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The initial boundary value problem for second order traffic flow

models with vacuum: existence of entropy weak solutions

Paola Goatin1 Alexandra Würth1

October 25, 2022

Abstract

We study the IBVP for a non-strictly hyperbolic 2× 2 system of conservation laws on
an interval with characteristic boundaries, modeling traffic dynamics including vacuum
states on a road stretch. After giving a detailed characterization of the admissible states
at the boundary in terms of Riemann solver and entropy conditions, we prove existence of
entropy weak solutions for data of bounded variation in the Riemann invariant coordinates
by convergence of wave-front tracking approximations.
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1 Introduction

The Generic Second Order Model (GSOM in short) was introduced in [32] to provide a general
framework for macroscopic traffic flow modeling. It consists in the 2 × 2 hyperbolic system
of conservation laws {

∂tρ+ ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρwv) = 0,
x ∈ R, t > 0, (1.1)

defined on a domain Ω ⊂
{

(ρ, w) ∈ R2, ρ ≥ 0, w ≥ 0
}

, where the average speed of vehicles is
a function of the density ρ = ρ(t, x) and a Lagrangian vehicle property w = w(t, x), namely
v = V(ρ, w) for some speed function V : Ω→ R≥0. Notice that, setting V(ρ, w) = w−p(ρ) for
a suitable “pressure” function p, system (1.1) corresponds to the celebrated Aw-Rascle-Zhang
(ARZ) model [5, 40]. We also remark that, taking w = w̄ constant, we recover the classical
Lighthill-Whitham-Richards (LWR) model [33, 35].

Under standard hypotheses (see (2.1)), system (1.1) is strictly hyperbolic for ρ > 0, but
the two eigenvalues coalesce at vacuum states, inducing instabilities [5, Section 4]. Besides,
one characteristic field is genuinely non-linear with coinciding shock and rarefaction curves
and the other one is linearly degenerate (but not straight). Thus, the GSOM system can be
related to Temple class [38].
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In traffic flow applications (see e.g. [39]), it is natural to consider the Initial Boundary
Value Problem (IBVP) for (1.1) on a bounded interval ]xin, xout[⊂ R, namely{

∂tρ+ ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρwv) = 0,
x ∈ ]xin, xout[ , t > 0, (1.2a)

(ρ, w)(0, x) = (ρ0, w0)(x), x ∈ ]xin, xout[ , (1.2b)

(ρ, w)(t, xin) = (ρin, win)(t), t > 0, (1.2c)

(ρ, w)(t, xout) = (ρout, wout)(t), t > 0. (1.2d)

As usual with hyperbolic equations, solutions to (1.2) have to be intended in the weak sense.
In particular, boundary conditions (1.2c) and (1.2d) may not be satisfied in the classical sense,
i.e. the traces of the solutions at the boundaries may not be equal the corresponding boundary
values. In the literature, two definitions of boundary conditions for systems of conservation
laws are commonly considered: a boundary entropy inequality derived by viscosity approxi-
mation [8, 9] and a Riemann boundary condition based on the Riemann solver associated to
(1.1). Dubois and LeFloch [21] showed that the two formulations are equivalent for scalar
conservation laws, linear systems and a 2 × 2 system whose fields are both linearly degener-
ate. For non-linear hyperbolic systems, Benabdallh and Serre [10] proved that the Riemann
boundary condition implies the entropy one, and equivalence holds in the case of 2×2 systems
with straight-line characteristic fields and never vanishing eigenvalues. This result was further
extended to n× n strictly hyperbolic Temple class systems with non-characteristic boundary
in [3, Section 8]. We remark that these results do not apply in the present setting, since (1.2a)
is non-strictly hyperbolic and the boundaries (1.2c) and (1.2d) can be characteristic [1]. We
just note that [34, Section 4] gives a characterization of the boundary entropy set for the ARZ
model with Chaplygin pressure (fully linearly degenerate).

Well-posedness results for the IBVP with both characteristic and non-characteristic bound-
ary for general, strictly hyperbolic systems of conservation laws were provided in [1, 2] for
data with small total variation. For strictly hyperbolic Temple class systems with BV data,
no monotonicity assumption on the eigenvalues along the Lax curves and possibly character-
istic boundary we refer to [17] and with L∞ data, genuinely non-linear characteristic fields
and non-characteristic boundary see [3].

Concerning second order traffic flow models, and in particular ARZ model with vacuum
(i.e. non-strictly hyperbolic), existence results for the Cauchy problem were provided in [4, 27],
while L1 stability is provided in [6, 28] for the system in Lagrangian coordinates. We notice
that, to avoid problems at vacuum, several “phase-transition” or “collapsed” models were
introduced in the literature, see e.g.. [11, 16, 25, 26]. Vacuum issues can also be avoided by
suitably modifying the speed function near the vacuum, as proposed in [31].

In this article, we prove the existence of entropy weak solutions of (1.2) with possibly
characteristic boundaries for BV initial and boundary data on domains including vacuum
states. Our approach is the following. After introducing the Riemann solver for (1.1) based
on [4] in Section 2, in Section 3 we describe the sets of admissible traces at the boundaries
given both by the Riemann solver and the boundary entropy inequality. Based on the available
entropy families, we can prove the equivalence of these conditions at the right boundary, while
at the left boundary the two sets differ for a subset of the vacuum states. Possibly, the selection
of further entropies could allow to remove these unphysical states. This analysis ensures that
the wave-front tracking approximations constructed in Section 4.1 are approximate entropy

2



weak solutions in the sense of [13, 14]. Uniform BV bounds allow to pass to the limit in
the sequence of approximate solutions in Section 4.2, thus guaranteeing the desired existence
result. This strategy allows to avoid the cumbersome technicalities related to a limiting
procedure involving the solution boundary traces, see e.g. [1]. Some complementary material
is deferred to the Appendix.

2 The Riemann solver for the GSOM model

In this work, we consider speed functions V satisfying the following hypotheses on the domain
of definition [24]:

V(ρ, w) ≥ 0, V(0, w) = w, (2.1a)

2Vρ(ρ, w) + ρVρρ(ρ, w) < 0 for w > 0, (2.1b)

Vw(ρ, w) > 0, (2.1c)

∀w > 0 ∃ R(w) > 0 : V(R(w), w) = 0. (2.1d)

As in [15, 24], we observe that (2.1b) implies that Q(ρ, w) := ρV(ρ, w) is strictly concave and
Vρ(ρ, w) < 0 for w > 0, if V is a C2 function in ρ. We also remark that in (2.1d) we can have
R(w) = R̄ for all w > 0.

Under the above hypotheses, system (1.1) is strictly hyperbolic for ρ > 0, with eigenvalues

λ1(ρ, w) = V(ρ, w) + ρVρ(ρ, w), λ2(ρ, w) = V(ρ, w), (2.2)

and corresponding eigenvectors

r1(ρ, w) =

(
−1
0

)
, r2(ρ, w) =

(
Vw(ρ, w)
−Vρ(ρ, w)

)
, (2.3)

with the first characteristic field being genuinely non-linear and the second linearly degenerate.
The associated Riemann invariants [20, Chapter 7.3] are

z1(ρ, w) = V(ρ, w), z2(ρ, w) = w.

In the present setting, we are interested in the IBVP (1.2) with values in an invariant
domain of the form

Ω :=
{
U = (ρ, w) ∈ R2 : ρ ∈ [0, R(wmax)], w ∈ [wmin, wmax]

}
, (2.4)

for some 0 < wmin ≤ wmax < +∞. Since Vρ(ρ, w) < 0 and V(0, w) = w, the range of
v = V(ρ, w) is given by v ∈ [0, w] for any w ∈ [wmin, wmax]. Therefore, the inverse function
ρ = R(v, w) is uniquely defined in the invariant domain

W :=
{
W = (v, w) ∈ R2 : 0 ≤ v ≤ w,w ∈ [wmin, wmax]

}
. (2.5)

Following [4], the vacuum set, i.e. ρ = 0, corresponds to W0 := {(v, w) ∈ W : v = w} and the
non-vacuum set is denoted Wc

0 =W \W0.
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For later use in the definition of boundary conditions and in the construction of approx-
imate solutions, we recall in this section the definition of the Riemann solver for the GSOM
model (1.1) with initial conditions of the form

(ρ, w)(0, x) =

{
UL = (ρL, wL) if x < 0,

UR = (ρR, wR) if x > 0,
(2.6)

and their corresponding velocities denoted by vL = V(ρL, wL), vR = V(ρR, wR).
It is well known that the solution of a Riemann problem is based on the theory of elementary
waves, such as rarefaction waves, shock waves and contact discontinuities. To define the
solution, we introduce the notion of intermediate state UM = (ρM , wM ): in general, the left
state UL is connected to UM by a first family wave (rarefaction or shock), i.e. z2(ρL, wL) =
z2(ρM , wM ), while UM is connected to the right state UR by a contact-discontinuity with
z1(ρM , wM ) = vM = V(ρM , wM ) = vR = z1(ρR, wR). Thus, the intermediate state UM is
identified by the system of equations

wM = wL,

vM = vR,

ρM = R(vR, wL).

If wL ≤ vR, we set ρM = 0, meaning that UM corresponds to the vacuum. This case is treated
separately in Definiton 1 (see case 6).

Remark 1. The propagation speed σ of a shock wave between two states U− and U+ is given
by the Rankine-Hugoniot condition

σ(U−, U+) =
ρ+v+ − ρ−v−
ρ+ − ρ−

. (2.7)

In this work, we will rely on the following solutions of (1.1), (2.6).

Definition 1 ([4]). For any UL, UR ∈ Ω, the Riemann solver

RS : Ω× Ω→ C0
(

]0,+∞[; L1
loc(R; Ω)

)
, (UL, UR) 7→ RS(UL, UR)

is defined as follows:

1. If (vL, wL), (vR, wR) ∈ Wc
0, wL = wR and vL > vR, then

RS(UL, UR)(t, x) =

{
UL if x < σ(UL, UR)t,

UR if x > σ(UL, UR)t,

with σ defined in (2.7).

2. If (vL, wL), (vR, wR) ∈ Wc
0, wL 6= wR and vL > vR, then

RS(UL, UR)(t, x) =


UL if x < σ(UL, UM )t,

UM if σ(UL, UM )t < x < vRt,

UR if x > vRt,

with σ defined in (2.7).

4



3. If (vL, wL), (vR, wR) ∈ Wc
0, wL = wR and vL < vR, then

RS(UL, UR)(t, x) =


UL if x < λ1(ρL, wL)t,

Û if λ1(ρL, wL)t < x < λ1(ρR, wR)t,

UR if λ1(ρR, wR)t < x,

with Û = (ρ, wL) solving λ1(ρ, wL) = x
t .

4. If (vL, wL), (vR, wR) ∈ Wc
0, wL 6= wR and vL < vR < wL, then

RS(UL, UR)(t, x) =


UL if x < λ1(ρL, wL)t,

Û if λ1(ρL, wL)t < x < λ1(ρM , wM )t,

UM if λ1(ρM , wM )t < x < vRt,

UR if x > vRt,

with Û = (ρ, wL) solving λ1(ρ, wL) = x
t .

5. If (vL, wL), (vR, wR) ∈ Wc
0 and v := vL = vR, then

RS(UL, UR)(t, x) =

{
UL if x < vt,

UR if x > vt.

6. If (vL, wL), (vR, wR) ∈ Wc
0 and wL ≤ vR, then

RS(UL, UR)(t, x) =


UL if x < λ1(ρL, wL)t,

Û if λ1(ρL, wL)t < x < λ1(ρM , wM )t,

UM if λ1(ρM , wM )t < x < vRt,

UR if x > vRt,

with Û = (ρ, wL) solving λ1(ρ, wL) = x
t and UM = (0, wL).

7. If (vL, wL) ∈ W0 and (vR, wR) ∈ Wc
0, then

RS(UL, UR)(t, x) =

{
UL if x < vRt,

UR if x > vRt.
(2.8)

8. If (vL, wL) ∈ Wc
0 and (vR, wR) ∈ W0, then

RS(UL, UR)(t, x) =


UL if x < λ1(ρL, wL)t,

Û if λ1(ρL, wL)t < x < λ1(0, wL)t,

ŨR if λ1(0, wL)t < x,

(2.9)

with Û = (ρ, wL) solving λ1(ρ, wL) = x
t and ŨR = (0, wL).

9. If (vL, wL) ∈ W0 and (vR, wR) ∈ W0, then

RS(UL, UR)(t, x) ≡ UL. (2.10)
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Remark 2. We emphasize that in case 7 of Definition 1, if ρM 6= 0 (i.e. wL > vR) the
solution is either a juxtaposition of a shock wave and a contact discontinuity (if wL 6= wR)
or a shock wave with UR = UM (if wL = wR). The speed of the wave connecting UL to UM

is given by σ(UL, UM ) = ρMvM−ρLvL
ρM−ρL

ρL=0
= vM = vR. Thus, the solution can be also seen as a

contact discontinuity. This justifies the definition of the Riemann solver in (2.8).

Remark 3. Case 8 of Definition 1 is based on [4], see also [5, Section 3, Case 4]. The solution
in the right vacuum case is obtained by a rarefaction wave independent of vR = wR. The
right state ŨR of the solution is not the original state UR anymore since the speed v and the
Lagrangian vehicle property w are set equal to wL (see Figure 1). This choice is the one better
matching real observations: if the road is empty downstream, for example when a traffic light
turns green, the solution is expected to be a rarefaction wave, and not a juxtaposition of a
rarefaction wave and contact discontinuity or vacuum wave as it is proposed in [23] (see Figure
2a and 2b). Nevertheless, this choice is not compatible with Case 7: the solution to piece-wise
constant initial data consisting of threes states UL, UM and UR, with UM = (0, wM ), can be
constructed by gluing together the Riemann solutions defined in Cases 7 and 8 if and only if
wM = wL. This is why, for the construction of approximate solutions in Section 4.1, we will
need well-prepared initial data, as in [4, Section 2.1]. Moreover, the choice made in Case 8
do not provide a L1-stable Riemann solver close to the vacuum.

The solution for the case vL = vR = wR (resp. vR = wR < vL) could also consist of a
contact discontinuity (resp. shock wave and contact discontinuity) to UR (see resp. Figure 2c
and Figure 2d) instead of a rarefaction wave to the state ŨR.This would be consistent with
the structure of the solutions corresponding to UR close to the vacuum (with ρR > 0),
guaranteeing the L1 continuity of the Riemann solver. We emphasize that, as remarked
in [4], the set of entropies considered later does not allow to select a unique solution when
vacuum is involved. However, the above mentioned alternative choices look unrealistic for
traffic applications.

Remark 4. Case 9 of Definition 1 is motivated by coherence with case 8. In general, from a
practical point of view, the interpretation of the speed v and the Lagrangian vehicle property
w is lost in the vacuum.

v

w
v = w

wmax

UR

UL ŨR

vL vR

wL

wR

(a) vR = wR < wL

v

w
v = w

wmax

UR

UL ŨR

vL vR

wL

wR

(b) wL ≤ vR = wR

Figure 1: Definition 1, case 8: the solution consists of a rarefaction wave from UL to ŨR.
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v

w
v = w

wmax

UR

UL UM

vL vR

wL

wR

(a) vR = wR < wL

v

w
v = w

wmax

UR

UL UM

vL vR

wL

wR

(b) wL ≤ vR = wR

v

w
v = w

wmax

UR

UL

vR

wL

wR

(c) vL = vR = wR

v

w
v = w

wmax

UR

ULUM

vLvR

wL

wR

(d) vR = wR < vL

Figure 2: Alternative solutions for the right vacuum case. (a) A rarefaction wave from UL
to UM and a contact discontinuity from UM to UR. (b) A rarefaction wave from UL to UM
and a vacuum wave from UM to UR. (c) A contact discontinuity from state UL to UR. (d) A
shock wave from UL to UM and a contact discontinuity from UM to UR.

3 Admissible boundary sets

Since we are dealing with an initial boundary value problem, we describe in this section the
sets of admissible values for both the left and right boundaries of (1.2).

3.1 Riemann boundary sets

On the left boundary, only the states (ρ0, w0) reachable from a constant boundary datum
(ρB, wB) with non-positive waves in the Riemann problem (1.1), (2.6) with data

(ρ, w)(0, x) =

{
(ρB, wB) if x < xin,

(ρ0, w0) if x > xin,

are admissible. Since second family wave speeds are positive, except those with zero speed,
the remaining admissible waves are shock or rarefactions of the first family with non-positive
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speed. In this case, the admissible states at the left boundary belong to the curve

w = wB. (3.1)

From (2.1b) we know that the curve (3.1) is strictly concave in the (ρ, ρv)-plane. In particular,
there exists a critical density ρcr(w) which maximizes the flow ρv on the curve (3.1), i.e.

ρcr(w) = argmax
ρ

Q(ρ, w) = argmax
ρ

(
ρV(ρ, w)

)
for any w ∈ [wmin, wmax]. (3.2)

Additionally, there exists a unique density τ(ρ) 6= ρ such that Q(τ(ρ), w) = Q(ρ, w) for each
ρ 6= ρcr(w) and any w ∈ [wmin, wmax].

Remark 5. From a geometrical point of view, it is worth noticing that the slope of the
tangent to the curve (3.1) in the (ρ, ρv)-plane coincides with the first eigenvalue, indeed

Qρ(ρ, w) = V(ρ, w) + ρVρ(ρ, w) = λ1(ρ, w) for any w ∈ [wmin, wmax].

Moreover, the slope of the secant between any two points, U− and U+, in the (ρ, ρv)-plane is
given by the shock wave speed (2.7).

Proposition 1 describes the admissible states on the left boundary (see also [29, 30]):

Proposition 1. Let UB := (ρB, wB) ∈ Ω with ρB > 0 be the left boundary datum at x = xin.
The Riemann admissible boundary set BRie

L (ρB, wB) is composed of the following states U0 =
(ρ0, w0):

• w0 = wB and

1. if ρB < ρcr(wB): U0 = UB or ρ0 ≥ τ(ρB) (see Figure 3a);

2. if ρB ≥ ρcr(wB): ρ0 ≥ ρcr(wB) (see Figure 3b);

• the set of points {U0 = (R(w0), w0) : w0 ∈ [wmin, wmax]}, which can be reached from UB
with a negative 1-shock to (R(wB), wB), followed by a contact discontinuity with zero
speed.

In the vacuum case ρB = 0 and vB = V(0, wB) = wB, then the admissible states are U0 =
UB and {U0 = (R(w0), w0) : w0 ∈ [wmin, wmax]} (contact discontinuity with zero speed) (see
Figure 3c).

Concerning the right boundary, first and second family curves with non-negative wave
speeds are admissible when solving the Riemann problem (1.1), (2.6) with data

(ρ, w)(0, x) =

{
(ρ0, w0) if x < xxout,

(ρB, wB) if x > xxout.

The admissible set will thus be two-dimensional.

Proposition 2. Let UB := (ρB, wB) ∈ Ω with ρB > 0 be the right boundary datum at
x = xout. Then, the Riemann admissible boundary set BRie

R (ρB, wB) is composed of the states
U0 = (ρ0, w0) such that (see Figure 4a):
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ρ

ρv

0

UB

BRie
L (ρB , wB)

R(wmin) R(wmax)ρB(ρcr(wB)τ(ρB)

w = wB

(a) 0 < ρB < ρcr(wB)

ρ

ρv

0

UB

BRie
L (ρB , wB)

R(wmin) R(wmax)R(wmin) ρB(ρcr(wB)

w = wB

(b) ρB ≥ ρcr(wB)

0
ρ

ρv

UB

R(wmin) R(wmax)

BRie
L (ρB , wB)

w = wB

(c) ρB = 0

Figure 3: Riemann admissible boundary sets BRie
L (ρB, wB) at the left boundary.

• z1(ρ0, w0) = vB;

• V(ρcr(w0), w0) ≤ vB and ρ0 ≤ ρcr(w0);

• V(ρcr(w0), w0) > vB and ρ0 ≤ τ(R(vB, w0)).

In the vacuum case ρB = 0 and vB = V(0, wB) = wB, then U0 is admissible if and only if
ρ0 ≤ ρcr(w0) (rarefaction wave with non-negative speed, see Figure 4b).

Remark 6. We emphasize that in Proposition 2 we do not need to distinguish between two
different cases for the vacuum case ρB = 0 (in contrast to ρB > 0), due to the definition of
the Riemann solver (case 8 in Definition 1): the solution is always a rarefaction wave.

Remark 7. In the case ρB > 0, any state on the curve {z1(ρ, w) = vB} is admissible since
we can connect it to ρB by a contact discontinuity (see case 5 in Definition 1).
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Remark 8. We note that the right Riemann boundary set BRieR (ρB, wB) is independent
of the variable wB, i.e. BRieR (ρB, wB) = BRieR

(
R(vB, w), w

)
for all w ∈ [wmin, wmax], with

vB = V(ρB, wB). This holds for all (ρB, wB) ∈ Ω.

ρ

ρv

0

UB

w = wmax

(a) ρB > 0

ρ

ρv

0

w = wmax

UB

(b) ρB = 0

Figure 4: Riemann admissible boundary sets BRie
R (ρB, wB) at the right boundary forQ(ρ, w) =

ρ(w − ρ).
(a) The green (resp. orange) region refers to case V(ρcr(w0), w0) ≤ vB (resp. V(ρcr(w0), w0) >
vB) in Proposition 2. The blue line represents the admissible points on the curve {z1(ρ, w) =
vB}.
(b) The admissible region for the vacuum boundary datum is indicated in blue.

3.2 Entropy boundary sets

Defining u = (ρ, ρw)> ∈ Ω̃ with Ω̃ =
{

(ρ, ρw) ∈ R2 : ρ ∈ [0, R(wmax)], w ∈ [wmin, wmax]
}

and
f(u) = (ρv, ρwv)>, system (1.1) can be written more compactly as

∂tu+ ∂xf(u) = 0, x ∈ R, t > 0.

The definition of admissible values at the boundary is based on the notion of boundary
entropy inequality [8, 21]:

Definition 2. For each boundary state uB = (ρB, ρBwB) ∈ Ω̃, the set of entropy admissible
values at the left (resp. right) boundary, denoted by BEntL (ρB, wB) (resp. BEntR (ρB, wB)), is
defined as all the states u = (ρ, ρw) ∈ Ω̃ satisfying

β(u, uB) = Q(u)−Q(uB)−∇E(uB) · {f(u)− f(uB)} ≤ (≥) 0 (3.3)

for each entropy-flux pair (E ,Q).

Following [20, Section 7.4], we seek for entropy-flux pairs (Ej ,Qj), j ∈ {1, 2}, which are
functions of the Riemann invariants W = (v, w), then setting u = u(W ). In particular, we
consider the family of entropy-flux pairs derived in [4, Equation 2.13]:

E1(u(W )) =

0 if v ≤ v̄,
1− R(v,w)

R(v̄,w) if v > v̄,
(3.4a)
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Q1(u(W )) =

0 if v ≤ v̄,
v̄ − vR(v,w)

R(v̄,w) if v > v̄,
(3.4b)

for any v̄ ∈ [0, wmax].

Additionally, we consider the pairs identified by the left eigenvector l2(u(W )) =
(
w −1

)
(see [37, Chapter 13]):

E2(u(W )) = |l2(u(W̄ )) ·
(
u(W )− u(W̄ )

)
| = R(v, w)|w̄ − w| (3.5a)

Q2(u(W )) = l2(u(W̄ )) ·
(
f(u(W ))− f(u(W̄ ))

)
sgn

(
l2(u(W̄ )) ·

(
u(W )− u(W̄ )

))
= vR(v, w)|w̄ − w|, (3.5b)

for any w̄ ∈ [wmin, wmax].
For notational simplicity, throughout this section we will drop the u-variable dependency

and we write Ej(W ) = Ej(v, w) (resp. Qj(W ) = Qj(v, w)) instead of Ej(u(W )) (resp.

Qj(u(W ))) and f(W ) = f(v, w) =

(
R(v, w)v
R(v, w)wv

)
instead of f(u(W )) when possible. Thus,

the entropy boundary condition (3.3) expressed in Riemann invariants reads

βj(W,WB) := Qj(W )−Qj(WB)−∇uEj(WB) · (f(W )− f(WB)) ≤ (≥)0 (3.6)

for j ∈ {1, 2}, where

∇uEj(W ) = ∇uEj(v, w) =

(
∂v
∂ρE

j
v(v, w) + ∂w

∂ρ E
j
w(v, w)

∂v
∂yE

j
v(v, w) + ∂w

∂y E
j
w(v, w)

)
,

with y = ρw and

∂v

∂ρ
(v, w) =

∂V(ρ, yρ)

∂ρ
= Vρ(ρ,

y

ρ
)− y

ρ2
Vw(ρ,

y

ρ
) = Vρ(R(v, w), w)− w

R(v, w)
Vw(R(v, w), w) ,

∂v

∂y
(v, w) =

∂V(ρ, yρ)

∂y
=

1

ρ
Vw(ρ,

y

ρ
) =

1

R(v, w)
Vw(R(v, w), w) ,

∂w

∂ρ
(v, w) = − y

ρ2
= − w

R(v, w)
,

∂w

∂y
(v, w) =

1

ρ
=

1

R(v, w)
.

In the case v 6= v̄, the partial derivatives of E1 are given by

E1
v (v, w) =

0 if v < v̄,

−Rv(v,w)
R(v̄,w) if v > v̄,

E1
w(v, w) =

0 if v < v̄,

−Rw(v,w)R(v̄,w)−R(v,w)Rw(v̄,w)
R(v̄,w)2

if v > v̄.
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If v = v̄, the sub-differential of E1 reads as

E1
v (v, w) =

{
α : α ∈

[
0,−Rv(v, w)

R(v, w)

]}
,

E1
w(v, w) = 0.

By (3.5a), the gradient of E2 can be computed directly by

∇E2
u(W ) =

{
l2(u(W̄ )) sgn

(
l2(u(W̄ )) · (u(WB)− u(W̄ ))

)
if u(WB) 6= u(W̄ ),

{γl2(u(W̄ )); γ ∈ [−1, 1]} if u(WB) = u(W̄ ).

Remark 9. Deriving V(R(v, w), w) = v with respect to v, we get

Vρ(R(v, w), w)Rv(v, w) = 1 and thus Rv(v, w) =
1

Vρ(R(v, w), w)
.

Moreover, deriving V(R(v, w), w) = v with respect to w, we obtain

Vρ(R(v, w), w)Rw(v, w) + Vw(R(v, w), w) = 0 and thus Rw(v, w) = −Vw(R(v, w), w)

Vρ(R(v, w), w)
.

Using the above identities, we can prove that (3.4) and (3.5) satisfy

Qjv = λ1(v, w)Ejv(v, w), Qjw = λ2(v, w)Ejw(v, w)

with λ1(v, w) = v +R(v, w)Vρ(R(v, w), w) and λ2(v, w) = v, and are therefore entropy-flux
pairs, see [20, Equation (7.4.12)].

Finally, for j = 1 we obtain

β1(W,WB) =



ρv
(

1
R(v̄,wB) −

1
R(v̄,w) + 1

R(v̄,wB)2
Vw(R(v̄,wB),wB)
Vρ(R(v̄,wB),wB) (w − wB)

)
if v > v̄,

−v̄ + ρv
(

1
R(v̄,wB) + 1

R(v̄,wB)2
Vw(R(v̄,wB),wB)
Vρ(R(v̄,wB),wB) (w − wB)

)
if v ≤ v̄,

if vB > v̄,

{
v̄ − ρv 1

R(v̄,w) if v > v̄,

0 if v ≤ v̄,
if vB < v̄,

(3.9a)
if v̄ 6= vB and

β1(W,WB) =



ρv
(

1
ρB
− 1
R(vB ,w) + 1

ρ2B

Vw(ρB ,wB)
Vρ(ρB ,wB) (w − wB)

)
if v > vB ,

−vB + ρv
(

1
ρB

+ 1
ρ2B

Vw(ρB ,wB)
Vρ(ρB ,wB) (w − wB)

)
if v ≤ vB ,

if α = −Rv(vB , wB)

R(vB , wB)
,

{
vB − ρv 1

R(vB ,w) if v > vB ,

0 if v ≤ vB ,
if α = 0,

(3.9b)

if v̄ = vB .

For j = 2, it holds

β2(W,WB) = ρv(w − w̄)
(

sgn
(
R(vB, wB)(w̄ − wB)

)
− sgn

(
ρ(w̄ − w)

))
, (3.10a)
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if u(W̄ ) 6= u(WB) and

β2(W,WB) =



{
0 if w > wB,

2ρv(wB − w) if w ≤ wB,
if γ = −1,

{
2ρv(w − wB) if w > wB,

0 if w ≤ wB,
if γ = 1,

(3.10b)

if u(W̄ ) = u(WB).
We now state that the Riemann boundary condition implies the entropy one, as already

proven in [10, Theorem 1].

Proposition 3. The admissible states defined by the Riemann solver satisfy the entropy
boundary condition, i.e. BRiei (ρB, wB) ⊆ BEnti (ρB, wB) for i ∈ {L,R}.

For a detailed proof of Proposition 3, we refer to Appendix A. Finally, we end this section by
verifying the following Proposition.

Proposition 4. The following equalites hold for the boundary sets:

BEntL (ρB, wB) = BRieL (ρB, wB) ∪ B∗L(ρB, wB),

BEntR (ρB, wB) = BRieR (ρB, wB),
(3.11)

with B∗L(ρB, wB) = {(ρ, w) | ρ = 0, w < wB,V(ρ, w) ≤ V(ρB, wB)}.

Proof. Due to Proposition 3, it suffices to prove

1. B∗L(ρB, wB) ⊂ BEntL (ρB, wB);

2. BEntL (ρB, wB) ⊆ BRieL (ρB, wB) ∪ B∗L(ρB, wB);

3. BEntR (ρB, wB) ⊆ BRieR (ρB, wB).

We treat separately the above points.

1. We observe that β2(W,WB) = 0 in (3.10a) for any w̄ ∈ [wmin, wmax] since ρ = 0.
Moreover, for any v̄ ∈ [0, wmax], it holds in (3.9a) and (3.9b) that β1(W,WB) ≤ 0 due
to v ≤ vB and ρ = 0.

To prove inclusion 2 and 3, we will show that for any (ρ, w) 6∈ BRie
i (ρB, wB) (and (ρ, w) 6∈

B∗L(ρB, wB) if i = L), there exists a v̄ ∈ [0, wmax] or w̄ ∈ [wmin, wmax] for which
(ρ, w) 6∈ BEnti (ρB, wB), i ∈ {L,R}.

2. From Proposition 1, we observe that Ω\
(
BRieL (ρB, wB) ∪ B∗L(ρB, wB)

)
=

5⋃
i=1
KiL(ρB, wB),

where

K1
L(ρB, wB) = {(ρ, w) | ρ ∈ [0, ρB[, w = wB, 0 < ρB < ρcr(wB)},
K2
L(ρB, wB) = {(ρ, w) | ρ ∈ ]ρB, τ(ρB)[, w = wB, 0 < ρB < ρcr(wB)},
K3
L(ρB, wB) = {(ρ, w) | ρ < ρcr(wB), w = wB, ρB ≥ ρcr(wB)},
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K4
L(ρB, wB) = {(ρ, w) | V(ρ, w) > 0, w 6= wB, ρB ≥ 0} \ B∗L(ρB, wB),

K5
L(ρB, wB) = {(ρ, w) | V(ρB, wB) 6= V(ρ, w) > 0, w = wB, ρB = 0}.

Thus, (ρ, w) 6∈
(
BRieL (ρB, wB) ∪ B∗L(ρB, wB)

)
if and only if (ρ, w) ∈

5⋃
i=1
KiL(ρB, wB).

Let (ρ, w) ∈ K1
L(ρB, wB). Since v > vB, it holds ρv < ρBvB. Choosing vB < v̄ < v, we

have R(v̄, w) > ρv and thus, by (3.9a), β1(W,WB) > 0.
If (ρ, w) ∈ K2

L(ρB, wB), it holds v < vB. Setting v̄ = vB, we obtain ρv > ρBvB =
R(v̄, wB)v̄ and, by (3.9b), again that β1(W,WB) > 0.
If (ρ, w) ∈ K3

L(ρB, wB), we have v > vB. Choosing v̄ = V (ρcr(wB), wB), it holds
vB ≤ v̄ < v leading to ρv < R(v̄, w)v̄ and therefore β1(W,WB) > 0.
If (ρ, w) ∈ K4

L(ρB, wB), we distinguish between the following two cases:

– w > wB:

∗ If v > vB, we either have R(vB, w) ≤ ρcr(w), resulting in R(vB, w)vB > ρv.
Choosing v̄ = vB < v, we obtain β1(W,WB) > 0. Or it holds R(vB, w) >
ρcr(w), leading to R(v̄, w)v̄ > ρv by considering v̄ = V(ρcr(w), w). Thus, it
holds again β1(W,WB) > 0.

∗ If 0 < v ≤ vB, we know that ρ 6= 0. Choosing w̄ ∈]wB, w[ implies, by (3.10a),
β2(W,WB) > 0.

– w < wB.

∗ If v > vB, we obtain with the same argumentation as in the case w > wB that
β1(W,WB) > 0.

∗ If 0 < v ≤ vB, ρ 6= 0 implies β2(W,WB) > 0 by choosing w̄ ∈]w,wB[.

Finally, let (ρ, w) ∈ K5
L(ρB, wB). It holds w = wB = vB > v (otherwise

(ρ, w) = (ρB, wB) ∈ BRie(ρB, wB)). Since 0 = ρBvB < ρv and considering v̄ = vB, we
conclude β1(W,WB) > 0.
This shows that BEntL (ρB, wB) ⊆ BRieL (ρB, wB) ∪ B∗L(ρB, wB).

3. By Proposition 2, we observe that Ω \ BRieR (ρB, wB) =
3⋃
i=1
KiR(ρB, wB), where

K1
R(ρB, wB) = {(ρ, w) | ρ > ρcr(w), V (ρcr(w), w) ≤ vB},
K2
R(ρB, wB) = {(ρ, w) | ρ > R(vB, w), V (ρcr(w), w) > vB},
K3
R(ρB, wB) = {(ρ, w) | ρ ∈ ]τ(R(vB, w),R(vB, w)[, V (ρcr(w), w) > vB}.

Thus, (ρ, w) 6∈ BRieR (ρB, wB) if and only if (ρ, w) ∈
3⋃
i=1
KiR(ρB, wB). Moreover, as in

Remark 8, it holds KiR(ρB, wB) = KiR(R(vB, w), w) for i ∈ {1, 2, 3}, since the sets are
defined by vB. Thus it suffices to consider w = wB.

Let (ρ, w) ∈ K1
R(ρB, wB). Since v < vB, we choose v < v̄ = V(ρcr(w), w) ≤ vB implying

v̄R(v̄, wB) > ρv and leading to β1(W,WB) < 0.
If (ρ, w) ∈ K2

R(ρB, wB) we consider v̄ = vB > v which results in ρBvB > ρv and thus
β1(W,WB) < 0.
Finally, let (ρ, w) ∈ K3

R(ρB, wB). Thus, taking v̄ = vB < v, it follows vBR(vB, w) < ρv
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and again β1(W,WB) < 0.
This shows that BEntR (ρB, wB) ⊆ BRieR (ρB, wB).

Remark 10. The family of entropy-flux pairs (E2,Q2) defined by (3.5) are essential to obtain
the first equality in (3.11). If we considered only the family (E1,Q1) constructed by (3.5),
there would be points (away from the vacuum) which are admissible for the left entropy but
not for the left Riemann boundary set: as a demonstration, we choose Q(ρ, w) = ρ(w − ρ)
(see Figure 4), WB = (vB, wB) = (1, 1.6),
W = (v, w) = (0.4417, 1.8). In this specific case, we observe for any v̄ ∈ [0, wmax] that
β1(W,WB) ≤ 0 (see Figure 5). However, (ρ, w) 6∈ BRieL (ρB, wB) since w 6= wB.

(a) 0 ≤ v̄ < v (b) v ≤ v̄ ≤ vB

Figure 5: Illustration of the entropy boundary condition β1(W,WB) for a point (ρ, w) which
is not admissible for the left Riemann boundary set. The case v̄ > vB is not depicted in the
Figure since it holds β1(W,WB) = 0 due to (3.9a).

Remark 11. The chosen entropy families (3.4) and (3.5) do not provide the equality between
the left Riemann and entropy boundary sets. In fact, the two sets differ for points in the
vacuum positioned as in Figures 2c and 2d with respect to the boundary datum (vL = vB ≥
v = vR and wL = wB > w = wR), which are described by the set B∗L(ρB, wB). We emphasize
that this is the only case where the two sets do not coincide.

One could avoid this problem by setting w = wmax whenever ρ = 0. However, even if
this choice would allow to prove the equivalence between the two boundary sets, it cannot
be guaranteed when passing to the limit in approximate solutions (as done in the proof of
Proposition 7), since we can end up with vacuum states U = (0, w), w 6∈ wmax, which do not
belong to the Riemann solver.

Nevertheless, if we consider an invariant domain not including the vacuum, i.e.

W :=
{
W = (v, w) ∈ R2 : 0 ≤ v < w,w ∈ [wmin, wmax], v ∈ [vmin, vmax], vmax < wmin

}
,

for some 0 ≤ vmin < vmax, it holds BRiei (ρB, wB) = BEnti (ρB, wB) for i ∈ {L,R} (and not
only i = R). This is a new result compared to [3, 10, 21], since it applies to a Temple class
system whose characteristic lines of the second family are not straight (see Remark 12) and
the boundary is possibly characteristic (the first eigenvalue can change sign).
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Remark 12. Unlike in [3], the family of functions

η(u(W )) = |l1(u(W̄ )) ·
(
u(W )− u(W̄ )

)
|, W̄ ∈ W,

corresponding to the first left eigenvector l1(u) =
(
ρVρ(ρ, w)− wVw(ρ, w) Vw(ρ, w)

)
, are

not of use in this setting, since the level sets of the first Riemann invariant z1(ρ, w) are not
straight lines in the conservative variables u = (ρ, y), see for example [5] in the case of the
ARZ model.

4 Existence of entropy weak solutions

Since we are dealing with entropy-flux pairs (E ,Q) expressed in Riemann invariants, it is
convenient to rewrite (1.2) into the same variables, and on a limited time interval, i.e.

∂tu(W ) + ∂xf(u(W )) = 0, x ∈ ]xin, xout[, t ∈ ]0, T [, (4.1a)

W (0, x) = W0(x), x ∈ ]xin, xout[, (4.1b)

W (t, xin) = Win(t) = (vin, win)(t), t ∈ ]0, T [, (4.1c)

W (t, xout) = Wout(t) = (vout, wout)(t), t ∈ ]0, T [, (4.1d)

where u(W ) = (R(v, w),R(v, w)w)>, f(u(W )) = v · u(W ). Observe that, since we deal with
solutions in weak (distributional) sense, problem (4.1), set on a bounded time interval, is
equivalent to (1.2).
It is also convenient, for the existence proof, to set W0(x+) = (w0(x−), w0(x−)) whenever
W0(x+) ∈ W0, assuming W0 ∈ BV

(
]xin, xout[;W

)
(see Remark 13) and therefore traces are

defined at each point x ∈ ]xin, xout[. Indeed, this does not change the initial condition in
conservative variables, since u(W1) = u(W2) = (0, 0)> if W1,W2 ∈ W0. Moreover, we set
Wout(t) = (wmax, wmax) whenever Wout(t) ∈ W0. This does not impact the solution, which is
independent of wout (as BEntR (ρB, wB) = BRieR (ρB, wB) is independent of wB).

Remark 13. We remark that if W0 = W−0 ∈ BV
(
]xin, xout[ ;W

)
before the above mentioned

replacement of vacuum states, then also the new initial datumW0 = W+
0 ∈ BV

(
]xin, xout[;W

)
.

Indeed, for each state W−M ∈ W0 of W−0 (·), let WL,WR the left and right values involved in

the computation of the total variation (so that W−M is replaced by W+
M = (wL, wL)). Then

we have, applying twice the triangle inequality,{
|WL −W+

M |+ |W
+
M −WR|

}
−
{
|WL −W−M |+ |W

−
M −WR|

}
=
{
|vL − wL|+ |wL − vR|+ |wL − wR|

}
−
{
|vL − w−M |+ |wL − w

−
M |+ |w

−
M − vR|+ |w

−
M − wR|

}
≤
{
|wL − vR|+ |wL − wR|

}
−
{
|w−M − vR|+ |w

−
M − wR|

}
≤ |wL − vR|+ |wL − wR|
≤ 2|wL − w−M |+ |w

−
M − vR|+ |w

−
M − wR|

≤ 2
{
|WL −W−M |+ |W

−
M −WR|

}
,

leading to the bound TV(W+
0 ) ≤ 3TV(W−0 ).
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In the following subsections, we construct a sequence of approximate solutions and we
show that it converges to an entropy weak solution of (4.1), which is defined below. First, we
need to recall the notion of boundary entropy pairs, see [13, Definition 4.1], where we drop
the convexity assumption.

Definition 3 (Boundary entropy pair). An entropy pair(
α(u(W1), u(W2)), β(u(W1), u(W2))

)
, W1,W2 ∈ W,

is called a boundary entropy pair if for every fixed W2 ∈ W it satisfies

α
(
u(W2), u(W2)

)
= β

(
u(W2), u(W2)

)
= ∇1α

(
u(W2), u(W2)

)
= (0, 0)>.

Definition 4 (Entropy weak solution). A function W ∈ L∞
((

]0, T [× ]xin, xout[
)

;W
)

is

an entropy weak solution of IBVP (4.1) if

• for any entropy-flux pair (E ,Q) and any test function

φ ∈ C∞c

((
]−∞, T [× ]xin, xout[

)
;R≥0

)
, it holds∫ T

0

∫ xout

xin

{
E(u(W ))∂tφ+Q(u(W ))∂xφ

}
dxdt +

∫ xout

xin

E(u(W0(x)))φ(0, x) dx ≥ 0;

(4.2)

• for any boundary entropy pair (α, β) and any γ(t) ∈ L1
(
]0, T [;R≥0

)
, it holds

ess lim
x→xin+

∫ T

0
β(u(W (t, x)), u(Win(t)))γ(t)dt ≤ 0,

ess lim
x→xout−

∫ T

0
β(u(W (t, x)), u(Wout(t)))γ(t)dt ≥ 0.

(4.3)

For future reference, we also recall the corresponding definition of a weak solution [12].

Definition 5 (Weak solution). We call W ∈ L∞
((

]0, T [× ]xin, xout[
)

;W
)

a weak solution

to the IBVP (4.1), if for any test function φ ∈ C∞c

((
]−∞, T [× ]xin, xout[

)
;R
)

it satisfies∫ T

0

∫ xout

xin

{
u(W )φt + f(u(W ))φx

}
dxdt +

∫ xout

xin

u(W0(x))φ(0, x)dx = 0. (4.4)

We can now state the main result of this paper:

Theorem 1. Let us assume W0 ∈ BV
(
]xin, xout[;W

)
, Win,Wout ∈ BV

(
]0, T [;W

)
. Then, for

any T > 0, the IBVP (4.1) admits an entropy weak solution W ∈ L∞
(
]0, T [× ]xin, xout[;W

)
in the sense of Definition 4. Additionally, W satisfies the following bounds:

TV(W (t, ·)) ≤ γ0 and ‖W (t)‖∞ ≤ ‖W0‖∞ ∀ t ∈ [0, T [ and x ∈ ]xin, xout[ ,

where γ0 = TV(W0)+
∣∣Win(0)−W0(xin+)

∣∣+∣∣vout(0)− v(0, xout−)
∣∣+3TV

(
Win(s); s ∈ ]0, T [

)
+ TV

(
vout(s); s ∈ ]0, T [

)
.

The proof is postponed to Section 4.2 (see Propositions 6 and 7).
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4.1 Wave-front tracking (WFT) algorithm

The WFT algorithm [19, 36] allows to construct piece-wise constant approximate entropy
weak solutions W h of the IBVP problem (4.1) by means of an approximate Riemann solver
obtained by approximating the rarefaction waves by piece-wise constant functions with values
in a fixed grid of mesh size εh, see [3, 4] for an implementation in the case of Temple and
ARZ systems. The procedure is briefly summarized below.

1. Fix h ∈ N sufficiently large, εh = 2−h‖W0‖∞, Wh =W ∩ [εhN2] (see Figure 6).

v

w

wmin

wmax

vmin vmax

v = w

Figure 6: Illustration of the discretized domain Wh. The grid points are illustrated in blue.

2. Approximate the initial and boundary data with piece-wise constant functions, i.e.

W h
0 ∈ PC

(
]xin, xout[;Wh

)
, W h

in,W
h
out ∈ PC

(
]0, T [;Wh

)
such that [1]:

• TV(W h
0 ) ≤ TV(W0), TV(W h

in) ≤ TV(Win), TV(W h
out) ≤ TV(Wout),

• lim
h→∞
‖W0 −W h

0 ‖1 = 0, lim
h→∞
‖Win −W h

in‖1 = 0, lim
h→∞
‖Wout −W h

out‖1 = 0,

• W h
0 (x+) = (wh0 (x−), wh0 (x−)) whenever W h

0 (x+) ∈ W0,
|W h

in(0+)−W h
0 (xin+)| ≤ |Win(0+)−W0(xin+)|,

|W h
out(0+)−W h

0 (xout−)| ≤ |Wout(0+)−W0(xout−)|,
• ‖W h

0 ‖∞ ≤ ‖W0‖∞, ‖W h
in‖∞ ≤ ‖Win‖∞, ‖W h

out‖∞ ≤ ‖Wout‖∞.

3. Approximately solve the Riemann problem at x = xin, xout and at every jump disconti-
nuity in the approximate initial data. Notice that the total variation of these approxi-

mations is bounded by TV(W h
0 ) +

∣∣∣W h
in(0)−W h

0 (xin+)
∣∣∣+ ∣∣∣vhout(0)− vh(0, xout−)

∣∣∣ even

in the presence of vacuum states.

4. Glue together these solutions to obtain a piece-wise constant approximate solution
W h = (vh, wh) defined up to the first time t̂ at which an interaction between two
or more wave-fronts takes place, or a wave hits the boundary, or a jump discontinuity
occurs in the boundary data (see [2, page 240] or [18, page 690]).

5. Solve the new Riemann problem arisen at t = t̂ and prolong the solution until the next
interaction.

This process can be extended to any time t > 0, as proven by the following result.
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Proposition 5. For any h fixed, the number of waves in the approximate solution W h is
finite for all t ∈ ]0, T [ and the functional γh : [0, T ]→ R≥0 defined by

γh(t) = TV(W h(t, ·)) +
∣∣∣W h

in(t)−W h(t, xin+)
∣∣∣+
∣∣∣vhout(t)− vh(t, xout−)

∣∣∣
+ 3 TV

(
W h
in(s); s ∈ ]t, T [

)
+ TV

(
vhout(s); s ∈ ]t, T [

) (4.5)

is non-increasing.

Remark 14. Note that (4.5) does not depend on the total variation of whout, which is in line
with the fact that the set BRieR (UB) is independent of the w-variable (see Remark 8).

Proof. By construction, W h is a piece-wise constant function, i.e.

W h(t, ·) ∈ PC
(

]xin, xout[;Wh
)

for all t ≥ 0 for which it is defined. By slightly changing the

wave positions, it is not restrictive to assume that at any interaction time t̂, either two waves
interact in the interior of the domain, or a single wave hits the boundary, or a change in the
boundary state occurs.

Regarding interactions not involving vacuum states occurring in ]xin, xout[, the number of
waves can increase only if one of the outgoing waves is a rarefaction. However, for Temple
class systems, a rarefaction wave can only occur if one of the incoming waves already was
a rarefaction. Thus, the number of waves does not increase. Additionally, we know from
the standard theory of Temple class systems that the space total variation in the Riemann
invariants is non-increasing [7, 27] as long as the waves have finite speeds.

Therefore it suffices to focus on the following three cases that may occour at t = t̂:

(A) an interaction between waves in ]xin, xout[ involving at least a vacuum state;

(B) a wave hitting the boundary at x = xin or x = xout;

(C) a jump in the approximate boundary data W h
in or W h

out.

For notational simplicity, we will drop the h, t and x dependencies in the rest of the proof,
thus writing W instead of W h(t, x), ε instead of εh and γ instead of γh. Additionally, we still
denote the critical density, defined in (3.2), as ρcr(w) (instead of expressing it in Riemann
invariant coordinates). We also set

∆γ = γ(t̂+)− γ(t̂−)

for the variation of the functional (4.5) at t = t̂. Finally, we recall that the absolute difference
between a left (non-vacuum) state WL = (vL, wL) ∈ Wc

0 and a right (vacuum) state WR ∈ W0

is computed by
|WL −WR| = |vL − wL|+ |wL − wL| = |vL − wL|.

Remark that, since the vacuum states in the interior of the domain are the results of Riemann
problem solutions, we must have wR = wL by case 8 in Definition 1.

Let us first consider case (A). Following [4], we will look at the solution of the Riemann
problem after the interaction of a wave connecting the state WL to WM and a wave connecting
WM to WR (see Figure 7).
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(A.1) If WL = (wL, wL) ∈ W0 , we know that WM ∈ Wc
0 (otherwise case 9 in Definition 1

implies WM = WL). By case 7 in Definition 1, it holds that the first wave travels with
propagation speed vM . If the second wave was a contact discontinuity, it would travel
with the same speed of propagation leading to no interaction between the waves. Thus,
the second wave must be either a shock or a rarefaction, i.e. wM = wR. Moreover it
holds that WR ∈ Wc

0 otherwise the solution of the Riemann problem between the states
WM and WR ∈ W0 would be an ε-step size rarefaction with the same speed as the first
wave (→ no interaction). Finally, the solution of the Riemann problem associated to
the interaction is a discontinuity travelling with speed vR. Thus, the number of waves
does not increase and it holds by means of the triangle inequality

∆γ =
{
|wL − vR|+ |wL − wR|

}
−
{
|wL − vM |+ |wL − wM︸︷︷︸

=wR

|+ |vM − vR|
}
≤ 0.

(A.2) If WM ∈ W0, we know with the same argument as in (A.1) that WL ∈ Wc
0 and WR ∈

Wc
0. The first wave, connecting WL to WM = (wL, wL), is an ε-step size rarefaction

with propagation speed vL = wL − ε. The propagation speed of the second wave
(discontinuity) is vR. Moreover it must hold that vR < wL − ε (otherwise the waves do
not interact). Finally, the solution of the Riemann problem associated to the interaction
is a shock-wave travelling from WL to an intermediate state WM ′ , followed by a contact
discontinuity from WM ′ to WR with propagation speed vM ′ = vR. Thus, the number of
waves does not increase and it holds by means of the triangle inequality

∆γ =
{
|vL − vM ′︸︷︷︸

=vR

|+ |wM ′︸︷︷︸
=wL

−wR|
}
−
{
|vL − wL|+ |wL − vR|+ |wL − wR|

}
≤ 0.

t = t1 WL

WM ∈ W0

WR

WM ′

Figure 7: Sample illustration of the interacting waves in the vacuum case (A.2).

(A.3) If WR ∈ W0, the second wave connecting WM to WR = (wM , wM ) is an ε-rarefaction
with speed vM = wM − ε. Thus, the first wave cannot be a contact discontinuity
since it would have the same speed as the second wave (→ no interaction), this implies
wL = wM . However, an interaction between the two waves can only occur if the first
wave travels faster than wM − ε which is not possible.

(A.4) If WM ′ ∈ W0 (and WL ∈ Wc
0, WM ∈ Wc

0, WR ∈ Wc
0), we know by the Riemann solver

that WM ′ = (wL, wL) with vM ′ = wL > vL. Moreover, we have that vL < vM ′ ≤ vR,
otherwise WM ′ ∈W c

0 . Since the speed of the first wave before the interaction is higher

20



than the second wave speed, it must be a contact discontinuity (from WL to WM )
followed by a ε-rarefaction from WM = (vL, wR) to WR with vR = vL+ε. Assuming that
vM ′ < vR, we obtain a contradiction due to our ε-discretization: vL < vM ′ < vR = vL+ε.
Thus, it must hold wL = vM ′ = vR = vL + ε and WM ′ = (vR, wL). Finally, the number
of waves does not increases (since we only have an ε-rarefaction wave) and it holds

∆γ =
{
|vL − vR|+ |wL − wR|

}
−
{
|wL − wM︸︷︷︸

=vR

|+ | vM︸︷︷︸
=vL

−vR|
}

= 0.

Next, we consider case (B). For the left (resp. right) boundary case, the states before the
interaction will be denoted by WB,WM and WR (resp. WL) (see Figure 8a (resp. 8b)). To
prove that the functional γ is non-increasing, it suffices to show that

∆γ =
{
|WB −WM ′ |+ |WM ′ −WR|

}
−
{
|WB −WM |+ |WM −WR|

}
≤ 0

(resp.

∆γ =
{
|WL −WM ′ |+ |vM ′ − vB|

}
−
{
|WL −WM |+ |vM − vB|

}
≤ 0.)

Moreover, we assume that UM = (R(vM , wM ), wM ) ∈ BRiei (UB) with i ∈ {L,R} and
UB = (R(vB, wB), wB).

t̂

x

t

x = xin

WB

WM

WR

WM ′

(a) Illustration of the states and the cor-
responding interacting waves at the left
boundary (B.L).

t̂

x

t

x = xout

WL

WM

WB

WM ′

(b) Illustration of the states and the cor-
responding interacting waves at the right
boundary (B.R).

Figure 8: Case (B).

In the left boundary case (B.L), i.e. i = L, we define the subset of the admissible states
with zero speed (see Proposition 1) as

WL = {(v, w) ∈ Wc
0 | v = 0}. (4.6)

(B.L.1) If WB ∈ Wc
0, WM 6∈ WL and R(vB, wB) < ρcr(wB), we know that wB = wM =

wR = wM ′ . By case 1 in Proposition 1, it follows that WB is connected to WM by a
negative shock. Thus, the only possible wave with negative speed (joining WM to WR)
leading to a visible wave (with positive speed) after the interaction has to be a negative
rarefaction, i.e. vR = vM + ε and R(vR, wR)vR > R(vB, wB)vB. Finally, the solution of
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the Riemann problem associated to the interaction is a positive shock-wave travelling
from WB = WM ′ to WR. Thus, the number of waves does not increase and it holds by
means of the triangle inequality

∆γ =
{
|vB − vR|

}
−
{
|vB − vM |+ |vM − vR|

}
≤ 0.

(B.L.2) If WB ∈ Wc
0, WM 6∈ WL and R(vB, wB) ≥ ρcr(wB), we know that wB = wM = wR. It

holds that both the wave connecting WM to WR and the wave travelling from WB via
WM ′ to WR are negative. Therefore, no wave emerges from the interaction and ∆γ ≤ 0.

Additionally, as shown later in the cases (C.L.1) and (C.L.3), it can appear the situation
where UM 6∈ BRieL (UB). However, applying the same argumentation as before, the result
does not change.

(B.L.3) If WB ∈ Wc
0, WM ∈ WL (see Figure 9), it holds that vM = 0 and wM = wR. Thus,

the boundary wave travelling from WM to WR is a negative ε- rarefaction, implying
vR = vM + ε = ε. The solution of the Riemann problem associated to the interaction
is a first family wave travelling from WB to WM ′ = (vM ′ , wB) followed by a contact
discontinuity from WM ′ to WR, i.e. vM ′ = vR. If WM ′ 6= WB is admissible (see Figure
9b), we have only one outgoing wave, the number of waves does not increase and it
holds by means of the triangle inequality

∆γ =
{
|vB − vM ′︸︷︷︸

=vR

|+ |wM ′︸︷︷︸
=wB

−wR|
}
−
{
|vB − vM |+ |wB − wM︸︷︷︸

=wR

|+ |vM − vR|
}
≤ 0.

v

w

wmin

wmax

v = w

vR = ε vB

wR

wB

WM

WR

WM′ WB

(a) (v, w)-plane.

ρ

ρv

vR = ε

WB

WM′

WR

WM

(b) (R(v, w),R(v, w)v)-plane.

Figure 9: Sample illustration of the states in the case (B.L.3) in two different planes.
(a) waves before (resp. after) the interaction are drawn in green (resp. red).
(b) the admissible states for UB are indicated in light blue.

Otherwise, we have two outgoing waves (see Figure 10). We thus consider an additional
intermediate state WM ′′ between WM ′(= WB) and WR. The first wave is a positive
shock (from WB to WM ′′ ), followed by a contact discontinuity (from WM ′′ to WR). It
holds vB > vR 6= 0. Thus, the number of waves increases by one but it holds that

∆γ =
{
vB − vR + |wM ′︸︷︷︸

=wB

−wR|
}
−
{
vB + vR + |wB − wM︸︷︷︸

=wR

|
}

= −2vR = −2ε.
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ρ

ρv

vR = ε

WB = WM
′

WM
′′

WR

WM

Figure 10: Illustration of case (B.L.3) with UM ′′ = (R(vR, wB), wB) 6∈ BRieL (UB), i.e.
R(vB, wB)vB < R(vR, wB)vR. The admissible states for UB are indicated in light blue.

(B.L.4) If WB = (wB, wB) ∈ W0, it holds that vM = 0 and wM = wR. Thus again, the boundary
wave travelling from WM to WR is a negative ε- rarefaction, i.e. vR = vM + ε = ε. The
solution of the Riemann problem associated to the interaction is a discontinuity from
WB = WM ′ to WR travelling with speed vR. Hence, the number of waves does not
increase and it holds by means of the triangle inequality

∆γ =
{
|wB − vR|+ |wB − wR|

}
−
{
|wB − vM |+ |wB − wM︸︷︷︸

=wR

|+ |vM − vR|
}
≤ 0.

We now focus on the right boundary case (B.R), i.e. i = R.

(B.R.1) If WB ∈ Wc
0 and the boundary wave from WL to WM is a contact discontinuity travelling

with speed vM = vL (see Figure 11), the solution to the boundary Riemann problem
associated to the interaction displays at most a first family-curve travelling with negative
speed from WL to WM ′ = (vM ′ , wL). It holds either that vL < vM ′ ≤ vB (rarefaction
wave from WL to WM ′) or vM ′ = vB < vL (shock wave from WL to WM ′ = W̃ ). In the
first case, the number of waves can increase; in the second case, the number of waves
does not change. By means of the triangle inequality it follows that

∆γ =
{
|vL − vM ′ |+ |vM ′ − vB|︸ ︷︷ ︸

=|vL−vB |

}
−
{
|wL − wM |+ | vM︸︷︷︸

=vL

−vB|
}
≤ −ε < 0,

since WL 6= WM .
Remark: In the case of a negative rarefaction wave from WL to WM ′ (only possible
if R(vL, wL) > ρcr(wL)) and vM ′ 6= vB, then WM ′ will be the point the propagation
speed of the rarefaction wave changes from negative into positive speed. If the state
Ucr = (ρcr(wL), wL) ∈ BRieR (UB) is lying on the grid, we know that Ucr = UM ′ =
(R(vM ′ , wL), wL). On the contrary, if the state Ucr is not lying on the grid (see Figure
11b), then it can appear the situation that UM ′ 6∈ BRieR (UB). However, since we move
with an ε-step size along the v−variable on the grid, it holds that |vM ′ − vcr| < ε and
vcr = V(ρcr(wL), wL).

Due to the previous remark (and also case (C.R.2)), we can also have UM 6∈ BRieR (UB).
However, applying the same argumentation as before, the result does not change.
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v

w

wmin

wmax

v = w

vM = vL vB

wL

wB

wM WM

WL

WM′
W̃

WB

(a) (v, w)-plane.

ρ

ρv

ρcr(wL)

vM = vL

vB

WB

WM′

W̃

WL

WM

(b) (R(v, w),R(v, w)v)-plane.

Figure 11: Sample illustration of the states in the case (B.R.1) in two different planes.
(a) waves before (resp. after) the interaction are drawn in green (resp. red).
(b) the admissible states for UB are indicated in light blue. In this case, WM ′ 6∈ BRieR (UB).

(B.R.2) If WB ∈ Wc
0 and the boundary wave from WL to WM is a first family curve, i.e.

wM = wL, travelling with positive speed, the boundary solution after the interaction
displays at most a negative shock-wave travelling from WL to WM ′ . Thus, the number
of waves does not increase and it holds by means of the triangle inequality

∆γ =
{
|vL − vM ′︸︷︷︸

=vB

|
}
−
{
|vL − vM |+ |vM − vB|

}
≤ 0.

As we have seen in the case (B.R.1) (see also (C.R.2)), it can happen that UM 6∈
BRieR (UB). However, due to R(vB, wM ) < ρcr(wM ), there will be no visible solution.

(B.R.3) If WB = (wmax, wmax) ∈ W0, we know that the wave travelling from WL to WM is either
a positive first family curve or a contact discontinuity. In the first case, the solution to
the Riemann problem after the interaction will be a positive rarefaction wave which is
not visible in the domain. However, in the case of a contact discontinuity, the solution
to the boundary Riemann problem between WL and WB may consist of a negative
rarefaction fan, travelling from WL to WM ′ and it holds vL = vM < vM ′ < wB = wmax.
Thus, the number of waves can increase, but

∆γ =
{
|vL − vM ′ |+ |vM ′ − wmax|︸ ︷︷ ︸

=|vL−wmax|

}
−
{
|wL − wM |+ | vM︸︷︷︸

=vL

−wmax|
}

= −|wL − wM | ≤ −ε.

We remark that in this case, we use the assumption of wB = wmax (if WB ∈ W0) in
order to obtain a negative value for ∆γ.

As shown later in the case (C.R.4), we may have UM 6∈ BRieR (UB). However, this does
not change the above argumentation.

Finally, we consider case (C): we analyse the solution of the boundary Riemann problem
after a jump discontinuity in the boundary state from W−B to W+

B . From Figure 12, we see
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that in this scenario the number of waves can increase. However, since there is a finite number
of jumps in the approximate boundary states, the total number of new waves remains finite.
Therefore, it is sufficient to prove that the functional γ is non-increasing, i.e.

∆γ =
{∣∣∣W+

B −WM ′

∣∣∣+ |WM ′ −WR|
}
−
{∣∣∣W−B −WR

∣∣∣+ 3
∣∣∣W−B −W+

B

∣∣∣} ≤ 0

(resp.

∆γ =
{
|WL −WM ′ |+

∣∣∣vM ′ − v+
B

∣∣∣}− {∣∣∣vL − v−B∣∣∣+
∣∣∣v−B − v+

B

∣∣∣} ≤ 0).

Moreover, we assume that UR = (R(vR, wR), wR) ∈ BRieL (U−B ) and UL = (R(vL, wL), wL) ∈
BRieR (U−B ) with U−B = (R(v−B , w

−
B), w−B).

t̂

x

t

x = xin

W+
B

W−B WR

WM ′

(a) Illustration of the states and the corre-
sponding waves at the left boundary (C.L).

t̂

x

t

x = xout

W+
B

W−BWL

WM ′

(b) Illustration of the states and the cor-
responding waves at the right boundary
(C.R).

Figure 12: Case (C).

First, we consider the left boundary case (C.L), i.e. i = L.

(C.L.1) If W−B ∈ Wc
0, W+

B ∈ Wc
0 and WR 6∈ WL (defined in (4.6)), it holds that W−B and WR

are connected by a first family wave (possibly null if W−B = WR), i.e. w−B = wR. The
solution of the Riemann problem, associated to the change of the boundary state, is
a first family curve from W+

B to WM ′ , i.e. w+
B = wM ′ , followed by either a contact

discontinuity, travelling with propagation speed vM ′ = vR, or a first family wave, i.e.
w−B = wR = wM ′ = w+

B , from the state WM ′ to WR.
The boundary Riemann problem consists than in (a first family wave followed by) a
contact discontinuity, it holds by means of the triangle inequality

∆γ =
{
|v+
B − vM ′︸︷︷︸

=vR

|+ |wM ′︸︷︷︸
=w+

B

−wR|
}
−
{∣∣∣v−B − vR∣∣∣+ 3|v−B − v

+
B |+ 3|w−B︸︷︷︸

=wR

−w+
B |
}

≤ −2
{
|v−B − v

+
B |+ |w

−
B − w

+
B |
}
≤ −2ε < 0.

Remark: We can have two outgoing waves, this means having an additional state
WM ′′ = (vR, w

+
B) between WM ′ and WR. This can happen in two situations: either if

R(v+
B , w

+
B) < ρcr(w

+
B) and WM ′ = W+

B or if R(v+
B , w

+
B) ≥ ρcr(w

+
B) and R(vR, w

+
B) <

ρcr(w
+
B). In the first case, we observe a positive shock wave (from W+

B to WM ′′ ) and a

25



contact discontinuity (from WM ′′ to WR). In the second case, the wave connecting WM ′

to WM ′′ is a positive rarefaction followed again by a contact discontinuity (from WM ′′

to WR). However, both scenarios do not change the computation of the total variation,
hence it still holds ∆γ ≤ 0.

Assuming the solution is a first family shock wave which implies W+
B = WM ′ , it holds

∆γ =
{
|v+
B − vR|

}
−
{∣∣∣v−B − vR∣∣∣+ 3|v−B − v

+
B |+ 3|w−B − w

+
B︸ ︷︷ ︸

=0

|
}
≤ 0.

Finally, assuming the outgoing wave is a first family rarefaction, the only possible solu-
tion, which is visible in the domain, leads to WR = W−B . Thus,

∆γ =
{
|v+
B − vM ′ |+ |vM ′ − vR|︸ ︷︷ ︸

|v+B−vR|

}
−
{
|v−B − vR︸ ︷︷ ︸

=0

|+ 3| v−B︸︷︷︸
=vR

−v+
B |+ 3|w−B − w

+
B︸ ︷︷ ︸

=0

|
}
≤ 0.

Remark: For the first (resp. third) case above, if we are in the case of a positive
rarefaction wave from WM ′ to WM ′′ (resp. WR) (only possible if R(v+

B , w
+
B) > ρcr(w

+
B)),

then WM ′ will be the point the propagation speed of the rarefaction wave changes
from negative into positive speed. If the state Ucr = (ρcr(w

+
B), w+

B) ∈ BRieL (U+
B ) with

U+
B = (R(v+

B , w
+
B), w+

B) is lying on the grid, we know that Ucr = UM ′ = (R(vM ′ , w
+
B).

On the contrary, if the state Ucr is not lying on the grid, then it can appear the situation
that UM ′ 6∈ BRieL (U+

B ). However, since we move with an ε-step size along the v−variable
on the grid, it holds that |vM ′ − vcr| < ε and vcr = V(ρcr(w

+
B), w+

B).

By the remark above (and also case (C.L.3)), it may happen that UR 6∈ BRieL (U−B ).
However, the computations for the contact discontinuity and first family shock do not
change. The rarefaction case cannot appear anymore since WR 6= W−B .

(C.L.2) If WR ∈ WL, we have that WR ∈ BRieL (U+
B ) and no new wave is created, thus ∆γ ≤ 0.

(C.L.3) If W−B = (w−B , w
−
B) ∈ W0 and W+

B ∈ Wc
0 (see Figure 13), it follows that WR ∈ WL ∪

{W−B }. If WR ∈ WL, then case (C.L.2) applies. If WR = W−B , the visible solution of the
Riemann problem after the change of the boundary state will be the positive part of the
rarefaction fan wave travelling from W+

B to W+
R = (w+

B , w
+
B). In particular, we have

an infinite speed wave jump from WR = W−B = (w−B , w
−
B) to W+

R = (w+
B , w

+
B) (see

case 8 in Definition 1 and Figure 14).
If R(v+

B , w
+
B) > ρcr(w

+
B), it can exist an intermediate state WM ′ = (vM ′ , w

+
M ) with

vM ′ > v+
B . Otherwise, it holds vM ′ = v+

B , implying WM ′ = W+
B . Thus, it holds by

means of the triangle inequality

∆γ =
{
|v+
B − vM ′ |+ |vM ′ − w

+
B |︸ ︷︷ ︸

=|v+B−w
+
B |

}
− 3
{
|w−B − v

+
B |+ |w

−
B − w

+
B |
}

≤ −2
{
|w−B − v

+
B |+ |w

−
B − w

+
B |
}
≤ −2ε < 0.
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v

w

wmin

wmax

v = w

v+B w−B w+
B

w−B

w+
B

W−B = WR

W+
B = WM′

W+
R

Figure 13: Sample illustration of the states in the case (C.L.3) with R(v+
B , w

+
B) ≤ ρcr(w

+
B),

i.e. WM ′ = W+
B . The waves before (resp. after) the interaction are drawn in green (resp.

red).

Due to the presence of the infinite speed wave between WR and W+
R , we additionally

have to check the change of the total variation when this wave interacts with others
in the interior of the domain. Thus, we are interested in the solution of the Riemann
problem from the state W+

R to a state Ŵ = (v̂, ŵ) after the interaction of the wave

between WR and Ŵ , which travels with propagation speed v̂ (by case 7 in Definition 1).
The solution of the new Riemann problem is again a discontinuity with speed v̂. This
scenario is illustrated in Figure 14.

t̂

x = xin

t

W+
B

W−B WR

W+
R

Ŵ

WM ′

Figure 14: Interaction of an infinite speed wave with a wave in the interior of the domain.

Finally, thanks to the triangle inequality, we have:

∆γ =|W+
B −WM ′ |+ |WM ′ −W+

R |+ |W
+
R − Ŵ |−{

|W−B −WR︸ ︷︷ ︸
=0

|+ |WR − Ŵ |+ 3|W−B −W
+
B |
}

= |v+
B − vM ′ |+ |vM ′ − w

+
B |︸ ︷︷ ︸

=|v+B−w
+
B |

+|w+
B − v̂|+ |w

+
B − ŵ|−

{
|w−B − v̂|+ |w

−
B − ŵ|+ 3|w−B − v

+
B |+ 3|w−B − w

+
B |
}
≤ −2|w−B − v

+
B | ≤ 0.

Remark: WM ′ is the point the propagation speed of the rarefaction wave changes
from negative to positive (only possible if R(v+

B , w
+
B) > ρcr(w

+
B)). If the state Ucr =
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(ρcr(w
+
B), w+

B) ∈ BRieL (U+
B ) is lying on the grid, it holds Ucr = UM ′ = (R(vM ′ , w

+
B), w+

B).
Otherwise, we may have UM ′ 6∈ BRieL (U+

B ). However, since we move with an ε-step size
along the v−variable on the grid, it holds that |vM ′−vcr| < ε and vcr = V(ρcr(w

+
B), w+

B).

(C.L.4) If W−B ∈ Wc
0, W+

B = (w+
B , w

+
B) ∈ W0 and WR /∈ WL, we know that w−B = wR. Thus,

the solution of the Riemann problem associated to the change of the boundary state is
a discontinuity from W+

B = WM ′ to WR travelling with speed vR. Thus, a new wave is
produced and it holds

∆γ =
{
|w+
B − vR|+ |w

+
B − wR︸︷︷︸

=w−B

|
}
−
{
|v−B − vR|+ 3|v−B − w

+
B |+ 3|w−B − w

+
B |
}

≤ −2
{
|v−B − w

+
B |+ |w

−
B − w

+
B |
}
≤ −2ε < 0.

As seen in cases (C.L.1) and (C.L.3), it can happen that UR 6∈ BRieL (U−B ). However, the
computation above remains unchanged.

(C.L.5) If W−B ∈ W0 and W+
B ∈ W0 , it follows that WR ∈ WL ∪ {W−B } and no new wave is

produced and ∆γ ≤ 0.

We now turn to the study of the right boundary case (C.R), i.e. i = R.

(C.R.1) If W−B ∈ Wc
0, W+

B ∈ Wc
0 and R(vL, wL) ≤ ρcr(wL), then the solution of the boundary

Riemann problem associated to the change of the boundary state displays at most a
negative shock-wave travelling from WL to an intermediate state WM ′ with vM ′ = v+

B .
Thus, the number of waves may increase and it holds by means of the triangle inequality

∆γ = |vL − vM ′︸︷︷︸
=v+B

| −
{
|vL − v−B |+ |v

−
B − v

+
B |
}
≤ 0.

(C.R.2) If W−B ∈ Wc
0, W+

B ∈ Wc
0 and R(vL, wL) > ρcr(wL), we know that vL = v−B . Thus,

the solution to the Riemann problem is a first family-curve travelling with negative
propagation speed from WL to WM ′ , possibly continued by another (first family) curve
travelling with positive speed from WM ′ to the point W̃ = (v+

B , wM ′) and finally followed
by a contact discontinuity from W̃ to W+

B . It holds either that vL < vM ′ ≤ v+
B (rarefac-

tion wave from WL to WM ′) or vM ′ = v+
B < vL (shock wave from WL to WM ′ = W̃ ).

By means of the triangle inequality it follows that

∆γ =
{
|vL − vM ′ |+ |vM ′ − v+

B |︸ ︷︷ ︸
=|vL−v+B |

}
− | v−B︸︷︷︸

=vL

−v+
B | = 0.

Remark: If the solution is a negative rarefaction wave from WL to WM ′ and vM ′ 6= v+
B ,

then WM ′ will be the point the propagation speed of the rarefaction wave changes from
negative into positive speed. If the state Ucr = (ρcr(wL), wL) ∈ BRieR (U+

B ) is lying on
the grid, we know that Ucr = UM ′ = (R(vM ′ , wL). On the contrary, if the state Ucr
is not lying on the grid, then we may have UM ′ 6∈ BRieR (U+

B ). However, since we move
with an ε-step size along the v−variable on the grid, it holds that |vM ′ − vcr| < ε and
vcr = V(ρcr(wL), wL).
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Due to the previous remark (and also case (B.R.1)), we can have UL 6∈ BRieR (U−B ). In
contrast to above, it holds v−B > vL which still leads to the desired inequality, i.e.

∆γ = |vL − v+
B | − {|vL − v

−
B |+ |v

−
B − v

+
B |} = −2(v−B − vL) ≤ −2ε < 0.

(C.R.3) If W−B = (wmax, wmax) ∈ W0 and W+
B ∈ Wc

0, then the solution of the boundary Riemann
problem from WL to W+

B is at most a negative shock wave from WL to WM ′ = (vM ′ , wL)
with vM ′ = v+

B . Thus, again, the number of waves can increase and

∆γ = |vL − vM ′︸︷︷︸
=v+B

| −
{
|vL − wmax|+ |wmax − v+

B |
}

= −2(wmax − vL) ≤ −2ε.

As we will see in case (C.R.4), we can have UL 6∈ BRieR (U−B ). However, this does not
change anything in the above argumentation.

(C.R.4) If W−B ∈ Wc
0 and W+

B = (wmax, wmax) ∈ W0, new waves are produced only if vL = v−B .
In this case, we may have a negative rarefaction wave travelling from WL to WM ′ Finally,
it holds

∆γ =
{
|vL − vM ′ |+ |vM ′ − wmax|︸ ︷︷ ︸

=|vL−wmax|

}
− | v−B︸︷︷︸

=vL

−wmax| = 0.

Remark: Again, if WM ′ is the point the propagation speed of the rarefaction wave
changes from negative into positive speed and if the state Ucr = (ρcr(wL), wL) is not
lying on the grid, it may happen that UM ′ 6∈ BRieR (U+

B ) with UM ′ = (R(vM ′ , wL), wL)
and U+

B = (0, wmax). However, since we move with an ε-step size along the v−variable
on the grid, it holds that |vM ′ − vcr| < ε and vcr = V(ρcr(wL), wL).

As we have seen in the cases (B.R.1) and (C.R.2), we may have UL 6∈ BRieR (U−B ). Since
it also holds that v−B > vL, no new wave emerges from the interaction and ∆γ ≤ 0 .

The proof of Proposition 5 is now complete. In particular, the number of waves can
increase only a finite number of times and we have the following uniform bound for γ:

γ(t) ≤ γ(0) = TV(W h
0 ) +

∣∣∣W h
in(0)−W h

0 (xin+)
∣∣∣+
∣∣∣vhout(0)− vh(0, xout−)

∣∣∣ (4.7)

+ 3TV
(
W h
in(s); s ∈ ]0, T [

)
+ TV

(
vhout(s); s ∈ ]0, T [

)
.

4.2 Convergence to an entropy weak solution

We first prove the convergence of the sequence of approximate solutions constructed in Sec-
tion 4.1.

Proposition 6. The sequence {W h}h converges up to a subsequence to a function W in
L1

loc.
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Proof. In our case, we cannot apply Helly’s Theorem in the form of [12, Theorem 2.4] to prove
the convergence to W . This is due to the possible occurrence of infinite speed waves in the
case (C.L.3) of Proposition 5, which prevents us from obtaining the L1 Lipschitz continuity
in time of approximate solutions. Therefore, we have to prove explicitly the space-time BV
bounds, which will lead to convergence (see e.g. [22, Lemma 5.6]). To this end, we need to
show that for every x ∈ ]xin, xout[, t ∈ ]0, T [, it holds

‖W h‖L∞(]0,T [× ]xin,xout[) ≤M, (4.8a)

TV(t,x)(W
h) ≤ C, (4.8b)

where the constants C, M > 0 are independent of h and TV(t,x) denotes the total variation
in time and space, defined as

TV(t,x)(W
h) := sup

{∫ T

0

∫ xout

xin

Wh · (∂tφ+ ∂xφ) dx dt : φ ∈ C1
c

(
]0, T [× ]xin, xout[;R2

)
, ‖φ‖∞ ≤ 1

}
.

To prove that W h has uniformly bounded total variation, it is therefore sufficient to show
that there exists C such that∣∣∣∣∣

∫ T

0

∫ xout

xin

W h · (∂tφ+ ∂xφ) dx dt

∣∣∣∣∣ ≤ C‖φ‖∞ (4.9)

for all φ ∈ C1
c

(
]0, T [× ]xin, xout[;R2

)
(see [12, Equation 2.29]).

The L∞-bound (4.8a) follows easily from the invariance of the domain Wh ⊂ W, which
is bounded by wmin, wmax, vmin ≥ 0 and vmax = wmax (see Figure 6).

To prove (4.8b), it suffices to prove the boundedness of the total variation in time and
space separately.

Proposition 5 guarantees that the approximate solutions are uniformly BV in space for
all t ∈ [0, T [:

TV(W h(t, ·)) ≤ TV(W0) +
∣∣Win(0)−W0(xin+)

∣∣+
∣∣vout(0)− v(0, xout−)

∣∣
+ 3TV

(
Win(s); s ∈ ]0, T [

)
+ TV

(
vout(s); s ∈ ]0, T [

)
:= γ0.

Therefore, we have in (4.9)∣∣∣∣∣
∫ T

0

∫ xout

xin

W h · ∂xφ dx dt

∣∣∣∣∣ =

∣∣∣∣∣ limh→0

∫ T

0

∫ xout

xin

W h · φ(t, x+ h)− φ(t, x)

h
dx dt

∣∣∣∣∣
=

∣∣∣∣∣ limh→0

∫ T

0

∫ xout

xin

W h(t, x)−W h(t, x− h)

h
· φ(t, x) dx dt

∣∣∣∣∣
≤
∫ T

0

{
lim sup
h→0

1

h

∫ xout

xin

∣∣∣W h(t, x)−W h(t, x− h)
∣∣∣dx

}
‖φ‖∞ dt

≤ γ0 T ‖φ‖∞. (4.10)

Concerning the time component, let us assume first that in the interval [s, t] ⊂ ]0, T [ there
are no infinite speed waves (see case (C.L.3) of Proposition 5). In this case the L1- continuity
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in time holds, i.e.

∥∥∥W h(t)−W h(s)
∥∥∥

1
=

xout∫
xin

∣∣∣W h(t, x)−W h(s, x)
∣∣∣dx

≤ γh(0) max
Wh∈Wh

{∣∣∣λ1(W h)
∣∣∣, ∣∣∣λ2(W h)

∣∣∣}︸ ︷︷ ︸
=: Λ

|t− s|

≤ L|t− s| (4.11)

with L = γ0 Λ.
Let us assume now that a wave with infinite speed occurs at time ti, i = 1, . . . , Zh, which
can only happen through a change in the left boundary state. Since the number of changes
is bounded by construction, Zh is finite. Referring to case (C.L.3), Figure 14, and fixing
x ∈ ]xin, xout[, we compute

TV(W h(·, x)) = TV(W h(s, x); s ∈ ]0, t1[) + TV(W h(s, x); s ∈ ]tZ , T [)+

Zh∑
i=1

TV(W h(s, x); s ∈ ]ti, ti+1[) +
Zh∑
i=1

∣∣∣W h(t−i , x)−W h(t+i , x)
∣∣∣︸ ︷︷ ︸

=2|wh
in(ti+)−wh

in(ti−)|
≤ LT + 2 TV(Win).

Acting as in (4.10), we recover the estimate for the time-component of (4.9), thus showing
that the sequence {W h}h has uniformly bounded total variation.

Hence, by Helly’s Theorem [22, Lemma 5.6], there exists W ∈ L∞
(
]0, T [× ]xin, xout[;W

)
and a subsequence, still denoted by {W h}h, which converges toW in L1

loc

(
]0, T [× ]xin, xout[;W

)
as h→∞. Additionally, W satisfies the following inequalities:

TV(W (t, ·)) ≤ γ0 and ‖W (t, ·)‖∞ ≤M ∀ t ∈ [0, T [ and x ∈ ]xin, xout[ .

At this point, we emphasize that, in contrast to [12, Theorem 2.4], we loose the L1-continuity
in time for the limit function W .

We are now left to show that the limit function W is indeed an entropy weak solution of
the IBVP (4.1).

As in Section 3.2, we drop the u-variable dependency for notational simplicity, i.e. we
write W instead of u(W ). Following [13, Theorem 4.1], we consider the following boundary
entropy pairs:

αj(W1,W2) = Ej(W1)− Ej(W2)−∇uEj(W2) (W1 −W2) , (4.12)

βj(W1,W2) = Qj(W1)−Qj(W2)−∇uEj(W2)
(
f(W1)− f(W2)

)
(4.13)

where Ej ,Qj are defined as in (3.4) for j = 1 and (3.5) for j = 2. We remark that, by setting
W2 = WB = (vB, wB) in (4.13), we obtain the entropy boundary condition defined in (3.6).

Proposition 7. The limit function W defined in Proposition 6 is an entropy weak solution
of the IBVP (4.1) in the sense of Definition 4.
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Proof. We follow [13, Theorem 4.1]. We start by verifying that W h satisfies Definition 4 up
to an error which decreases to 0 for h going to infinity.

We know that W h ∈ L∞. Let us now consider φ ∈ C∞c

((
]−∞, T [× ]xin, xout[

)
;R≥0

)
. Since

φ(0, x) ≥ 0 and, for our choice of the entropies, Ej(W ) ≥ 0 for all W ∈ W and j ∈ {1, 2} (see
Equation (3.4a) and (3.5a)), we directly obtain

∫ xout
xin
Ej(W h

0 (x))φ(0, x)dx ≥ 0. Regarding the
term ∫ T

0

∫ xout

xin

{
Ej(W h)∂tφ+Qj(W h)∂xφ

}
dx dt, (4.14)

following the proof of [4, Proposition 5.2], we need to consider the three different types of
discontinuities (i.e. shocks, contact discontinuities and rarefaction shocks) that may arise at
some point xi ∈ ]xin, xout[ with left and right values Wi and Wi+1 respectively. By the Green
Gauss-Formula, (4.14) is equivalent to∫ T

0

{∑
i

ẋi(t)∆Eji (t)−∆Qji (t)
}
φ(t, xi(t)) dt

where ∆Eji = Ej(Wi+1) − Ej(Wi), ∆Qji = Qj(Wi+1) − Qj(Wi) and ẋi = σ(Wi,Wi+1) is the
speed of the discontinuity given by the Rankine-Hugoniot condition (2.7). Neglecting the
time dependence, we set

ŝji := ẋi∆Eji −∆Qji

and we consider separately the different types of waves in the following.

1. If the discontinuity is a shock, it holds wi = wi+1 and vi > vi+1.
For j = 1:

• If v̄ < vi+1, it follows that also v̄ < vi. Thus,

ŝ1
i =

R(vi+1, wi)vi+1 −R(vi, wi)vi
R(vi+1, wi)−R(vi, wi)

{
1− R(vi+1, wi)

R(v̄, wi)
−
(

1− R(vi, wi)

R(v̄, wi)

)}

−

{
v̄ − R(vi+1, wi)vi+1

R(v̄, wi)
−
(
v̄ − R(vi, wi)vi

R(v̄, wi)

)}
= 0.

• If v̄ ≥ vi, it follows that v̄ > vi+1 and we directly obtain ŝ1
i = 0 since

E1(Wi) = E1(Wi+1) = Q1(Wi) = Q1(Wi+1) = 0.

• If v̄ ∈ [vi+1, vi[ and thus E1(Wi+1) = Q1(Wi+1) = 0, it holds

ŝ1
i = Q1(Wi)− ẋiE1(Wi) = v̄ − R(vi, wi)vi

R(v̄, wi)
− ẋi

(
1− R(vi, wi)

R(v̄, wi)

)
≥ 0 (4.15)

since R(v̄, wi)v̄ ≥ R(vi, wi)vi + ẋi
(
R(v̄, wi)−R(vi, wi)

)
≥ 0 by concavity of ρ 7→

Q(ρ, wi) = ρV(ρ, wi), which is illustrated by Figure 15.

For j = 2:

ŝ2
i =

R(vi+1, wi)vi+1 −R(vi, wi)vi
R(vi+1, wi)−R(vi, wi)

{
R(vi+1, wi)|w̄ − wi| − R(vi, wi)|w̄ − wi|

}
−
{
R(vi+1, wi)vi+1|w̄ − wi| − R(vi, wi)vi|w̄ − wi|

}
= 0.
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R(v, w)

R(v, w)v

R(vi, wi) R(vi+1, wi)

R(v̄, wi)

R(v̄, wi)v̄

R(vi, wi)vi

Figure 15: Graphical proof of inequality (4.15). The slope of the blue line is given by ẋi.

2. If the jump is a contact discontinuity, it holds ẋi = vi = vi+1.
For j = 1:

• If vi = vi+1 ≤ v̄, we directly obtain ŝ1
i = 0

since E1(Wi) = E1(Wi+1) = Q1(Wi) = Q1(Wi+1) = 0.

• If vi = vi+1 > v̄, then

ŝ1
i = ẋi

{
1− R(vi+1, wi+1)

R(v̄, wi+1)
−
(

1− R(vi, wi)

R(v̄, wi)

)}

−

{
v̄ − R(vi+1, wi+1)ẋi

R(v̄, wi+1)
−
(
v̄ − R(vi, wi)ẋi

R(v̄, wi)

)}
= 0.

For j = 2:

ŝ2
i = ẋi

{
R(vi+1, wi+1)|w̄ − wi+1| − R(vi, wi)|w̄ − wi|

}
−
{
R(vi+1, wi+1)ẋi|w̄ − wi+1| − R(vi, wi)ẋi|w̄ − wi|

}
= 0.

3. Finally, if the discontinuity is a ε-rarefaction, it holds wi = wi+1 and vi < vi+1 with
vi+1 = vi + ε. By similar calculations as for the shock case, we obtain that ŝ2

i = 0,
and ŝ1

i = 0 if v̄ < vi or v̄ ≥ vi+1. However, if v̄ ∈ [vi, vi+1[, it follows that E1(Wi) =
Q1(Wi) = 0 and, by the same concavity argument as above, we compute that ŝ1

i ≤ 0.
Moreover,

ŝ1
i = ẋi E1(Wi+1)−Q1(Wi+1)

=
R(vi+1, wi+1)vi+1 −R(vi, wi)vi
R(vi+1, wi+1)−R(vi, wi)

(
1− R(vi+1, wi+1)

R(v̄, wi+1)

)
− v̄ +

R(vi+1, wi+1)vi+1

R(v̄, wi+1)
.

Let us set ϕ(ρ) := R(V(ρ, wi), wi)V(ρ, wi) = ρV(ρ, wi), which is a strictly concave
function by assumption (2.1b) , and rewrite the above quantity as

ŝ1
i =

ϕ(ρi+1)− ϕ(ρi)

ρi+1 − ρi

(
1− ρi+1

ρ̄

)
− V(ρ̄, wi) +

ϕ(ρi+1)

ρ̄
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= ϕ̇(ρi+1/2)
ρ̄− ρi+1

ρ̄
− ϕ(ρ̄)− ϕ(ρi+1)

ρ̄

= ϕ̇(ρi+1/2)
ρ̄− ρi+1

ρ̄
− ϕ̇(ρ̃)

ρ̄− ρi+1

ρ̄

= ϕ̈(ρ̂)(ρi+1/2 − ρ̃)
ρ̄− ρi+1

ρ̄

≥ min
ρ∈[0,R(wi)]

ϕ̈(ρ) (ρi − ρi+1)

≥ −C(vi+1 − vi)

for some constant C > 0, with 0 ≤ ρi+1 < ρ̃ < ρ̂ < ρi+1/2 < ρi and ρi+1 < ρ̃ < ρ̄ ≤ ρi.

Above, we observed that ρ̄−ρi+1

ρ̄ < 1.

Applying the same argument as in the proof of [4, Proposition 5.2], we conclude that for
any fixed δ > 0, there exists ĥ > 0 such that for all h ≥ ĥ it holds∫ T

0

∫ xout

xin

{
Ej(W h)∂tφ+Qj(W h)∂xφ

}
dxdt +

∫ xout

xin

Ej(W h
0 (x))φ(0, x)dx ≥ −δ. (4.16)

Concerning the entropy boundary condition (4.3), we observe that it is guaranteed by
Proposition 3 for those cases in Proposition 5 where it holds W h(t, xin+) ∈ BRieL (ρhin(t), whin(t))
⊂ BEntL (ρhin(t), whin(t)) and W h(t, xout−) ∈ BRieR (ρhout(t), w

h
out(t)) = BEntR (ρhout(t), w

h
out(t)).

However, due to the discretization of the domain Wh, in some cases the approximate so-
lution’s traces (vh, wh) are states that do not belong to the admissible Riemann set, but
|vh − vhcr| < ε. In these cases, it holds

βj(W h(t, xin+),W h
in(t)) ≤ Cε or βj(W h(t, xout),W

h
out(t)) ≥ −Cε,

for some constant C > 0. We refer to Appendix B for a detailed analysis of these cases.
Therefore, for any fixed δ > 0, there exists ĥ > 0 such that for all h ≥ ĥ it holds

ess lim
x→xin+

∫ T

0
βj(W h(t, x),W h

in(t))γ(t)dt ≤ δ,

ess lim
x→xout−

∫ T

0
βj(W h(t, x),W h

out(t))γ(t)dt ≥ −δ.

Thus, following the proof of [13, Theorem 4.1], the approximate WFT-solutionW h satisfies

for any test function φ ∈ C∞c

(
]−∞, T [×R;R0+

)
and any W2 ∈ W the inequality∫ T

0

∫ xout

xin

{
αj(W h(t, x),W2)∂tφ+ βj(W h(t, x),W2)∂xφ

}
dxdt +

∫ xout

xin

αj(W h
0 (x),W2)φ(0, x)dx

+K

{∫ t

0

∣∣∣W h
in(t)−W2

∣∣∣φ(t, xin)dt +

∫ t

0

∣∣∣W h
out(t)−W2

∣∣∣φ(t, xout)dt

}
≥ −3δ

(4.17)

for some K > 0 and h sufficiently large.
Moreover, since the construction of W h is based on the Riemann solver (see Definition 1)
and the Rankine-Hugoniot conditions hold at rarefaction fronts, the approximate solution is
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a weak solution in the sense of Definition 5. Therefore, letting h→∞, we show that W is a
weak solution.

Letting now h → ∞ in (4.17), due to the L1 convergence of {W h}h to W , the equation
yields to∫ T

0

∫ xout

xin

{
αj(W (t, x),W2)∂tφ+ βj(W (t, x),W2)∂xφ

}
dxdt +

∫ xout

xin

αj(W0(x),W2)φ(0, x)dx

+K

{∫ t

0
|Win −W2|φ(t, xin)dt +

∫ t

0
|Wout −W2|φ(t, xout)dt

}
≥ 0

for j ∈ {1, 2}. Using again [13, Theorem 4.1], we conclude that the limit function W is indeed
a entropy weak solution in the sense of Definition 4.

We emphasize again that, with our choice of the entropy-flux pairs, the entropy weak
solution W can include vacuum states which do not belong to the Riemann boundary set.

Remark 15. We remark that our definition of the entropy weak solution is a weaker formula-
tion than the one in [13, Definition 4.2] due to the loss of the L1 continuity in time. Moreover,
our entropies E1 in (3.4a) are not strictly convex. However, [13, Theorem 4.1] still applies,
since convexity there is only needed to deal with the strong initial condition [13, equation
(4.8)], which we consider in weak form.

Remark 16. The choice of the Riemann solver of Definition 1, Case 8, although inspired
by reality, induces some extra difficulties in treating the problem, as the presence of infinite
speed waves and the need of “well-prepared” initial data, see Remark 3. We conjecture that
a similar existence result could be proved, maybe with less adjustments, using the Riemann
solver proposed in Figure 2.
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A Proof of Proposition 3

We start considering BRieL (ρB, wB), which is described by Proposition 1.
Let us assume first that ρB > 0 and wB = w, which implies β2(W,WB) = 0. For j = 1,

it suffices to consider the case v̄ ∈ [min{v, vB},max{v, vB}], since otherwise β1(W,WB) = 0.

• If ρB < ρcr(wB), it holds (ρ, w) = (ρB, wB) or ρ ≥ τ(ρB). Therefore, we have v ≤ v̄ ≤
vB, ρB ≤ R(v̄, wB) ≤ ρ and R(v̄, wB)v̄ ≥ ρv (see Figure 3a). Thus,

β1(W,WB) = −v̄ +
ρv

R(v̄, wB)
≤ 0.

35



• If ρB ≥ ρcr(wB), it holds ρ ≥ ρcr(wB). Thus, we either have v ≤ v̄ ≤ vB with
R(v̄, wB)v̄ ≥ ρv and again β1(W,WB) ≤ 0 or vB ≤ v̄ < v, ρ < R(v̄, wB) ≤ ρB and
R(v̄, wB)v̄ < ρv (see Figure 3b), leading to

β1(W,WB) = v̄ − ρv

R(v̄, wB)
< 0.

Finally, we consider the set of points{
(R(w), w) : w ∈ [wmin, wmax]

}
.

Since v = 0, it holds β2(W,WB) = 0. Concerning β1(W,WB), the only possible cases are
0 = v ≤ v̄ ≤ vB and 0 = v ≤ vB < v̄. In any case, we obtain β1(W,WB) ≤ 0.

Let us now consider the vacuum case, i.e. ρB = 0 (see Figure 3c). Since v = V(R(w), w) =
0, we get β2(W,WB) = 0.
If v̄ 6= vB, it holds that Q1(W ) = 0,

Q1(WB) =

{
0 if vB ≤ v̄
v̄ if vB > v̄

and f(W ) = f(WB) = 0, implying β1(W,WB) = −Q1(WB) ≤ 0.
If v̄ = vB, it holds Q1(W ) = Q1(WB) = 0 and

β1(W,WB) = −α

(
∂v
∂ρ(WB)
∂v
∂y (WB)

)
· {f(W )︸ ︷︷ ︸

(0,0)>

−f(WB)}

= α

(
∂v
∂ρ(WB)
∂v
∂y (WB)

)
· f(WB)

= − 1

Vρ(ρB, wB)ρB
Vρ(ρB, wB)ρBvB = −vB ≤ 0.

If instead ρ = 0, implying again β2(W,WB) = 0, we know from the Riemann solver (Defini-
tion 1, case 9) that (ρ, w) = (0, w) = (0, wB) = (ρB, wB) which directly leads to β1(W,WB) =
0.
This shows that BRieL (ρB, wB) ⊆ BEntL (ρB, wB).

We now consider the right boundary case, i.e. i = R (see Proposition 2). We recall
that BRieR (ρB, wB) = BRie

R (R(vB, w), w) for all w ∈ [wmin, wmax], with vB = V(ρB, wB) (see
Remark 8). Therefore we can assume w = wB, leading to β2(W,WB) = 0 due to w = wB or
ρ = 0.

We first look at the case ρB > 0. As for the left boundary, it suffices to treat the cases
v̄ ∈ [min{v, vB},max{v, vB}], otherwise we directly obtain β1(W,WB) = 0.

• If V(ρcr(w), w) ≤ vB and ρ ≤ ρcr(w), we either have vB ≤ v̄ < v with R(v̄, wB)v̄ > ρv
and

β1(W,WB) = v̄ − ρv

R(v̄, wB)
≥ 0,

or it holds v ≤ v̄ ≤ vB, ρB ≤ R(v̄, wB) ≤ ρ together with R(v̄, wB)v̄ ≤ ρv, which
implies

β1(W,WB) = −v̄ +
ρv

R(v̄, wB)
≥ 0.
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• If V(ρcr(w), w) > vB and ρ ≤ τ(R(vB, w)), we have vB ≤ v̄ ≤ v, ρ ≤ R(v̄, wB) ≤ ρB
and R(v̄, wB)v̄ ≥ ρv. Thus, we have again

β1(W,WB) = v̄ − ρv

R(v̄, wB)
≥ 0.

Concerning the vacuum case, i.e. ρB = 0, which implies sgn
(
ρB(w̄ − wB)

)
∈ [−1, 1],

we know that the admissible points satisfy ρ ≤ ρcr(w). Moreover, since BRieR (ρB, wB) =
BRie
R (R(vB, w), w), we can again consider w = wB. For j = 2, we have to distinguish between

w̄ > w, w̄ < w and w̄ = w = wB. In any case, we obtain β2(W,WB) ≥ 0 in (3.10).
Next, assuming ρ = R(v, w) > 0, we know that v < vB = wB.
It suffices now to consider the case v ≤ v̄ ≤ vB (and v < vB) and thus ρv ≥ R(v̄, wB)v̄. It
holds

β1(W,WB) = −v̄ +
ρv

R(v̄, w)
≥ 0.

On the other hand, if ρ = 0, we can set (ρB, wB) = (0, wB) = (0, w) = (ρ, w), which directly
leads to β1(W,WB) = 0.
This shows that BRieR (ρB, wB) ⊆ BEntR (ρB, wB).

B Approximate entropy boundary condition

In cases (B.R.1), (C.L.1), (C.L.3), (C.R.2) and (C.R.4) of Proposition 5, we may observe
boundary states W h

M ′ of the discretized solution not belonging to the boundary Riemann set,
i.e. W h

M ′ 6∈ BRie
i , i ∈ {R,L}. For these particular cases, we prove below that the entropy

boundary condition (3.6) is satisfied up to an error which vanishes with the discretization
grid mesh when passing to the limit in Proposition 7. Again, for notational simplicity, we
drop the h-index in the following.

Starting with the left boundary cases ((C.L.1) and (C.L.3)), we define Win = (vin, win) =
W+
B . It holds ρin = R(vin, win) > ρcr(win), but we may have ρM ′ = R(vM ′ , win) < ρcr(win),

which implies vM ′ > vin. Therefore, it suffices to consider in Equation (3.9) the case v̄ ∈
[vin, vM ′ [, otherwise we directly obtain that β1(WM ′ ,Win) = 0. Since we reach WM ′ from Win

by a negative rarefaction wave, it must hold that ρM ′vM ′ ≥ ρinvin. If v̄ ∈ [vin,V(τ(ρM ′), win)],
we also have ρM ′vM ′ ≥ R(v̄, win)v̄ = ρ̄v̄ which leads to β1(WM ′ ,Win) ≤ 0 in (3.9). However,
if v̄ ∈ ]V(τ(ρM ′), win), vM ′ [, it holds ρM ′vM ′ < ρ̄v̄ and β1(WM ′ ,Win) > 0.
By defining ϕin(ρ) := R(V(ρ, win)), win)V(ρ, win), we compute

β1(WM ′ ,Win) =
1

ρ̄
(ϕin(ρ̄)− ϕin(ρM ′))

=
1

ρ̄
ϕ̇in(ρ̂)(ρ̄− ρM ′)

=
1

ρ̄
ϕ̇in(ρ̂)(R(v̄, win)−R(vM ′ , win))

=
1

ρ̄
ϕ̇in(ρ̂)Rv(ṽ, win)(v̄ − vM ′)

≤ 1

ρ̄
max

ρ∈[0,R(wmax)]

∣∣ϕ̇in(ρ)
∣∣ max
v∈[0,wmax]

∣∣Rv(v, win)
∣∣(vM ′ − v̄)

≤ Cε
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for some C > 0, ρM ′ < ρ̂ < ρ̄ and v̄ < ṽ < vM ′ .
Moreover, since wM ′ = win and therefore sgn

(
R(vin, win)(w̄ − win)

)
=

sgn
(
R(vM ′ , wM ′)(w̄ − wM ′)

)
in (3.10a), we compute β2(WM ′ ,Win) = 0.

Considering now the right boundary cases (B.R.1), (C.R.2) and (C.R.4), we define

Wout = (vout, wout) =

{
WB if (B.R.1),

W+
B if (C.R.2), (C.R.4).

Moreover, we use again the fact that BRie
R (R(vout, wout), wout) = BRie

R (R(vout, w), w)) (see
Remark 8).
It holds R(vout, wM ′) < ρcr(wM ′), but we may have ρM ′ = R(vM ′ , wM ′) > ρcr(wM ′), which
implies vM ′ < vout. As before, it suffices to consider the case v̄ ∈ ]vM ′ , vout] in (3.9), otherwise
we directly obtain that β1(WM ′ ,Wout) = 0. Since we reach Wout from WM ′ by a positive
rarefaction wave, it must hold that ρM ′vM ′ ≥ R(vout, wM ′)vout. If v̄ ∈ [V(τ(ρM ′), wM ′), vout],
we also have ρM ′vM ′ ≥ R(v̄, wM ′)v̄ = ρ̄v̄, which leads to β1(WM ′ ,Wout) ≥ 0. However,
if v̄ ∈ ]vM ′ ,V(τ(ρM ′), wM ′)[, we obtain ρM ′vM ′ < ρ̄v̄ and β1(WM ′ ,Wout) < 0. By defining
ϕout(ρ) := R(V(ρ, wM ′), wM ′)V(ρ, wM ′), we compute, as in the left boundary case,

β1(WM ′ ,Wout) = −1

ρ̄
(ϕout(ρ̄)− ϕout(ρM ′))

= −1

ρ̄
ϕ̇out(ρ̂)Rv(ṽ, wM ′)(v̄ − vM ′)

≥ −1

ρ̄
max

ρ∈[0,R(wmax)]

∣∣ϕ̇out(ρ)
∣∣ max
v∈[0,wmax]

∣∣Rv(v, wM ′)∣∣(v̄ − vM ′)
≥ −Cε

for some C > 0, ρ̄ < ρ̂ < ρM ′ and vM ′ < ṽ < v̄.
Finally, we have β2(WM ′ ,Wout) ≥ 0, since it holds wM ′ = wout in (B.R.1) and (C.R.2), and
ρout = 0 in (C.R.4).
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