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A macroscopic model for species transport during in vitro tissue growth 
obtained by the volume averaging method

Didier Lasseux∗, Azita Ahmadi, Xavier Cleis, Jean Garnier
Laboratoire Energetique et Phenomenes de Transfert, ENSAM (UMR CNRS 8508), Esplanade des Arts et M$etiers, Talence Cedex 33405, France 

Abstract

In this work, we study the possibility of deriving a macroscopic model to describe reaction and transport by di4usion and convection
of two species within a porous medium as encountered during in vitro tissue growth. The starting point is a boundary value problem of
di4usion–advection and reaction in a three-phase system, the two species being identi7ed as the nutrient for cell growth and the metabolic
product within the framework of tissue culture. The method of volume averaging is applied to the set of microscopic equations. Under
the local mass equilibrium assumption and a series of constraints on the parameters of the system that are identi7ed, one obtains a
one-equation macroscopic model corresponding to a dispersion-reaction equation. Associated closure problems allowing the computation
of e4ective coe:cients that appear in this macroscopic model are provided.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Tissue engineering is one of the most promising tech-
niques in the 7eld of biotechnology for interesting oppor-
tunities that are now o4ered for original cartilage repair.
This is of major concern if one accounts for the number of
people su4ering from articular disorders around the world.
Compared to other surgical methods, the main advantage
of using cartilage cultured in vitro with speci7c 3-D shapes
lies in the recovery of tissue damage without any risk of
tissue rejection by the patient since the culture could be ini-
tiated with the patient’s cells. Typically, in this technique,
cartilage is formed from chondrocytes cultured in an agi-
tated bio-reactor on synthetic polymeric sca4olds made of
a felt of biodegradable polymer 7bres like poly-glycolic or
poly-lactic acid (Ashiku et al., 1997). The use of such sub-
stances provides a safe environment free of viruses and bac-
teria (Freed et al., 1993). Although tissues can be produced
using this technique (Freed et al., 1998), there is still much
to be done to fully understand all the physical mechanisms
and their interaction during growth in order to optimize
bio-reactors and obtain desired tissue features. E4orts have

∗ Corresponding author. Fax : +33-556-845-401.

been made to model cartilage development (Obradovic et al.,
1999), and the objective of the present paper is to contribute
to this task. While it seems clear that the hydrodynamics
outside and within the sca4old during culture is of central
importance to both the growth process and the 7nal proper-
ties of the tissue (Levesque and Nerem, 1985; Stathopoulos
and Hellums, 1985; Elias et al., 1995; Heath and Magari,
1996; Vunjak-Novakovic et al., 1996; Temeno4 and Mikos,
2000; Martin et al., 2000; Gooch et al., 2001), it has also
been shown that mass transfer plays a key role in cell de-
velopment (Freed et al., 1994). For this reason, a derivation
of a macroscopic model for the transport of nutrient (and
metabolic product) during cell growth is proposed in this
work. The starting point of this study is a microscopic model
at the scale of polymer 7bres or cell colonies that describes
reaction as well as di4usion and advection transport of nutri-
ent and metabolic product through a polymer sca4old seeded
with cells. Using the volume averaging method applied to
the microscopic set of equations, and assuming local mass
equilibrium, we derive a macroscopic one-equation model
at the scale of the sca4old for each species. The purpose of
this model is to investigate the role of cell distribution and
the impact of hydrodynamic parameters on macroscopic
transport coe:cients as well as cell growth dependence on
species transport in a future work. Although applied to theE-mail address: didier.lasseux@u-bordeaux.fr (Didier Lasseux)
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domain of tissue culture, the physics and the results derived
from the methodology used in this work are quite general
and can serve in many other domains where simultaneous
di4usion, advection and reaction in porous media made of a
rigid solid phase are under consideration. Among others, one
can cite particle deposition in porous materials as encoun-
tered in chemical vapor in7ltration (CVI) process (Naslain
and Langlais, 1986) or colloidal deposition during Jow
in porous media (McDowell Boyer et al., 1986), as well
as growth of bio7lms in porous structures (Characklis
and Marshall, 1990).

2. Microscopic model

In vitro tissue growth begins with a seeding sequence of
chondrocytes on 7bres of a highly porous sca4old (typically
95% of porosity) followed by a cell growing period while
the system is immersed in a liquid that feeds cells with nu-
trient. Cell colonies aggregate and grow on 7bres while pro-
ducing their extra cellular matrix (ground substance) made
of proteoglycans and glycosaminoglycans. Physical models
to describe this growing process have been proposed in the
literature on tissue engineering (see for instance an interest-
ing contribution from Galban and Locke, 1999) and bio7lms
(Wood and Whitaker, 2000; Wood et al., 2001). Our model
here is widely inspired from that presented in the former
reference and attempts to complete the description. In fact,
these authors have made two major hypotheses. First, they
assumed that the solid phase (polymer 7bres) can be ne-
glected and they restricted the problem to a two-phase sys-
tem, a Juid phase (that includes polymer 7bres) and a cell
phase (that contains cells, extra cellular matrix and 7bres)
and this assumption was justi7ed by the high value of the
porosity. Secondly, they supposed that the species transport
during growth results from di4usion only and they used a
di4usion/reaction model similar to that investigated earlier
(Ochoa et al., 1986; Ochoa, 1988). The present work ad-
dresses the problem of growth in an agitated reactor and for
this reason species transport by convection is also taken into
account in the Juid phase. Moreover, since the solid phase
plays a key role in the structure of the Jow 7eld, we want
to keep the solid polymer phase in our analysis. This choice
is also justi7ed by the fact that, at least at some stage of the
culture, the length-scale of the 7bres is comparable to that
of the cell colonies. As a consequence, the system under
consideration is a three-phase system.
The con7guration and scales involved in our study are

summarized in Fig. 1 where we have represented the scaf-
fold of scale L and a small volume V of radius r0 which
will serve as the averaging volume and in which the solid
polymer phase �, the cell phase � (which comprises cells,
extra cellular matrix and Juid) and the Juid phase � having
respective length scales l�, l� and l� are clearly identi7ed.
In our description, the �-phase is considered as a rigid

impermeable phase while the �-phase is considered as a

Newtonian non-compressible liquid containing two species:
the nutrient and the product of cells metabolism transported
by di4usion and convection and respectively referred to as
A and B in the rest of this paper. Bio-degradation of the
�-phase by the cells will not be considered in the present
work. The �-phase is considered as a continuum and the
physical model used in this phase to describe reaction and
mass transport by di4usion only is a single di4usion-reaction
equation with a di4usion tensor. Although this approach
is a classical one while treating cellular systems (Wanner
and Gujer, 1986), the model and the coe:cients used on this
continuum must be considered as the result of an up-scaling
process starting at the scale of cells at which the �-phase is
actually a multiphase system. A complete discussion on such
a model is beyond the scope of this paper and we refer the
reader to a thorough derivation proposed elsewhere (Wood
and Whitaker, 1998; Wood et al., 2002a).
According to these hypotheses, the boundary value prob-

lem for material balance of nutrient A and product B can be
stated as follows:
Nutrient A in the �-phase

@CA�

@t
=∇ · (DA� · ∇CA�)− kACA� in V�: (1)

B:C:1 : −n�� · (DA� · ∇CA�) = 0 at A��: (2)

Nutrient A in the �-phase

@CA�

@t
=∇ · (DA�∇CA�)−∇ · (CA�v�) in V�: (3)

B:C:2 : −n�� · DA�∇CA�

=− n�� · (DA� · ∇CA�) at A��:
(4)

B:C:3 : −n�� · (DA� · ∇CA�)

=�A(CA� − KAeqCA�) at A��:
(5)

B:C:4 : −n�� · DA� · ∇CA� = 0 at A��: (6)

B:C:5a : CA� = Ce
A� at A�e: (7)

B:C:6b : CA� = Ce
A� at A�e: (8)

I:C:1 : CA� = C0
A� at t = 0: (9)

I:C:2 : CA� = C0
A� at t = 0: (10)

In the boundary condition describing the mass transfer at
A�� in Eq. (5), we have assumed that the Jux depends lin-
early on the driving force CA� − KAeqCA�. However, in this
equation, we have kept generality by letting �A take any
value. Doing so allows the transfer at this interface to be
limited either by the mass transfer in the bulk or by the
transfer through the interface itself (or any behavior between
these two extreme situations). In the former case, �A can be
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Fig. 1. Macroscopic region and averaging volume.

considered as in7nitely large and the boundary condition in
Eq. (5) would reduce to

CA� = KAeqCA� at A�� (11)

provided that the equilibrium relation is linear and this type
of condition was considered in works on bio7lms (Wood
et al., 2002b). The general form of Eq. (5) must be viewed,
however, as the result of some smoothing. In fact, interfaces
between the �-phase and the Juid phase are not homoge-
neous, i.e. reactive sites are not homogeneously distributed.
The derivation of an equivalent homogeneous form as in
Eq. (5) has been addressed in details in a previous work on
a similar problem (Wood et al., 2000) where the concept of
e7ective interface was elucidated with the determination of
an associated e7ective reaction rate coe9cient.
In the above set of equations, entrances and exits of the

macroscopic domain were designated by A�e and A�e. More-
over, v� is the local point velocity in the �-phase and is
given by an additional boundary value problem for total
mass and momentum balance that can be decoupled from
species transport equations provided viscosity and density in
this phase remain constant. This problem can be described
with the classical Navier–Stokes model

∇ · v� = 0 in V�; (12)

��
@v�
@t

+ ��v� · ∇v�

=−∇p� + ��g + ��∇2v� in V�: (13)

B:C:7 : −n�� · v� = 0 at A��: (14)

B:C:8 : −n�� · v� = 0 at A��: (15)

Averaging of this Jow problem will not be dealt with in
the present work (see for instance Whitaker, 1996 for more
details) and we will assume that pressure and velocity 7elds
are available (Rongier and Jouan, 2002). When the Jow

is slow enough, i.e. is in the creeping Jow regime at the
7bre scale, a simpli7ed form (Stokes) can be used leading
to the usual Darcy Jow model after up-scaling (Whitaker,
1986). Again, generality was kept in the present work with
the complete Navier–Stokes model.
To complete the description, a similar system of equation

for the material balance equations of metabolic product can
be written as
Product B in the �-phase

@CB�

@t
=∇ · (DB� · ∇CB�) + kBCB� in V�: (16)

B:C:9 : −n�� · (DB� · ∇CB�) = 0 at A��: (17)

Product B in the �-phase

@CB�

@t
=∇ · (DB�∇CB�)−∇ · (CB�v�) in V�: (18)

B:C:10 : −n�� · DB�∇CB�

=− n�� · (DB� · ∇CB�) at A��:
(19)

B:C:11 : −n�� · (DB� · ∇CB�)

=�B(CB� − KBeqCB�) at A��:
(20)

B:C:12 : −n�� · (DB� · ∇CB�) = 0 at A��: (21)

B:C:13a : CB� = Ce
B� on A�e: (22)

B:C:14b : CB� = Ce
B� on A�e: (23)

I:C:3 : CB� = C0
B� at t = 0: (24)

I:C:4 : CB� = C0
B� at t = 0: (25)

We are now in position to develop the averaged form of the
material balance equations for the macroscopic concentra-
tions of nutrient and product. Since equations are completely
similar for both species, the development is presented for
the nutrient only.
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3. Local spatial averaging

To develop the volume averaged form, we make use of
both the super7cial and intrinsic averages (Whitaker, 1999).
For some quantity ’� associated to the � phase, the super-
7cial average 〈’�〉 is de7ned by

〈’�〉= 1
V

∫
V�

’� dV (26)

while the intrinsic average 〈’�〉� is given by

〈’�〉� = 1
V�

∫
V�

’� dV: (27)

These two quantities are related with the simple relationship

〈’�〉= ��〈’�〉�; (28)

where �� is the volume fraction of the � phase

�� =
V�

V
: (29)

During the development, we will also make use of the av-
eraging theorem relating the average of a gradient to the
gradient of the average (Howes and Whitaker, 1985) which,
for our three-phase system under consideration writes

〈∇’�〉=∇〈’�〉+ 1
V

∫
A��

n��’� dA

+
1
V

∫
A��

n��’� dA; �; �= �; �; � �= �; (30)

To begin with, we form the volume average of Eq. (1), i.e.〈
@CA�

@t

〉
= 〈∇ · (DA� · ∇CA�)〉 − 〈kACA�〉 (31)

and 7rst develop the left-hand side by making use of the
Reynolds transport theorem. Because the �-phase is rigid
and since biodegradation is not considered, the accumulation
term of Eq. (31) can be expressed as

@
@t

(
1
V

∫
V�
CA� dV

)
=

1
V

∫
V�

@CA�

@t
dV

+
1
V

∫
A��

CA�n�� · w�� dA; (32)

where w�� is the velocity associated to the evolution of A��.
Because growth is a slow process, we will assume here that
the time-scale associated to the evolution of this interface
is much larger than the characteristic time for di4usion and
reaction. These constraints can be simply expressed by

a��n�� · w�� �
( ��
T
; �� ||DA�||

/
l2� ; ��kA

)
(33)

and when they are satis7ed, the average of the accumulation
term reduces to〈

@CA�

@t

〉
=

@
@t

〈CA�〉: (34)

This assumption will be kept throughout this paper.

We now turn our attention to the di4usion term and apply
the averaging theorem to obtain

〈∇ · (DA� · ∇CA�)〉=∇ · 〈DA� · ∇CA�〉

+
1
V

∫
A��

n�� · (DA� · ∇CA�) dA

+
1
V

∫
A��

n�� · (DA� · ∇CA�) dA: (35)

Although the 7rst of the two integral terms in the right-hand
side of Eq. (35) has no contribution due to the boundary
condition (2), we will keep it for practical purposes of the
development. We can now apply the spatial averaging the-
orem a second time and write

∇·〈DA� · ∇CA�〉=∇ ·
[
DA� ·

(
∇〈CA�〉+ 1

V

∫
A��

n��CA�dA

+
1
V

∫
A��

n��CA� dA

)]
: (36)

Here, as in the rest of this paper, DA� was treated as a con-
stant over the averaging volume. When the same assump-
tion is used on the reaction rate coe:cient kA, this leads to
the following result for the average of the reaction term in
Eq. (31).

〈kACA�〉= 1
V

∫
V�
kACA� dV

= kA

(
1
V

∫
V�
CA� dV

)
= kA〈CA�〉: (37)

These results can be reassembled to obtain the average form
of the mass balance equation of species A in the �-phase
which takes the form

��
@〈CA�〉�

@t
=∇ ·

[
DA� ·

(
��∇〈CA�〉� + 〈CA�〉�∇��

+
1
V

∫
A��

n��CA� dA+
1
V

∫
A��

n��CA� dA

)]

+
1
V

∫
A��

n�� · (DA� · ∇CA�) dA

+
1
V

∫
A��

n�� · (DA� · ∇CA�) dA

−kA��〈CA�〉�: (38)

Here we have made use of the intrinsic average of the con-
centration instead of the super7cial average. While doing
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so, we have also treated �� as a constant over time and this
is consistent with the constraint expressed by Eq. (33).
To proceed to a model which does not involve the point

concentration, we need to develop the two 7rst integral terms
in the right-hand side of Eq. (38) and this can be done by
introducing a decomposition of the form (Gray, 1975)

CA� = 〈CA�〉� + C̃A� (39)

in which C̃A� is referred to as the local spatial deviation
of the concentration. In essence, this equation represents a
decomposition of the length scales since variations of C̃A�

are typically at the small length scale l� while the average
concentration undergoes signi7cant changes over the large
scale L only. Introduction of this decomposition in the two
terms under concern in Eq. (38) yields

1
V

∫
A��

n��CA� dA+
1
V

∫
A��

n��CA� dA

=
1
V

∫
A��

n��〈CA�〉� dA︸ ︷︷ ︸
I1

+
1
V

∫
A��

n��C̃A� dA

+
1
V

∫
A��

n��〈CA�〉� dA︸ ︷︷ ︸
I2

+
1
V

∫
A��

n��C̃A� dA: (40)

A close attention to this expression allows further simpli7ca-
tions and this can be performed by noting that 〈CA�〉� which
is expressed in I1 and I2 at points located at r� =x+ y� (see
Fig. 1) can be developed about the centroid of the averag-
ing volume located at x using a Taylor expansion. Doing so
leads to

I1 + I2 =

{
1
V

∫
A��

n�� dA+
1
V

∫
A��

n�� dA

}
〈CA�〉�|x

+

{
1
V

∫
A��

n��y�dA+
1
V

∫
A��

n��y�dA

}
·∇〈CA�〉�|x

+

{
1
V

∫
A��

n��
1
2

y�y� dA

+
1
V

∫
A��

n��
1
2

y�y� dA

}
:∇∇〈CA�〉�|x + · · · (41)

or equivalently

I1 + I2 =−∇��〈CA�〉�|x −∇〈y�〉 · ∇〈CA�〉�|x
−∇∇〈y�y�〉:∇∇〈CA�〉�|x + · · · : (42)

Once this result is inserted in Eq. (40) and back into
Eq. (38), one can show that a reasonable approximation for

this last equation is

��
@〈CA�〉�

@t
=∇ ·

[
DA� ·

(
��∇〈CA�〉�

+
1
V

∫
A��

n��C̃A� dA+
1
V

∫
A��

n��C̃A� dA

)]

+
1
V

∫
A��

n�� · (DA� · ∇CA�) dA

+
1
V

∫
A��

n�� · (DA� · ∇CA�) dA

−kA��〈CA�〉� (43)

and this result remains valid provided the �-phase is uni-
formly distributed over the averaging volume V and a con-
straint of well-separated scales expressed by

r20 � L2 (44)

is satis7ed. Full developments on order of magnitude esti-
mates used to arrive at this result are provided elsewhere
and we refer the reader to the literature on upscaling of dif-
fusion problems in porous media and studies on transport
in ordered and disordered porous media for comprehensive
details (Quintard and Whitaker, 1994a–e; Whitaker, 1999).
We shall now continue towards our 7nal goal with

the average of the material balance equation of nutrient in
the �-phase (Eq. (3)). Following the same development as
the one presented above for the �-phase and assuming

a��n�� · w�� �
(
��
T

; ��DA�
/
l2� ; ��

‖v�‖
l�

)
(45)

immediately leads to

��
@〈CA�〉�

@t
=∇ ·

[
DA�

(
��∇〈CA�〉�

+
1
V

∫
A��

n��C̃A� dA+
1
V

∫
A��

n��C̃A� dA

)]

+
1
V

∫
A��

n�� · DA�∇CA� dA

+
1
V

∫
A��

n�� · DA�∇CA� dA

−〈∇ · (CA�v�)〉 (46)

in which the convective term can now be analyzed. The use
of the averaging theorem on this term along with the no slip
boundary conditions expressed in Eqs. (14) and (15) allows
to write

〈∇ · (CA�v�)〉=∇ · 〈CA�v�〉: (47)
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This last expression can be developed by introducing de-
compositions of both concentration and velocity, i.e.

CA� = 〈CA�〉� + C̃A�; (48)

v� = 〈v�〉� + ṽ� (49)

in which C̃A� and ṽ� are the local spatial deviations of con-
centration and velocity in the �-phase respectively and this
leads to

∇ · 〈CA�v�〉=∇ · (〈〈v�〉�〈CA�〉�〉+ 〈ṽ�〈CA�〉�〉
+〈〈v�〉�C̃A�〉+ 〈C̃A�ṽ�〉): (50)

A further simpli7cation can be made if we assume that
variations of volume averaged quantities can be neglected
within the averaging volume which means that we assume,
for  � = CA� or v�

〈〈 �〉�〉= ��〈 �〉� (51)

and consequently

〈 ˜�〉= 0: (52)

A complete justi7cation of this hypothesis with appropri-
ate constraints is beyond the scope of this work and again
we refer the reader to the literature for additional details
(Whitaker, 1999). Within the framework of this assumption,
we can write the convective term in a simpli7ed form

∇ · 〈CA�v�〉=∇ · (��〈v�〉�〈CA�〉�)
+∇ · 〈C̃A�ṽ�〉: (53)

An alternative expression can 7nally be found by making
use of the averaged form of the continuity equation (12).
Taking the super7cial average of this equation and making
use of the averaging theorem leads to

〈∇ · v�〉=∇ · 〈v�〉= 0 (54)

and this follows from the no slip boundary conditions in
Eqs. (14) and (15). Once an equivalent form of this result
given by

∇ · (��〈v�〉�) = 0 (55)

is used in Eq. (53), we have

∇ · 〈CA�v�〉= ��〈v�〉� · ∇〈CA�〉�

+∇ · 〈C̃A�ṽ�〉: (56)

As a result, the local averaged form of the transport and
reaction equation for nutrient in the Juid phase is

��
@〈CA�〉�

@t
=∇ ·

[
DA�

(
��∇〈CA�〉�

+
1
V

∫
A��

n��C̃A� dA+
1
V

∫
A��

n��C̃A� dA

)]

+
1
V

∫
A��

n�� · DA�∇CA� dA

+
1
V

∫
A��

n�� · DA�∇CA� dA

−��〈v�〉� · ∇〈CA�〉� −∇ · 〈ṽ�C̃A�〉: (57)

At this point, we are ready to develop a one-equation model
to describe nutrient transport and consumption for the whole
system considered as a continuum and this development is
proposed in the subsequent sections.

4. One-equation model

Developing a one equation model that describes the evo-
lution of nutrient concentration within the whole sca4old re-
quires the use of a unique average concentration (which will
be noted {CA} in the rest of this work) for the two phases.
Obviously, this approach would be rigorously valid if ev-
erywhere in the system, the local thermodynamic equilib-
rium were continuously satis7ed (Whitaker, 1999). In such
circumstances, one could write

〈CA�〉� = KAeq〈CA�〉� = KAeq{CA}: (58)

Even if this is certainly not true in real systems, there are
many cases close enough to this situation for which the use
of a unique average concentration remains a valid approxi-
mation. Such cases are often classi7ed under the local mass
equilibrium assumption. Here, we keep this hypothesis and
de7ne the equilibrium weighted spatial average concentra-
tion as (Ochoa et al., 1986; Wood et al., 2002b)

{CA}= 1
KAeq

��
�� + ��

〈CA�〉� + ��
�� + ��

〈CA�〉�: (59)

Since the system is not at complete thermodynamic equi-
librium, we accept macroscopic spatial deviations ĈA� and
ĈA� de7ned by

ĈA� = 〈CA�〉� − KAeq{CA}; (60)

ĈA� = 〈CA�〉� − {CA}: (61)

These deviations, as well as {CA}, have signi7cant varia-
tions over the length scale L and are zero at thermodynamic
equilibrium. The goal is now to obtain a governing di4eren-
tial equation for {CA}. The simplest way to do so is 7rst to
introduce macroscopic decompositions (60) and (61) into
the unclosed forms (43) and (57) of balance equations for
〈CA�〉� and 〈CA�〉�. Once this is done and the two results are
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added, one gets

(�� + ��KAeq)
@{CA}

@t

=∇ ·
[
DA� ·

(
��KAeq∇{CA}

+
1
V

∫
A��

n��C̃A� dA+
1
V

∫
A��

n��C̃A� dA

)

+DA�

(
��∇{CA}+ 1

V

∫
A��

n��C̃A� dA

+
1
V

∫
A��

n��C̃A� dA

)]

−kA��KAeq{CA} − ��〈v�〉� · ∇{CA} − ∇ · 〈C̃�ṽ�〉

−
[
��
@ĈA�

@t
+ ��

@Ĉ�

@t
−∇ · (DA� · ��∇ĈA�

+DA���∇ĈA�) + kA��ĈA� + ��〈v�〉� · ∇ĈA�

]
: (62)

While writing Eq. (62), which represents the unclosed form
of our one-equation model for the nutrient, we have made
use of boundary conditions expressed in Eqs. (2), (4) and
(6). To continue the development we shall now derive or-
der of magnitude constraints associated to the local mass
equilibrium assumption in order to neglect the last terms in
brackets in the above equation. In fact this can be done when

��
@ĈA�

@t
� (�� + ��KAeq)

@{CA}
@t

; (63)

��
@ĈA�

@t
� (�� + ��KAeq)

@{CA}
@t

; (64)

∇ · (DA� · ��∇ĈA�)

� ∇ · [(DA���KAeq + DA���I) · ∇{CA}]; (65)

∇ · (DA���∇ĈA�)

� ∇ · [(DA���KAeq + DA���I) · ∇{CA}]; (66)

ĈA� � Keq{CA}; (67)

∇ĈA� � ∇{CA} (68)

and the corresponding requirements on the parameters of the
system are

����
(�� + ��)a��l�

(
1 +

1
KAeq

l�
l�

DA�

‖DA�‖ +
1

KAeq

DA�

�Al�

)

× l2�
TDA�

� min
(
1;

1
KAeq

)
; (69)

����
(�� + ��)a��l�

(
1 +

1
KAeq

l�
l�

DA�

‖DA�‖ +
1

KAeq

DA�

�Al�

)

×max

((
l�
L

)2 ‖DA�‖
DA�

; Ki

)
� 1

KAeq
; (70)

����
(�� + ��)a��l�

(
1 +

1
KAeq

l�
l�

DA�

‖DA�‖ +
1

KAeq

DA�

�Al�

)

×max

((
l�
L

)2
;
l�
L

Pe

)
� 1: (71)

Details on how one can arrive at these constraints are pro-
vided in Appendix A by following a development similar to
that proposed in the literature (Ochoa et al., 1986). Under
these circumstances, the unclosed form of the one-equation
model writes

(�� + ��KAeq)
@{CA}

@t

=∇ ·
[
DA� ·

(
��KAeq∇{CA}

+
1
V

∫
A��

n��C̃A� dA+
1
V

∫
A��

n��C̃A� dA

)

+DA�

(
��∇{CA}+ 1

V

∫
A��

n��C̃A� dA

+
1
V

∫
A��

n��C̃A� dA

)]

−kA��KAeq{CA} − ��〈v�〉� · ∇{CA}
−∇ · 〈C̃�ṽ�〉: (72)

The 7nal step is now to develop a closure that allows to
express local concentration deviations C̃A� and C̃A� in terms
of the average concentration {CA}.

5. Closure

To close the above form of the balance equation on {CA},
we need to derive a pair of boundary value problems for C̃A�

and C̃A�, respectively. Due to the presence of convection
in the �-phase, this task is slightly more complex for C̃A�,
and for this reason we begin the development for this phase
while the boundary value problem on C̃A� will follow in a
straightforward manner. The development is carried out 7rst
by subtracting Eq. (57) divided by �� from the initial bal-
ance equation for CA� (i.e. Eq. (3)) in which the continuity
equation (12) has been introduced. When the de7nition of
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C̃A� is used, this yields

@C̃A�

@t
− 〈v�〉� · ∇〈CA�〉� + v� · ∇CA�

=∇ · (DA�∇C̃A�)− �−1
� ∇�� · DA�∇〈CA�〉�

−�−1
� ∇ ·

[
DA�

(
1
V

∫
A��

n��C̃A� dA

+
1
V

∫
A��

n��C̃A� dA

)]

−�−1
� DA�

(
1
V

∫
A��

n�� · ∇CA� dA

+
1
V

∫
A��

n�� · ∇CA� dA

)

+�−1
� ∇ · 〈C̃A�ṽ�〉: (73)

On the basis of the decomposition on v� given by Eq. (49),
the second and third terms of the left-hand side of Eq. (73)
can be arranged to give

v� · ∇CA� − 〈v�〉� · ∇〈CA�〉�

=v� · ∇C̃A� + ṽ� · ∇〈CA�〉�: (74)

In addition, we can also make use of the decomposition for
CA� to write an approximated form of the two interfacial Jux
terms in the right-hand side of Eq. (73) and express them as

−�−1
� DA�

(
1
V

∫
A��

n�� · ∇CA� dA+
1
V

∫
A��

n�� · ∇CA� dA

)

=− �−1
� DA�

[
−∇�� · ∇〈CA�〉�

+
1
V

∫
A��

n�� · ∇C̃A� dA

+
1
V

∫
A��

n�� · ∇C̃A� dA

]
: (75)

Deriving such an expression is made possible by the use
of approximations similar to those employed to simplify
Eq. (38) into Eq. (43) with the same associated constraints.
Under these circumstances, Eq. (73) takes the form

@C̃A�

@t︸ ︷︷ ︸
accumulation

+ v� · ∇C̃A�︸ ︷︷ ︸
convection

+ ṽ� · ∇〈CA�〉�︸ ︷︷ ︸
convective source

=∇ · (DA�∇C̃A�)︸ ︷︷ ︸
di4usion

−�−1
� ∇ ·

[
DA�

(
1
V

∫
A��

n��C̃A�dA+
1
V

∫
A��

n��C̃A�dA

)]
︸ ︷︷ ︸

non−local di4usion

−�−1
� DA�

(
1
V

∫
A��

n�� · ∇C̃A�dA+
1
V

∫
A��

n�� · ∇C̃A�dA

)
︸ ︷︷ ︸

interfacial di4usive Jux

+�−1
� ∇ · 〈C̃A�ṽ�〉︸ ︷︷ ︸

non−local convection

: (76)

In this equation, the term involving ∇〈CA�〉� can be identi-
7ed as a source for C̃A� since Eq. (76) would be otherwise
homogeneous. This form represents a rather complex gov-
erning equation for C̃A� and a more tractable one can be
achieved with a close attention to the orders of magnitude
of the non-local terms. Making use of order of magnitude
analysis on the non-local di4usive term leads to the follow-
ing estimation (Whitaker, 1999)

�−1
� ∇ ·

[
DA�

(
1
V

∫
A��

n��C̃A� dA+
1
V

∫
A��

n��C̃A� dA

)]

=O

(
DA�a�C̃A�

��L

)
= O

(
DA�C̃A�

��l�L

)
(77)

in which a reasonable estimation of a� was taken as l−1
� .

The order of magnitude of the di4usive term is

∇ · (DA�∇C̃A�) = O

(
DA�C̃A�

l2�

)
: (78)

Provided the length scale constraint

l� � ��L (79)

is satis7ed, this indicates that the non-local di4usive term
can be neglected and we can rewrite Eq. (76) as

@C̃A�

@t︸ ︷︷ ︸
accumulation

+ v� · ∇C̃A�︸ ︷︷ ︸
convection

+ ṽ� · ∇〈CA�〉�︸ ︷︷ ︸
convective source

=∇ · (DA�∇C̃A�)︸ ︷︷ ︸
di4usion

−�−1
� DA�

(
1
V

∫
A��

n�� · ∇C̃A�dA+
1
V

∫
A��

n�� · ∇C̃A�dA

)
︸ ︷︷ ︸

interfacial di4usive Jux

+�−1
� ∇ · 〈C̃A�ṽ�〉︸ ︷︷ ︸

non−local convection

: (80)
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A similar analysis can be made on the non-local convective
term to 7nd

�−1
� ∇ · 〈C̃A�ṽ�〉= O

(
C̃A�ṽ�

L

)
(81)

and this estimation can be re7ned by deriving an estimate
for ṽ�. To do so, we can make use of the no-slip boundary
condition to 7nd

ṽ� = O(〈v�〉�) (82)

while the same estimate holds for v�

v� = O(〈v�〉�) (83)

As a consequence, we can 7nally estimate the non-local
convective term to be

�−1
� ∇ · 〈C̃A�ṽ�〉= O

(
〈v�〉�C̃A�

L

)
(84)

while the convective term can be estimated by

v� · ∇C̃A� = O

(
〈v�〉�C̃A�

l�

)
: (85)

Again, it can be seen from these last two results that if the
macroscopic and microscopic length scales are well sepa-
rated as indicated by Eq. (79), the non-local convective term
can be reasonably discarded from the equation on the con-
centration deviation which can be written as

@C̃A�

@t︸ ︷︷ ︸
accumulation

+ v� · ∇C̃A�︸ ︷︷ ︸
convection

+ ṽ� · ∇〈CA�〉�︸ ︷︷ ︸
convection source

=∇ · (DA�∇C̃A�)︸ ︷︷ ︸
di4usion

−�−1
� DA�

(
1
V

∫
A��

n�� · ∇C̃A�dA+
1
V

∫
A��

n�� · ∇C̃A�dA

)
︸ ︷︷ ︸

interfacial di4usive Jux

:

(86)

We can 7nally use a constraint on time
given by

DA�t∗

l2�
 1 (87)

to simplify the above equation to the quasi-steady form given
by

v� · ∇C̃A�︸ ︷︷ ︸
convection

+ ṽ� · ∇〈CA�〉�︸ ︷︷ ︸
convection source

=∇ · (DA�∇C̃A�)︸ ︷︷ ︸
di4usion

−�−1
� DA�

(
1
V

∫
A��

n�� · ∇C̃A� dA+
1
V

∫
A��

n�� · ∇C̃A�dA

)
︸ ︷︷ ︸

interfacial di4usive Jux

:

(88)

This result represents the 7nal form of the governing equa-
tion for C̃A� that will be further used to close the problem
on {CA} after a similar equation has been derived for C̃A�.
This can be performed by following the same type of devel-
opment as the one presented above, and the result takes the
form

0 =∇ · (DA� · ∇C̃A�)︸ ︷︷ ︸
di4usion

−�−1
�

(
1
V

∫
A��

n�� ·DA� ·∇C̃A�dA+
1
V

∫
A��

n�� ·DA� ·∇C̃A�dA

)
︸ ︷︷ ︸

interfacial di4usive Jux

−kAC̃A�︸ ︷︷ ︸
reaction

: (89)

To complete the closure, we now need to write the boundary
conditions associated to the di4erential equations on C̃A� and
C̃A� and to do so, we introduce the local and macroscopic
spatial deviations in the boundary conditions expressed in
Eqs. (2), (4), (5) and (6) leading to

−KAeqn�� · DA� · ∇{CA} − n�� · DA� · ∇ĈA�

−n�� · DA� · ∇C̃A� = 0 at A��; (90)

−n�� · DA�∇{CA} − n�� · DA�∇ĈA�

−n�� · DA�∇C̃A� = 0 at A��: (91)

−n�� · DA�∇{CA} − n�� · DA�∇ĈA� − n�� · DA�∇C̃A�

=− KAeqn�� · DA� · ∇{CA}
−n�� · DA� · ∇ĈA� − n�� · DA� · ∇C̃A� at A��: (92)

−KAeqn�� · DA� · ∇{CA} − n�� · DA�∇ĈA�

−n�� · DA�∇C̃A� = �A(ĈA� + C̃A�

−KAeq(ĈA� + C̃A�)) at A��: (93)

Assuming that local spatial deviations are large compared
to macroscopic spatial deviations, i.e.

C̃A�  ĈA�; (94)

C̃A�  ĈA� (95)

and since the length-scale constraint expressed in Eq. (79)
is supposed to hold, this allows to simplify the closure
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problems for C̃A� and C̃A� according to

∇ · (DA� · ∇C̃A�)− �−1
�

(
1
V

∫
A��

n�� · DA� · ∇C̃A� dA

+
1
V

∫
A��

n�� · DA� · ∇C̃A� dA

)
− kAC̃A� = 0: (96)

B:C:1 : n�� · DA� · ∇C̃A�

=− KAeqn�� · DA� · ∇{CA} at A��

(97)

v� · ∇C̃A� −∇ · (DA�∇C̃A�)

+�−1
� DA�

(
1
V

∫
A��

n�� · ∇C̃A� dA

+
1
V

∫
A��

n�� · ∇C̃A� dA

)
=−ṽ� · ∇{CA}: (98)

B:C:2 : n�� · DA�∇C̃A�

=− n�� · DA�∇{CA} at A��:
(99)

B:C:3 : −n�� · DA�∇{CA} − n�� · DA�∇C̃A�

=− KAeqn�� · DA� · ∇{CA}
−n�� · DA� · ∇C̃A� at A��:

(100)

B:C:4 : −KAeqn�� · DA� · ∇{CA} − n�� · DA� · ∇C̃A�

=�A(C̃A� − KAeqC̃A�) at A��:
(101)

B:C:5 : C̃A� = C̃e
A� on A�e: (102)

B:C:6 : C̃A� = C̃e
A� on A�e: (103)

To complete this set of equations, one must keep in mind
that, according to Eq. (52) we shall write∫

V�
C̃A� dV = 0 (104)

and∫
V�

C̃A� dV = 0: (105)

To be clear about the physical signi7cance of inequalities
(94) and (95), we can derive the associated constraints on
the physical parameters. This can be obtained in a straight-
forward manner by making use of Eqs. (A.13), (A.25) and
(A.14) (A.24) developed in Appendix A and the result is

����
(�� + ��) a��l�

(
1 +

1
KAeq

l�
l�

DA�

‖DA�‖ +
1

KAeq

DA�

�Al�

)

× l2�
TDA�

� min
(
l�
L
;

1
KAeq

l�
L

)
; (106)

����
(�� + ��)a��l�

L
l�

(
1 +

1
KAeq

l�
l�

DA�

‖DA�‖ +
1

KAeq

DA�

�Al�

)

×max



(
l�
L

)2 ‖DA�‖
DA�

Ki


� 1

KAeq
; (107)

����
(�� + ��)a��l�

(
1 +

1
KAeq

l�
l�

DA�

‖DA�‖ +
1

KAeq

DA�

�Al�

)

×max


 l�

L
Pe


� 1: (108)

Clearly, the purpose is not to solve the closure problems
over the entire macroscopic domain, but rather to identify
C̃A� and C̃A� over a representative region (Ryan et al., 1981).
By doing so, we intend to replace the initial structure by
a pseudo-periodic one characterized by a unit cell and this
allows to replace the two boundary conditions at entrances
and exits in the above closure problems by the two following
periodic conditions at the boundary of the representative
region

B:C:5a : C̃A�(r + li) = C̃A�(r) i = 1; 2; 3: (109)

B:C:6a : C̃A�(r + li) = C̃A�(r) i = 1; 2; 3: (110)

5.1. Closure variables

At this point, we are ready to propose a representation
of the local spatial deviations. In the above boundary value
problems on C̃A� and C̃A�, the unique source term is the
macroscopic gradient of concentration ∇{CA} and this mo-
tivates a representation of the local deviations of the form

C̃A� = KAeqb� · ∇{CA}+  � (111)

and

C̃A� = b� · ∇{CA}+  �; (112)

where, b�, b� and  �,  � are the closure variables. When
these representations are inserted in Eqs. (96)–(101) and
(109), (110), the choice of the boundary value problems
on the closure variables is not unique. Here, we choose to
specify b� and b� according to

DA�:∇∇b� − �−1
�

(
1
V

∫
A��

n�� · DA� · (∇b� + I) dA

)

−kAb� = 0 in V�: (113)

B:C:1 : n�� · DA� · ∇b� =−n�� · DA� at A��: (114)
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DA�∇2b� − v� · ∇b� − �−1
� DA�

×
(

1
V

∫
A��

n�� · (∇b� + I) dA

)
= ṽ� in V�: (115)

B:C:2 : n�� · ∇b� =−n�� at A��: (116)

B:C:3 : n�� · DA�(∇b� + I)

=KAeqn�� · DA� · (∇b� + I) at A��:
(117)

B:C:4 : −n�� · DA� · (∇b� + I)

=�A(b� − b�) at A��:
(118)

B:C:5 : b�(r + li) = b�(r) i = 1; 2; 3: (119)

B:C:6 : b�(r + li) = b�(r) i = 1; 2; 3: (120)∫
V�

b� dV = 0; (121)∫
V�

b� dV = 0; (122)

where DA� and DA� were treated as constants while ∇{CA}
was taken at the centroid of the averaging volume after all
the additional terms resulting from Taylor developments as
performed in Eq. (41) have been neglected. In Eqs. (113)
and (115) we have also made use of the fact that the closure
problems are to be solved over a unit cell of a periodic struc-
ture allowing to discard terms that involve ∇�� and ∇��.
With this choice, it can be easily shown that  � and  � are
zero and the proof of this result is provided in Appendix
B. We are now in position to obtain the closed form of
the one-equation model for the macroscopic average con-
centration.

5.2. Closed form

Substitution of the representations of local concentrations
(Eqs. (111) and (112)) into Eq. (72) leads to the following
macroscopic dispersion–reaction model

@{CA}
@t

=DAe4 :∇∇{CA}

− ��
�� + ��KAeq

〈v�〉� · ∇{CA} − kAe4{CA}; (123)

where kAe4 is the e4ective reaction rate coe:cient for nutri-
ent consumption and is expressed by

kAe4 =
��KAeq

�� + ��KAeq
kA (124)

while DAe4 is the e4ective dispersion tensor for nutrient
given by

DAe4 =
1

�� + ��KAeq

[
DA���KAeq + DA���I

+DA� · KAeq

(
1
V

∫
A��

n��b� dA+
1
V

∫
A��

n��b� dA

)

+DA�

(
1
V

∫
A��

n��b� dA+
1
V

∫
A��

n��b� dA

)

−〈b�ṽ�〉
]
; (125)

where b� and b� are the solution of the closure problems in
Eqs. (113)–(122).
An equivalent result can be obtained for the macroscopic

transport and reaction of the metabolic product in a straight-
forward manner by directly transposing the above result ob-
tained for the nutrient.

6. Conclusion

In this paper, we investigated the possibility of a macro-
scopic description of mass transfer during in vitro tissue
growth as performed during cartilage culture initiated on
polymer sca4olds. The initial microscopic model for trans-
port and reaction of nutrient and metabolic product was writ-
ten in order to complete some previous description of this
problem in reported works on the subject from two main
points of view. First, the system under consideration at the
microscopic scale is treated as a three-phase structure in
which solid polymer 7bres are explicitly taken into account
as a separate phase in addition to the cell phase and Juid
phase. Second, convective transport was considered in the
Juid phase in addition to the classical di4usive transport
and this is required if one is willing to treat the problem
of a growth process in an agitated bioreactor. Starting from
this microscopic model, the volume averaging method was
used to develop a macroscopic one-equation model which
remains valid under the local mass equilibrium assumption
and some restrictive constraints on the physical parame-
ters which were detailed at the di4erent steps of the devel-
opment. The one-equation model obtained for the balance
of the macroscopic nutrient (or product) concentration is a
dispersion/reaction equation involving e4ective coe:cients.
While the e4ective reaction rate coe:cient can be directly
estimated, the e4ective dispersion tensor can be computed
from the solution of a pair of closure problems which were
speci7ed over a representative unit cell of the structure con-
sidered as a pseudo-periodic one. The investigation of the
dependence of the e4ective dispersion tensor on the geomet-
rical structure on the one hand and on the hydrodynamic in
the Juid phase on the other hand will be treated in a future
work. The present description should contribute to a better
understanding of the interaction between cell growth and
mass transfer during culture processes and should also be
of interest in many other areas where advection combined
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with di4usion and reaction at the solid–Juid interfaces of a
porous medium is encountered.

Notation

a� interfacial area of the �-phase per unit volume
(=(A�� + A��)=V ), m−1

a�� interfacial area between the �-phase and the
�-phase per unit volume (=A��=V ), m−1

A�� interfacial area between the �-phase and the
�-phase, m2

A�e entrances and exits area of the �-phase on the
macroscopic domain, m2

CX� molar concentration of species X in the �-phase,
mol m−3

DAe4 e4ective dispersion tensor of nutrient, m2 s−1

DX� di4usion coe:cient of species X in the �-phase,
m2 s−1

DX� di4usion tensor of species X in the �-phase, m2 s−1

g gravity, m s−2

kAe4 e4ective reaction rate coe:cient of nutrient, s−1

kX reaction rate coe:cient of species X , s−1

KX eq partition coe:cient between the �-phase and the
�-phase at equilibrium for species X

Ki kinetic number associated to the �-phase
l� characteristic length scale associated to the

�-phase, m
L length-scale of the macroscopic medium (sca4old),

m
n�� unit normal vector directed from the �-phase to-

ward the �-phase
p� pressure in the �-phase, Pa
Pe Peclet number associated to the �-phase
r0 radius of the averaging volume, m
r� position vector of a point located in the �-phase, m
t∗ characteristic time-scale of the microscopic trans-

port, s
T characteristic time-scale of the macroscopic trans-

port, s
v� local point velocity in the �-phase, m s−1

V averaging volume, m3

V� volume of the �-phase contained within V , m3

w�� velocity of A��, m s−1

x position vector of the centroid of the averaging vol-
ume, m

y� position vector of a point located in the �-phase
relative to the centroid of the averaging volume, m

Greek letters

�X interfacial mass transfer coe:cient for species X ,
m s−1

�� volume fraction of the �-phase (=V�=V )

�� dynamic viscosity of the �-phase, Pa s
�� density of the �-phase, kg m−3

Subscripts

A nutrient
B product

Mathematical operators

∇ gradient operator
‖ ‖ norm
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Appendix A

In this appendix, we provide details on the constraints
that must be satis7ed for the simpli7cation used to derive
Eq. (72) from Eq. (62) to be valid. Due to the fact that ĈA�,
ĈA� and {CA} have the same characteristic length and time
scales of variation (respectively L and T ), we can derive
equivalent forms of the requirements expressed in Eqs. (63)–
(68) by writing

ĈA� �
(
��
��

+ KAeq

)
{CA}; (A.1)

ĈA� �
(
1 +

��
��

KAeq

)
{CA}; (A.2)

ĈA� �
(
KAeq +

DA�

‖DA�‖
��
��

)
{CA}; (A.3)

ĈA� �
(
1 +

‖DA�‖
DA�

��
��

KAeq

)
{CA}; (A.4)

ĈA� � KAeq{CA}; (A.5)

ĈA� � {CA}: (A.6)

Clearly, among all these constraints, the two last ones are the
more restrictive and the validity of Eq. (72) is conditioned by
these two inequalities. In order to derive the corresponding
constraints involving the physical parameters of the system,
we follow a development inspired from the one presented
elsewhere (Ochoa et al., 1986; Ochoa, 1988). We 7rst need
to estimate the order of magnitude of ĈA� and ĈA� in terms
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of {CA} and to do so, we begin with the boundary condition
in Eq. (4) to get order of magnitude estimates of CA� and
CA� on A��

CA� = O
(

l�
‖DA�‖ n�� · DA�∇CA�

)
at A�� (A.7)

and

CA� = O
(

l�
DA�

n�� · DA�∇CA�

)
at A��: (A.8)

Combining these two estimates provides

CA� − KAeqCA�

=O

((
l�

‖DA�‖ +
KAeql�
DA�

)
n�� · DA�∇CA�

)
at A��:

(A.9)

From the boundary condition in Eq. (5), we can derive an-
other estimation given by

CA� − KAeqCA�

=O
(

1
�A

n�� · DA�∇CA�

)
at A��: (A.10)

These two results provide two estimates of the same quantity
which means that, in terms of orders of magnitude, we have

CA� − KAeqCA� =O

((
l�

‖DA�‖ +
KAeql�
DA�

+
1
�A

)
n��

·DA�∇CA�

)
: (A.11)

This expression can now be used to obtain an order of mag-
nitude for the Jux at A��, i.e.

−n�� · DA�∇CA�

=O


 CA� − KAeqCA�

KAeql�
DA�

+
l�

‖DA�‖ +
1
�A


 at A��: (A.12)

Making use of Eqs. (2) and (6) provides an estimate of C̃A�

and C̃A� according to

C̃A� = O
(
l�
L
〈CA�〉�

)
; (A.13)

C̃A� = O
(
l�
L
〈CA�〉�

)
(A.14)

and indicates that, if the length-scale constraints

l�; l� � L (A.15)

are satis7ed, then

C̃A� � 〈CA�〉� (A.16)

C̃A� � 〈CA�〉�: (A.17)

This allows rewriting Eq. (A.12) under the form (Ochoa et
al., 1986; Ochoa, 1988)

− n�� · DA�∇CA� = O


 〈CA�〉� − KAeq〈CA�〉�

KAeql�
DA�

+
l�

‖DA�‖ +
1
�A


 :

(A.18)

We can now proceed with an estimation of the average of
this Jux over A�� to have

1
V

∫
A��

n�� · DA�∇CA� dA

=O(a���∗(〈CA�〉� − KAeq〈CA�〉�)); (A.19)

where

�∗ =
1

KAeql�
DA�

+
l�

‖DA�‖ +
1
�A

: (A.20)

This average Jux can also be estimated from Eq. (57) to be

1
V

∫
A��

n�� · DA�∇CA� dA

=O




��
〈CA�〉�

T

DA� ��
〈CA�〉�

L2

��
∣∣∣∣〈v�〉�∣∣∣∣ 〈CA�〉�

L




; (A.21)

where T is the characteristic time scale of the macroscopic
transport. With this notation, we mean that the average Jux
is on the order of the larger term among the three terms

��
〈CA�〉�

T
; DA� ��

〈CA�〉�
L2 and ��

∣∣∣∣〈v�〉�∣∣∣∣ 〈CA�〉�
L

:

Combining estimates in Eqs. (A.19) and (A.21) leads to

a���∗(〈CA�〉� − KAeq〈CA�〉�)

=O




��
〈CA�〉�

T

DA���
〈CA�〉�

L2

��
∣∣∣∣〈v�〉�∣∣∣∣ 〈CA�〉�

L




: (A.22)

We can go further in the development by extracting from
Eqs. (59) and (61)

〈CA�〉� − KAeq〈CA�〉� =− �� + ��
��

KAeqĈA� (A.23)
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and once this is inserted in Eq. (A.22), this yields

ĈA� = O




����
(�� + ��)a���∗KAeq

〈CA�〉�
T

����DA�

(�� + ��)a�� �∗KAeq

〈CA�〉�
L2

����
∣∣∣∣〈v�〉�∣∣∣∣

(�� + ��)a�� �∗KAeq

〈CA�〉�
L




: (A.24)

We can repeat the above development using Eqs. (A.19),
(43), (59) and (60) to write

ĈA� = O




����
(�� + ��)a�� �∗

〈CA�〉�
T

����‖DA�‖
(�� + ��)a���∗

〈CA�〉�
L2

����kA
(�� + ��)a���∗

〈CA�〉�




: (A.25)

We now need estimates for 〈CA�〉� and 〈CA�〉� . Since in-
equality (A.6) must be ful7lled, we can use this constraint
along with Eqs. (60) and (61) to get

O(KAeq〈CA�〉�) = O(〈CA�〉�) = KAeq{CA}: (A.26)

Once this is used in the above estimates for ĈA� and ĈA�

and the results are inserted in inequalities (A.5) and (A.6),
we 7nally obtain

����
(�� + ��)a��l�

(
1 +

1
KAeq

l�
l�

DA�

‖DA�‖ +
1

KAeq

DA�

�Al�

)

× l2�
TDA�

� min
(
1;

1
KAeq

)
; (A.27)

����
(�� + ��)a��l�

(
1 +

1
KAeq

l�
l�

DA�

‖DA�‖ +
1

KAeq

DA�

�Al�

)

×max

((
l�
L

)2 ‖DA�‖
DA�

; Ki

)
� 1

KAeq
; (A.28)

����
(�� + ��)a��l�

(
1 +

1
KAeq

l�
l�

DA�

‖DA�‖ +
1

KAeq

DA�

�Al�

)

×max

((
l�
L

)2
;
l�
L
Pe

)
� 1 (A.29)

which are su:cient requirements on the physical parameters
for the simpli7cation between Eqs. (62) and (72) to hold. In
these last relationships, Ki and Pe are the kinetic and Peclet
numbers associated to the �-phase and are respectively
de7ned by

Ki =
l2� kA
DA�

(A.30)

and

Pe =
‖〈v�〉�‖l�

DA�
: (A.31)

Appendix B

The objective of this appendix is to prove that if the clo-
sure variables b� and b� used in the representations of local
concentration deviations de7ned by Eqs. (111) and (112)
obey the boundary value problems given by Eq. (113)–
(122), then  � and  � are zero.
We begin with the derivation of the boundary value prob-

lems on  � and  � resulting from the choice on b� and b�.
Once the representations de7ned in Eqs. (111) and (112)
are introduced in the closure problems given by Eqs. (96)–
(101), (104), (105) and (109), (110), we have

∇ · (DA� · ∇ �)− �−1
�

1
V

∫
A��

n�� · DA� · ∇ � dA

−kA � = 0 in V�: (B.1)

B:C:1 : n�� · DA� · ∇ � = 0 at A��: (B.2)

DA�∇2 � − v� · ∇ � − �−1
� DA�

× 1
V

∫
A��

n�� · ∇ � dA= 0 in V�: (B.3)

B:C:2 : n�� · ∇ � = 0 at A��: (B.4)

B:C:3 : n�� · DA�∇ �

=n�� · DA� · ∇ � at A��:
(B.5)

B:C:4 : −n�� · DA� · ∇ �

=�A( � − KAeq �) at A��:
(B.6)

B:C:5 :  �(r + li) =  �(r) i = 1; 2; 3: (B.7)

B:C:6 :  �(r + li) =  �(r) i = 1; 2; 3: (B.8)∫
V�
 � dV = 0; (B.9)∫

V�

 � dV = 0: (B.10)

We start the proof by multiplying Eq. (B.1) by  � to 7nd

∇ · ( �DA� · ∇ �)−∇ � · DA� · ∇ �

−�−1
� �

1
V

∫
A��

n�� · DA� · ∇ � dA− kA 2
� = 0: (B.11)

This last equation can now be integrated on V� yielding∫
V�
∇ · ( �DA� · ∇ �) dV −

∫
V�
∇ � · DA� · ∇ � dV

−�−1
�

1
V

∫
A��

n�� · DA� · ∇ � dA
∫
V�
 � dV

−kA

∫
V�

2
� dV = 0 (B.12)
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or, using Eq. (B.9)∫
V�
∇ · ( �DA� · ∇ �) dV

−
∫
V�
∇ � · DA� · ∇ � dV

−kA

∫
V�

2
� dV = 0: (B.13)

Since  � is periodic,  �DA� · ∇ � is also periodic and this
allows to eliminate integrals on entrances and exits areas of
V�. Once this property is taken into account while employ-
ing the divergence theorem on the 7rst term of the above
equation and by making use of Eq. (B.2), we get∫

A��

 � n�� · DA� · ∇ � dA

−
∫
V�
∇ � · DA� · ∇ � dV

−kA

∫
V�
 2
� dV = 0: (B.14)

If one makes use of Eq. (B.5), an equivalent form of this
result is∫

A��

 �n�� · DA�∇ � dA

+
∫
V�
∇ � · DA� · ∇ � dV

+kA

∫
V�

2
� dV = 0: (B.15)

We shall continue the proof by multiplying Eq. (B.3) by  �

and use the two straightforward relationships

 � ∇ � =
1
2
∇ 2

� (B.16)

and

 �∇ · (∇ �) =∇ · ( � ∇ �)−∇ � · ∇ � (B.17)

to obtain

DA�[∇ · ( � ∇ �)−∇ � · ∇ �]− 1
2

v� · ∇ 2
�

−�−1
� DA� �

1
V

∫
A��

n�� · ∇ � dA= 0: (B.18)

Because v� is divergence free, an equivalent form of this
last equation is

DA�[∇ · ( �∇ �)−∇ � · ∇ �]− 1
2
∇ · (v� 2

�)

−�−1
� DA� �

1
V

∫
A��

n�� · ∇ � dA= 0: (B.19)

Integrating this result over V� and making use of Eq. (B.10)
yields

DA�

∫
V�

∇ · ( � ∇ �) dV − DA�

∫
V�

∇ � · ∇ � dV

−1
2

∫
V�

∇ · (v� 2
�) dV = 0: (B.20)

Again, because both v� and  � are periodic,  � ∇ � and
v� 2

� are also periodic and by application of the divergence
theorem, this allows to rewrite Eq. (B.20) under the form

DA�

∫
A��

 �n�� · ∇ � dA

+
∫
A��

 �n�� · DA�∇ � dA

−DA�

∫
V�

∇ � · ∇ � dV

−1
2

(∫
A��

n�� · v� 2
� dA

+
∫
A��

n�� · v� 2
� dA

)
= 0: (B.21)

According to the no slip boundary conditions in Eqs. (14)
and (15) and the no Jux boundary condition expressed by
Eq. (B.4), this result simpli7es to

−
∫
A��

 � n�� · DA�∇ � dA

+DA�

∫
V�

∇ � · ∇ � dV = 0: (B.22)

When this last result is multiplied by KAeq and added to Eq.
(B.15) we obtain∫

A��

( � − KAeq �) n�� · DA�∇ � dA

+KAeqDA�

∫
V�

∇ � · ∇ � dV

+
∫
V�
∇ � · DA� · ∇ � dV + kA

∫
V�

2
� dV = 0: (B.23)

We 7nally insert Eqs. (B.5) and (B.6) in this last result to
write

1
�A

∫
A��

(n�� · DA�∇ �)2 dA

+KAeqDA�

∫
V�

∇ � · ∇ � dV

+
∫
V�
∇ � · DA� · ∇ � dV + kA

∫
V�

2
� dV = 0: (B.24)
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Since DA� is a de7nite positive tensor, all the terms under
integral signs of this last equation are positive. As a conse-
quence, this equation requires that

 � = 0 (B.25)

and that  � is constant. When Eq. (B.10) is taken into ac-
count, we also get

 � = 0; (B.26)

which completes the proof.
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