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Abstract: 
This review is dedicated to various functional nanoarchitectonic nanocomposites based on 

molecular octahedral metal atom clusters (Nb6, Mo6, Ta6, W6, Re6). Powder and film 

nanocomposites with two-dimensional, one-dimensional and zero dimensional 

morphologies are presented, as well as film matrixes from organic polymers to inorganic 

layered oxides. The high potential and synergetic effects of these nanocomposites for 

biotechnology applications, photovoltaic, solar control, catalytic, photonic and sensor 

applications is demonstrated. This review also provides a basic level of understanding how 

nanocomposites are characterized and processed using different technics and methods. The 

main objective of this review would be to provide guiding significance for the design of new 

high-performance nanocomposites based on transition metal atom clusters. 
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1. Introduction 
Today, the term “nanocomposite”, proposed by Blumstein in 1961, [1] describes generally a 

bi(or multi)phasic material where one of the phases, at least, presents a nanometric size. 

The definition and the choice of materials are very broad including metallic, ceramic or 

polymer compounds. [2-4] Indeed, the high flexibility of the composition and the 

complexity of the structure have allowed various kinds of nanocomposites to be developed, 

zero-dimensional (0D) (e.g., nanoparticles), one-dimensional (1D) (e.g., nanowires), two-

dimensional (2D) (e.g., multilayered based film and coating composites), three-dimensional 

(3D) (e.g., mesoporous based composites) and the even more complex hierarchical 3D 

nanostructured networks. [5] In this review, this term will refer only to functional 

composite nanoarchitectures which represent a class of nanostructured entities that integrate 

dissimilar nanoscale inorganic octahedral metal cluster units in the frame of the 

nanoarchitectonics concept. [6-11] As one of the nanocomponents of the nanocomposites, 

the nanometer-sized metal atom clusters (MC) also called ‘‘nanoclusters or superatoms’’ 

(size < 2 nm), [12] which consist of less than a few dozens of metal atoms, were used to 

synthesize functional nanocomposites during the last decades. Indeed, metal nanoclusters 

are promising candidates for novel materials due to their size-specific properties arising 

from unique atomic packing and electronic structures. Most of the papers are dedicated to 

silver, platinum and gold nanoclusters for catalysis, optics, sensors or biotechnology. [13-

28] In parallel to this commonly studied family of nanoclusters, nanocomposites based on 

molecular octahedral metal atom clusters (Nb6, Mo6, Ta6, W6, Re6) units were developed 

more recently. [See reviews 29-36] Although less popular than noble metal nanoclusters or 

superatoms, these octahedral transition metal atom clusters, with general formulas 

{M6Li
8La

6}n-/+ or {M6Li
12La

6}n-/+, are well known for one century and are a part of the large 

family of the transition metal atom clusters compounds defined by Cotton. [37] The 

[{M6Li
8}La

6]n-/+ nanosized cluster units are generally built up from an octahedral M6 

clusters with Mo, W or Re metals, whereas the [{M6Li
12}La

6]n-/+ are based mainly on Nb or 

Ta metals. [38-41] These [{M6Li
8}La

6]n-/+ and [{M6Li
12}La

6]n-/+ cluster units are bonded to 

eight inner face-capping ligands or twelve face-capping ligands (Li, i = inner, L = Cl, Br, I, 
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S, or Se) respectively, and both of them have six apical ligands (La, a = apical, L = F, Cl, Br, 

I, OH, CN, organic molecules...) located in terminal positions. These species can be 

isolated (at molecular level) or condensed by either ligands or metals in the solid-state 

compounds. [39-41] Depending on the degree of condensation and dimensionality of the 

metal atom clusters, these compounds present fascinating crystal structures and electronic 

properties as for instance superconductivity [42], thermoelectricity [43], intercalation/de-

intercalation [44] or Mott insulating behaviors [45]. This review will focus only on 

molecular cluster compounds, in which cluster units are fully isolated in the crystal 

structures. For illustration, the molecular [{M6Li
8}La

6]n-/+ (M = Mo, W, Re) and 

[{M6Li
12}La

6]n-/+ (M = Nb, Ta) cluster units are represented in Figure 1.  

 
Figure 1: Schematic representation of [{M6Li

12}La
6]n-/+ (M = Nb, Ta) and [{M6Li

8}La
6]n-/+ 

(M = Mo, W, Re) molecular cluster units. Apical ligands (La) and inner ligands (Li).  
 

These molecular metal atom cluster units can be defined as a link between atom and 

nanoparticle. The solid-state compounds built-up from these units are characterized by 

insulating behavior combined with specific physical and chemical properties. Generally, the 
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molecular compounds based on non-interacting face-capped [{M6Li
8}La

6]n-/+ cluster units 

(M = Mo, W, Re; Li = halogen; La = halogens, organic molecules) are characterized by 

strong phosphorescence that ranges from red to near-IR (NIR) with a high quantum yield 

and long lifetime [44-52], whereas , the molecular compounds based on non-interacting 

edge-bridged [{M6Li
12}La

6]n-/+ cluster units (M = Nb and Ta; X = halogen) are well known 

to be strong ultraviolet (UV) and NIR absorbers. [53,54] Several parameters influence the 

general properties of the cluster units: the nature of the metal, the nature of the ligands and 

the number of electrons involved in the metal–metal bonds, the so-called valence electron 

count or concentration (VEC). This review is not dedicated to the synthesis and properties 

of the octahedral metal atom clusters, for more specific details see these references. 

[39,40,55-67] These cluster units are prepared either by solid-state chemistry or by 

combined use of solid state and solution chemistries and associated with inorganic or 

organic counter cations in a large variety of molecular metal atom cluster compounds. [37-

67] Actually, although prepared by solid-state chemistry processes, for instance the 

Cs2[{Mo6Bri
8}Bra

6] clustered compounds can be resolubilized in many solvents until 

obtaining 1 nm objects in solution thanks to their molecular properties. [68] Indeed, one of 

the key points is the high solubilization of these molecular metal atom clusters compounds 

in various solvents and matrixes, which was an important parameter to provide very 

interesting building blocks with multifunctional properties (optical, magnetic, electronic, 

redox…) that can be further used for the design of a large variety, from hybrids 

(dendrimers, liquid crystals, polymers…) to all-inorganic, of functional nanocomposite 

materials and surface coatings during the last decades. [29-36, 68-220] Clearly, the number 

of publications about nanocomposites based on octahedral metal atom clusters has been 

increasing for the last 3 decades (started from less than 10 before 2000 to almost 100 

between 2010 to 2019, and already 43 since the last two years). These nanocomposites 

based on these octahedral nanoclusters are already an emerging field in material science. 

They found applications in many important domains like energy, [91-108] catalysis, 

[94,109-119,217] biotechnology, [47,120-145] sensors, [75,80,142,146-153] and photonic 

(Figure 2). [89,154-171]  
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discussed and new trends will be emphasized: 

-The electrophoretic deposition (EPD) process appears to be a new strategy to fabricate 

highly transparent, homogeneous and colored nanocomposite thin films and coatings, 

-The clear potential of Mo6 based nanocomposites for biotechnology applications as anti-

bacterial or anti-cancer or as a new broadband emitter for photovoltaic (PV), photonic and 

sensor applications, 

-The strong potential and synergetic effects of nanocomposites based on nanoclusters and 

layered 2D compounds for catalysis and photocatalysis applications,  

-The reborn of Nb6 and Ta6 nanoclusters, which appeared recently as very interesting UV 

and NIR blockers for saving energy applications.  

 

One of the objectives of this review would be to provide guiding significance for design of 

new high-performance nanocomposites based on transition metal atom clusters from the 

aspects of processing, characterization and applications. 

 

2. Inorganic powder nanocomposites: 0D nanoparticles and layered materials  
The idea of improving the properties of materials by combining at least two phases with 

different properties is not new and nanocomposites are found in nature or have been created 

by human long time ago. [221] As mentioned in the introduction, the diversity of the 

architectures to prepare nanocomposites is very large. Nevertheless, in the case of inorganic 

nanoparticles (0D) and layered (2D) material nanocomposites, the nanoclusters are mainly 

embedded into nanoparticles (often considered as the matrix) or deposited at the surface of 

nanocrystals or nanoparticles or 2D materials, depending on the targeted application. The 

high flexibility of the inorganic matrix’s composition was also mentioned as an advantage 

for the synthesis of new nanocomposites, however, only few are still reported in the case of 

the 0D nanocomposites based on transition metal atom clusters. The main matrix used is 

SiO2 and by far.  

 

2.1 0D nanocomposites: 
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2.1.1 @SiO2 
It is necessary to mention that the first examples of SiO2 nanocomposite based on transition 

metal atom clusters were related to bulk and not to 0D nanocomposites. For instance, at the 

end of the 80’s, Newsham has shown that [{Mo6Cli
12}(OSi(CH3)a

3)2]2- can be encapsulated 

in a silica matrix prepared by sol-gel route in methanol. [71] In 1994, Robinson et al. 

studied the nature of the interaction between commercial silica gel and [{Mo6Cli
8}Xa

6]2- 

(Xa = SO3CF3, Cl) cluster units in organic solvents and different pH conditions by a simple 

absorption process. [72] Both cluster units, [{Mo6Cli
8}Xa

6]2- and [{Mo6Cli
8}(SO3CF3)a

6]2-, 

were able to be strongly absorbed at the surface of the silica gel, which contains a high 

density of Si-OH groups. The authors concluded that clusters could be bound by either 

electrostatic or covalent interactions, which mainly depends, under the same conditions, on 

the apical ligand’s properties. Indeed, the cluster units with the less substitutional labile 

apical ligands, in this specific case Xa= Cl, was not covalently attached to silica gel. In 

opposite, the SO3CF3- ligands, which could be readily replaced by solvent molecules for 

instance, presented the opportunity to coordinate the cluster to Si-O- groups in basic 

condition or even adsorb the solvated cluster cation by ion exchange in acid condition.  The 

problem of the apical ligands’ substitution is a very important issue for preparing the 

nanocomposites and for controlling their properties and it will be discussed several times in 

the following sections. Nevertheless, the main result of these studies of bulk 

nanocomposites was that the integrity of the {Mo6Cli
8}4+ cluster core could be maintained 

in this heterogeneous environment, even in the case of exchange of apical ligands by other 

ions or solvent molecules. These results were very important for the first synthesis of 0D 

silica nanocomposites (noted @SiO2) based on [{Mo6Bri
8}Xa

6]2- cluster units (X = Br, OH) 

in 2008 (Figure 3). [68] Grasset et al. reported the synthesis of red-NIR luminescent 

[{Mo6Xi
8}Xa

6]@SiO2 nanoparticles (X = Cl, Br, or I) via a water-in-oil (W/O) 

microemulsion process wherein the nanosized [{Mo6Bri
8}Xa

6]2- cluster units are 

homogeneously dispersed in high monodisperse silica nanoparticles (called homogeneous 

0D nanocomposites) (Figure 4). Very shortly, the microemulsion is a thermodynamically 

stable dispersion of water droplets with a size about tens nanometers in oil phase, stabilized 
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at the interface by amphiphilic surfactant molecules. Those water droplets, also called 

inverted micelles, constitute a suitable confined reaction medium for the synthesis of a wide 

variety of well-defined functional 0D silica nanoparticles with controlled size and 

architectures. [30,32,222]  

 
Figure 3: a) Optical microscopy image of [{Mo6Xi

8}Xa
6]@SiO2 (X = Cl, Br, I) 

nanocomposites (powder between two plates of glass under irradiation at λexc = 546 nm). b) 
Scanning electron microscope (SEM) images of [{Mo6Xi

8}Xa
6]@SiO2 0D homogeneous 

nanocomposites. c) Z-contrast high-angle annular dark field scanning transmission electron 
microscopy (HAADF-STEM) mode image of two adjacent [{Mo6Xi

8}Xa
6]@SiO2 

nanoparticles. Adapted from 68 with permission from Wiley. 
 

This process is quite simple and highly reproducible for preparing multifunctional @SiO2 
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One of the goals of the preparation of these first [{Mo6Xi
8}Xa

6]@SiO2 functional silica 0D 

nanocomposites was to prepare relevant candidates in theranostic applications (bioimaging, 

labelling, photodynamic therapy (PDT)…). Indeed, functional silica nanoparticles present a 

strong potential for biotechnologies for decades. [223-227] Silica constitutes a very good 

candidate as a matrix for the preparation of nanocomposites-based metal atom clusters 

thanks to its high chemical stability and biocompatibility. Silica can prevent the degradation 

of the cluster units’ properties and, moreover, the surface of the SiO2 matrix can easily be 

conjugated with various biomolecules and is water-soluble. Cytotoxicity is a very important 

issue for biotechnology applications, Aubert et al. showed that these [{Mo6Bri
8}Xa

6]@SiO2 

0D nanocomposites (X = Br, OH, OSi) presented a dose effect but no time effect, and the 

cell toxicity became significant only for the fibroblastic cells and for the highest 

concentration (100 μg/mL). [120] More interestingly, the in vitro cytotoxicity in spheroid 

models, examined by the acid phosphatase assay, revealed that this 0D nanocomposites 

induced a strong oxidative stress to model cancer KB cell lines ((ATCC® CCL-17™) 

derived from a human epidermal mouth carcinoma. [130] In opposite, Cabello-Hurtado et 

al. showed that [{Mo6Bri
8}Xa

6]@SiO2 have any phytotoxicity significant effect on plant 

cell growth and viability or photosynthetic efficiency on Arabidopsis thaliana. [125]  

Since this first example of 0D {[{Mo6Xi
8}Xa

6]@SiO2 (X = Cl, Br, or I) nanocomposites, 

some studies have been published on the synthesis of homogeneous functional silica 

nanocomposites based on transition metal atom cluster compounds. For the Mo6, this 

process was successfully used with the highly red-NIR luminescent 

(Bu4N)2[{Mo6Ii
8}(NO3)a

6] [124,135,191] and Cs2[{Mo6Ii
8}(C2F5COO)a

6] [123] cluster 

compounds. In 2010, it was expanded to Re6 cluster compounds by Aubert et al. [88] and 

then very recently by Khazieva et al. [142] Aubert et al. synthesized and characterized a 

new red-emitting @silica 0D nanocomposites based on A4[{Re6Xi
8}Xa

6] metal atom 

clusters compounds (A = Cs or K, Xi = S or Se, and Xa = OH or CN) with an interesting 

changing in the chemical process. Indeed, to prevent the precipitation of the clusters due to 

the low pH, the microemulsions were prepared by adding ammonia to the polyoxyethylene 

(4) lauryl ether/heptane mixture prior to the aqueous cluster colloidal solution and prior to 
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TEOS, so both the hydrolysis and condensation steps in the silica synthesis were base-

catalyzed. In 2018, the W/O micoemulsion process was extended to positively charged Ta6 

nanoclusters [{Ta6Bri
12}(H2O)a

6]2+ by Chen et al. [199] This new step could be very 

attractive for biotechnology applications because interestingly, over the past several 

decades, hexanuclear tantalum bromide clusters have attracted considerable attention, in 

particular as a commercial tool for the phase determination of large biological assemblies 

by X-ray crystallography and as radiographic contrast agents [228-231].  

In parallel to this homogeneous 0D SiO2 nanocomposites, it is also possible to use the 

microemulsion process to prepare more complexes bi- or multifunctional @SiO2 0D 

nanocomposites as presented in Figure 4. Compared to homogeneous 0D SiO2 

nanocomposites, complexes bi- or multifunctional @SiO2 0D nanocomposites combine in 

the same nanoparticles several properties such as magnetism, photoluminescent and/or 

plasmonic. For instance, magnetic nanocomposites could be handleable and sensitive to 

radiofrequency signals. The first example of bi-functional @SiO2 0D nanocomposites was 

done by Grasset et al. as early as 2008 by the controlled and nanostructured association of 

[{Mo6Bri
8}Bra

6]2- cluster units and γ-Fe2O3 nanocrystals. [86] These bi-functional 0D 

nanocomposites exhibit silica nanoparticles with regular spherical shape of 50 nm in 

diameter and the γ-Fe2O3 nanocrystals (6 nm) are located at the center of the nanoparticles 

whilst the [{Mo6Bri
8}Bra

6]2- cluster units are homogeneously dispersed around the magnetic 

core within the @SiO2 matrix (Figure 5). The bi-functional character (magnetism and 

luminescence) of these nanocomposites has been evidenced by complementary technics. 

The effect of the applied magnetic field, concomitant to the red emission, was directly 

observed in an aqueous ethanolic solution by using an optical microscope under irradiation 

at λexc = 405 nm and an applied magnetic field (1.5 T). Very interestingly, the presence of 

γ-Fe2O3 as core does not affect the red luminescence properties of the cluster units, and an 

intense broad band with a maximum located at λem = 738 nm was observed as expected for 

the [{Mo6Bri
8}Bra

6]2- cluster units. The zero field cooled-field cooled (ZFC-FC) magnetic 

behavior was typical of superparamagnetic ferrite nanocrystals dispersed in silica matrix. 

[232,233] 
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High uptake capacity of the clusters (8700 of [{Mo6Ii
8}Ia

6]2- and 6500 of 

[{Mo6Ii
8}(CH3COO)a

6]2- per each nanoparticle) was possible thanks to the ionic self-

assembly and coordination bonds between the charged nanoclusters and ionic (amino- and 

siloxy-) groups at the silica (Figure 7 upper). Fedorenko et al. mixed the previous works by 

the combination of superparamagnetic iron oxides at the center of the silica nanocomposites 

and [{Mo6Ii
8Ia

6]2- cluster units at the surface within amino-decorated group (Figure 7 

lower). 

Interestingly, very recently, Elistratova et al. extended this process to water insoluble 

cluster salts (Bu4N)2[{Mo6Ii
8}La

6] (L = CF3COO- and C6F5COO-) by using an additional 

layer of polyethylene imine (PEI) at the surface of the silica in order to significantly 

improve the colloid stability. [143] For the first time, this work highlighted the combination 

of pronounced PDT effect with high anticancer potential in the irradiation-free conditions 

using Mo6 based silica nanocomposites. Khazieva et al. expanded this strategy to 

[{Re6Si
8}(OH)a

6]4-. [142] Most of these red-NIR luminescent nanocomposites could have 

applications in biotechnology field (in vitro bioimaging, cellular photosensitisation, 

PDT…). 234, 235] The strong potential of these nanocomposites as cellular bioimaging 

agent has been revealed by cellular internalizations and flow cytometry measurements. 

[123,124,132,139,142,143] Neaime et al. reported the first preparation of transferrin grafted 

silica nanoparticles loaded by [{Mo6Ii
8}(C2F5COO)a

6]2- metal atom clusters used for time-

gated luminescence (TGL) bioimaging observation. [123] TGL imaging clearly showed that 

the conjugates accumulated around the nuclei upon internalization into living cells. 

Moreover, cellular imaging and pronounced PDT effects were observed, no matter, the 

localization of the cluster units (interfacial or encapsulation). [124,132] 

To conclude on this part on 0D silica nanocomposites prepared by microemulsion process, 

we just mentioned that more “exotic” 0D silica nanocomposites β-

NaYF4:Yb:Er@NaYF4@[{Mo6Bri
8}Bra

6]@SiO2 or ITO@{M6Bri
12}@SiO2 (M = Nb, Ta) 

(ITO = indium tin oxide) were reported by Thangaraju et al. or Chen et al. respectively. 

[98,175] The latter case will be presented more in detail in the section related to films and 

coatings prepared by EPD for saving energy applications.   
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The microemulsion route is not the only way to prepare functional 0D silica 

nanocomposites and obviously the well-known “Stöber-Fink-Bohn” process was one of 

them. [236] The first example of homogeneous 0D nanocomposite prepared by this simple 

process was reported by Dechézelles et al. in 2010 and it was dedicated to the engineering 

of photonic colloidal crystals based on [{Mo6Bri
8}Bra

6]@SiO2 (25 layers of silica 

microparticles with a diameter = 330 nm) by using the Langmuir–Blodgett technique. [89] 

These photonic structures exhibit strong angle-dependent luminescent properties. An 

inhibition of the emission intensity from the light sources was observed in the spectral 

region of the stopband, which follows the Bragg-Snell law as the angle between the [111] 

direction and the incident beam was varied. Moreover, the incorporation of one or several 

planar defects (monolayer of silica microparticles with a diameter = 450 nm) within the 

periodic structures gives rise to the creation of a passband in the stopband. In the energy 

range of this passband, an increase of the emission intensity has been found. In the same 

year, Gao et al. reported the encapsulation of several positively charged phosphine-

terminated rhenium (III) chalcogenide clusters ([{Re6Sei
8}(Et3P)a

5Ia]I, 

[{Re6Si
8}(Et3P)a

5Bra]Br, [{Re6Sei
8}(Bu3P)a

5Ia]I, and [{Re6Si
8}(Bu3P)a

5Bra]Br) in silica 

nanoparticles (10-20 nm) for singlet oxygen production and PDT applications. Surprisingly, 

the encapsulation was ineffective for neutral and anionic clusters. [90] Two years later, 

Kirakci et al. prepared singlet oxygen photoactive composite materials by incorporating 

(Bu4N)2[{Mo6Ii
8}(CF3COO)a

6] cluster compounds into silica particles with sizes about 10 

nm or 500 nm. [47] Interestingly, the intensive luminescence of the smallest 

[{Mo6Ii
8}(CF3COO)a

6]@SiO2 nanoparticles was completely and effectively quenched by 

oxygen. In contrast, the bigger microparticles were not affected by oxygen, which 

suggested that a high fraction of nanoclusters is not accessible to oxygen because of the 

large size of the silica microparticles. The comparison of the photo-physical properties of 

this nanocluster with those of the archetypal complexes [Ru(bpy)3]2+ and [Ir(ppy)3] 

illustrated the relevance of this nanocomposites. The last case is related to the work 

performed by Vorotnikov et al. on the detailed investigation of silica microparticles (500 

nm) incorporating of various quantities of (Bu4N)2[{Mo6Xi
8}(NO3)a

6] (X = Cl, Br, I) cluster 
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compounds. [133,191] These studies revealed that hydrolysis of the molybdenum cluster 

precursors during the “Stöber-Fink-Bohn” process strongly affects both morphology and 

photophysical parameters of the materials, especially at high loadings. Low loadings of the 

nanoclusters demonstrated the most promising set of properties (i.e., the highest 

photoluminescence quantum yields and efficient singlet oxygen generation) for cellular 

internalization of proteins, such as the HIV TAT protein (HIV: human immunodeficiency 

viruses; TAT: Trans-Activator of Transcription) and commercial protein delivery agents 

(e.g., Pierce™). 

The two last examples of original chemical route to prepare 0D SiO2 nanocomposite based 

on metal atom clusters are related to the work of Nguyen et al. [116] and de la Torre et al. 

[237] In the first work, commercial pseudocube hollow silica nanoparticles (HSNs) 

(SiliNax SPPN(b)), supplied from Nittetsu Mining Co., Ltd) were used and the 

[{Mo6Ii
8}Xa

6]2- (X = Cl, C2F5COO) nanoclusters have been successfully embedded into the 

HSNs and/or deposited at their surface by a vacuum impregnation process (VIP) at room 

temperature (Figure 8). The HSNs were clearly filled by the Mo6 nanoclusters as confirmed 

by HRTEM coupled energy-dispersive X-ray analysis (EDX), inductively coupled plasma 

atomic emission spectroscopy (ICP-AES) and Brunauer–Emmett–Teller (BET) analysis. 

The results of the UV-Vis and photoluminescence spectra demonstrated that the optical 

properties of the Mo6 cluster-functionalized HSNs nanocomposites were still retained even 

when annealed at 200°C. 

In the second example, de la Torre et al. used amino-decorated mesoporous silica 

nanoparticles MCM-41 as containers. They incorporated the hexanuclear molybdenum 

cluster (Bu4N)2[Mo6I8(CH3CO2)6 by a simple electrostatic assembly. Basically, an aqueous 

solution of cluster units (0.035 M) containing Pluronic® F-127 (0.3 mM) was mixed with 

an aqueous suspension of APTES@MCM-41 (0.5 g L-1) (APTES: 3-

Aminopropyl)triethoxysilane). The mixture was shaken for 10 min and then sonicated for 

15 min. Finally functionalized @MCM-41 nanoparticles were separated by centrifugation 

at 9000 rpm, washed with water and dried under vacuum. The highly specific surface area 

of these nanoparticles (~1000 m²/g) guarantees a very good dispersion of the nanocluster, 
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(K4[{Re6S8}(CN)6]-Cu(OH)2@TiO2) applications, this leaves the door opens to many 

experiments in the future. [84,87,111] In the first paper by Grasset et al., the main idea was 

to induce synergetic optical effects between the semi-conductor nanocrystal and the 

nanoclusters. Indeed, the photoemission studies showed that [{Mo6Bri
8}X6]2- cluster units 

(X = Br or OH) can efficiently interact with ZnO nanocrystals, not only in the colloidal 

solution, but also in solid-state conditions confirming an immobilization of the units on the 

ZnO surface. As reported above, NaYF4, ITO and iron oxides nanocrystals were mixed with 

nanoclusters, but there are no clear synergetic effects between both components.  

Very recently new nanocomposites emerged with gold nanoparticles as core and several 

studies demonstrated the synergetic effect of the association with Mo6 nanoclusters as 

shells for plasmonic applications or photodynamic and photothermal therapies. 

[168,169,170] Novikova et al. demonstrated that a partial overlap of the photoemission 

spectrum of the [{Mo6I8}L6]2- (L = NO3- and p-toluenesulfonate) clusters and the surface 

plasmon resonance band of the spherical gold nanoparticles facilitated energy transfer 

between the both photoactive components. Specifically, by a careful control of the spacing 

between the cluster shell and the gold nanoparticle with an SiO2 layer (21 nm), a significant 

increase in luminescence and photosensitizing properties of the nanocomposites was 

achieved. In parallel, the cluster complex facilitated energy conversion to heat by gold 

particles and hence increased the heating rate under laser irradiation. [168] These properties 

can be even improved by optimizing the aspect ratio of the gold nanorods. [169] Sciortino 

et al. show, very recently, that the plasmon resonance energy of gold nanoparticles (100 

nm) can be tuned over a large area of the visible spectrum, from 2.4 to 1.6 eV, by changing 

the thickness of the [{Mo6Bri
8}(NCS)a

6] nanocluster shells between zero and 70 nm. 

Interestingly, the plasmonic response was performed at nanometer resolution on individual 

nanoparticles using electron energy-loss spectroscopy (EELS) directly inside a TEM. [170] 

 

2.2 2D nanocomposites 
The second illustration of the powder nanocomposites is related to layered materials (2D) 

as matrixes or supports (graphene-, layered hydroxides- and boron nitride(BN)-based 
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materials). All these materials are mainly interesting for their (photo)catalytic properties.  

 
2.2.1 Graphene 

In 2013, Barras et al. reported the first example of gold nanoparticles/Na2[{Mo6Br8}(N3)6] 

nanoclusters deposited on graphene oxide nanosheets (GONs) and its photocatalytic 

activity. [109] This nanocomposite exhibits a high photocatalytic activity for the 

degradation of organic molecules (ex: rhodamine B) under visible light irradiation. 

Nevertheless, the synthesis of this cluster compound with N3 ligands is explosive and 

complicated to safely managed. In 2015, Kumar et al. replaced this unstable nanocluster by 

the very well known and safe Cs2[{Mo6Bri
8}Bra

6] and (Bu4N)2[{Mo6Bri
8}Bra

6] nanocluster 

compounds. [112] The proof of the loading of these Mo6 nanoclusters on GONs was probed 

by Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy 

(XPS), HRTEM and EDX analysis. These new nanocomposites presented an activity for 

visible light induced photocatalytic reduction of carbon dioxide into methanol. One year 

later, very interestingly, Feliz et al. extended the catalytic activity of these nanocomposites 

to photocatalytic hydrogen evolution reaction (HER) from liquid water under homogeneous 

and heterogeneous conditions by using (Bu4N)2[{Mo6Bri
8}Fa

6] nanocluster compound as 

starting precursors. [94] In this specific case, the catalytic activity of the {Mo6Bri
8}4+ is 

enhanced by the in situ exchange of the apical F ligands by OH ligands and the generation 

of [{Mo6Bri
8}Fa

6-x(OH)x]2- cluster units at the surface of the GONs. Nevertheless, it was 

observed that the covalent grafting of the nanoclusters on the surface of GONs limited the 

accessibility to the nanocluster active sites for the catalytic reaction and altered the lattice 

sp2 structure of graphene, which results in defects and a loss of electronic properties. Feliz 

et al. proposed recently to solve this issue to use the [{Mo6Ii
8}(C2F5COO)a

6]2- cluster units 

and to add pyrene groups as counter cations of this cluster units as noncovalent interactions 

on the graphene surface. [115] The pyrene moieties act simultaneously as energy 

transmitters and as supramolecular linkers between the cluster anions and graphene. The 

production of green H2 from sunlight is one of the most important targets for low-carbon 

energy production in the future in order to reduce the global warming and this beautiful 
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work including a supramolecular strategy opened up wide perspectives in terms of research 

prospects to design better nanoclusters/GONs nanocomposites for H2 production. In 

parallel, Puche et al. demonstrated for the first time a successful water vapor photocatalytic 

reduction using (Bu4N)2[{Mo6Ii
8}(O2C2H3)a

6] cluster compound deposited on GO as 

catalysts. [119] 

The production of green H2 from sunlight is one of the most important targets for low-

carbon energy production in the future in order to reduce the global warming and these 

works opened up wide perspectives in terms of research prospects to design better 

nanoclusters/GONs nanocomposites for H2 production. 

 
2.2.1 Layered hydroxides 
During the last decade, there was a growing interest of the synthesis of heterostructured 

nanocomposites using layered hydroxides (monolayer = LHSs, double layer = LDHs) 

because of their unique two-dimensional (2D) lamellar structural features and properties for 

heterogeneous (photo)catalysis, water treatment, agriculture and biotechnology applications 

for instance. [238-242] 

Regarding the layered hydroxide nanocomposites functionalized with octahedral metal 

atom clusters, there are only few examples, two were reported by Christiano et al. in the 

eighties [69,70] and the two others very recently by Ngyuen et al. [117,217] The first two 

examples were focused on the intercalation in Na+-Montmorillonite of {M6X12}n+ (M = Nb, 

Ta; n = 2-4) and {Mo6Cl8}4+ cluster cores by ion exchange process. The nanoclusters have 

been converted to metal oxide pillared forms with potential utility for oxidation catalysis. 

[69,70] The third example was dedicated to the synthesis of a new zinc-aluminum layered 

double hydroxide (Zn2Al-LDH)-based nanocomposite functionalized with the 

[{Mo6Cli
8}Cla

6]2- cluster units. LDHs are composed by octahedral hydroxide layers 

occupied by divalent and trivalent metals with the general formula of [M2+
1-

xM3+
x(OH)2]x+[An-]x/n·mH2O (x as the molar ratio M2+/(M2++M3+) in the range 0.2–0.33) 

(M2+ = Cu, Zn, Co, Mg, Cr…; M3+ = Al, Fe, Tb…). The metal hydroxide layers are 

positively charged and are neutralized by negatively organic or inorganic ions (A=NO3
-, 
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Very recently, a simplest one-pot synthesis was proposed by Nguyen et al. to prepare 

copper LHSs nanocomposites (noted Mo6@CHN) mixed with A2[{Mo6Xi
8}Xa

6] 

nanocluster compounds (A = Cs, Bu4N; X = Cl, Br and I), the last example. [217] In this 

process, monoclinic copper hydroxynitrate (CHN), was fabricated in the presence of the 

nanoclusters by simply mixing an ethanolic solution of Cu(NO3)2∙3H2O and a solution of 

nanoclusters dispersed in acetone (Figure 10a), followed by thermal treatment at 80°C for 

3h. The precipitate powder was collected by centrifugation and washing several times, then 

dried at 100°C. XRD and HRTEM analysis confirmed the presence of CHN, whereas 

photoluminescence and XPS study proved the existence of the integrity of the {Mo6Xi
8}4+ 

cluster cores even after the thermal and chemical treatments. Unlike Mo6@Zn2AL-LDH 

nanocomposites, the clusters do not fit between the layers but only at the surface in the case 

of Mo6@CHN. The expected chemical formula of the Mo6@CHN nanocomposites was 

estimated to be [{Mo6Xi
8}Xa

4(OH)a
y(H2O)a

x]x-2@[Cu2(OH)3NO3]7. A high catalytic 

degradation rate of methylene blue after 30 minutes was reached by using the 

Mo6@CHN/H2O2 systems. The reuse of the system was demonstrated up to 4 reaction 

cycles with an excellent efficiency (Figure 10b). 
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performed for 2 h in the dark. Adapted from 217 with permission from Taylor and Francis. 
 

2.2.3 h-BN 
The last example of 2D materials is related to the preparation of nanocomposite based on 

hexamolybdenum nanoclusters and exfoliated hexagonal boron nitride (h-BN) nanosheets. 

[118] h-BN is known to have high thermal conductivity, stability toward high temperatures 

and aggressive chemical conditions (acids, bases, and oxidants) and some catalytic 

properties. The cluster deposition on the exfoliated h-BN nanosheet surface was obtained 

by their impregnation by a (Bu4N)2[{Mo6I8}Xa
6] (X = I, NO3) in acetone solution. 

Interestingly, again, the possibility to play with the apical ligands of the cluster units was 

used to control the interaction with the matrix. The cluster units with the more labile apical 

ligands, NO3
-, gave the best results, because of the replacement of NO3

- by OH and water 

molecules able to undergo in situ hydrolysis resulting in formation of an insoluble thin 

amorphous film of [{Mo6I8}(H2O)2(OH)4]·yH2O on a modified h-BN nanosheet surface.  

 

To resume this section on 0D and 2D nanocomposites based on transition metal clusters, it 

was clearly demonstrated that if their potential is noticeably important, there is still a lot of 

room for new original systems. Indeed, nanocomposites based on silica matrix represent the 

vast majority of the examples reported to date for the 0D and the use of 2D materials as 

support for the metal atom clusters is apparently important for developing new 

(photo)catalysts. Indeed, these studies evidence that nanocomposites based on transition 

metal atom clusters are very promising new materials in many important catalytic fields 

like the elimination of pollutants or the production of green H2 and other areas related to 

environmental protection. The choice of the matrix is very important, for example, inert and 

biocompatible silica is a good compromise for biotechnology applications, whereas more 

active matrix support (for instance copper hydroxynitrate, metal or semiconductor) are 

necessary for catalytic or photonic applications. One conclusion of these works is that the 

incorporation of metal atom clusters into matrix supports enhances their stability, their 

photoactivity and could improve their cellular uptake, compared to free clusters. Moreover, 

a novel 1D hybrid lead perovskite [{Re6S8}(PzH)6][Pb3I8(DMF)2]}·6(DMF) with 
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hexarhenium cluster cations has been synthesized recently by Ly et al. [167] This original 

study introduces a new class of nanocomposites and opens a promising path to materials 

with great potential for optoelectronic applications in photonic devices with broadband 

emission and stability. The maturity of this scientific field is still far from being reached. 

 
3. Thin films and coatings 
Thin films and coatings, with thickness ranging from nanometers to a few tens of 

micrometers are playing a very important and indispensable role in daily life with a global 

material market valued around USD 8000 million in 2020 and it is expected to reach USD 

8500 million by the end of 2027 for end-user industries. [244] Nevertheless, as is known, 

main transition metal atom clusters compounds based on Nb6, Mo6, Ta6, W6, Re6 are 

ceramic-like materials, [37-67] which clearly and strongly limit their application for thin 

films and coatings. In this review, conventional coating methods (dip coating, drop-casting, 

spin-coating…), which were applied for nanocomposite metal cluster-based films highly 

dispersed in a matrix, will be developed at the end of this section. We will first focus on the 

use of the EPD for the fabrication of pure octahedral cluster-based and nanocomposite thin 

films, which is a real breakthrough in this field. This well-known industrial technic was 

developed first for transition metal atom clusters in the International Research Laboratory 

“Laboratory for Innovative Key Materials and Structures” (IRL 3629 LINK) at the National 

Institute for Materials Science in Japan. [193] Similarly to the previous section several 

kinds of octahedral metal clusters were used with different positions of inner ligands; face-

capped [{M6Li
8}La

6]n-/+ and edge-bridged [{M6Li
12}La

6]n-/+ cluster units. Both of them own 

the charge on the cluster units, a key point for the success of EPD.  

 
3.1 EPD  
EPD is an advanced technique for thin films and coatings due to its versatile and cost-

effective process, simplicity, and the scaled-up possibility to large product volumes and 

sizes. In general, EPD acts as electrochemical equipment; an electric field is applied 

between two electrodes that force the charged particles to move toward the oppositely 

conductive electrodes, called electrophoresis. Then, the accumulation of the charged 
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particles by physical interaction will form a condensed layer on the surface of the 

electrodes, called deposition. EPD has been applied for metal oxide, traditional ceramic 

materials, and advanced materials with µm-sized or submicrometric (d > 100 nm), for 

example, functional ceramic coatings, porous materials, laminated ceramics, functionally 

graded materials, thin films, and nanostructured materials. [245-248] 

To date, the EPD technique was developed for a variety of nano-architecture materials, 

including nanorods, nanowires, nanotubes, and nanosheets [249]. The approach of EPD on 

antibacterial coatings also attracted huge interest for biomedical applications with 

promising results [250]. Thanks to the driving force induced by the electrical field, highly 

concentrated colloidal solutions are not required (compared to conventional deposition 

process) and generally the deposition time is low, from tens of second to several tens of 

minutes. Nevertheless, the most interesting point of EPD is to fabricate pure metal cluster-

based thin film with no matrix or binders that is limited or almost impossible to achieve 

from other methods. 

 

3.1.1 EPD of [{Mo6Bri
8}Bra

6]2- cluster units: the model case 
 
In 2016, for the first time, Nguyen et al. revealed that an amorphous Mo6 cluster-based thin 

film deposited on ITO-coated glass (ITO glass) could be successfully fabricated by using 

the EPD process at a low applied voltage (13 V) and very short deposition time (30 s) 

[193]. In this work, the dispersing medium of face-capped [{Mo6Bri
8}Bra

6]2- cluster units, 

deposition time, and the applied voltage of EPD were preferably optimized to retain the 

chemical composition, octahedral structure as well as photostability.  
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the ITO glass substrate is enriched in Br anions and in aggregated nanoclusters based on the 

zero-charged clusters, [Mo6Bri
8Bra

4(H2O)2].  The size of these Mo6 zero-charged clusters 

was confirmed by TEM that showed many spherical nanoparticles of about 6 nm (Figure 

12a). The role of the counter cations, inorganic (Cs+) and organic (N(n-C4H9)4)+ 

compositions, was investigated to understand their effect on the dissolution of the cluster in 

MEK. Cs+ cation was confirmed to be eliminated from the Mo6 film by presenting Cs 3d 

region in the XPS spectrum (Figure 12b) while the disappearance of (N(n-C4H9)4)+ (TBA+) 

cation was confirmed by FTIR spectrum. These counter-cations are mainly exchanged by 

H3O+ in the film. Regarding the cluster units’ structure, the binding energy of Mo 3d was 

retained after EPD which meant the octahedral structure was stabilized (Figure 12c). 

Interestingly, the binding energy peak of Br apical ligands was reduced in Br 3d regions 

that explained the loss of two bromide apical ligands (Figure 12d). Moreover, the FTIR 

spectrum suggested the increase of the OH group in the EPD film. The Br/Mo atomic ratio 

in the film was sharply decreased during the first 10 s of the deposition and low voltages, 

then finally reached the value close to the theoretical index (2.33) at 40 s and 17 V (Figure 

12f). Based on all these results, a scheme of the film suggested the heterogenous layer 

structure and hydrogen bonding interaction between the components was proposed (Figure 

12g).  
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In summary, a mechanism of the Mo6 film performance by using EPD was proposed: (i) the 

exchange of 2 Br apical ligands by OH- or H2O groups in solution, (ii) Cs+ and TBA+ 

cations are mainly replaced in the film by H3O+ to neutralize the negative charges of the 

Mo6 nanoclusters at the electrode surface, and (iii) two kinds of clusters, i.e., 

[Mo6Bri
8Bra

4(H2O)2] and [H3O+]2[Mo6Bri
8Bra

4(OH)2], mainly composed the dense film 

(Figure 12e). Even though a slight modification of luminescent emission peak was 

recognized due to the change of the Mo6 cluster network, the obtained EPD film showed 

high transmittance in the visible range and strong absorption in UV and NIR ranges. 

Stabilization of the thin film in air and moisture was an issue and free-cracking Mo6 cluster 

thin film was prepared by the use of a top-coating Polydimethylsiloxane agent of the Mo6 

film. [95] These optimized parameters of EPD on the Mo6 cluster motivated many 

achievements after that.  

 

3.1.2 Sensor.  
Very recently, the light-dependent ionic-electronic conduction on pure Mo6 thin film 

prepared by EPD was demonstrated and studied by Harada et al. [153] The micron-size 

Mo6 cluster film presented an ionic conductivity (Figure 13). Interestingly, this conductivity 

can be controlled and tuned by temperature and humidity. Activation energies at the relative 

humidities (RH) of 50 RH% and 80 RH% were estimated at 68 kJ/mol and 50 kJ/mol, 

respectively (Figures 13a and b). In addition, the H3O+ counter cations coordinate with the 

substituted OH- groups at the Bra sites by hydrogen bonding, and many water molecules 

would be similarly linked by hydrogen bonds around it (Figure 13c). As the result, the 

existence of HO−H*−OH bridges between adjacent cluster units and activation energies 

seem to favor the vehicle diffusion model. [251] Moreover, the electronic conduction of the 

MC film greatly changes depending on the wavelength (from UV to red) and intensity of 

the irradiated light. The effect of photons on the electronic properties of ionic conductors at 

room or low temperature is a new and interesting research field. [251] These unique multi-

sensing properties would present new possibilities for environmental sensor applications. 
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greatly improved the homogeneity and the concentration of the Mo6 absorber coated in 

porous photoelectrodes, compared to the classical soaking method (Figure 14). [93] The 

UV-Vis absorption characteristic of the Mo6 cluster (Mo6Ii
8Ia

6)2-, one of the clusters 

exhibiting one of the strongest absorptions in visible light range, was retained after being 

deposited on both kinds of photoelectrodes (Figures 14a and b). The multilayer structure of 

the Mo6 cluster-coated photoelectrode was confirmed in the SEM image with the deposition 

of the Mo6 cluster on the surface and inside the pore (Figures 14c and d). For the 

photoelectrodes prepared by EPD, the photoconversion efficiency is clearly improved by 

35–300 %, according to the type of electrolyte or semiconductor comparison with a soaking 

method (Figures 14e and f). Beyond the performance of the DSSC cells composed of the 

transition metal cluster, these promising results will open the new pathway for the 

investigation of photoelectronic applications, ranging from photoelectrochemical devices 

(PEC) to all solid solar cells. The future challenge in using the Mo6 cluster as a non-toxic 

alternative in optoelectronic devices (stable under atmospheric conditions) is to optimize 

the band alignment between the cluster and the n-type transparent semiconducting oxides in 

order to favor an effective charge transfer.  
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3.1.4 Pathogenic bacterial biofilms 
 
The last example of thin film prepared by EPD of pure Mo6 nanoclusters is reporting the 

recent work of Kirakci et al. on very promising coating for mitigation of pathogenic 

bacterial biofilms under blue light. [138] They utilized EPD to prepare dense layers of the 

Na2[Mo6I8(OPOPh2)6] (1) and [Mo6I8(OCOC4H8PPh3)6]-Br4 (2) clusters compounds 

deposited on ITO coated glass (Figure 16a). The MC layers showed high transparency and 

thickness of about 1 micron even though the morphology existed big particles (Figure 16b). 

The photoexcited MCs created singlet oxygen O2(1Δg) which was able to inactivate several 

pathogens. The study revealed that continuous irradiation of 460 nm light on the EPD film 

resulted in strong antibacterial properties on Gram-positive Staphylococcus aureus and 

Enterococcus faecalis, as well as, Gram-negative Pseudomonas aeruginosa and 

Escherichia coli bacterial strains (Figures 16d and e). Both layers displayed strong 

inhibition of the biofilm growth, and moreover, the film with the cluster 1 is also able to 

eradicate of matured biofilms, which is very interesting. These Mo6 cluster-based 

photoactive layers are attractive for the design of antibacterial biofilm activated by visible 

light and reduce the harm of UV/blue light due to production of red light or oxygen 

sensing. The study of the electrophoretically photoactive MC film on the fight against 

infective microorganisms under blue light opens a new strategy for the mitigation of 

pathogenic bacterial biofilms. 
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(see for instance [96]). To overpass this problem, small amount of polymer was used as 

binders to support the dispersing ability of the clusters and their chemical stabilization. For 

instance, transparent films containing [{Mo6Ii
8}Ia

4(OCOC2F5)2]2- cluster unit and 

[{Nb6Xi
8}Xa

6]4- (X = Cl, Br) cluster units were fabricated by using EPD with the support of 

poly(methyl methacrylate) (PMMA) as a stabilizing binder. Transparent thin films were 

obtained with thicknesses of about 1.5-micrometer. They exhibited strong absorption in 

range of UV and NIR light as well as high transparency in range of visible light (>60%), 

and an improved stability against moderate temperature and humidity conditions. [207] As 

these specific Mo6 and Nb6-based cluster units, a Ta6-based cluster dispersed in MEK was 

successfully deposited on the ITO-coated glass by EPD as the first example. [96] However, 

the film quality was opaque with the existence of big particles. There were specific 

phenomena that needed to be clear in this original work. First, the green-colored 

[{Ta6(Br)i
12}(H2O)a

6]2+ species was stable in water, however, it is failure to prepare film by 

EPD. Second, by using ketones (acetone or MEK) as a good dispersing medium for EPD, a 

brown Ta-based cluster film was successfully deposited on an anodic electrode as seen in 

figure 17a. This unwanted changing of color was simply explained by the oxidation of the 

clusters from [{Ta6(Br)i
12}(H2O)a

6]2+ to brown-colored [{Ta6(Br)i
12}(H2O)a

6]3+/4+ cluster 

units. Considering the kinetics of the oxidation and the necessity to used ketone as solvents 

for EPD, an investigation of the addition of water was carried out by Nguyen et al. Films 

containing green-colored {Ta6(Br)i
12(H2O)a

6}2+ unit species were successfully fabricated 

with adding a small amount of water (Figure 17b). However, again it was impossible to 

maintain the green color for several days at room temperature in air due to the high 

reactivity of the Ta6 cluster units. Finally, it was found that polyvinylpyrrolidone (PVP) was 

an excellent stabilizer of the green-colored {Ta6(Br)i
12(H2O)a

6}2+ cluster species to obtain 

the homogeneous films and to improve their transparency using an optimized EPD process 

(Figures 17c and d). Films with a transparency upper than 60 % in the visible and strong 

absorption in the UV and NIR light ranges were obtained (Figure 17e). The efficiency in 

energy saving of these new UV-NIR filters was estimated by the determination of different 

figure of merit (FOM) values, such as Tvis, Tsol and Tvis/Tsol (Tsol = solar transmittance and 
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embedded into SiO2 nanoparticles by reverse microemulsion method. [98,199] These 0D 

nanocomposite were used to prepare the first all inorganic film nanocomposites. HAADF-

STEM images of ITO@Ta6@SiO2 NPs indicated a core-shell structure of about 76 nm 

averagely with the presence of discrete ITO nanoparticles occupied in the center. In 

addition, the Ta6 cluster units were uniformly dispersed with a size of 1 nm in the whole 

SiO2 shell. (Figure 18a).  The elements (Si, O, In, Ta, and Br) were confirmed in the EDS 

spectrum that proved the successful synthesis of ITO@Ta6@SiO2 NPs (Figure 18b). 

Thanks to the negative zeta potential of ITO@Ta6@SiO2 NPs in acetone, EPD was 

successfully applied to fabricate the ITO@Ta6@SiO2 film with the relative thickness (0.9 to 

1.5 microns) (Figure 18c). As expected, these ITO@Ta6@SiO2 films showed strong 

absorption in the UV light range with high transparency and the appearance of a band of 

800 nm which indicates the improvement towards energy saving applications (Figure 19d). 

[98]. 
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This section clearly shows that this field of research is really new and has very strong 

potential in key areas for the future (PV, mitigation of pathogenic, sensors). The use of EPD 

to fabricate thin films based on clusters of transition metals is a real breakthrough. 

Considering the importance of the activity on thin films in the economy and the already 

active use of EPD in industry, we can imagine that this strong potential will be materialized 

by innovations very soon. 

 
3.2 CSD processes 

As explain in the previous section, EPD can be used for the fabrication of pure octahedral 

cluster-based and nanocomposite thin films with no matrix or binders thanks to the charge 

on cluster units. In parallel, more conventional coating methods such as spin-coating, dip-

coating or drop-casting are also efficiently employed despite the ceramic-like aspect of 

metallic clusters synthesized by solid-state chemistry. Indeed, as already mentioned 

molecular MC can be solubilized in many solvents which facilitates their coating process. 

Furthermore, the advantage of such process lies in the fact that it is possible to modify the 

chemistry, i.e., the ligand nature or the VEC before the deposition. The main issue is to 

control these parameters during all the shaping process.  

Depending on the application or the property that needs to be enhanced, MC can simply be 

associated with a binder [80,92,144,105-107] to facilitate the chemical solution deposition 

(CSD) process or it can be part of a more elaborate devices including several layers, [107, 

156,160] ink, [187] polymer dispersed liquid crystal, [101] quantum dots and nanocrystals 

[102,171,192] or DSSC electrodes.[93, 97]    

 
3.2.1 Photonic and photovoltaic devices 
 
Thanks to their high phosphorescent properties, Mo6 and Re6 nanoclusters are actively used 

for optical thin film and coating devices. Indeed, the development of luminescent thin films 

and coatings free of heavy metal or rare earth elements is an important issue for 

environmental reasons and energy efficiency. The first examples of such hybrid 
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nanocomposites were reported in 2013. [156,171] Aubert et al., first reported a ZnO-

Cs2[{Mo6Br8}Br6]@PVP film with an average thickness of 3 μm. [171] The properties of 

such films were improved later by Truong et al. by replacing the bromine nanoclusters by a 

more efficient, Cs2[{Mo6I8}(OOC2F5)6]. [192] Interestingly, in these similar processes, 

nanocomposite colloids of ZnO nanocrystals and Mo6 nanocluster compounds were 

prepared by very simple and low-cost solution chemistry including PVP as matrix. The 

resulting solutions have been used to fabricate highly transparent and tunable luminescent 

films free of heavy metals or rare earth elements. The luminescence properties of the later 

system are highly tunable (from yellow to red emission) and the emission wavelength is 

strongly dependent on the ratios between ZnO and CMIF amounts and the excitation 

wavelength. In parallel, in 2013, Zhao et al. prepared novel transparent luminescent solar 

concentrators devices composed of phosphorescent Mo6 chloride nanoclusters. [92] The 

near-perfect absorption cutoff at the edge of the visible spectrum (430 nm) and the massive 

Stokes shift to the near-infrared (800 nm) of these nanoclusters allows for efficient and 

selective harvesting of ultraviolet (UV) photons, improved reabsorption efficiency and non-

tinted transparency in the visible spectrum. Since, these pioneer works, excellent results 

were obtained by several groups in the world for light emitting devices [156, 160] or 

transparent luminescent solar concentrators. [101, 102] 

 
3.2.2 UV and NIR blocking transparent thin films for window application  
Previous section mentions that Nb6 or Ta6 nanoclusters could be deposited by EPD 

technique but it needs more steps than with Mo6. Their instability in air has to be 

considered by using a binder. Recent studies focus on the chemistry of niobium and 

tantalum clusters from an experimental and a theoretical aspect. [61,106] It helps to 

understand some mechanisms and properties of the cluster units [{M6Xi
12}La

6]n-/+ (M = Nb, 

Ta ; X= Cl, Br ; L = X, H2O ; 2 ≤ n ≤ 4) in the solid-state and in solution. Ta6 clusters show 

a strong absorption in UV, whereas Nb6 clusters present a great absorption in NIR (Figure 

20b). Starting from this advancement, heterometallic clusters, i.e. [{Nb6-xTaxXi
12}La

6]n-/+ (1 

≤ x ≤ 5) have been synthesized and studied. Their UV and NIR blocking capacity were 
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evaluated according to their VEC. [105, 106] 

 

 
Figure 20. (a) Sketch of the nanocomposite based on metal atom clusters [{M6Xi

12}Xa
6]4-. 

(b) UV-Vis absorption spectra of K4[{M6Cli
12}Cla

6] (M = Nb, Ta) in water. Reproduced 
from 107 with permission from Taylor and Francis. 
 
[{Nb6-xTaxXi

12}H2O]2+ (X = Cl, Br) cluster units are stable in water and can be then 

integrated in organic (PVP) or hybrid (SiO2-PEG) matrix by drop-casting or Mayer rod 

coating process in a reproducible way (Figure 21a). These matrices agree with a solar 

application (transparency, cost, implementation), can be shaped with a thickness of a few 

tens of micrometers (Figure 21) and are prepared in aqueous solution, without extra steps. 

Furthermore, it is possible to control the VEC and so, the optical properties of the cluster 

units from their solubilization to their integration into the matrixes. Experimental and 

theoretical studies highlight which oxidation state of the integrated cluster units should be 

selected for a solar control application. Nb6 and hetero-metallic Nb5Ta clusters show higher 

NIR shielding at VEC 16 whereas Ta6 clusters need to be oxidized to VEC 15 to absorb in 

the NIR region. However, VEC 14 has to be avoided for homo and heterometallic clusters 

because of their low UV and NIR absorption. Based on their electrochemical potential in 

water, SnX2 (X = Cl, Br) (Figure 21b) and Fe(NO3)3 have been used during the process to 

keep Nb6 and Nb5Ta clusters at VEC 16 or to oxidized Ta6 clusters to VEC 15 respectively. 

Optical properties were maintained throughout the process and evaluated for the obtained 

nanocomposites. 
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Figure 21. (a) Sketch of the PVP film preparation from K4[{M6Xi
12}Xa

6] or 
[{M6Xi

12}Xa
2(H2O)4]·4H2O. (b) Digital microscope picture of the cross section of a 

{M6Xi
12}@PVP nanocomposite film on a glass substrate. (c) Picture of the nanocomposite 

films after obtained from the {Nb5TaCli
12}2+ (VEC 16) cluster core reduced by SnCl2 in 

PVP and after a thermal treatment (T = 50, 80 and 100°C) during 18 hours. (d) UV-Vis 
transmission spectra of {Nb5TaCli

12}@PVP (VEC 16) on glass and ITO glass substrate. 
Reproduced from 105 and 107 with permission from MDPI and Taylor and Francis. 
 

As well as for films obtained by EPD, FOM values (Tvis, Tsol, Tvis/Tsol, SNIR) and color 

coordinates were measured for films obtained by CSD process. {Nb6Xi
12} (VEC = 16) and 

{Ta6Xi
12} (VEC = 15) cluster cores show similar values of Tvis/Tsol (1.27-1.29) when 

integrated in PVP films on a glass substrate. The highest values were reached with 

{Nb5TaXi
12} (1.30-1.33) and even higher by including an ITO layer (1.73) (Figure 21c). 

Indeed, the NIR shielding of clusters mainly absorb between 700 and 1100 nm, whereas 

NIR reflection of ITO is above 1200 nm. Their association allow to get rid of almost all the 

NIR solar radiation and to obtain excellent Tvis/Tsol and SNIR values. By comparison, a 

perfect solar control material can be simulated with a film that transmits 90% of visible 
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light, and absorbs 100% of UV (200–400 nm) and NIR (780–2500 nm). Its Tvis/Tsol ratio 

would be 1.85. 

 

4. Conclusions  
It has been clearly demonstrated that the remarkable properties of the octahedral transition 

metal atom clusters can be largely preserved and enhanced in the form of nanocomposites. 

Introduction to various Nb6, Mo6, Ta6, W6, Re6 molecular nanoclusters in nanocomposites 

with two-dimensional, one-dimensional and zero-dimensional morphologies has been 

presented in this review paper. Matrices ranging from organic polymers to inorganic 

layered oxides can be used and adapted to the targeted applications. The clear potential and 

synergetic effects of these nanocomposites for biotechnology applications, PV, solar 

control, catalytic, photonic and sensor applications was strongly demonstrated. Indeed, the 

incorporation of metal atom clusters into matrix supports enhances their stability, their 

photoactivity and could improve their cellular uptake for biotechnologies, compared to free 

clusters. This review also provides a basic level of understanding how nanocomposites are 

characterized and processed using different technics and methods. As a new strategy, the 

electrophoretic deposition process appears to be very efficient to fabricate highly 

transparent, homogeneous and functional nanocomposite thin films and coatings.  

Of course, this field of research is quite young and new challenges and opportunities using 

transition metal clusters as building blocks for multifunctional nanocomposites are 

numerous. This field can be extended to the use of other transition metal clusters, such as 

titanium, vanadium, copper, zirconium or event heterometallic systems as already started 

by Lebastard et al.. [105, 107, 258-263] This family of nanoclusters is extremely rich and 

could be even probably enriched by using machine learning methods. [264-266] Controlled 

self-assembly of nanoclusters could play a key role in customizing advanced functional 

materials via collective and synergetic properties between neighbored building blocks. 

[267] As briefly mentioned in the introduction, the condensation and dimensionality of the 

metal atom clusters influence strongly the electronic properties and an association with an 

adequate matrix could generate new nanocomposites. For instance, the mixing of MCs with 
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semiconductor nanocrystals could also be very interesting for photovoltaic applications. 

Moreover, to increase the dimensionality of the metal atom clusters could be very 

interesting in terms of thermal stability for instance, which is still a weak point for the 

molecular nanoclusters.  

Furthermore, recently, calculations suggested that Nb6 or Ta6 clusters could be used for new 

material design, for instance as cations in hybrid organic-inorganic perovskites, as a 

substitute for toxic Pb. Indeed, band gaps, band alignment, and hydrogen adsorption 

calculations show that the designed cluster-based hybrid perovskites have potential as 

intermediate-band materials for photovoltaics, and as photocatalysts for the hydrogen 

evolution reaction. [268] Another possibility is to use these transition metal atom clusters 

as precursors for the discovery of new compounds and nanocomposites like nitrides, 

carbides, borides, sulfides or alloys. [269-273] The field of possibilities is open to everyone 

and the adventure of the nanocomposites based on metal atom clusters has only just begun. 
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Figure captions 

Figure 1: Schematic representation of [{M6Li
12}La

6]n-/+ (M = Nb, Ta) and [{M6Li
8}La

6]n-/+ 
(M = Mo, W, Re) molecular cluster units. Apical ligands (La) and inner ligands (Li).  
 
Figure 2: The illustration of the applications of [{Mo6Li

8}a
6]n-/+ and [{Ta6Li

12}a
6]n-/+ 

molecular cluster units.  
 
Figure 3: a) Optical microscopy image of [{Mo6Xi

8}Xa
6]@SiO2 (X = Cl, Br, I) 

nanocomposites (powder between two plates of glass under irradiation at λexc = 546 nm). b) 
Scanning electron microscope (SEM) images of [{Mo6Xi

8}Xa
6]@SiO2 0D homogeneous 

nanocomposites. c) Z-contrast high-angle annular dark field scanning transmission electron 
microscopy (HAADF-STEM) mode image of two adjacent [{Mo6Xi

8}Xa
6]@SiO2 

nanoparticles. Adapted from 68 with permission from Wiley. 
 
Figure 4: Multifunctional nanoparticles with complex architectures. Adapted from 32 with 
permission from Springer. 
 
Figure 5. Optical microscope images using λexc = 405 nm of dispersed nanoparticles under 
a magnetic field (1.5 T) showing the growth of a nanoparticles layer along the wall of a cell 
as a function of time. Adapted from 86 with permission from the Royal Society of 
Chemistry. 
 
Figure 6. High resolution transmission electron microscopy (HRTEM) images of (a) 6 nm, 
(b) 10.5 nm, (c) 15 nm (scale bar = 20 nm) γFe2O3 nanoparticles and the corresponding d, e 
and f [[{Mo6Xi

8}Xa
6]-γFe2O3]@SiO2 0D nanocomposites (scale bar = 100 nm). g) TEM 

image of [[{Mo6Xi
8}Xa

6]-γFe2O3]@SiO2@Au. h) zoom. Adapted from 155 with permission 
from Elsevier. 
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Figure 7. Upper: (a) Photos of silica nanoparticles in aqueous solution (1), silica 
nanoparticles in the cluster solutions (2) and assembled silica nanoparticles with clusters (3) 
before and after irradiation; (b) Schematic representation of self-assembly of the clusters 
complexes on silica surface; (c) TEM images of the silica nanoparticles and 
SiO2@[{Mo6Ii

8}La
6]. Adapted from 132 with permission of Elsevier. Lower: Schematically 

represented synthesis of Fe3O4@SiO2@[{Mo6Ii
8}La

6] and TEM images of Fe3O4@SiO2 (A) 
and Fe3O4@SiO2@[{Mo6Ii

8}La
6] (B). Adapted from 139 with permission from Elsevier. 

 
Figure 8. Upper: (a) Sketch of the vacuum impregnation process (VIP) and the possible 
movement of the air and the nanoclusters (b) STEM image of 
[{Mo6Ii

8}(C2F5COO)a
6]@HSNs and the overlapped EDX mapping image of the Mo 

element on the HSNs. (c) The UV-Vis reflectance spectra of: HSNs (black), HSNs mixed 
with [{Mo6Ii

8}(C2F5COO)a
6]2- without the VIP (red dot), [{Mo6Ii

8}Cl)a
6]@HSNs (blue) and 

[{Mo6Ii
8](C2F5COO)a

6]@HSNs with the VIP (red line). Adapted from 116 with permission 
from Elsevier. 
 
Figure 9. A) Powder-XRD patterns of LDH-1, Mo6@LDH-1, LDH-2, Mo6@LDH-2 with 
the indications of the planes of 003 (■), 006 (●), 009 (▲) and the lozenge symbol (♦) 
assigned for the ZnO phase. (B) Schematic of the process to fabricate the LDH and 
designed structure of its nanocomposite. Adapted from 117 with permission from Elsevier. 
 
Figure 10. a) The schematic illustration of the [{Mo6Xi

8}Xa
6]2- cluster unit (MC) and of the 

preparation of the Mo6@CHN nanocomposites (images inside the circles are true photos of 
powders). b) Schematic of the interaction between the two components of the 
nanocomposite and the results of catalytic study in presence of H2O2. All the reactions were 
performed for 2 h in the dark. Adapted from 217 with permission from Taylor and Francis. 
 
Figure 11. (a) SEM image of the surface of the Mo6 film deposited from MEK, photos of 
the films deposited from (left to right) water, ethanol, 1-propanol, acetone, and MEK 
solutions at 15 V for 20 s and from acetylacetone solution at 50 V for 40 s (upper), 
respectively. Image of the luminescence of the cluster thin films irradiated at 324 nm 
wavelength (under). (b) Emission spectra excited at 370 nm of ITO glass, 
Cs2[{Mo6Bri

8}Bra
6] compound, Mo6 films. Adapted from 193 with permission from ECS. 

 
Figure 12. a) TEM image of the spherical Mo6 cluster nanoparticles included in the Mo6 
film. The XPS spectra of (b) Cs 3d, (c) Mo 3d and (d) Br 3d region. e) SEM image of the 
cross-section of the Mo6 film. f) XRF analysis versus deposited time. g) Schematic 
representation of the multilayered structure of the Mo6 cluster thin film. Adapted from 198 
with permission from ECS. 
 
Figure 13. (a) Conduction properties of amorphous octahedral molybdenum cluster thin 
film. (b) Temperature dependences of conductivity for the cluster film due to differences in 
humidity. (c) Schematic illustration of octahedral molybdenum cluster in the film and 
structures postulated for the cluster films in high and low humidities. Adapted from 153 
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with permission from Springer Nature. 
 
Figure 14. Comparison of the optical properties between (a) CMI@TiO2@FTO and (b) 
films CMI@NiO@FTO prepared by EPD at 20 V and 15 V for 30 s respectively or soaking 
method (for 48h) from a CMI solution at 17 mM in acetone. (c) SEM image of a cross-
section a CMI@NiO@FTO photoelectrode obtained at 10 V for 30 s and d) EDS analyses 
on the mesoporous NiO/CMI layer. Comparison of photoresponses in the dark (dash lines) 
and underAM1.5 illumination (1000 W.m-2, solid line) of photovoltaic cells prepared from 
(e) CMI@TiO2@FTO and (f) CMI@NiO@FTO photoelectrodes colored by soaking 
method or by EPD during 30 s at 20 and 15 V respectively. The used electrolytes were the I-

/I3
- and the cobalt complex CMI@TiO2@FTO and CMI@NiO@FTO photoelectrodes 

respectively. Reproduced from 99 with permission from Elsevier. 
 
Figure 15. (a) Nyquist plots of the electrochemical circuit in the dark and under 
illumination at OCP and the equivalent circuit used to fit them. (b) Mott–Schottky plots for 
the MC film deposited on FTO, the FTO substrate, and the Cs2[{Mo6I8

i}I6
a] dense pellet 

depicted vs RHE by using the formulae Vfb(RHE) = Vfb(Ag/AgCl) + 0.059 pH 
+ VAg/AgCl(RHE). (c) MC-based all-solid solar Cell, (d) I(V) measurements in the dark and 
under AM1.5 Illumination, (e) energy levels of each layer on an absolute scale with respect 
to vacuum. Adapted with permission from 104. Copyright 2022 American Chemical 
Society. 
 
Figure 16. (a) Schematic representation of complexes [Mo6I8(OPOPh2)6]2– (1) and 
[Mo6I8(OCOC4H8PPh3)6]4+ (2). Photographs of the 1/ITO glass (b) and 2/ITO (c) 
glass layers under visible light, surface morphology (middle), and cross-section (right) 
images. Eradication of matured biofilms on 1/ITO glass (d) and 2/ITO glass (e) after 
exposure to 460 nm light for 1 h (18 mW cm–2). Notes: *significantly different from the 
respective dark control; and #significantly different from E. coli under 460 nm light. 
Adapted with permission from 138. Copyright 2020 American Chemical Society. 
 
Figure 17. Photograph and SEM images of the cross section and surface of (a) the brown-
Ta6@ITO film (25 V and 60 s); (b) the green-Ta6@ITO film (20 V and 60 s). (c) 
Photographs of 1x2.5 cm substrates and (d) SEM images of green-Ta6@PVP@ITO films 
on 1 x 2.5 cm substrates prepared at 30 V and 30 s. e) UV-vis-NIR transmission spectra of 
the ITO substrate and the green-Ta6@PVP@ITO films on 1x2.5 cm substrates obtained at 
30 V and 30 s, 60 s and 90 s. Reproduced from 96 with permission from the Royal Society 
of Chemistry. 
 
Figure 18. (a) high magnification of HAADF-STEM images of ITO@Ta6@SiO2 NPs; (b) 
EDS spectrum (point mode) of ITO@Ta6@SiO2 NPs revealing the coexistence of Si, O, In, 
Sn, Ta, Br elements. (c) Optical photographs and SEM micrographs, surface morphology 
and cross section of ITO@Nb6@SiO2 based films prepared from solution concentrations 
equal to 0.8 g/L and deposited by EPD at 20 V for 20 s. (d) Transmission UV-Vis-NIR 
spectra of the ITO@Nb6@SiO2 NPs-based films on the ITO-coated glass by varying the 
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