.4 to reduce the problem to a case where Corollary 3.3 applies. Let us rst simplify the notation by setting

f = ξ (1) ξ * (2) : H b → H n-b , g = η (2) η * (1) : H n-b → H b , f = ξ (1) ξ * (2) : H k-a → H a , g = η (2) η * (1) : H a → H k-a . By Lemma 4.2, (id b ⊗P l -b )(P l -k+a ⊗ id k-a ) -P l Aq c and (P l-a ⊗ id a )(id n-b ⊗P l-n+b ) -P l Aq c , so that it is enough to study Y m = Tr ⊗l (P l-a ⊗ id a )(id n-b ⊗P l-n+b )(f ⊗ id c ⊗f ) (id b ⊗P l -b )(P l -k+a ⊗ id k-a )(g ⊗ id c ⊗g ) = Tr ⊗l (P l-a ⊗ id a )(f ⊗ id l-n+b )(id b ⊗P l-n+b )(id l-n+2b-a ⊗f ) (id b ⊗P l -b )(id l -k+a ⊗g )(P l -k+a ⊗ id a )(g ⊗ id l-n+b ) = Tr ⊗l (id b ⊗P l-n+b )(id l-n+2b-a ⊗f )(id b ⊗P l -b )(id l -k+a ⊗g ) (P l -k+a ⊗ id a )(g ⊗ id l-n+b )(P l-a ⊗ id a )(f ⊗ id l-n+b )] .
We now apply Lemma 3.4 to f (with p = k -a and q = a) and g (with p = n -b and q = b):

P l-n+b (id c ⊗f )P l -b = (α l +a-b k-a,a ) -1 (id l-n+b ⊗ξ (1) * )P l +a-b (id l -b ⊗ξ (2) 
)

P l -k+a (g ⊗ id c )P l-a = (α l-a+b n-b,b ) -1 (η (2) * ⊗ id l -k+a )P l+b-a (η (1) ⊗ id l-a ) where ξ = ξ (1) ⊗ ξ (2) ∈ H k-a ⊗ H a and η = η (1) ⊗ η (2) ∈ H b ⊗ H n-b . This yields Y m = β Tr ⊗l (id l-n+2b ⊗ξ (1) * )(id b ⊗P l +a-b )(id l ⊗ξ (2) )(id l -k+a ⊗g ) (η (2) * ⊗ id l -k+2a )(P l+b-a ⊗ id a )(η (1) ⊗ id l )(f ⊗ id l-n+b ) = β Tr ⊗l (η (2) * ⊗ id l -k+2a ⊗ξ (1) * )(id n ⊗P l +a-b ) (P l+b-a ⊗ id k )(η (1) ⊗ f ⊗ id l-n+b ⊗g ⊗ ξ (2) ) = β Tr ⊗l (id n ⊗P l +a-b )(P l+b-a ⊗ id k )(g ⊗ f ⊗ id c ⊗g ⊗ f ) where β = (α l +a-b k-a,a α l-a+b n-b,b ) -1 and f = ξ (2) ξ (1) * : H k-a → H a , g = η (1) η (2) * : H n-b → H b .
To conclude the computation, we use again Lemma 4.2 to get the following bound:

(id n ⊗P l +a-b )(P l+b-a ⊗ id k ) -P l+k+b-a Aq c ,
enabling us to eventually reduce the problem to the study of

Z m = β Tr ⊗l+k+b-a P l+k+b-a (g ⊗ f ⊗ id c ⊗g ⊗ f ) .
Step 5. We will now apply Corollary 3.3. The orthogonality assumption in the statement of the present theorem can by rephrased as the vanishing of trace required for Corollary 3.3. We have indeed

Tr(P n (g ⊗ f )) = (Tr n-b ⊗ Tr b ) [P n ((id b ⊗η * )(t b ⊗ id n-b ) ⊗ (id n-b ⊗t * b )(ξ ⊗ id b ))] = Tr n-b [(id n-b ⊗t * b )(P n ⊗ id b ) ((id b ⊗η * )(t b ⊗ id n-b ) ⊗ (id n-b ⊗t * b )(ξ ⊗ id b ) ⊗ id b )(id n-b ⊗t b )] = Tr n-b [(id n-b ⊗t * b )(P n ⊗ id b )((id b ⊗η * )(t b ⊗ id n-b ) ⊗ ξ)] = (t * n-b ⊗ t * b )(id n-b ⊗P n ⊗ id b )(id n-b ⊗(id b ⊗η * )(t b ⊗ id n-b ) ⊗ ξ)t n-b = (t * n-b ⊗ t * b )(id n-b ⊗P n ⊗ id b )((id n ⊗η * )t n ⊗ ξ) = (t * n-b ⊗ t * b )(id n-b ⊗P n ⊗ id b )(η ⊗ ξ).
Since the only intertwiner from Hn ⊗ H n to C, up to a scalar, is η ⊗ ξ → t * n (η ⊗ ξ) = ξ, η , this shows that Tr(P n (g ⊗ f )) = 0. Besides, we have the estimate

P n (g ⊗ f )P n HS g ⊗ f HS = ξ η = 1
and similarly P k (g ⊗ f )P k HS 1. Thus, Corollary 3.3 applies to

F = P n (g ⊗ f )P n ⊗ P k (g ⊗ f )P k and yields |Z m | βD n,k .
Step 6. Now we can rewind the successive approximations to bound S m . In the remainder of this proof, the symbols K i will denote numbers possibly depending on n and k, but not on m, l and l . Recall that a, b, c are dened in terms of m, l and l . To bound T m -Z m , we use the rough estimate | Tr H (X)| dim(H) X which holds for any Hilbert space H and any X ∈ B(H). Let us note that the operator norms of f , g, f , g are dominated by their Hilbert-Schmidt norms, which are equal to 1. However, the space over which we take the trace is H ⊗l 1 , which is too big. We therefore take advantage of the projections inside the trace to restrict to H b ⊗ H l -b and H l-a ⊗ H a when passing from T m to Y m and to H n ⊗ H l +a-b when passing from Y m to Z m . This yields:

|T m | |T m -Y m | + |Y m -Z m | + |Z m | A(d b d l -b + d a d l-a + βd n d l +a-b )q c + βD n,k .
By the second part of Lemma 3.4, βD n,k is bounded by C -1 k-a,a C -1 n-b,b D n,k . Because a k and b n take only a nite number of values when n and k are xed, all these constants can be bounded by a constant K 0 . We can also bound the coecient of q c by A(d n d l + d k d l + βd n d l +k ) K 1 q -max(l,l ) .

Secondly, we have to consider the sum of the |S m µ,µ |'s for (µ, µ ) = (m, m). Note that this term is non-zero only if µ and µ are subrepresentations respectively of (l -a) ⊗ (k -a) and (n -b) ⊗ (l -b). Thus, there are at most min(k -a, l -a) × min(n -b, l -b) kn such terms and each of them is bounded by A √ d l √ d l q c , as explained in the beginning of the proof. Also recall from Lemma 4.1 that κ kl m and κ nl m are respectively bounded by B a and B b , and since a, b take only a nite number of values (determined by k and n), they are bounded by a constant K 2 . Summing up, we have

|S m | K 4 2 |T m | + K 4 2 knA d l d l q c K 4 2 K 1 q c-max(l,l ) + K 4 2 K 0 + K 3 q c-max(l,l ) . Let t = min(n + a -b, k + b -a).
Then, c max(l, l ) -t and thus we have proved that |S m | is bounded by a constant K 4 independent of m, l and l .

To obtain our estimate for S, we now have to sum the S m 's. Note that for S m to be non-zero, m = k + l -2a = n + l -2b must be a subrepresentation of both l ⊗ k and n ⊗ l . There are at most min(k, n) such m's and they moreover satisfy m max(l -k, l -n), so that d m K 5 q -max(l,l ) and we can write

|S| +∞ m=0 1 d m |S m | min(k, n)K 5 q max(l,l ) K 4 .

The radial subalgebra

We are now ready to prove the announced results on the radial subalgebra. Before going into the proofs, we recall the denition of this subalgebra as well as some of its basic properties. Note that the radial subalgebra was also used as a sub-C*-algebra A f of the full C*-algebra C(O + N ) by M. Brannan in [START_REF] Brannan | Approximation properties for free orthogonal and free unitary quantum groups[END_REF]. The spectrum of χ

1 in C(O + N ) is [-N, N ], whereas it is [-2, 2] in C red (O + N ) and L ∞ (O + N ).
In the full case, the evaluation functionals ev t :

A f → C at t ∈ [-N, N ] induce completely positive maps T t : L ∞ (O + N ) → L ∞ (O + N )
which approximate the identity as t → N . This allowed M. Brannan to prove that L ∞ (O + N ) has the Haagerup approximation property. The terminology is justied by the following analogy with the "classical case" of the free group factors L(F N ). More precisely, denote the standard generators of F N by a i and consider

u = diag(a 1 , . . . , a N , a -1 1 , . . . , a -1 N ) ∈ L(F N ) ⊗ B(C 2N
). This is indeed a representation of the compact quantum group dual to F N , we put χ 1 = χ u = N i=1 (a i +a -1 i ) ∈ L(F N ) and we dene the radial subalgebra A ⊂ L(F N ) as the von Neumann subalgebra generated by χ 1 . If we consider, for x ∈ L(F N ) and g ∈ F N , the coecient x g = x, g = τ (g * x) with respect to the standard trace τ , then x belongs to A if and only if the function (g → x g ) is radial, i.e. x g only depends on the word length of g.

The fusion rules of O + N imply that χ 1 χ n = χ n χ 1 = χ n+1 + δ n>0 χ n-1 , so that the radial subalgebra is abelian and generated as a weakly closed subspace by the characters (χ n ) n∈N . Moreover, it was proved in [START_REF] Banica | Théorie des représentations du groupe quantique compact libre O(n)[END_REF] that the spectrum of [START_REF]Le groupe quantique compact libre U (n)[END_REF] and that the restriction of the Haar state is the semi-circle law. More precisely, one can identify A with L ∞ ([-2, 2]) via the functional calculus f → f (χ 1 ) and the scalar product induced by the Haar state is computed via

χ 1 in L ∞ (O + N ) is [-2,
f (χ 1 ), g(χ 1 ) = 1 2π 2 -2
f (s)g(s) 4 -s 2 ds.

In particular, the radial subalgebra is diuse. The characters χ n correspond to dilated Chebyshev polynomials of the second kind:

χ n (X) = T n (X) = U n (X/2) where T 0 = 1, T 1 = X and T 1 T n = T n+1 + T n-1 if n 1.
It is known from the classical theory of Chebyshev polynomials that when restricted to [-2, 2],

T n ∞ = U n ∞ = n + 1. Since L ∞ (O + N
) is a nite von Neumann algebra, there is a unique h-preserving conditional expectation E : M → A, which is explicitly given by ( 9)

E(u n ξη ) = ξ, η d n χ n .
We shall denote by A ⊥ = {z ∈ M, E(z) = 0}, which by Equation ( 9) is the weak closure of the linear span of coecients u n ξη with ξ, η = 0. As mentioned in the preliminaries, all the results of this article apply in fact to general free orthogonal quantum groups O + (Q) of Kac type, i.e. such that Q is a scalar multiple of a unitary matrix. The situation for non-Kac type free orthogonal quantum groups is however quite dierent. First recall that L ∞ (O + (Q)) is in that case a type III factor, at least for some values of the parameter Q (see [START_REF] Vaes | The boundary of universal discrete quantum groups, exactness and factoriality[END_REF]). More precisely the Haar state has then a non-trivial modular group, which is given on the generating matrix u ∈ L ∞ (G) ⊗ B(C N ) by

(σ t ⊗ id)(u) = (id ⊗ t (Q * Q) -it )u(id ⊗ t (Q * Q) -it ),
where we assume Q to be normalized so that Tr(Q * Q) = Tr((Q * Q) -1 ). In particular, it is clear that σ t (χ 1 ) does not belong to A for all t unless Q * Q ∈ CI N , and this implies that there exists no h-invariant conditional expectation onto A in the non-Kac case. It might even be that there exist no normal conditional expectation onto A at all. On the other hand, as far as we know all the available tools for the study of abelian subalgebras require the presence of a conditional expectation. Let us also comment on the N = 2 case, where the tools developed in the previous section break down. If we restrict to Kac type free orthogonal quantum groups, there are only two examples at N = 2 up to isomorphism, namely SU (2) and SU -1 (2). In the rst case C(SU (2)) is commutative so that A is clearly not maximal abelian, and in fact A is not maximal abelian either in the second case this is easily seen by embedding C(SU -1 (2)) into C(S 3 , M 2 (C)) by [START_REF] Zakrzewski | Matrix pseudogroups associated with anti-commutative plane[END_REF].

With the estimate of Theorem 4.3, we can investigate the structure of the radial subalgebra. In fact, all the proofs are quite straightforward using techniques which are well-known to experts in von Neumann algebras. We however chose to give detailed proof both for convenience of the reader and for the sake of completeness. From now on, we will write M = L ∞ (O + N ) and A = {χ 1 } .

5.1. Maximal abelianness. We rst prove that A is maximal abelian. This will follow from the following lemma concerning unitary sequences in A, which relies itself on Theorem 4.3. In fact here we only use the fact that | χ l u k ξ η , u n ξη χ l | → 0 as l, l → ∞ if ξ is orthogonal to η.

Lemma 5.2. Let N 3. Let (u i ) i be a sequence of unitaries in A weakly converging to 0 and let z ∈ A ⊥ .

Then, u i zu * i converges * -weakly to 0. Proof. For any i, let us decompose u i as u i = +∞ l=0 a i l χ l and note that by unitarity, (a i l ) l 2 = 1. Assume for the moment that z is of the form u n ξη for some integer n and two orthogonal unit vectors ξ, η ∈ H n . Considering another integer k and two arbitrary unit vectors ξ , η ∈ H k , we will rst prove that

S i = | u k ξ η , u i u n ξη u * i | = +∞ l,l =0 a i l a i l u k ξ η , χ l u n ξη χ l -→ i→+∞ 0.
Let > 0 and note that u k ξ η , χ l u n ξη χ l = χ l u k ξ η , u n ξη χ l . By Theorem 4.3, there exists L ∈ N such that | χ l u k ξ η , u n ξη χ l | /2 as soon as l, l > L. Thus,

S i L l,l =0 |a i l a i l u k ξ η , χ l u n ξη χ l | + 2 +∞ l,l =L+1 |a i l a i l | L l,l =0 |a i l a i l u k ξ η , χ l u n ξη χ l | + 2 (a i l ) l
There are several ways of proving that a MASA is singular. One way goes through a von Neumann algebraic analogue of the mixing property for group actions, called weak mixing, which eventually turns out to be equivalent to singularity. In our case, we can prove a stronger statement than singularity, namely that Proof. We will follow the strategy of [START_REF] Dykema | Measure-multiplicity of the Laplacian masa[END_REF]. Let us look at some "projections" of ν in the following sense: for two integers k and n and two pairs of orthogonal unit vectors ξ, η ∈ H n and ξ , η ∈ H k , there exists a measure µ on

[-2, 2] × [-2, 2] such that for any a, b ∈ A, au k ξ η b, u n ξ,η = [-2,2]×[-2,2]
a(s)b(t)dµ(s, t).

We will compute the Radon-Nikodym derivative of µ with respect to λ ⊗ λ. To do this, let us set

D l,l = χ l u k ξ η χ l , u n ξ,η A l (t) = +∞ l =0
T l (t)D l,l .

Recall that if k, n and l are xed, then there are at most max(k, n) integers l such that D l,l is non-zero and that they are all smaller than l + k + n. Thus, by Theorem 4.3 and the fact that χ l = T l ∞ = l + 1 we have A l ∞ max(k, n)(l + k + n + 1)Kq max(l,l+k+n) K lq l for some constant K depending only on N , k and n. This implies that the series of functions f (s, t) = +∞ l=0 T l (s)A l (t) is normally convergent and since all summands are polynomials, f is analytic in s and t. This function is linked to the measure µ by the following computation: Hence, f (s, t) √ 4 -s 2 √ 4 -t 2 is the Radon-Nikodym derivative of µ with respect to λ ⊗ λ and all we need to conclude in that case is to prove that the zeros of f are contained in a set of Lebesgue measure 0.

To do this, rst observe that if z ∈ C and w + w -1 = 2z satises |w| 1, then the usual Tchebyshev polynomials of the second kind satisfy |A l (z)| max(k, n)(l + k + n + 1) U l z 2 Kq (l+l )/2 K lq l/2 q l /2 (l + 1) max(l + 1, 3 l ).

Using again the same estimate for Tchebyshev polynomials, we see that the series of functions

f (z 1 , z 2 ) = +∞ l=0 T l (z 1 )A l (z 2 )
is normally convergent as soon as 3q 1/2 < 1, i.e. q < 1/9. Because all the summands are polynomials, hence holomorphic, the sum is also holomorphic. Since moreover f does not always vanish, its zeros are contained in a set of Lebesgue measure 0, hence µ is equivalent to λ ⊗ λ. by Theorem 4.3. From this we see that the radial subalgebra in L ∞ (G(M N (C), tr)) is maximal abelian and mixing and that its associated bimodule is a direct sum of coarse bimodules. This is an interesting example because G(M N (C), tr) has SO(3)-type fusion rules, like another important family of discrete quantum groups called the quantum permutation groups S + N . This of course suggests that our result extends to S + N . One way to prove this may be through monoidal equivalence [START_REF] Bichon | Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups[END_REF].

Another possible extension of our work would be to the non-Kac case. It is possible that the estimate of Theorem 4.3 still holds with appropriate modication for an arbitrary free orthogonal quantum group. However, the proofs of Section 5 all break down if the von Neumann algebra is type III, because the radial MASA has no h-invariant conditional expectation in that case. There is therefore an additional von Neumann algebraic problem to solve in that case, but this could yield very explicit examples of singular MASAs in type III factors.

Denition 2 . 7 .

 27 The pair O + N = (C(O + N ), ∆) is called the free orthogonal quantum group of size N .The pair O + (Q) = (C(O + (Q)), ∆) is called the free orthogonal quantum group of parameter Q.
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 1 Partial traces of projections. The rst result we need concerns projections onto irreducible representations that are cut down by a trace. To explain what is going on, let us rst consider two integers a, b ∈ N. Then, the operator

  Now we observe that (Tr a ⊗ Tr c )(X a,b,c f ) = Tr(P a+b+c f 13 ) where Tr is the trace of H ⊗(a+b+c) 1

  d a+c ) and we iterate the inequality above over b. Noticing that | Tr(X a,0,c f b )| d a+c f b HS D f b HS this yields, with the convention that the product equals 1 for l = 0: | Tr(X a,b,c f )| D

3 :Corollary 3 . 3 .

 333 Assume that N > 2. For any a, b ∈ N and any f ∈ B(H a ⊗ H c ) such that Tr(f ) = 0, there exists a constant D a,c such that we have, for any b ∈ N: | Tr(P a+b+c f 13 )| D a,c f HS .

Denition 5 . 1 .

 51 For any representation v of a compact quantum group G, the character of v is the elementχ v = (id ⊗ Tr)(v) ∈ C(G).This element depends only on the equivalence class of v. The radial subalgebra A ⊂ L ∞ (O + N ) is the von Neumann subalgebra generated by the fundamental character χ 1 = χ u , where u is the matrix of generators.

  l b, χ l χ l u k ξ η χ l , u n ξ,η = +∞ l,l =0 a, χ l b, χ l D l,l )b(t)f (s, t) 4 -s 2 4 -t 2 d(λ ⊗ λ)(s, t).

U

  n (z) = n k=0 w n-2k . In particular, if z ∈ C \ R, then |U n (z)| n k=0 w n-2k (n + 1)|w| n (n + 1)(2|z| + 1) n .Using this estimate, we see that for any z in the open disc of diameter [-2, 2],

5 . 4 .

 54 Consider now an arbitrary element ζ in Pol(O +N ) ∩ A ⊥ . It can be written as a nite linear combination of coecients corresponding to orthogonal vectors, hence the measure µ ζ dened byaζb, ζ = [-2,2]×[-2,2] a(s)b(t)dµ ζ (s, t). is equivalent to λ ⊗ λ. Because Pol(O + N ) ∩ A ⊥ is dense in L 2 (M ) L 2 (A), this implies that [ν] = [λ ⊗ λ]. Note that as a consequence, the A -A-bimodule L 2 (M ) L 2 (A) is containedin a multiple of the coarse bimodule, see [14, Section 2]. Since the coarse bimodule is mixing, we can also recover Theorem 5.7 in this way. Concluding remarks. We would like to briey discuss some possible extensions of this work. First consider the quantum automorphism group G(M N (C), tr) of M N (C) endowed with the canonical trace. It is known that the von Neumann algebra L ∞ (G(M N (C), tr)) of this quantum group embeds into L ∞ (O + N ) as the subalgebra generated by all u 2n ξ,η for n ∈ N and ξ, η ∈ H 2n . Let us set v n = u 2n . Then, the v n 's form a complete family of representatives of irreducible representations of G(M N (C), tr) with corresponding characters ψ n = χ 2n . In particular, for any orthogonal unit vectors ξ, η ∈ H 2n and ξ , η ∈ H 2k , ψ l v k ξ ,η , v n ξ,η ψ l Kq max(2l,2l )

  = (id a ⊗ρ)(f ) satises Tr(f ) = 0 and f HS f HS by Lemma 3.1. Here is the diagrammatic version of the previous computation,

	p	p p							p	p p	p	p p			§	¤	p	p p
				p	p p								p	p p		
	p	p p						p	p p		p	p p				p	p p
	p	p p	p	p p	§	¤ . . . . . . . . . . . . . . . . . . . . . . . . . .	p	p p	¦ ¥ . . . . . . . . . . . . . . . . . . . . . . . . . .	p	p p	p	p p	p	p p	¦ ¥
											p	p p			§	¤	p	p p
													p	p p		
											p	p p				p	p p	¦ ¥
											p	p p	p	p p	p	p p

a,b-1,c f ) where f

Proof. This is a consequence of the estimates given in [START_REF] Vergnioux | The property of rapid decay for discrete quantum groups[END_REF]Lem 4.8], see also [START_REF] Fima | On a cocycle in the adjoint representation of the orthogonal free quantum groups[END_REF]. The sequence (B a ) a diverges exponentially as q -a/2 . We will also need the following estimates which were already used in [START_REF] Vaes | The boundary of universal discrete quantum groups, exactness and factoriality[END_REF] and [START_REF] Fima | On a cocycle in the adjoint representation of the orthogonal free quantum groups[END_REF]. Lemma 4.2. Let x, y and z be integers and let µ = x + y + z be a subrepresentation of both x ⊗ (y + z) and (x + y) ⊗ z. Then, there exists a constant A > 0 depending only on N such that Proof. The rst inequation is [START_REF] Vaes | The boundary of universal discrete quantum groups, exactness and factoriality[END_REF]Lem A.4]. For the second one, note that P x,y+z µ P x+y+z = 0 = P x+y+z P x+y,z µ because µ is not the highest weight. Thus, we have

We now state and prove an estimate, as l, l tend to +∞, about the scalar product between products of the characters χ l , χ l with coecients of xed representations. Since χ l , χ l have norm 1 in the GNS space L 2 (G), it is clear that these scalar products are bounded when l, l tend to +∞. However one can do much better: Theorem 4.3. Assume that N > 2. Let k, n be integers, let ξ, η ∈ H n be orthogonal unit vectors and let ξ , η ∈ H k be arbitrary unit vectors. Then, there exists K > 0 such that we have, for all integers l, l :

In particular χ l u k ξ η , u n ξη χ l → 0 when l or l tends to +∞.

Proof. The proof will consist in the following steps:

Now, because u i → 0 in the weak topology, a i l = h(χ l u i ) → 0 for all xed l ∈ N as i → +∞. In particular, there exists i 0 ∈ N such that for all i > i 0 and all l, l L,

.

and S i → 0. Making nite linear combinations in the left-hand side, we see that t, u i u n ξη u * i tends to

. Then, we can write t, u i u n ξη u * i = u * i tu i , u n ξη and use similarly the density of

, this shows the stated * -weak convergence.

Theorem 5.3. Let N 3. Then, the radial subalgebra A is maximal abelian in M .

Proof. Let x ∈ A ∩ M and consider the decomposition x = y + z with y ∈ A and z ∈ A ⊥ . Note that

The argument above also proves that the C*-algebra generated by χ 1 is maximal abelian in the reduced C*-algebra C red (O + N ). From the theorem, one can also recover the factoriality of L ∞ (O + N ) established in [START_REF] Vaes | The boundary of universal discrete quantum groups, exactness and factoriality[END_REF] and also in [START_REF] Fima | On a cocycle in the adjoint representation of the orthogonal free quantum groups[END_REF] (as a byproduct of non-inner amenability). N is given by the following expression, where

In particular we have α g (χ n ) = rs v n (g) rs u n sr where r, s are indices corresponding to an orthonormal basis of H n . Note that α g leaves the subspace of coecients of any xed representation of O + N invariant. Since A is maximal abelian in M , α g (A) is maximal abelian in M for every g ∈ O N , and so the center of M is contained in α g (A) for every g ∈ O N . Hence it suces to show that the intersection of the subalgebras α g (A) reduces to C1. Equivalently, we take c ∈ A such that α g (c) ∈ A for all g ∈ O N , and we want to prove that c = λ1. For this we write c = c n χ n in L 2 (O + N ). The orthogonal projection of α g (c) onto the subspace generated by the coecients of u n is c n α g (χ n ), whereas the projection of A is Cχ n . Hence, if c n = 0 then we must have α g (χ n ) ∈ Cχ n for all g ∈ O N . By the computation above and the fact that the coecients u n rs are linearly independent, this happens if and only if v n (g) is scalar for all g, i.e. v n is a multiple of a one-dimensional representation. But then v 2n ⊂ v n ⊗ v n would be trivial, and if n > 0 this would imply that O N has only nitely many irreducible representations up to equivalence, since any of them is contained in one of the v k and v k+1 ⊂ v k ⊗ v 1 . Hence c n = 0 for all n > 0.

5.2. Singularity and the mixing property. Now that we know that the radial subalgebra is a MASA, we can investigate further properties. By [START_REF] Isono | Examples of factors which have no Cartan subalgebras[END_REF], we now that A cannot be a regular MASA (also called Cartan subalgebra) because M is strongly solid. In view of this result and of the case of the radial MASA in free group factors treated in [START_REF] Radulescu | Singularity of the radial subalgebra of L(FN ) and the Pukànsky inavriant[END_REF], it is natural to conjecture that A is singular. Recall that for a von Neumann algebra N , we denote by U(N ) the group of unitary elements of N .

Denition 5.5. A MASA

A is mixing in the following sense: Denition 5.6. A subalgebra A of a von Neumann algebra M is said to be mixing if for any sequence (u n ) n of unitaries in A converging weakly to 0 and any elements x, y ∈ A ⊥ ,

Again, the proof is an easy application of Theorem 4.3.

Theorem 5.7. The radial MASA is mixing.

Proof. Let k, n ∈ N and consider two pairs of orthogonal unit vectors ξ, η ∈ H n and ξ , η ∈ H k . We rst estimate, for l ∈ N,

To compute the square norm, we can use the orthonormal basis given by the characters to get

We can now decompose the unitaries u i according to the basis of characters: u i = +∞ i=0 a i l χ l . We have (a i l ) l 2 = 1 for all i, and in particular |a i l | 1 for all i and l. Moreover since u i → 0 weakly we have a i l = h(χ l u i ) → 0 as i → ∞ for each l. Then, Theorem 4.3 yields

We have l,l q max(l,l ) < +∞, hence the dominated convergence theorem applies and we have X n,k (i) → 0 as i → ∞. Since elements of the form u k ξ η (resp. u n * ξη ) with ξ ⊥ η (resp. ξ ⊥ η) span a dense subspace of