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ABSTRACT: Cyclic(alkyl)(amino)carbene (CAAC) ligands are found to perturb regioselectivity of the copper-catalyzed carboboration of 
terminal alkynes, favoring the less commonly observed internal alkenylboron regiosomer through an α-selective borylcupration step. A variety 
of carbon electrophiles participate in the reaction, including allyl alcohols derivatives and alkyl halides. The method provides a straightforward 
and selective route to versatile tri-substituted alkenylboron compounds that are otherwise challenging to access. 

Organoboron compounds play a unique role in the chemical sci-
ences. Carbon–boron bonds can readily be converted into a diverse 
array of carbon–carbon and carbon–heteroatom linkages via an 
ever-expanding battery of methods,[1-4] and organoboron molecules 
themselves possess myriad of functions in the context of biology[5-6] 
and materials science.[7-9] The invention of new methods to assemble 
organoboron compounds from simple chemical inputs streamlines 
access to important families of molecules. Multi-component cata-
lytic couplings, in which three or more building blocks are united in 
a single reaction, hold tremendous promise in enabling direct syn-
thesis of densely functionalized organoboron compounds. In this 
context, copper-catalyzed borylative 1,2-difunctionalization of al-
kynes is an established means of preparing tri- and tetrasubstitued 
alkenylboron targets via a mechanism involving migratory insertion 
of an alkyne into a Ln•CuI–boryl intermediate followed by coupling 
of the resulting Ln•CuI(alkenyl) species with an electrophile.[10-13] 
Controlling the regioselectivity of these processes in a way that 
grants access to either regioisomer in a predictable manner remains 
challenging. With terminal alkynes, the vast majority of catalytic sys-
tems deliver the boryl group to the terminal (β) position, restricting 
access to the opposite alkenylboron regioisomers. Here, we demon-
strate that appropriately tuned cyclic(alkyl)(amino)carbene 
(CAAC)-ligated copper catalysts enables regioselective carbobora-
tion to give internal (α) alkenylboron compounds with a broad col-
lection of carbon electrophiles. 

Regioselectivity trends in Ln•Cu–boryl alkyne addition processes 
are complex and reflect an interplay between the steric and elec-
tronic properties of the ligand, the identity of the boryl group, and 
the substituent(s) on the alkyne substrate.[14-16] N-Heterocyclic car-
bene (NHC) ligands[17-18] have been widely used in catalytic Ln•Cu– 

 

boryl catalysis and generally favor boryl transfer to the terminal po-
sition of terminal alkynes with Bpin and related boryl groups, though 
either position can predominate depending on the nature of sub-
strate and the ligand environment around boron. We recently 
demonstrated that strongly σ-donating CAAC ligands[19-21] override 
substituent effects of the boryl group and the alkyne, allowing for re-
liably Markovnikov (α-selective) protoboration of diverse terminal 
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Scheme 1. Overview of Cu-catalyzed regioselective carboboration of 
terminal alkynes. 



 

alkynes with a variety of bis-boron nucleophiles.[22] Based on this re-
sult, we questioned whether it would be possible to employ C(sp3)-
based electrophiles in lieu of a proton to develop a three-component 
carboboration, with regioselectivity and product substitution pat-
terns that would complement existing methodology.[23-32] Of rele-
vance to this proposal, Xiao and Fu disclosed an important study in 
which the combination of CuCl (10 mol%) as the precatalyst, 
DMAP (24 mol%) as the ligand, and B2pai2 (pai = (+)-pinanedi-
olato) as the bis-boron reagent leads to branched-selective carbobo-
ration, though in this case yields and regioselectivities were variable 
(30–70% yield, 64:36–95:5 r.r.). The less common and more expen-
sive B2pai2 nucleophile was employed to maximize regioselectivity, 
and some synthetically useful carbogenic groups were incompatible 
with this protocol (e.g., allyl electrophiles).[33] 

To reduce this idea to practice, we examined carboboration of 
model terminal alkyne 1a with two representative carbon electro-
philes, allyl diethyl phosphate and methyl iodide. The former was se-
lected because allyl electrophiles have not been previously employed 
in α-selective carboboration of alkynes, despite being used in several 
reports of linear selectivity.[30-32,34] The latter was selected because it 
was found to be low-yielding under previously published conditions 
(one example, 87:13 r.r., 32% yield).[33]  

 

A library of CAAC•CuCl precatalysts with different steric and 
electronic properties was tested, and a summary of the data is shown 
in Table 1. To our delight, EtCAAC5-ligated Cu complex (L1CuCl) 
promoted both transformations with high conversion and high α-se-
lectivity. Replacement of the ethyl groups on the α-carbon 
of L1

[35] with either an electron-withdrawing group (L2) [36] or more 
sterically bulky groups (L3, L4) [35,37] led to decreased yield and α:β 
ratio. EtCAAC6 ligand (L5), [38] a much stronger electron-donor 
than L1, gave poor yields in both transformations, though high α:β 
ratio (84:16) was observed in the methylboration reaction. Interest-
ingly, BiCAAC ligands,[39] i-PrBiCAAC (L6) and PhEtBiCAAC (L7), 
which are also strong electron-donors, furnished the desired product 
methylborylated product 2ad with high α-selectivity (97 % and 
92 %, respectively). But neither of them could deliver any desired al-
lylborylated product 2aa. Moreover, further exploration of substrate 
scope for methylboration using L6 suggested that this ligand could 
not tolerate the presence of Lewis basic functional groups. For  

 

example, when an ether-containing substrate was attempted (see 
2kd below), only 23% yield and 47% α-selectivity were observed. A 
control experiment with IPr (L8), a representative N-heterocyclic 
carbene ligand commonly used in copper–boryl chemistry,[10–13] led 
to low yield with both electrophiles.  

With the optimized conditions in hand, we examined the scope of 
the allylboration reaction. Terminal alkynes bearing primary alkyl 
groups provided the corresponding products in excellent yields with 
high levels of regioselectivity (2aa and 2ba). In addition, functional 
groups such as ether (2ca), cyano (2da), halogen (2ea), protected 
amines (2fa and 2ga) and pendant piperidine (2ha) and azetidine 
(2ia) were well tolerated, furnishing desired products in good yields 
and high α-selectivity, except in the case of 2ga and 2ia, where mod-
erate α-selectivity (65% and 70%, respectively) was observed. Nota-
bly, when phenylacetylene was subjected to the optimal reaction 
conditions, the desired product 2ja was generated with 75% α-selec-
tivity. Allyl electrophiles with phenyl and n-propyl groups substi-
tuted at γ-position were also compatible under the reaction condi-
tions, furnishing desired products in high yields (60–71%) and ex-
cellent regioselectivity (>90% α-borylation, 93–97% SN2’ allylation) 
(2ab and 2ac).  

We next explored the scope of terminal alkynes for alkylboration. 
Alkynes containing different primary alkyl chains readily underwent 
efficient methylboration with high α-selectivity (2ad and 2bd). In 
addition, a range of functional groups, including ether (2kd), chloro 
(2ed, 2md), cyano (2cd), amide (2od) and protected amino group 
(2ld), were tolerated, furnishing the desired products in good yields 
and high regioselectivity. The reactions of alkynes bearing secondary 
alkyl groups at the α-position (2qd and 2rd) gave high α-selectivity 
as well. However, similarly to the previous reported (CAAC)Cu-
catalyzed protoboration reactions, tert-butyl acetylene (2td) has 
very low reactivity under the optimal conditions. Alkynes with me-
dicinally relevant functional groups such as pendant piperidine and 
azetidine were both competent coupling partners (2hd and 2id). 
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Table 1. Optimization of reaction conditions.a 

aYields of products (2aa or 3aa) and regioselectivity (±2%) were de-
termined by 1H NMR spectroscopy (600 MHz) using CH2Br2 as the in-
ternal standard. n.d. = not determined.  

Table 2. Scope of α-selective allylboration of terminal alkynes.a 

aConditions: 1 (0.10 mmol), B2pin2 (0.11 mmol), allyl electrophile 
(0.30 mmol), L1CuCl (0.006 mmol), LiOt-Bu (0.15 mmol) and DMA 
(0.60 mL), r.t. Ratios of α:β (±2) were determined via 1H NMR 
spectroscopy (600 MHz) of the crude reaction mixtures. Percentages 
represent isolated yields of the α-borylated product. bThe correspon-
ding protoboration side product (23%) was observed by 1H NMR anal-
ysis of the crude reaction mixture. 



 

Unfortunately, poor α-selectivity was observed when benzyl pro-
tected propargyl alcohol (2sd) or phenylacetylene (2jd) were used 
as substrates.  

 

We next explored the scope of the alkyl electrophile. Deuterated 
methyl iodide works well, showing the ability of this method to as-
semble specifically labelled compounds efficiently. The reactions of 
primary alkyl electrophiles with 1a afforded the α-selective alkyl-
boration products with high yield, though relatively lower α:β ratios 
were observed compared to the reaction using methyl iodide (2af, 
2ag). Notably, the alkyl electrophiles with functional groups, such as 
terminal alkene, silyl ether and ester, were compatible under our re-
action conditions, giving 60% ̶ 66% yield and 73% ̶ 75% α-selectivity 
(2ah ̶ 2aj). When benzyl bromide was used as electrophile, the de-
sired product (2ak) was generated in excellent yield and high α-se-
lectivity. Similar α:β ratio was observed when an alkyne bearing sec-
ondary alkyl groups at the α-position was applied (2hf). 

A plausible catalytic cycle for this reaction is depicted in Scheme 
2A. One possible explanation for the observation that regioselectiv-
ity varies across the different C(sp3) electrophiles tested in Table 3 
is that the borylcupration step could be reversible. Under such a sce-
nario, the nature of the C(sp3) electrophile and the rate of C–C bond 
formation may influence regioselectivity. To test this hypothesis, we 
performed a cross-over experiment between alkyne 1a and 1j. In this 
case, we observed formation of protoboration products 3/3’ and 
4/4’ in a 9:1 ratio after reacting with in situ-generated complex III 

in THF-d8 (Scheme 2B). In parallel we also performed kinetic stud-
ies of the reaction of alkyne 1a and BnBr and found first order rate 
dependence in catalyst [L1•CuCl] and electrophile  [BnBr], mean-
while a  0th order rate was observed from the alkyne [1a] and the bo-
rane partner [B2pin2•LiOt-Bu] (Scheme 2C).  The resulting rate law 
would be consistent with the mechanism proposed in Scheme 2A 
wherein a fast and reversible borylcupration precedes the regio- and 
rate-determining electrophile substitution. These studies taken to-
gether support the proposed mechanism wherein a reversible 
borylcupration would account for the change in regioselectivity as a 
function of electrophile identity.  

 

In conclusion, we have extended our investigations of 
(CAAC)Cu–boryl catalysis to the three-component carboboration 
of terminal alkynes and have found that high levels of α-selectivity 
are maintained across different carbon electrophiles, including allyl 
electrophiles, which have not been previously employed in an α-se-
lective reaction system. The generality of the method across differ-
ent alkyne substrates offers a convenient means of preparing tri-sub-
stituted alkenylboron compounds with established utility in organic 
synthesis. 
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aConditions: 1 (0.10 mmol), B2pin2 (0.11 mmol), alkyl iodide (0.30 
mmol), L1CuCl (0.006 mmol), LiOt-Bu (0.15 mmol) and DMA (0.60 
mL), r.t. Ratios of α:β (±2) were determined via 1H NMR spectroscopy 
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Scheme 2. Mechanistic studies. 
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