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controllability of linear difference delay equations

Yacine Chitour∗ Sébastien Fueyo† Guilherme Mazanti‡

Mario Sigalotti†

May 12, 2023

Abstract

The paper deals with the controllability of finite-dimensional linear difference delay
equations, i.e., dynamics for which the state at a given time t is obtained as a linear
combination of the control evaluated at time t and of the state evaluated at finitely
many previous instants of time t ´ Λ1, . . . , t ´ ΛN . Based on the realization theory
developed by Y. Yamamoto for general infinite-dimensional dynamical systems, we
obtain necessary and sufficient conditions, expressed in the frequency domain, for the
approximate controllability in finite time in Lq spaces, q P r1,`8q. We also provide
a necessary condition for L1 exact controllability, which can be seen as the closure
of the L1 approximate controllability criterion. Furthermore, we provide an explicit
upper bound on the minimal times of approximate and exact controllability, given by
dmaxtΛ1, . . . ,ΛNu, where d is the dimension of the state space.

Keywords: difference delay equations, approximate controllability, exact controllability, realization
theory, Bézout’s identity.
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1 Introduction

The present paper deals with the approximate and exact controllability of linear difference
delay equations of the form

xptq “

N
ÿ

j“1

Ajxpt ´ Λjq ` Buptq, t ě 0, (1)

where, given three positive integers d, m, and N , A1, . . . , AN are fixed d ˆ d matrices with
real entries, the state x and the control u belong to Rd and Rm respectively, and B is a fixed
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dˆm matrix with real entries. Without loss of generality, the delays Λ1, . . . ,ΛN are positive
real numbers so that Λ1 ă ¨ ¨ ¨ ă ΛN .

One of the major interests in the study of difference delay equations is that some 1D
hyperbolic partial differential equations (PDEs) and, more precisely, systems of linear con-
servation laws can be put in the form (1) through the method of characteristics [2, 3, 6, 10],
yielding a system under the form (1) with a specific structure for the matrices A1, . . . , AN

(which are, in particular, all of rank 1). Equation (1) has mostly been analysed from a
stability viewpoint, in the case where there is no open-loop control u (or, equivalently, when
B “ 0). Necessary and sufficient criteria have been obtained for the exponential stability of
the origin of the system [1,6, 14,16].

The main efforts to study the controllability properties of delay systems have been made
on neutral differential delay systems

d

dt

˜

xptq ´

N
ÿ

j“1

Ajxpt ´ Λjq

¸

“

N
ÿ

j“0

rAjxpt ´ Λjq ` Buptq, t ě 0, (2)

where rA0, . . . , rAN are d ˆ d real matrices and Λ0 “ 0. Due to the infinite-dimensional
nature of neutral functional differential equations and difference delay equations, several
notions of controllability arise, such as approximate, exact, or relative controllability. Such
notions of controllability can be particularized according to whether one requires or not that
controllability occurs in a uniform time T (see Definitions 3.2 and 3.4).

The mostly investigated controllability notion is that of approximate controllability (with
no finite upper bound on the controllability time), usually in a control space made of square
integrable functions and a state space equal to the Sobolev space W 1,2pr´ΛN , 0s,Rdq. Usual
tools in this context are semigroups properties and Laplace transforms, which lead to Hautus-
type conditions for controllability, i.e., rank conditions on certain matrix-valued holomorphic
functions. When the system is retarded, i.e., Aj “ 0 for every j, Manitius [21] gave a
necessary and sufficient condition for the approximate controllability of System (2). This
result has been extended by Jacob et al. [17] and O’Connor et al. [24] to the neutral case
in the single-delay case N “ 1. Salamon [29] gave dual formulations of exact controllability
(which can be seen as observability inequalities) as well as some insights for the general case
for small solutions. Finally, Yamamoto [35], through the infinite realization theory developed
in [33], expanded the result on approximate controllabiity to the general neutral case with
an arbitrary number of delays.

Surprisingly, the controllability of the difference delay system (1) has been less investigated
until recently. Due to the form of equation (1), both the control space and the state space
can be chosen of the same nature, such as, for instance, Lq for some q P r1,`8s. The notion
of relative controllability is the simplest one and it requires steering the system in time
T ą 0 from any given initial condition to any given target xpT q in Rd. That question is now
completely understood: after studies handling special cases, Mazanti [22] gave a necessary
and sufficient condition for the relative controllability for the general system (1).

Chitour et al. [7] proposed algebraic conditions for the exact and approximate control-
lability in L2pr´ΛN , 0s,Rdq in uniform time T and gave a bound on the minimal time of
controllability in the case where the delays are rationally dependent, situation which is solved
by a standard state augmentation technique, reducing the matters at hand to the case of a
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single delay. They also addressed the first nontrivial case of two rationally independent delays
when the system has dimension two and has a single scalar control, i.e., when N “ d “ 2
and m “ 1. They provided necessary and sufficient conditions for both approximate and
exact controllability in terms of Kalman-type criteria on the parameters of the system and
asked whether it is possible to obtain such criteria in a more general situation. However, the
techniques of proof used in [7] become intractable when working in higher dimension or with
more than two delays.

The approach adopted in this paper to address approximate and exact controllability of
System (1) is based instead on Yamamoto’s realization theory developed in [32–38]. Ya-
mamoto’s theory, which extends older ideas given in [18, 19], considers controllability issues
for linear systems without a bound on the controllability time by adopting a distributional
framework (i.e., inputs and outputs belong to spaces of distributions) in which the system
can be characterized by a pair pP,Qq of matrix-valued distributions. In such a framework,
controllability issues are given in terms of Bézout’s characterizations. More precisely, exact
controllability from the origin (in the space of distributions) is equivalent to the existence of
two distributions R, S solving Bézout’s identity Q ˚R` P ˚ S “ δ0Id [38], while L2 approxi-
mate controllability from the origin is equivalent to proving an approximate Bézout identity,
i.e., the existence of sequences of distributions pRnqnPN and pSnqnPN such that Q ˚Rn `P ˚Sn

converges to δ0Id in the distributional sense as n tends to infinity [34]. In realization theory,
the solvability of a Bézout identity (respectively, an approximate Bézout identity) is usually
called left coprimeness (respectively, approximate left coprimeness), cf. [25, 31]. Note that
one of the virtues of relating controllability issues and Bézout’s identities is that, if the latter
has been solved, then one has a solution for the motion planning problem, i.e., a right-inverse
to the endpoint map, cf. Proposition 5.10.

Our results deal with approximate and exact criteria for controllability in functional state
spaces Lqpr´ΛN , 0s,Rdq, for q P r1,`8q. First, we prove that the range of the endpoint map
from the origin associated with System (1) saturates (i.e., does not increase) for T ě dΛN ,
enabling one to provide an upper bound on the minimal time of controllability, namely, prov-
ing that if Lq approximate (or exact) controllability holds true, then such a controllability
must occur in time less than or equal to dΛN (see Theorem 3.5). This is based on an explicit
representation of the endpoint map given in [7]. It should be noticed that, for hyperbolic
systems of conservation laws, sharp results on the (exact and null) controllability time have
been obtained in the remarkable papers [11, 12]. We also mention the striking results ob-
tained in [9] on optimal controllability time in the case of hyperbolic systems with analytic
time-varying coefficients. We recall, however, that hyperbolic systems of conservation laws
correspond to special classes of linear difference delay equations of the form (1).

Furthermore, specifying Yamamoto’s Hautus-type approximate controllability criterion to
System (1), the second contribution of this paper consists in providing sufficient and necessary
Hautus-type approximate controllability criteria for (1) in Lqpr´ΛN , 0s,Rdq for all q P r1,`8q

(see Theorem 3.6 and Proposition 3.11). In particular, since our criteria are independent of
q, we deduce that, if Lq approximate controllability holds for some q P r1,`8q, then it holds
for every such q.

The third contribution of this paper is a characterization of the L1 exact controllability of
System (1) in terms of a Bézout identity over a Radon measure algebra (see Theorem 5.13),
showing in particular that establishing L1 exact controllability of System (1) is equivalent
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to solving a corona problem (see [5, 13] for more details on corona problems). It is worth
noticing that the saturation of the range of the endpoint map is a crucial step also to derive
such a characterization. A necessary Hautus-type criterion for the solvability of the Bézout
identity is given in Proposition 5.17, allowing us to obtain a necessary condition for the exact
controllability in L1pr´ΛN , 0s,Rdq (see Theorem 3.7 and Proposition 3.12). The necessary
condition for the L1 exact controllability can be seen as the closure of the conditions obtained
for the Lq approximate controllability.

We conjecture that such a necessary condition is also sufficient for the exact controllability
in Lqpr´ΛN , 0s,Rdq, for any q P r1,`8q. This amounts to solving a Bézout identity over a
Radon measure algebra, which turns out to be a challenging open question. Note that the
conjecture holds true for N “ d “ 2 and m “ 1 as regards the L2 exact controllability, cf. [7].
In addition, we also provide in this paper a result, Theorem 3.10, yielding a partial positive
answer to the conjecture, stating that our Hautus-type condition implies exact controllability
between regular enough functions.

The exact controllability conditions we provide in Proposition 3.12 are reminiscent of
other controllability criteria for abstract equations in Banach spaces, such as Condition (24)
in [23], obtained through semigroup theory. However, such results are strongly related to the
skew-adjointness of the involved infinitesimal generator operators and the unitary character
of the corresponding semigroups, which is not the case for general difference delay systems
of the form (1). We also remark that our approximate controllability criterion is similar to
that given in [15] for the strong stabilization of System (1), i.e., for the existence of matrices
K1, . . . , KN so that the feedback uptq “

řN
j“1Kjxpt´Λjq stabilizes System (1) for all choices

of delays Λ1, . . . ,ΛN . Namely, combining our result with [15, Theorem 3.1], approximate
controllability of (1) for every choice of delays Λ1, . . . ,ΛN implies strong stabilization of
System (1).

We conclude the paper by illustrating the applicability of our results. We start by recover-
ing those of [7], at least for what concerns the characterization of approximate controllability.
We then highlight the generality of our criteria by discussing in more details the case of sys-
tems with two delays and a single input in dimension three. In that case, we obtain a
frequency-free approximate controllability characterization in the spirit of that of [7].

The sequel of the paper is organized as follows. Section 2 introduces the notations used
in this article, while our main results are stated in Section 3. In Section 4 we establish the
saturation of the range of the endpoint map for times larger than dΛN . Using Yamamoto’s
realization theory, our two main Hautus–Yamamoto criteria are proved in Section 5. Fi-
nally, we apply these criteria in Section 6 to deduce controllability criteria of Kalman type,
recovering previous results in the literature and extending them to more general cases.

2 Notation

In this paper, we denote by N and N˚ the sets of nonnegative and positive integers, respec-
tively. The set t1, . . . , Nu is represented by J1, NK for any N P N˚. We use Z, R, C, R`,
and R´ to denote the sets of relative integers, real numbers, complex numbers, nonnega-
tive, and nonpositive reals respectively. For p P C, ℜppq and ℑppq represent the real and
imaginary parts of p. For N P N˚ and n “ pn1, . . . , nNq P NN , the length of the N -tuple
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n is denoted by |n| and is equal to n1 ` ¨ ¨ ¨ ` nN . For Λ “ pΛ1, . . . ,ΛNq P RN , we write
Λ ¨ n :“ n1Λ1 ` ¨ ¨ ¨ ` nNΛN . Given two positive integers i and j, Mi,jpKq is the set of
i ˆ j matrices with coefficients in K “ R or C. For A P Mi,jpKq, we note A˚ its conjugate
transpose matrix. We use } ¨ } to denote a norm for every finite-dimensional space (over K)
and ||| ¨ ||| the induced norm for linear maps.

Otherwise stated, elements x P Ki are considered as column vectors. The identity matrix
in Mi,ipKq is denoted by Ii. For M P Mi,jpKq, rankM denotes the rank of M . Given a pos-
itive integer k, A P Mi,jpKq, and B P Mi,kpKq, the bracket rA,Bs denotes the juxtaposition
of the two matrices, which hence belongs to Mi,j`kpKq.

Let k P N˚ and q P r1,`8q. Given an interval I of R, LqpI,Rkq represents the space
of q-integrable functions on the interval I with values in Rk endowed of the Lq-norm on I
denoted } ¨ }I, q. The space of q-integrable functions on compact subsets of R (respectively,
R`) with values in Rk is denoted Lq

loc

`

R,Rk
˘

(respectively, Lq
loc

`

R`,Rk
˘

). The semi-norms

}ϕ}r0,as,q :“

ˆ
ż a

0

||ϕptq||
qdt

˙1{q

, ϕ P Lq
loc

`

R`,Rk
˘

, a ě 0,

induce a topology on Lq
loc

`

R`,Rk
˘

, which is then a Fréchet space. For a linear operator

f we denote Ran f its range and Ran f the closure of the range. More generally, if F is a
matrix-valued holomorphic function, we use F pCq and F pCq to denote its image and the the
closure of its image, respectively.

We next introduce the distributional framework needed in the paper. A detailed presen-
tation with precise definitions can be found, e.g., in [30, 34, 35]. We use DpRq to denote the
space of C8 functions defined on R with compact support, endowed with its canonical LF
topology. We also use D1pRq to denote the space of continuous linear forms acting on DpRq,
i.e., the space of all distributions on R, endowed with the strong dual topology of uniform
convergence on bounded subsets of DpRq. For α P D1pRq and ψ P DpRq, xα, ψy denotes the
duality product. The support of a distribution α P D1pRq, denoted supppαq, is the comple-
ment of the largest open set on which α is zero. The order of a distribution α P D1pRq is the
smallest integer p such that, for every compact set K Ă R, there exists CK ą 0 such that

|xα, ψy| ď CK sup
xPK

|ψppq
pxq|,

for all ψ P DpRq with compact support in K, where ψppq denotes the p-th derivative of ψ.
We note δx P D1pRq the Dirac distribution at x P R. Notice that δx has order zero.

To deal with our controllability issues, we introduce the following subspaces of D1pRq.
We use E 1pR´q and E 1pR`q to denote the spaces of distributions having compact support
in R´ and R`, respectively. We denote by MpR´q and MpR`q the subspaces of E 1pR´q

and E 1pR`q consisting of distributions of order zero. The spaces MpR´q and MpR`q can
be also characterized as the sets of Radon measures with compact support contained in R´

and R`, thanks to the Riesz representation theorem (see, e.g., [27, Theorem 6.19]). Let
D1

`pRq be the space of distributions having support bounded on the left, which becomes
an algebra when endowed with the convolution product ˚. We also consider M`pRq as the
space of Radon measures with support bounded on the left, or equivalently the subspace of
D1

`pRq of distributions of order zero. With a slight abuse of notation, we also write D1pRq,
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E 1pR´q,MpR´q, D1
`pRq, andM`pRq to refer to sets of matrices whose entries belong to those

respective spaces.
Given a Radon measure µ P M`pRq, we use pµppq to denote the two-sided Laplace trans-

form of µ at frequency p P C, that is,

pµppq “

ż `8

´8

dµptqe´pt, (3)

provided that the integral exists. In particular, the Laplace transform of a Dirac distribution
δx, x P R, is the holomorphic map

pδx : p ÞÑ e´px, p P C. (4)

In the more general setting of a distribution α P D1pRq, the Laplace transform pαppq of α at
p P C is defined by xα, e´¨py, when this quantity makes sense, i.e., when the linear form α
on DpRq can be extended by continuity (in the standard topology of C8pRq) to the function
t ÞÑ e´tp.

We now define the truncation to positive times of a distribution in D1
`pRq, following the

presentation of [34,35]. Let DpR`q Ă DpRq be the space of infinitely differentiable functions
on R with compact support contained in R` and D1pR`q be its topological dual space. For
α P D1

`pRq, we define its truncation πα P D1pR`q by

xπα, ψy “ xα, ψy, ψ P DpR`q. (5)

We have that πα is a well-defined element of D1pR`q. Furthermore, π is continuous with
respect to the strong dual topology of D1

`pRq and D1pR`q. Note that π truncates distributions
to positive times only and, in particular, πδ0 “ 0. For further properties concerning the
operator π, see Lemma 5.9.

3 Description of the problem and statement of the con-

trollability criteria

We start by defining solutions of System (1) considered in this paper. The following propo-
sition can be easily obtained by a direct step-by-step construction of the solution, as given
in [6, Proposition 3.2] (cf. also [22, Remark 2.3]). Unless otherwise stated, q denotes any real
number belonging to the interval r1,`8q.

Proposition 3.1. Let T ą 0, u P Lqpr0, T s,Rmq, and x0 P Lqpr´ΛN , 0s,Rdq. There exists
a unique solution x P Lqpr´ΛN , T s,Rdq such that xpθq “ x0pθq for all θ P r´ΛN , 0s and xp¨q

satisfies Equation (1) for all t P r0, T s.

From now on, given T ą 0, u P Lqpr0, T s,Rmq, and x0 P Lqpr´ΛN , 0s,Rdq, we write
x P Lqpr´ΛN , T s,Rdq to denote the solution given by Proposition 3.1. For all t P r0, T s, we
denote by xt P Lqpr´ΛN , 0s,Rdq the function defined by xtpθq :“ xpt`θq, θ P r´ΛN , 0s. Using
such a notation, we introduce in the next definition the standard notions of approximate and
exact controllability in finite time T ą 0 that we are interested to study in this paper (see,
for instance, [8, Chapter 2]).
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Definition 3.2. System (1) is said to be:

1) Lq approximately controllable in time T ą 0 if for every x0, ϕ P Lqpr´ΛN , 0s,Rdq and
ϵ ą 0, there exists u P Lqpr0, T s,Rmq such that

}xT ´ ϕ}r´ΛN ,0s,q ă ϵ;

2) Lq exactly controllable in time T ą 0 if for every x0, ϕ P Lqpr´ΛN , 0s,Rdq, there exists
u P Lqpr0, T s,Rmq such that

xT “ ϕ.

Remark 3.3. If System (1) is Lq approximately (respectively, exactly) controllable in time
T ą 0 then it is Lq approximately (respectively, exactly) controllable in any time T 1 ě T .

We present below weaker notions of controllability, corresponding to those used by Ya-
mamoto [35], in which the controllability time is not fixed in advance, but may depend on
the target to be reached, and the initial state is always assumed to be the origin.

Definition 3.4. System (1) is said to be:

1) Lq approximately controllable (from the origin) if for x0 ” 0, every ϕ P Lqpr´ΛN , 0s,Rdq,
and ϵ ą 0, there exist Tϵ,ϕ ą 0 and u P Lqpr0, Tϵ,ϕs,Rmq such that

}xTϵ,ϕ
´ ϕ}r´ΛN ,0s,q ă ϵ;

2) Lq exactly controllable (from the origin) if for x0 ” 0 and every ϕ P Lqpr´ΛN , 0s,Rdq,
there exist Tϕ ą 0 and u P Lqpr0, Tϕs,Rmq such that

xTϕ
“ ϕ.

Note that obvious implications hold true between the different notions provided in Def-
initions 3.2 and 3.4, i.e., approximate (respectively, exact) controllability in time T implies
approximate (respectively, exact) controllability from the origin. One of the results of the
present paper is that one actually has equivalence between such notions, as stated in the next
theorem.

Theorem 3.5. Let q P r1,`8q. System (1) is Lq approximately (respectively, exactly) con-
trollable from the origin if and only if it is Lq approximately (respectively, exactly) controllable
in time T “ dΛN .

The proof of Theorem 3.5 is provided in Section 4.
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3.1 Hautus–Yamamoto criteria

Before stating our two main theorems, which give necessary and sufficient (respectively,
necessary) Hautus–Yamamoto criteria to ensure the approximate (respectively, exact) con-
trollability in time dΛN of System (1), let us introduce the matrix-valued holomorphic map

Hppq :“ Id ´

N
ÿ

j“1

e´pΛjAj, p P C. (6)

The holomorphic function H defined above arises when one considers solutions of (1) with
u P LqpR`,Rmq and an initial condition xpθq “ 0 for θ P r´ΛN , 0s. Indeed, extending x and
u by zero for all negative times, (1) is satisfied for every t P R and then, taking the two-sided
Laplace transform, we obtain that

pxppq “ Hppqpuppq, (7)

for p in some right-half plane of C, where Hppq “ Hppq´1B is the transfer function of
System (1), i.e., the matrix describing the linear relation between the frequencies of the
input and of the output. We notice that the Laplace transform of x exists for all frequencies
in a suitable right-half plane of C because the solutions of (1) grow at most exponentially.

Our main results are given next.

Theorem 3.6. Let q P r1,`8q. System (1) is Lq approximately controllable in time dΛN if
and only if the two following conditions hold true:

i) rank rHppq, Bs “ d for every p P C,

ii) rankrAN , Bs “ d.

Theorem 3.7. If System (1) is L1 exactly controllable in time dΛN then the two following
conditions hold true:

i) rank rM,Bs “ d for every M P HpCq,

ii) rankrAN , Bs “ d.

Theorems 3.6 and 3.7 are proved in Sections 5.3 and 5.4, respectively.
Theorem 3.6 is a complete characterization of Lq approximate controllability, providing

a necessary and sufficient condition which can be seen as the counterpart for difference
equations of Hautus controllability criterion. In particular, the property of Lq approximate
controllability in time dΛN does not depend on q P r1,`8q, in the sense that if it holds for
some q P r1,`8q then it holds for all of them. On the contrary, Theorem 3.7 provides only a
necessary condition for Lq exact controllability in the case q “ 1. We expect in fact that the
above condition is also sufficient for any q and, in that direction, we propose the following
conjecture.

Conjecture 3.8. Let q P r1,`8q. System (1) is Lq exactly controllable in time dΛN if and
only if the two following conditions hold true:
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i) rank rM,Bs “ d for every M P HpCq,

ii) rankrAN , Bs “ d.

This is motivated firstly by the fact that this conjecture actually holds true for the L2

exact controllability in the case N “ d “ 2 and m “ 1, as it follows from the results of
[7] (see Section 6 for details). In addition, we provide below a result giving ground to the
above conjecture. For that purpose, we introduce the following compatibility condition for
the existence of regular enough solutions of (1).

Definition 3.9. Let k P N and x0 P Ckpr´ΛN , 0s,Rdq. We say that x0 is Ck-admissible for
System (1) if, for every integer ℓ with 0 ď ℓ ď k, we have

x
pℓq
0 p0q “

N
ÿ

j“1

Ajx
pℓq
0 p´Λjq.

Theorem 3.10. Assume that Conditions i) and ii) of Conjecture 3.8 hold true. Then there
exists a nonnegative integer k such that, for every q P r1,`8q and x0, ϕ P Ckpr´ΛN , 0s,Rdq

Ck-admissible for System (1), there exists u P Lqpr´ΛN , 0s,Rmq such that xdΛN
“ ϕ almost

everywhere in r´ΛN , 0s.

The proof of Theorem 3.10 is provided in Section 5.5.

3.2 Further controllability characterizations

The approximate and exact controllability of System (1) can be described in several equivalent
ways using Propositions 3.11 and 3.12, respectively.

Proposition 3.11. The following three statements are equivalent:

(a) rank rHppq, Bs “ d for every p P C.

(b) For every p P C, one has

inf
␣
ˇ

ˇ

ˇ

ˇgTHppq
ˇ

ˇ

ˇ

ˇ `
ˇ

ˇ

ˇ

ˇgTB
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ g P Cd, }g} “ 1
(

ą 0.

(c) For every p P C, one has

det pHppqH˚
ppq ` BB˚

q ą 0.

Proposition 3.12 below is the counterpart of Proposition 3.11 for the case of exact con-
trollability.

Proposition 3.12. Under the assumption that rank rAN , Bs “ d, the following three state-
ments are equivalent:

(a) rank rM,Bs “ d for every M P HpCq.
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(b) There exists α ą 0 such that, for every p P C,

inf
␣
ˇ

ˇ

ˇ

ˇgTHppq
ˇ

ˇ

ˇ

ˇ `
ˇ

ˇ

ˇ

ˇgTB
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ g P Cd, }gT } “ 1
(

ě α.

(c) There exists α ą 0 such that, for every p P C,

det pHppqH˚
ppq ` BB˚

q ě α.

The proofs of Propositions 3.11 and 3.12 are given in Section 5.2.
As an immediate consequence of Theorems 3.6 and 3.7 and Propositions 3.11 and 3.12,

we have the following corollary.

Corollary 3.13. Under the assumption that rank rAN , Bs “ d, we have:

i) Given any q P r1,`8q, System (1) is Lq approximately controllable in time dΛN if and
only if one of the items (a)–(c) of Proposition 3.11 holds true.

ii) If System (1) is L1 exactly controllable in time dΛN then all items (a)–(c) of Proposi-
tion 3.12 hold true.

Thanks to Item (c) in Propositions 3.11 and 3.12, Item i) of Theorems 3.6 and 3.7 can be
reformulated in an equivalent way in terms of the non-vanishing properties of the function
p ÞÑ det pHppqH˚ppq ` BB˚q. Our next result shows that this function can only vanish in a
bounded vertical strip of the complex plane.

Proposition 3.14. There exist β1, β2, ρ P R such that

det pHppqH˚
ppq ` BB˚

q ě |det pHppqq|2 ě ρ ą 0 (8)

for all p P C such that ℜppq ă β1 or ℜppq ą β2.

Proof. The left inequality in (8) is trivial. As for the second one, notice first that one
can assume, with no loss of generality, that Hp¨q ı Id. Moreover, for ℜppq large enough,
Hppq is arbitrarily close to the identity. This implies that there exists β2 ą 0 such that
|det pHppqq| ě 1{2 for ℜppq ą β2.

On the other hand, the holomorphic function h defined by hppq “ det pHppqq can be
written as

hppq “ h̃ppq ` hne
´ppΛ¨nq, p P C,

where hn is a nonzero real number, n is in NN and satisfies 0 ď |n| ď N , and h̃p¨q is a
holomorphic function such that lim

ℜppqÑ´8
h̃ppqeppΛ¨nq

“ 0. We then deduce that hne
´ppΛ¨nq is

the dominant term of hppq as ℜppq Ñ ´8, and it goes to 8 in modulus. This implies that
for every ρ ą 0 there exists β1 P R such that |hppq|2 ě ρ for ℜppq ă β1.
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4 Properties of the endpoint map and consequences for

controllability

The goal of this section is threefold. Firstly, we give a variation-of-constants formula for
System (1) allowing us to write the solution operator as the sum of a flow operator and
an endpoint map. As a consequence, we can give characterizations of the controllability
of System (1) in terms of the range of the endpoint map. Secondly, through a Cayley–
Hamilton theorem for multivariate polynomials, we show that the range of the endpoint
map is constant from the time dΛN and finally we deduce that the approximate (exact
respectively) controllability of System (1) is equivalent to the approximate controllability
(exact respectively) in finite time dΛN , thus providing a proof for Theorem 3.5.

4.1 Definitions and preliminary remarks

We recall in Proposition 4.3 the explicit representation formula for solutions of System (1),
often called variation-of-constants formula (and sometimes flow formula), which can be found
in [7]. Before the statement of the proposition, let us give the following definitions.

Definition 4.1. The family of matrices Ξn P Md,dpRq, n P ZN , is defined inductively as

Ξn “

$

’

&

’

%

0 if n P ZNzNN ,

Id if n “ 0,
řN

k“1AkΞn´ek if n P NN and |n| ą 0,

where ek denotes the k-th canonical vector of ZN for k P J1, NK, i.e., all the coordinates of
ek are zero except for the k-th one, which is equal to one.

Definition 4.2. For T P r0,`8q, we introduce the following two operators:

1) The flow operator ΥqpT q : Lqpr´ΛN , 0s,Rdq Ñ Lqpr´ΛN , 0s,Rdq of System (1) defined
by

pΥqpT qx0q psq “
ÿ

pn,jqPNNˆJ1,NK
´ΛjďT`s´Λ¨nă0

Ξn´ejAjx0pT ` s ´ Λ ¨ nq,

for x0 P Lqpr´ΛN , 0s,Rdq and s P r´ΛN , 0s. The operator ΥqpT q represents the solution
operator of System (1) with B “ 0 and initial state x0.

2) The endpoint operator EqpT q : Lqpr0, T s,Rmq Ñ Lqpr´ΛN , 0s,Rdq of System (1) defined
by

pEqpT quq ptq “
ÿ

nPNN

Λ¨nďT`t

ΞnBupT ` t ´ Λ ¨ nq,

for u P Lqpr0, T s,Rmq and t P r´ΛN , 0s.

Proposition 4.3 (Variation-of-constants formula). For T P r0,`8q, u P Lqpr0, T s,Rmq,
x0 P Lqpr´ΛN , 0s,Rdq, and t P r0, T s, we have

xt “ Υqptqx0 ` Eqptqu. (9)
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Remark 4.4. Notice that Proposition 4.3 has been stated for q “ 2 in [7] only but it holds
true as well for q P r1,`8q.

In Proposition 4.5 below we use the variation-of-constants formula to express approximate
and exact controllability in terms of the image of the operator EqpT q, T ą 0.

Proposition 4.5. Let q P r1,`8q and T ą 0.

i) System (1) is Lq approximately controllable in time T ą 0 if and only if RanEqpT q is
dense in Lqpr´ΛN , 0s,Rdq.

ii) System (1) is Lq approximately controllable from the origin if and only if

ď

Tě0

RanEqpT q “ Lq
pr´ΛN , 0s,Rd

q. (10)

iii) System (1) is Lq exactly controllable in time T ą 0 if and only if RanEqpT q “

Lqpr´ΛN , 0s,Rdq.

iv) System (1) is Lq exactly controllable from the origin if and only if
ď

Tě0

RanEqpT q “ Lq
pr´ΛN , 0s,Rd

q. (11)

4.2 Saturation of the range of the endpoint map in time dΛN

Cayley–Hamilton theorem is instrumental to study controllability properties of System (1)
containing one delay (see [7, Remark 3.5]). It turns out that the following generalization of
Cayley–Hamilton theorem in the case of multivariate polynomials plays a similar role in our
subsequent arguments.

Lemma 4.6. Let Ξn, n P ZN , be the matrices introduced in Definition 4.1. There exist real
coefficients αk, for k P NN with 0 ă |k| ď d, such that, for every n P NN with |n| ě d,

Ξn “ ´
ÿ

kPNN

0ă|k|ďd

αkΞn´k. (12)

Proof. For t “ pt1, . . . , tNq P RN , set

Aptq “ t1A1 ` t2A2 ` ¨ ¨ ¨ ` tNAN .

One deduces, by Definition 4.1 and an immediate induction argument that, for every j P N
and t P RN , it holds

Aptqj “
ÿ

nPNN

|n|“j

Ξnt
n, (13)

where tn :“ tn1
1 t

n2
2 ¨ ¨ ¨ tnN

N . Using Neumann series, we deduce from Equation (13) that, for t
small enough,

`

Id ´ Aptq
˘´1

“
ÿ

jPN

Aptqj “
ÿ

nPNN

Ξnt
n. (14)

12



Notice that P ptq “ det
`

Id ´ Aptq
˘

is a multivariate polynomial of degree d, that is,

P ptq “
ÿ

kPNN

0ď|k|ďd

αkt
k, (15)

for some real numbers αk defined for k P NN such that |k| ď d and α0 “ 1. Let Adj
`

Id´Aptq
˘

be the adjugate matrix of Id´Aptq. We have, on the one hand, that there existMk P Md,dpRq

for k P NN and 0 ď |k| ď d ´ 1 such that

Adj
`

Id ´ Aptq
˘

“
ÿ

kPNN

0ď|k|ďd´1

Mkt
k (16)

and, on the other hand, that Equations (14)–(15) lead to

Adj
`

Id ´ Aptq
˘

“ P ptq
`

Id ´ Aptq
˘´1

“
ÿ

kPNN

0ď|k|ďd

αkt
k
ÿ

nPNN

Ξnt
n

“
ÿ

nPNN

ÿ

kPNN

0ď|k|ďd

αkΞnt
n`k. (17)

The substitution l “ n ` k in (17) allows us to write

Adj
`

Id ´ Aptq
˘

“
ÿ

nPNN

ÿ

lPNN , l´nPNN

0ď|l´n|ďd

αl´nΞnt
l. (18)

We deduce from Equations (16)–(18) that, for l P NN and |l| ě d,

ÿ

nPNN , l´nPNN

0ď|l´n|ďd

αl´nΞn “ 0. (19)

Setting n1 “ l ´ n in (19), one obtains

ÿ

n1PNN , l´n1PNN

0ď|n1|ďd

αn1Ξl´n1 “ 0. (20)

Since Ξl´n1 “ 0 for l ´ n1 P ZNzNN (see Definition 4.1), we deduce from Equation (20) that

Ξl “ ´
ÿ

n1PNN

0ă|n1|ďd

αn1Ξl´n1 , (21)

hence the conclusion.

We prove now that the range of the operator EqpT q is constant with respect to T for
T ě dΛN .

Theorem 4.7. For all T P rdΛN ,`8q and q P r1,`8q, we have

RanEqpT q “ RanEqpdΛNq. (22)
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Proof. Let q P r1,`8q. The proof is divided in two steps. We first prove that Equation (22)
is satisfied for T P rdΛN , dΛN ` δs and some δ ą 0. We then deduce from the flow formula
(9) that Equation (22) is actually satisfied for all T P rdΛN ,`8q.

Let T ą dΛN and u P Lqpr0, T s,Rmq. We define

u1psq :“ ups ` T ´ dΛNq, s P r0, dΛN s, (23)

and
u2psq :“ ´

ÿ

0ă|k|ďd, kPNN

săΛ¨kďs`T´dΛN

αkups ´ Λ ¨ k ` T ´ dΛNq, s P r0, dΛN s, (24)

where the coefficients αk are defined as in Proposition 4.6. The sum in (24) is understood to
be zero when the indices are taken in an empty set. For t P r´ΛN , 0s, we have

pEqpT quq ptq “
ÿ

nPNN

Λ¨nďT`t

ΞnBupT ` t ´ Λ ¨ nq

“
ÿ

nPNN

Λ¨nďdΛN`t

ΞnBupT ` t ´ Λ ¨ nq `
ÿ

nPNN

dΛN`tăΛ¨nďT`t

ΞnBupT ` t ´ Λ ¨ nq. (25)

Notice that
ÿ

nPNN

Λ¨nďdΛN`t

ΞnBupT ` t ´ Λ ¨ nq “ EqpdΛNqu1ptq. (26)

Since dΛN ` t ă Λ ¨ n for n P NN implies that |n| ě d, we deduce from Lemma 4.6 that

ÿ

nPNN

dΛN`tăΛ¨nďT`t

ΞnBupT ` t ´ Λ ¨ nq “ ´
ÿ

nPNN

dΛN`tăΛ¨nďT`t

ÿ

kPNN

0ă|k|ďd

αkΞn´kBupT ` t ´ Λ ¨ nq. (27)

The substitution n1 “ n ´ k in Equation (27) yields

ÿ

nPNN

dΛN`tăΛ¨nďT`t

ΞnBupT ` t´Λ ¨nq “ ´
ÿ

kPNN

0ă|k|ďd

ÿ

n1PNN

dΛN`tăΛ¨pn1`kqďT`t

αkΞn1BupT ` t´Λ ¨ pn1
` kqq.

(28)
Let δ ą 0 be such that for all T P rdΛN , dΛN ` δs, t P r´ΛN , 0s, k P NN with 0 ă |k| ď d,

and n1 P NN, if dΛN ` t ă Λ ¨ pn1 ` kq ď T ` t then Λ ¨ n1 ď dΛN ` t.
Letting T P rdΛN , dΛN ` δs, we can thus rewrite Equation (28) as

ÿ

nPNN

dΛN`tăΛ¨nďT`t

ΞnBupT ` t ´ Λ ¨ nq

“ ´
ÿ

n1PNN

Λ¨n1ďdΛN`t

Ξn1B
ÿ

kPNN , 0ă|k|ďd
dΛN`tăΛ¨pn1`kqďT`t

αkupT ` t ´ Λ ¨ pn1
` kqq

“ EqpdΛNqu2ptq. (29)
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Equations (25), (26), and (29) prove that, for T P rdΛN , dΛN ` δs and t P r´ΛN , 0s,

EqpT quptq “ EqpdΛNqu1ptq ` EqpdΛNqu2ptq. (30)

From Equation (30), we deduce that,

RanEqpT q “ RanEqpdΛNq, T P rdΛN , dΛN ` δs. (31)

Let us now extend Equation (31) to all T P rdΛN ,`8q. Let V “ RanEqpdΛNq and
x P V . Fix u P Lqpr0, dΛN s,Rmq such that x “ EqpdΛNqu. For t P r0, δs, define ũ P

Lqpr0, dΛN ` ts,Rmq by setting ũ|r0,dΛN s “ u and ũpsq “ 0 for s P rdΛN , dΛN ` ts. From the
variation-of-constants formula (9), we have

Υqptqx “ EqpdΛN ` tqũ P RanEqpdΛN ` tq.

Thanks to Equation (31) we have proved that

Υqptqx P V, t P r0, δs, x P V. (32)

Let y P RanEqpT q for T P rdΛN ` δ, dΛN ` 2δs and u P Lqpr0, T s,Rmq such that
y “ EqpT qu. Define z “ EqpdΛN ` δqu|r0,dΛN`δs P V . The variation-of-constants formula
(Equation (9)) gives

y “ ΥqpT ´ dΛN ´ δqz ` EqpT ´ dΛN ´ δqǔ, (33)

where ǔpαq “ upα ` dΛN ` δq for α P r0, T ´ dΛN ´ δs. We deduce from (31) and (32) that
y P RanEqpdΛNq, proving that

RanEqpdΛNq “ RanEqpT q, T P rdΛN ` δ, dΛN ` 2δs. (34)

The iteration of the same process proves that Equation (34) actually holds for all T ě

dΛN .

4.3 Upper bound on the minimal control time

We next provide a proof of Theorem 3.5, which is a direct consequence of the saturation of
the range of the endpoint map from time dΛN .

Proof Theorem 3.5. By Theorem 4.7 and since T ÞÑ RanEqpT q is monotone nondecreasing
for the inclusion, we have that

ď

Tě0

RanEqpT q “ RanEqpdΛNq.

The conclusion directly follows from Proposition 4.5.

One of the major questions concerning the approximate and exact controllability in finite
time T is to determine the minimal time of controllability.
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Definition 4.8. We define Tmin, ap, q and Tmin, ex, q the minimal time of the approximate and
exact controllability respectively as follows:

Tmin, ap, q :“ inf
TPR`

tSystem (1) is Lq approximately controllable in time T u,

Tmin, ex, q :“ inf
TPR`

tSystem (1) is Lq exactly controllable in time T u,

with the convention that inf H “ `8.

Since an immediate inspection of System (1) shows that it is never approximately or
exactly controllable before the time ΛN , we can recast Theorem 3.5 in terms of minimal time
of controllability as follows.

Corollary 4.9. Both times Tmin, ap, q and Tmin, ex, q belong to the set rΛN , dΛN s Y t`8u.

In the case N “ d “ 2 and m “ 1, it is proved in [7] that either Tmin, ap, 2 “ `8 or
Tmin, ap, 2 “ Tmin, ex, 2 “ 2ΛN . In the general case however, dΛN is not always minimal as
proved in [7] by looking at the case of commensurable delays. It was noticed in the same
reference that dΛN is minimal when controllability holds for systems with a single input and
commensurable delays. We conjecture that this result holds true also for the case of non-
necessarily commensurable delays. It would be also interesting to investigate the question of
equality between Tmin, ap, q and Tmin, ex, q when both of them are finite.

5 Hautus–Yamamoto criteria for approximate and ex-

act controllability

In this section, we stick to Yamamoto’s notations used in [34,35], which have been introduced
in Section 2.

5.1 Realization theory

When the initial condition is fixed at 0 (which is the case in Definition 3.4), System (1)
describes a linear relation between the control u on r0, T s and the state x on rT ´ ΛN , T s,
described by the operator EqpT q introduced in Definition 4.2. The main idea in realization
theory is to represent such a linear relation between an input (here the control u) and an
output (here the state x), by writing the output as a convolution of the input with a certain
kernel. For an introduction to the terminology of realization theory and input-output systems
in finite dimension, we refer to the textbooks of Polderman and Willems [25] or Sontag [31].

Yamamoto’s approach to the realization theory for infinite-dimensional systems considers
systems in which the input u is applied during a time interval of the form r´T, 0s, with
T ą 0 arbitrary, and the output is a certain function t ÞÑ yptq defined for positive times, in a
suitable functional space. In order to relate System (1) with Yamamoto’s realization theory,
we rewrite it, after suitable time translations, as
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’

’

’

’

&

’

’

’

’

%

xptq “

N
ÿ

j“1

Ajxpt ´ Λjq ` Buptq, for t ě inf supppuq,

xptq “ 0, for t ă inf supppuq,

yptq “ xpt ´ ΛNq, for t P r0,`8q,

(35)

where the input u belongs to

Ωq “ tu P Lq
pR´,Rm

q | supppuq is compactu,

with supppuq denoting the support of u.
We aim at writing System (35) as a convolution operator with a kernel in the space of

Radon measures, i.e., we want to find A P M`pRq such that the input-output system (35)
can be represented as

yptq “ pA ˚ uqptq “

ż `8

´8

dApτqupt ´ τq, t P r0,`8q. (36)

Note that the convolution of a d ˆ m matrix-valued Radon measure with a compactly sup-
ported function in LqpR,Rmq belongs to LqpR,Rdq. Recalling that π is the truncation op-
erator on positive times defined in Equation (5), we can rewrite Equation (36) in a more
convenient way as

y “ πpA ˚ uq. (37)

To achieve the goal of finding a Radon measure A satisfying Equation (37), we define the
zero-order distributions

Q :“ δ´ΛN
Id ´

N
ÿ

j“1

δ´ΛN`Λj
Aj, (38)

P :“ Bδ0. (39)

The matrix-valued distributions Q and P are in MpR´q, the space of Radon measures with
compact support included in R´. These distributions are naturally associated with Sys-
tem (35) for two major reasons.

We define the state space of System (35) in terms of the distribution Q as

XQ, q :“
␣

y P Lq
loc

`

R`,Rd
˘
ˇ

ˇ πpQ ˚ yq “ 0
(

. (40)

The system thus has an input u belonging to Ωq and an output y in XQ, q. We remark that
the set XQ, q can be easily identified with the space Lq

`

r0,ΛN s ,Rd
˘

. In fact, y P XQ, q if and
only if the restriction y|r0,ΛN s is in L

qpr0,ΛN s,Rdq and y is the unique extension of y|r0,ΛN s on
the interval r0,`8q satisfying the condition πpQ ˚ yq “ 0.

The distributions Q and P allow us to obtain the Radon measure A representing Sys-
tem (35) as a convolution operator. Denoting by ỹ the natural extension of the output y on
R, i.e., ỹptq “ xpt ´ ΛNq for t P R, the first equation of (35) implies that

pQ ˚ ỹq ptq “ pP ˚ uq ptq, t P R. (41)

17



The distribution Q is invertible over D1
`pRq in convolution sense and the inverse distribution

Q´1 belongs to M`pRq. More precisely, the distribution

Q´1 :“ δΛN
˚

˜

`8
ÿ

n“0

˜

N
ÿ

j“1

δΛj
Aj

¸n¸

is easily seen to be the inverse of Q by a Neumann series argument. We take the convolution
product of Equation (41) on the left by Q´1 and we obtain

ỹptq “
`

Q´1
˚ P ˚ u

˘

ptq, t P R. (42)

Applying the operator π in Equation (42), we have

yp¨q “ π pA ˚ uq p¨q, where A :“ Q´1
˚ P. (43)

Notice also that the measure A belongs toM`pRq. As a consequence, System (35) is pseudo-
rational in the sense of Yamamoto (see, e.g., [35]).

Remark 5.1. Equation (36) provides an expression for the relation between the input u and
the output y of System (35). Other expressions for this same relation can be obtained by
other means, such as by relying on the operator EqpT q as done in Section 4 or by expressing y
as a Stieltjes integral of u with respect to the fundamental solution of the system, as done in
the variation-of-constants formula in [14]. While clearly equivalent, some representations can
be more suitable than others for a given purpose. The representation through the operator
EqpT q was useful in Section 4 to prove Theorem 3.5, and in the remaining part of the paper
we will use (36) to obtain the controllability results from Theorems 3.6 and 3.7.

We now characterize the controllability notions from Definition 3.4 in terms of the above
realization theory formalism.

Proposition 5.2. System (1) is

i) Lq approximately controllable if and only if for every ϕ P XQ, q there exists a se-
quence of inputs punqnPN P pΩqq

N such that its associated sequence of outputs pynqnPN P
`

Lq
loc

`

R`,Rd
˘˘N

through System (35) satisfies

yn ÝÑ
nÑ`8

ϕ in Lq
loc

`

R`,Rd
˘

;

ii) Lq exactly controllable if and only if for every ϕ P XQ, q there exists u P Ω such that its
associated output through System (35) satisfies

yp¨q “ ϕp¨q.

Remark 5.3. Following Yamamoto (see, e.g., [35]), we will refer in the sequel to the charac-
terization of approximate and exact controllability of System (1) given in Proposition 5.2 as
approximate and exact controllability of System (35). Note also that, in [35], approximate (re-
spectively, exact) controllability of System (1) is also called quasi-reachability (respectively,
reachability).
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5.2 Preliminary properties and proofs of Propositions 3.11 and
3.12

Before making use of the realization theory to provide criteria for approximate and exact
controllabilities in Sections 5.3 and 5.4, respectively, we provide in this section preliminary
technical results relating properties of the (Laplace transform of the) distributions Q and P
introduced in the framework of realization theory with H associated with System (1). In
particular, we shall also obtain from those technical results a proof of Propositions 3.11 and
3.12.

We start by considering the Laplace transforms of the distributions Q and P , which are
given by (see formulas (3) and (4))

pQppq “ epΛN Id ´

N
ÿ

j“1

eppΛN´ΛjqAj, pP ppq ” pP “ B, p P C.

In the following we use in an equivalent way B and pP depending on the context. Actually,
when referring to Yamamoto’s articles, it is more practical to use pP , while it is better to use
B when we deal with Hautus–Yamamoto criteria for System (1).

We first notice that Hp¨q and pQp¨q satisfy the relation

Hppq “ e´pΛN
pQppq, p P C. (44)

In Proposition 5.5 given below, we link the rank condition of the operator Hp¨q associated

with System (1) with the rank condition of the operator pQp¨q associated with System (35).
As a preliminary step, let us prove the following technical lemma.

Lemma 5.4. With the notations introduced above, the following properties hold true:

i) There exists M P HpCq such that rank rM,Bs ă d if and only if there exist g P Cd and
ppnqnPN P CN with bounded real part such that }g} “ 1, gTB “ 0, and limnÑ8 g

THppnq “

0.

ii) Under the assumption that rank rAN , Bs “ d, there exists rQ P pQpCq such that rank
“

rQ,
B
‰

ă d if and only if there exist g P Cd and ppnqnPN P CN with bounded real part such

that }g} “ 1, gTB “ 0, and limnÑ8 g
T
pQppnq “ 0.

iii) Under the assumption that rank rAN , Bs “ d, Condition (b) in Proposition 3.12 is not
satisfied if and only if there exist g P Cd and ppnqnPN P CN with bounded real part such
that }g} “ 1, gTB “ 0, and limnÑ8 g

THppnq “ 0.

Proof. We start by proving Item i). Let g P Cd and ppnqnPN with bounded real part be
such that }g} “ 1, gTB “ 0 and limnÑ8 g

THppnq “ 0. Since Hp¨q is uniformly bounded on
any bounded vertical strip, it follows that, up to a subsequence, Hppnq converges to some
matrix M P Md,dpCq as n Ñ 8. We deduce that gTM “ 0 and gTB “ 0, proving that
rank rM,Bs ă d. Conversely, assume that g P Cd and M are such that }g} “ 1, gTB “ 0,
gTM “ 0, and M “ limnÑ8 Hppnq for some sequence ppnqnPN P CN. The sequence ppnqnPN
has bounded real part because of the following properties of H: Hppq is nonsingular for p out
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of a bounded vertical strip (see Proposition 3.14), Hppq converges to Id when the real part
of p tends to `8, and Hppq diverges in norm when the real part of p tends to ´8 (cf. the
proof of Proposition 3.14). This concludes the proof of the converse implication.

The proof of Item ii) is similar to that of Item i), with pQ playing the role of H. The only
difference is that, in the second part of the argument, one needs to use the assumption that
rank rAN , Bs “ d in order to ensure that the sequence ppnqnPN P CN has bounded real part,

since pQppq converges to ´AN (instead of Id) when the real part of p tends to ´8 (instead of
`8).

Let us prove Item iii). If condition (b) in Proposition 3.12 is not satisfied, there exist a

sequence ppnqnPN P CN and a sequence of vectors pgnqnPN P
`

Cd
˘N

such that }gTn } “ 1 for all
n P N, limnÑ8 g

T
nB “ 0, and limnÑ8 g

T
nHppnq “ 0. Proposition 3.14 and rank rAN , Bs “ d

imply that the real part of ppnqnPN is bounded, and thus pHppnqqnPN is also bounded. Without
loss of generality, limnÑ8 gn “ g for some vector g P Cd and we deduce that }g} “ 1, gTB “ 0,
and limnÑ8 g

THppnq “ 0, which proves one of the two implications. The proof of the converse
is obvious.

Thanks to Lemma 5.4, we are able to prove the following proposition establishing a link
between the rank properties of Hp¨q and pQp¨q.

Proposition 5.5. The following two properties hold true:

i) rank rHppq, Bs “ d for every p P C if and only if rank
”

pQppq, B
ı

“ d for every p P C,

ii) Under the assumption that rank rAN , Bs “ d, we have that rank rM,Bs “ d for every

M P HpCq if and only if rank
”

rQ,B
ı

“ d for every rQ P pQpCq.

Proof. Item i) is a straightforward consequence of Equation (44). Let us now prove Item ii).
Note that, thanks to Lemma 5.4, there exists M P HpCq such that rank rM,Bs ă d if and
only if there exists g P Cd and ppnqnPN P CN with bounded real part such that }g} “ 1,
gTB “ 0, and limnÑ8 g

THppnq “ 0. By Equation (44), we can rewrite the last relation as

limnÑ8 g
T e´pnΛN pQppnq “ 0, which is equivalent to limnÑ8 g

T
pQppnq “ 0, since the real part

of ppnqnPN P CN is bounded.

A simple adaptation of Lemma 5.4, giving an analogue of Item iii) in terms of pQ, allows
us to prove the following proposition.

Proposition 5.6. Under the assumption that rank rAN , Bs “ d, the following statements are
equivalent:

(a) rank
”

rQ,B
ı

“ d for every rQ P pQpCq,

(b) there exists α ą 0 such that, for every p P C,

inf
!ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
gT pQppq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
`
ˇ

ˇ

ˇ

ˇgTB
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
g P Cd, }gT } “ 1

)

ě α.

We conclude this section by providing the proofs of Propositions 3.11 and 3.12.
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Proof of Propositions 3.11 and 3.12. We just prove Proposition 3.12 because the proof of
Proposition 3.11 can be obtained following similar arguments, based on a simpler version of
Lemma 5.4, adapted to the case of approximate controllability.

The equivalence between (a) and (b) is a consequence of Items i) and iii) of Lemma 5.4.
Let us now prove that (c) implies (b). If (b) is not satisfied, it follows by Lemma 5.4 that
there exist g P Cd and a sequence ppnqnPN P CN with a bounded real part such that }g} “ 1,
gTB “ 0, and limnÑ8 g

THppnq “ 0. Since Hp¨q is uniformly bounded on every bounded
vertical strip of C, we deduce that condition (c) is not satisfied. Thus (c) implies (b). The
converse implication is obvious.

5.3 Approximate controllability

The approximate controllability criterion for the approximate controllability of System (35)
is an application of the paper [35] by Yamamoto.

Theorem 5.7. Let q P r1,`8q. System (35) is Lq approximate controllable if and only if
the following conditions hold true:

i) rank
”

pQppq, B
ı

“ d for every p P C,

ii) rank rAN , Bs “ d.

Proof. Denote by Gq : Ωq ÝÑ XQ, q the map defined in Equation (43), which associates with
every u P Ωq the element πpA ˚ uq in XQ, q. We have that System (35) is Lq approximately
controllable if and only if GqpΩqq is dense inX

Q, q. Furthermore, recall that P “ Bδ0 and note
that Q can be written as Q “ Q0 `Q1, with Q0 “ δ0AN and suppQ1 Ă r´ΛN ,´ΛN `ΛN´1s,
which is bounded away from zero. Hence, it follows from [35, Corollary 4.10] that System (35)
is L2 approximate controllable if and only if Items i) and ii) hold true.

To conclude the proof, it remains to show that Lq and L2 approximate controllabilities
are equivalent. This is achieved next by classical density arguments. Let q1, q2 P r1,`8q,
assume that System (35) is Lq1 approximate controllable, and let us prove that System (35)
is also Lq2 approximate controllable. Let y P XQ,q2 and consider two cases:

I) if q2 ě q1, then consider a sequence punqnPN P pΩq1qN such that Gq1punq Ñ y. Since Ωq2

is dense in Ωq1 and Gq1 is continuous on Ωq1 , we can find a sequence pũnqnPN P pΩq2qN

such that Gq1pũnq Ñ y. Since the restriction of Gq1 to Ωq2 is equal to Gq2 , we get that
Gq2pũnq Ñ y.

II) if q2 ď q1, up to identifyingXQ,q2 with Lq2pr0,ΛN s,Rdq, we can find a sequence pynqnPN P
`

XQ,q1
˘N

such that yn Ñ y in XQ,q2 . By the Lq1 approximate controllability and
a diagonal argument, there exists a sequence pũnqnPN P pΩq1qN Ă pΩq2qN such that
Gq1pũnq Ñ y. As Gq1pũnq “ Gq2pũnq for all n P N, we obtain that Gq2pũnq Ñ y.

This concludes the proof of the theorem.

We are finally in position to provide a proof of Theorem 3.6.

Proof of Theorem 3.6. Theorem 3.5 proves that Lq approximate controllability is equivalent
to the Lq approximate controllability in time T “ dΛN . The conclusion follows by combining
Theorem 5.7 and Item i) of Proposition 5.5.
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5.4 Exact controllability

In order to take advantage of realization theory, one needs to expound and improve some of
the exact controllability results obtained by Yamamoto.

5.4.1 Bézout’s identity characterization of Radon exact controllability

As explained in the introduction, Yamamoto’s realization approach tackles exact controllabil-
ity in distributional sense. Thanks to the specific features of our difference delay system, we
are able to replace the general distributional framework of Yamamoto by the more structured
setting of distributions of order zero (or, equivalently, Radon measures). More precisely, we
first define the Radon measure space

X
Q
:“

!

πΨ
ˇ

ˇ

ˇ
Ψ P pMpR`qq

d and πpQ ˚ πΨq “ 0
)

.

It is then straightforward to see that outputs of the input-output system defined in Equa-

tion (43) corresponding to inputs in pMpR´qq
m belong to X

Q
. We next extend the definition

of exact controllability to Radon measures as follows.

Definition 5.8. System (35) is Radon exactly controllable if, for every πΨ P X
Q
with Ψ P

pMpR`qqd, there exists u P pMpR´qq
m such that πpA ˚ uq “ πΨ.

In Proposition 5.10 below, we give a characterization of Radon exact controllability
through a Bézout identity over the ring of Radon measures. We then discuss the link be-
tween such a Bézout identity and Lq exact controllability in Corollary 5.12. Let us start by
summarizing Lemmas 4.3, A.2, and A.3 from [34] in the following statement.

Lemma 5.9. The following assertions hold true:

i) Let Ψ be an element in D1
`pRq such that πpQ ˚ πΨq “ 0. Then there exists a sequence

Ψn P XQ,2 such that limnÑ8 Ψn “ πΨ.

ii) For α P D1pRq, we have πpαq “ 0 if and only if supppαq Ă p´8, 0s.

iii) πpα ˚ πβq “ πpα ˚ βq for every α P E 1pR´q, β P D1
`pRq.

Proposition 5.10. System (35) is Radon exactly controllable if and only if there exist two
matrices R and S with entries in MpR´q such that

Q ˚ R ` P ˚ S “ δ0Id. (45)

Moreover, if (45) holds true, then, for every target output πΨ P X
Q
with Ψ P pMpR`qqd, the

input ω P M`pRq given by
ω “ S ˚ Q ˚ Ψ (46)

steers the origin to the state πΨ along the system (35), i.e.,

πpA ˚ ωq “ πΨ. (47)
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Proof. We first prove that (45) is a necessary condition for Radon exact controllability of
(35). The entries of Q´1 are in the space M`pRq and we have πpQ´1q “ Q´1 so that the

columns of Q´1 are in X
Q
. Since System (35) is Radon exactly controllable, we can take Ψ

equal to each column of Q´1 in Definition 5.8 and thus deduce the existence of a matrix S
of size m ˆ d and with entries in MpR´q such that

πpQ´1
˚ P ˚ Sq “ π

`

Q´1
˘

. (48)

We define
R :“ Q´1

´ Q´1
˚ P ˚ S. (49)

From Equation (48), we deduce that πpRq “ 0 and Item ii) of Lemma 5.9 proves that the
support of R is included in R´. Since the supports of Q´1, P , and S are bounded on the
left, the same is true for the support of R, which is, therefore, compact. Moreover the entries
of R are distributions of order zero because the same is true for Q´1, P , and S. Hence the
entries of R belong to MpR´q, and we finally obtain (45) by taking the convolution product
of (49) on the left by Q.

We now prove that Condition (45) is sufficient for Radon exact controllability of (35).
Let R and S be two matrices with entries in the space MpR´q satisfying Equation (45). Let
Ψ P pMpR`qq

d be such that
πpQ ˚ πΨq “ 0, (50)

so that πΨ P X
Q
. Set ω :“ S ˚ Q ˚ Ψ. Since Q and S have entries in MpR´q, we have that

ω belongs to the space M`pRq. Item iii) of Lemma 5.9 implies that

π pωq “ π pS ˚ π pQ ˚ πΨqq “ 0,

and we deduce that ω is in pMpR´qq
m by Item ii) of Lemma 5.9. By definition of ω and

Equation (45), we also have

Q´1
˚ P ˚ ω ` R ˚ Q ˚ Ψ “ Q´1

˚ pP ˚ S ` Q ˚ Rq ˚ Q ˚ Ψ “ Ψ. (51)

We deduce from Equation (51), Condition iii) of Lemma 5.9, and (43) that

πΨ “ π
`

Q´1
˚ P ˚ ω

˘

` π pR ˚ Q ˚ Ψq

“ π pA ˚ ωq ` π pR ˚ π pQ ˚ πΨqq

“ π pA ˚ ωq ,

where the last equality follows from (50). We have shown that πΨ is the output corresponding
to ω for the input-output map (43), proving the Radon exact controllability of (35).

Remark 5.11. Proposition 5.10 can be seen as a Radon counterpart of the distributional
Bézout identity characterization of exact distributional controllability provided in [38].

As a consequence of Proposition 5.10, we can now deduce that Radon exact controllability
implies Lq exact controllability.

Corollary 5.12. If System (35) is Radon exactly controllable then it is Lq exactly controllable
for every q P r1,`8q.
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Proof. Let R and S be two matrices with entries belonging to the space MpR´q satisfying
Equation (45). Let q P r1,`8q. Let y P XQ, q and denote by ỹ the extension of y on
p´8,`8q by setting ỹ equal to zero on p´8, 0q. Set ω “ S ˚ Q ˚ ỹ as in (46). Then ω is in
Ωq and it follows from (47) that y “ π pA ˚ ωq, which proves Lq exact controllability thanks
to Proposition 5.2.

A challenging question is to investigate a converse to the previous corollary, i.e., whether
Lq exact controllability for some q P r1,`8q implies Radon exact controllability or not. We
bring a positive answer to that question for q “ 1 in the following section.

5.4.2 Bézout’s identity characterization of L1 exact controllability

We next provide a sufficient and necessary condition for System (35) to be L1 exactly con-
trollable.

Theorem 5.13. System (35) is L1 exactly controllable if and only if there exist two matrices
R and S with entries in MpR´q such that (45) holds true.

Proof. We first notice that, by Proposition 5.10 and Corollary 5.12, Condition (45) implies
that System (35) is L1 exactly controllable.

Let us now prove the converse implication. We proceed in four steps.

Step 1. Let us define the map rG : rΩ1 ÝÑ L1pr0,ΛN s,Rdq by

rGpuqptq “ πpQ´1
˚ P ˚ uqptq, t P r0,ΛN s, u P rΩ1,

where rΩ1 denotes the subspace of Ω1 made of inputs with compact support in r´dΛN , 0s,

endowed with the norm }.}r´dΛN ,0s,1. Firstly, we can see that the map rG is a bounded operator
because Q´1 ˚P is a distribution with a finite number of Dirac distributions on each compact
interval of R. We deduce that rG is a continuous linear map. Secondly, the saturation of the
endpoint map (Theorem 4.7) allows us to state that System (35) is L1 exactly controllable if

and only if the map rG is surjective. We can now apply the open mapping theorem (see, e.g,
[28, Theorem 4.13]) and deduce that there exists δ ą 0 such that

rGpUq Ą δV, (52)

where U and V are the open unit balls of rΩ1 and L1pr0,ΛN s,Rdq respectively.

Step 2. Since πpQ ˚ πpQ´1qq “ πpδ0q “ 0 and the inclusion XQ,2 Ă XQ,1 holds, Item i) of
Lemma 5.9 implies that there exists a sequence ψn “ pψn,1, . . . , ψn,dq P pXQ,1qd, n P N, such
that ψn Ñ πpQ´1q in the distributional sense as n Ñ 8. In other words, for i, j P t1, . . . , du,
if we define the Radon measures pQ´1

n qi,j ptq “
şt

0
pψnqi,j pxqdx for t P R` and n P N, we

get that pQ´1
n qi,j weak-star converges to pπpQ´1qqi,j in the sense of [20, Paragraph 4.3]. By

[20, Remark 4.35] and the Banach–Steinhaus theorem, we obtain that the total variation

sup
nPN

∣∣∣`Q´1
n

˘

i,j

∣∣∣pr0,ΛN sq ă 8,
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where ∣∣∣`Q´1
n

˘

i,j

∣∣∣pr0,ΛN sq :“ sup
φPCpr0,ΛN sq

||φ||Cpr0,ΛN sqď1

∣∣∣∣ż ΛN

0

φptqd
`

Q´1
n

˘

i,j
ptq

∣∣∣∣,
with Cpr0,ΛN sq the space of the continuous functions defined on the interval r0,ΛN s with
values in R endowed with its natural norm ||¨||Cpr0,ΛN sq

By the Riesz representation theorem,

see [27, Theorem 6.19], we have that | pQ´1
n qi,j |pr0,ΛN sq denotes the total variation of the

measure on the interval r0,ΛN s of pQ´1
n qi,j in the sense of [27, Chapter 6, Equation (3)]. In

particular, we have that ∣∣∣`Q´1
n

˘

i,j

∣∣∣pr0,ΛN sq “

ż ΛN

0

∣∣∣pψnqi,j ptq
∣∣∣dt,

so that each column of pψnqnPN is uniformly bounded in L1pr0,ΛN s,Rdq, that is, there exists
C ą 0 such that

}ψn,j}L1pr0,ΛN s,Rdq ď C, @j P J1, dK, @n P N.

Let M 1 ą 0 be such that δM 1 ą C. We get from Equation (52) that

rGpM 1Uq Ą δM 1V

so that, for all ψn,j with j P J1, dK and n P N, there exists Sn,j P rΩ1 such that

rGpSn,jq “ ψn,j and }Sn,j}r´dΛN ,0s, 1 ď M 1.

Step 3. We define Sn “ pSn,1, . . . , Sn,dq. By construction, Sn P rΩd
1 and

πpQ´1
˚ P ˚ Snq Ñ πpQ´1

q, as n Ñ 8, (53)

in a distributional sense. Since the columns of Sn, for n P N, are uniformly bounded for the
norm in rΩ1, by the weak compactness of Radon measures (see for instance [20, Theorem 4.33]),
there exist a matrix S with entries in MpR´q and a subsequence of pSnqnPN (still denoted
pSnqnPN by abuse of notation) such that limnÑ`8 Sn “ S in distributional sense. Since the
convolution is continuous in distributional sense (see, for instance, [4, Theorem 7.4.9]), and
π is continuous with respect to the strong dual topology, we deduce from Equation (53) that

πpQ´1
˚ P ˚ Sq “ π

`

Q´1
˘

. (54)

Step 4. We define
R :“ Q´1

´ Q´1
˚ P ˚ S (55)

and we conclude the proof as in Proposition 5.10: by Equation (54) we have πpRq “ 0,
which, together with Condition ii) of Lemma 5.9, implies that the support of R is compact
and contained in p´8, 0s. Moreover, the entries of R are distributions of order zero because
the same is true for Q´1, P , and S. Bézout’s identity is then obtained by multiplying
Equation (55) on the left by Q in convolution sense.
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Remark 5.14. It is an open question whether, for each q P r1,`8q, the Bézout identity is
equivalent to the Lq controllability. We can stress that the proof given for the case q “ 1
does not straightforwardly extend to q ą 1. Indeed, in Step 2, the convergence ψn Ñ πpQ´1q

in the distributional sense implies the boundedness of pψnqnPN in L1pr0,ΛN s,Rdq, but such a
sequence may fail to be bounded in Lqpr0,ΛN s,Rdq for q ą 1.

An immediate consequence of the Bézout identity characterization of the Radon and L1

exact controllability is the following corollary.

Corollary 5.15. System (35) is Radon exactly controllable if and only if it is L1 exactly
controllable.

The open question raised in Remark 5.14 is tantamount to know if, for difference delay
systems of the type (1), the Lq exact controllability for some q P r1,`8q is equivalent to the
Lq exact controllability for every q P r1,`8q. It has to be pointed out that such a property
holds when dealing with the exponential stability of such systems, as noticed in [2, 6].

5.4.3 Solvability of Bézout’s identity over Radon measure spaces and proof of
Theorem 3.7

Proposition 5.10 and Theorem 5.13 reduced the exact controllability problem to the problem
of existence of solutions of a suitable Bézout identity.

Definition 5.16. We say that the Bézout identity (45) is solvable if there exist two matrices
R and S with entries in MpR´q that satisfy it.

We next show that the solvability of the Bézout identity is equivalent to a corona problem,
the latter having led a tremendous literature on the subject for some alike problems. We
can cite for example the celebrated paper [5] resolving the corona problem in one dimension
for holomorphic bounded functions in the unit disk. However the present corona problem
arising from the Bézout identity over a Radon measure algebra has not received a great
attention and it is still an open question. To the best of our knowledge, the closest result
dealing with the solvability of a Bézout identity is that provided in [37, Theorem 5.1] over
the algebra of distributions, which gives a sufficient condition on pQ,P q for such a solvability.
In turn, solving a Bézout identity over Radon measures is fundamentally different than over
distributions because of the different topologies endowing these two spaces.

Our first result for Radon measures is the following necessary condition for the solvability
of the Bézout identity.

Proposition 5.17. A necessary condition for the Bézout identity (45) to be solvable is the
following

i) there exists α ą 0 such that, for every p P C,

inf
!
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
gT pQppq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
`
ˇ

ˇ

ˇ

ˇgTB
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
g P Cd, }gT } “ 1

)

ě α. (56)
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Proof. Let R and S be the two matrices with entries in MpR´q satisfying Bezout’s iden-
tity (45). By contradiction, we assume that Condition i) is not satisfied, so that there exist

a sequence ppnqnPN P CN and a sequence pgnqnPN P
`

Cd
˘N

such that }gTn } “ 1 for all n P N,
limnÑ8 g

T
nB “ 0, and limnÑ8 g

T
n
pQppnq “ 0.

We claim that there exists α̃ ą 0 such that ℜppnq ď α̃ for every n P N. Indeed, pQppnq is
equivalent to epnΛN Id when n tends to `8, and unboundedness from above of ℜppnq would

contradict the relation limnÑ8 g
T
n
pQppnq “ 0. We next get, by a classical estimate of the

Laplace transform of an element of MpR´q, that there exists C ą 0 such that, for all p P C
with ℜppq ď α̃,

max
!
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pRppq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pSppq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

)

ď C. (57)

We then deduce from Equation (45) and the Laplace transform that

gTn
pQppq pRppq ` gTnB

pSppq “ gTn , n P N, p P C. (58)

Equations (57) and (58) imply that it is impossible to have both limnÑ8 g
T
nB “ 0 and

limnÑ8 g
T
n
pQppnq “ 0. We reached a contradiction, so that Condition i) is a necessary condi-

tion for the solvability of Bézout’s identity.

We can now undertake the proof of Theorem 3.7.

Proof of Theorem 3.7. Theorem 3.5 states that L1 exact controllability is equivalent to the
L1 exact controllability in time T “ dΛN . By Theorem 3.6, Condition ii) of Theorem 3.7 is
necessary for L1 approximate controllability, so that it is also necessary for L1 exact control-
lability. Combining Theorem 5.13 and Proposition 5.17, we deduce that (56) is a necessary
condition for L1 exact controllability, and the equivalence between (56) and Condition i) of
Theorem 3.7 is a consequence of Item i) of Proposition 5.5 and Proposition 5.6.

The necessity of Condition i) of Proposition 5.17 is the easy part for the solvability of
Bézout’s identity over the Radon measure algebra. The harder part would be to prove that
Condition i) is also a sufficient condition to have the solvability of Bézout’s identity. A first
step of such a proof would consist in using exactly the trick from [13], which reduces a corona
matrix problem to the corresponding 1D version, which can be written as follows.

Conjecture 5.18. Let k P N and qj P MpR´q for j “ 1, . . . , k. Assume the existence of a
c ą 0 such that

k
ÿ

j“1

|pqjppq| ě c ą 0, p P C. (59)

Then there exists pj P MpR´q for j “ 1, . . . , k satisfying the equation

k
ÿ

j“1

pqjppqppjppq “ 1, p P C.

Remark 5.19. In fact, due to the structure of the difference delay systems that we consider,
i.e., with a finite number of delays, it would be sufficient to prove Conjecture 5.18 for the
measures qj, for all j “ 1, . . . , k, belonging to the sub-algebra of Radon measures MpR´q

finitely generated by the Dirac measures pδΛi´ΛN
qi“1,...,N .
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Notice that a proof of Conjecture 5.18 would imply a positive answer to Conjecture 3.8
in the case q equal to one, yielding a sufficient and necessary criterion for the L1 exact
controllability.

5.5 Sufficient exact controllability criterion for Ck functions

We close this section by providing a positive exact controllability result which relies on the
sufficient condition for the resolution of the Bézout identity over the distributional algebra
in dimension d given in [37], i.e., we provide an exact controllability criterion for steering the
origin to regular solutions along System (35). More precisely, let CkpR`,Rdq (respectively,
CkpR,Rdq), with k integer, denote the space of k times continuously differentiable functions
defined on R` (respectively, R).

We need the following definition of controllability to agree with the Ck functions.

Definition 5.20. Let k be an integer and set

XQ
k :“

␣

y P Ck
pR`,Rd

q |πpQ ˚ yq “ 0
(

.

System (35) is Ck exactly controllable if, for every y P XQ
k , there exists u P C0pR,Rmq

compactly supported in R´ such that πpA ˚ uq “ y.

Remark 5.21. Note that, contrarily to the notions of controllability that we introduced
previously, Ck exact controllability requires the control u to belong only to the less regular
space of continuous functions, instead of requiring it to belong to a space similar to that of
the state y.

The proposition below states a sufficient controllability criteria for the Ck functions.

Proposition 5.22. If Condition i) of Proposition 5.17 holds true then System (35) is Ck

exactly controllable for some integer k.

Proof. In this proof, we fix ||¨|| as the Euclidean norm. We proceed in two steps.

Step 1. We aim to apply [37, Theorem 5.1]. Note first that, thanks to the classical Pólya–
Szegő bound provided in [26, Part Three, Problem 206.2], there exists a positive integer D

such that the zeros of det
´

pQp¨q

¯

have multiplicity at most D.

Assume that Condition i) of Proposition 5.17 holds true. Pick p P C such that det pQppq “ 0

and denote by ℓ the dimension of the left kernel of pQppq. Let Gp P Mℓ,dpCq be such that

its rows form an orthonormal basis of the left kernel of pQppq. Hence, Gp
pQppq “ 0 and

ˇ

ˇ

ˇ

ˇzTGp

ˇ

ˇ

ˇ

ˇ “ ||z|| for every z P Cℓ.

We claim that the rows of the matrix Gp
pP P Mℓ,mpCq are linearly independent. Indeed, if

this were not the case, there would exist z P Cℓ such that ||z|| “ 1 and zTGp
pP “ 0. Thus we

would have zTGp
pQppq “ 0, zTGp

pP “ 0, and
ˇ

ˇ

ˇ

ˇzTGp

ˇ

ˇ

ˇ

ˇ “ 1, in contradiction with Condition i)
of Proposition 5.17.
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We deduce that Gp
pP has right inverses and we use pGp

pP q´1 to denote its Moore–Penrose

right inverse, i.e., pGp
pP q´1 “ pGp

pP qT pGp
pP pP TGT

p q´1. Define

pΦppq “

´

Gp
pP
¯´1

Gp

and notice that pΦppq satisfies

Gp
pP pΦppq “ Gp. (60)

We now claim that there exists c ą 0 (independent of the zero p of det pQ) such that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pΦppq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ď c. (61)

Indeed, arguing by contradiction yields a sequence ppnqnPN of zeros of det pQ such that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

Gpn
pP
¯´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

tends to infinity as n Ñ `8. We have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

Gpn
pP
¯´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 1{λminpGpn
pP pP TGT

pnq,

where λminp¨q denotes the smallest eigenvalue of its argument. Let pznqnPN denote a sequence

of vectors in Cℓ such that, for every n P N,
ˇ

ˇ

ˇ

ˇzTn
ˇ

ˇ

ˇ

ˇ “ 1 and zn is an eigenvector of Gpn
pP pP TGT

pn

associated with its smallest eigenvalue. Then

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
zTnGpn

pP
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ λminpGpn
pP pP TGT

pnq ÝÑ
nÑ`8

0,

and, since
ˇ

ˇ

ˇ

ˇzTnGpn

ˇ

ˇ

ˇ

ˇ “ 1 for every n P N, and Gpn
pQppnq “ 0, we obtain a contradiction with

Condition i) in Proposition 5.17, yielding (61).

The assumptions (18)1 and (17) in the statement of [37, Theorem 5.1] are satisfied thanks to
Equations (60) and (61), respectively. We can then apply [37, Theorem 5.1], which ensures
the existence of two distribution R and S with entries in E 1pR´q such that

Q ˚ R ` P ˚ S “ δ0Id.

Step 2. Since S is a distribution with compact support, it has a finite order k. Let y P XQ
k

and denote by ỹ P CkpR,Rdq an extension on R of y having a support bounded on the left.
Set ω “ S ˚ Q ˚ ỹ. Then ω belongs to C0pR,Rmq and it has a compact support included in
R´. It follows from a similar argument given to obtain the equation (47) that y “ π pA ˚ ωq,
which proves the Ck exact controllability.

Proof of Theorem 3.10. Notice that y P XQ
k if and only if r´ΛN , 0s Q t ÞÑ ypt ` ΛNq is Ck-

admissible for System (1) in the sense of Definition 3.9. Recall that, by Proposition 3.12,
Conditions i) and ii) of Conjecture 3.8 imply that Condition i) of Proposition 5.17 holds true.

1Equation (18) in [37] is the Laplace transform of Equation (8) of the same article, which is an equation

in pE 1pRqq
dˆd

{ pQq, where pQq is the ideal generated over E 1pR´q by Q. Thus the equality in (18) has to

be understood as an equality modulo the ideal generated by pQppq, which is equivalent to requiring that

zT
´

pP ppqpΦppq ´ Id

¯

“ 0 for every zT in the left null space of pQppq. Therefore, Equation (18) in [37] is

equivalent to our Equation (73).
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Hence, by Proposition 5.22, every Ck-admissible function for System (1) is in the range of
EqpT q for some T ą 0 possibly depending on y. By Theorem 4.7, moreover, the space of
Ck-admissible functions for System (1) is contained in RanEqpdΛNq. The conclusion then
follows by Proposition 4.3 and the fact that if x0 is C

k-admissible for System (1) then Υqptqx0
is Ck-admissible for System (1) for every t ě 0.

6 Applications

In this section, we show in simple cases how to derive from Theorems 3.6 and 3.7 Kalman-type
conditions for controllability in the single input case m “ 1. By a Kalman-type condition,
we refer to a frequency-free criterion for controllability. For instance, in the single-delay case
N “ 1, approximate and exact controllability (in any fixed time T ě dΛ1) coincide and are
equivalent to the classical Kalman rank condition stating that the rank of the controllability
matrix rB,A1B, . . . , A

d´1
1 Bs is equal to the state space dimension d. We first partially recover

criteria given in [7] in the case of two delays, two space dimensions, and a single input, and
then extend such a study to the case of two delays, three space dimensions, and a single
input.

Up to a time-rescaling, we can assume from now on that pΛ1,Λ2q “ pL, 1q with L P p0, 1q.
The case L P Q was completely addressed in [7] and we assume for the rest of this section
that L is irrational.

6.1 Two delays, two space dimensions, and a single input

In this section, we recover some results given in [7, Theorem 4.1], which concern the particu-
lar case where N “ d “ 2 and m “ 1. The results in [7] are stated for matrices with complex
coefficients, hence, what we actually recover here are some results of [7, Theorem 4.1] re-
stricted to the case of matrices with real coefficients. On the other hand, the results in [7] are
stated only for L2 controllability, but here we consider Lq controllability for any q P r1,`8q.

Fix then A1, A2 P M2,2pRq and B P M2,1pRq. Given a matrix A P M2,2pRq, we say that
the pair pA,Bq is controllable if it satisfies the Kalman rank condition. We have three cases.

I) RanA2 Ă RanB or both pairs pA1, Bq, pA2, Bq are not controllable. In both subcases,
System (1) is not even Lq approximately controllable. Indeed, in the first subcase,
Condition ii) of Theorems 3.6 and 3.7 is not satisfied. In the second subcase, one can
assume with no loss of generality that

A1 “

ˆ

a1 0
a2 a3

˙

, A2 “

ˆ

b1 0
b2 b3

˙

, B “

ˆ

0
1

˙

,

with b1 ‰ 0 (otherwise we are back to the first subcase). Then the first coordinate x1
of the state x is not controllable since one has x1ptq “ a1x1pt ´ Lq ` x1pt ´ 1q.

II) RanA2 Ć RanB and exactly one of the pairs pA1, Bq, pA2, Bq is controllable. Then
System (1) is Lq approximately controllable in time 2Λ2. Indeed, notice first that
rankrA2, Bs “ 2, and we are thus left to show that Condition i) of Theorem 3.6 hold
true, which is equivalent to proving that Condition (b) of Proposition 3.11 holds true.
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Assume, for instance, that pA1, Bq is controllable and pA2, Bq is not. Hence, up to a
linear change of variables, we can assume with no loss of generality that

A1 “

ˆ

a1 a2
a3 a4

˙

, A2 “

ˆ

b1 0
b2 b3

˙

, B “

ˆ

0
1

˙

,

with a2 ‰ 0 and b1 ‰ 0. For g P C2 with ||g|| “ 1, one has either gTB ‰ 0 or gT “ pα, 0q

for some α P C with |α| “ 1. Hence, in order to show Condition (b) of Proposition 3.11,
it suffices to show that

ˇ

ˇ

ˇ

ˇgTHppq
ˇ

ˇ

ˇ

ˇ is nonzero for every p P C and with gT “ p1, 0q. For
every p P C, one checks that the second coordinate of gTHppq is equal to ´a2e

´pL, which
never vanishes, yielding the conclusion. The case where pA1, Bq is not controllable and
pA2, Bq is can be handled similarly.

III) pA1, Bq and pA2, Bq are both controllable. Let BK P R2 be the unique vector such that
detpB,BKq “ 1 and BTBK “ 0. Set

β “
det prB,A2Bsq

det prB,A1Bsq
, α “ det

`

rB, pA2 ´ βA1qB
K

s
˘

.

Up to a linear change of coordinates, we can assume that

A1 “

ˆ

0 1
a1 a2

˙

, A2 “

ˆ

α β
b1 b2

˙

, B “

ˆ

0
1

˙

. (62)

The holomorphic map H is now given by

Hppq “ I2 ´ e´pLA1 ´ e´pA2 “

ˆ

1 ´ αe´p ´e´pL ´ βe´p

˚ ˚

˙

, p P C. (63)

Let α “ |α|eiθ with θ P t0, πu. Since β ‰ 0, we have that rankrA2, Bs “ 2. Then,
by Theorem 3.6 and Equation (63), we have that System (1) is not Lq approximately
controllable in time 2Λ2 if and only if

Dp P C s.t. rank rHppq, Bs ă 2 ðñ Dp P C s.t. 1 ´ αe´p “ 0 and e´pL ` βe´p “ 0

ðñ 0 P S,

where S “
␣

β ` |α|1´Leipθ`2kπqp1´Lq
ˇ

ˇ k P Z
(

. Since L is irrational, notice that S, is the
circle in C of center β and radius |α|1´L, denoted hereafter by C. By Theorem 3.7
and Equation (63), one can prove in the same way that System (1) is not L1 exactly
controllable in time 2Λ2 if 0 P C.

In the third case above, the fact that there exists p P C so that 1 ´ αe´p “ 0 and
e´pL ` βe´p “ 0 can be equivalently written as

MY ppq “

ˆ

1
0

˙

, where M “

ˆ

0 α
1 β

˙

and Y ppq “

ˆ

e´pL

e´p

˙

.

The above computations are a particular case of a more general situation, described next.
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Lemma 6.1. Let M be a 2 ˆ 2 matrix with complex coefficients, Z P C2zt0u, L P p0, 1qzQ,
and define the map Y : p ÞÑ pe´pL, e´pqT .

i) If M is not invertible, then the following assertions are equivalent: (a) Z P RanM ;
(b) Z P MY pCq; (c) Z P MY pCq.

ii) If M is invertible, set M´1Z “ pa1, a2qT and define

S “
␣

a1 ´ |a2|LeiLpθ2`2kπq
ˇ

ˇ k P Z
(

,

where a2 “ |a2|eiθ2 and θ2 P R. Then the following assertions hold true: ii-i) Z P

MY pCq if and only if 0 P S; ii-ii) Z P MY pCq if and only if 0 P C, the latter being the
circle in C of center a1 and radius |a2|L.

Our two main results allowed us to recover partially, in the case of matrices with real
coefficients, the algebraic controllability result stated in [7, Theorem 4.1] when N “ d “ 2
and m “ 1, which consider L2 (approximate and exact) controllability concepts while in
the present paper, we are instead dealing with Lq approximate controllability and L1 exact
controllability. We have shown that three possibilities occur: I) neither approximate nor
exact controllability hold true; II) Lq approximate controllability holds true but we cannot
say anything about exact controllability; III) there exists a countable subset S of the complex
plane, completely characterized by A1, A2, B, and L, which is dense in a circle C, such that
Lq approximate controllability is equivalent to the fact that 0 R S and a necessary condition
for L1 exact controllability is 0 R C.

Remark 6.2. For Case III), we can assume with no loss of generality (see [7, Lemma 4.5])
that a1 “ a2 “ b1 “ b2 “ 0 in (62), so that Theorem 5.13 implies that System (1) is L1

exactly controllable if and only if the Bézout identity (45) is solvable in MpR´q, that is, if
and only if there exists ps1, s2, r1, r2, r3, r4q P MpR´q6 such that

$

’

’

’

&

’

’

’

%

pδ´1 ´ αδ0q ˚ r1 ´ pδL´1 ` βδ0q ˚ r2 “ δ0,

pδ´1 ´ αδ0q ˚ r3 ´ pδL´1 ` βδ0q ˚ r4 “ 0,

δ´1 ˚ r2 ` s1 “ 0,

δ´1 ˚ r4 ` s2 “ δ0.

(64)

The second and fourth equations of (64) are satisfied if one chooses

r3 “ δL´1 ` βδ0, r4 “ δ´1 ´ αδ0, s2 “ δ0 ` αδ´1 ´ δ´2.

In addition, as soon as the first equation of (64) is satisfied, the third one can be satisfied by
setting s1 “ ´δ´1 ˚ r2, and we hence focus in the first equation of (64) in the sequel, i.e.,

pδ´1 ´ αδ0q ˚ r1 ´ pδL´1 ` βδ0q ˚ r2 “ δ0. (65)

Let q1 “ δ´1 ´ αδ0 and q2 “ ´δL´1 ´ βδ0, and notice that their Laplace transforms are
given by pq1ppq “ ep ´ α and pq2ppq “ ´ep1´Lqp ´ β for p P C. By definition of S, we have that
0 P S if and only if there exists p P C such that pq1ppq “ pq2ppq “ 0, and one can show that
0 P S if and only if infpPC|pq1ppq|` |pq2ppq| “ 0. Hence, the condition 0 R S is equivalent to the
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existence of a constant c ą 0 such that |pq1ppq|` |pq2ppq| ě c for every p P C. If Conjecture 5.18
held true, then it would imply that there exist r1 and r2 in MpR´q such that their Laplace
transforms satisfy pq1ppqpr1ppq`pq2ppqpr2ppq “ 1, which is exactly the Laplace transform of (65).
In particular, this shows that, if 0 R S and Conjecture 5.18 holds true, then System (1) in
the case of the present example is L1 exact controllable.

Note that the condition 0 R S is shown in [7] to be a necessary and sufficient condi-
tion for the L2 exact controllability of System (1) in Case III). Unfortunately, even for this
simple example, it is not clear if the L2 exact controllability is equivalent to the L1 exact
controllability.

6.2 Two delays, three space dimensions, and a single input: a
geometric locus controllability result

In this section, we assume that N “ 2, d “ 3, and m “ 1. In this case A1, A2 P M3,3pRq

and B P M3,1pRq. Up to a linear change of variables, we assume in the sequel that B “

p0, 0, 1qT . We use r0 to denote the dimension of the vector space spanned by the three vectors
B,A1B,A2B.

We subdivide the discussion in three cases.

I) rankrA2, Bs ď 2 or r0 “ 1. Then, in both subcases, System (1) is not even approxi-
mately controllable. Indeed, in the first subcase, the rank condition ii) of Theorem 3.6
is violated. In the second subcase, the matrices A1 and A2 are of the form

A1 “

ˆ

rA1 02,1
˚ a1

˙

, A2 “

ˆ

rA2 02,1
˚ a2

˙

.

Then the subsystem of System (1) made of the first two coordinates is uncoupled to
the third coordinate and is uncontrolled. The overall system is then not controllable.

II) rankrA2, Bs “ 3 and r0 “ 2. We only treat the case where A2B is not colinear to B
(the other case being entirely similar). Up to a linear change of variables (in a basis
having A2B as second vector and B as third one), one can transform the matrices A1

and A2 into the form

A1 “

¨

˝

rA1
0
α

˚ ˚

˛

‚, A2 “

¨

˝

rA2
0
1

˚ 0

˛

‚,

where the matrices rA1 and rA2 are 2 ˆ 2.

The holomorphic map H associated with System (1) is equal to

Hppq “

¨

˝

I2 ´ e´pL
rA1 ´ e´p

rA2
0

´pe´pLα ` e´pq

˚ ˚

˛

‚. (66)

Then, by Theorem 3.6 and Equation (66), System (1) is not Lq approximately control-
lable in time 3Λ2 if and only if there exists p P C such that rank rHppq, Bs ă 3, i.e.,
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either (a) e´pLα ` e´p “ 0 and detpI2 ´ e´pL
rA1 ´ e´p

rA2q “ 0 or (b) e´pLα ` e´p ‰ 0
and the p1, 1q and p1, 2q coefficients of the 3 ˆ 3 matrix Hppq are both equal to zero.

In the subcase (a), the second condition is equivalent to the fact that det
`

epLI2 ´p rA1 ´

α rA2q
˘

“ 0, i.e., epL is one of the eigenvalues of rA1 ´α rA2. Hence we are in the situation

of Lemma 6.1 with M “

ˆ

α 1
1 0

˙

and at most two vectors Z corresponding to the

nonzero eigenvalues of rA1 ´α rA2. It follows that there exist at most two countable sets
of complex numbers S1, S2, completely characterized in terms of L and the coefficients
of A1, A2, which are dense in two circles C1, C2, respectively, and such that System (1)
is Lq approximately controllable if and only if 0 does not belongs to the union of S1

and S2, while System (1) is not L1 exactly controllable if 0 belongs to the union of C1

and C2. (Note that each Si can be equal to Ci if the latter reduces to a point.) It is
not difficult to see that the subcase (b) also boils down to a similar situation, but with
at most one circle.

III) rankrA2, Bs “ 3 and r0 “ 3. Up to a linear change of variables (in a basis having
A1B as first vector, A2B as second vector, and B as third one), one can transform the
matrices A1 and A2 into the form

A1 “

¨

˝

rA1
1
0

˚ 0

˛

‚, A2 “

¨

˝

rA2
0
1

˚ 0

˛

‚,

where the matrices rA1 and rA2 are 2 ˆ 2.

The holomorphic map H associated with System (1) is equal to

Hppq “

¨

˝

I2 ´ e´pL
rA1 ´ e´p

rA2
´e´pL

´e´p

˚ 0

˛

‚.

We denote by v1 and v2 the columns of the matrix rHppq “ I2 ´ e´pL
rA1 ´ e´p

rA2 and we
set v3 “ pe´pL e´pqT . Note that the rank assumption on rA2, Bs implies that the first

row of rA2 is not equal to zero.

It is immediate to see that there exists p P C so that rank rHppq, Bs ă 3 if and only if
both v1 and v2 are colinear to the nonzero vector v3, i.e., detpv1, v3q “ 0 and detpv2, v3q “

0. These conditions can be rewritten as two scalar equations vT3 Q1v3 ` e´p “ 0 and
vT3 Q2v3 ` e´pL “ 0, where Q1, Q2 are symmetric matrices with real coefficients and at
least one between Q1 and Q2 is not equal to zero because of the rank assumption on
rA2, Bs.

The two previous equations in the unknowns e´pL and e´p define two distinct conic
sections, at least one of them being nontrivial. Therefore, they have therefore k distinct
intersection points with 0 ď k ď 4. For each of them, one can completely characterize,
in terms of L and the coefficient of A1, A2, a countable set of complex numbers Sj,
1 ď j ď k, which is dense in a circle Cj, such that System (1) is Lq approximately

34



controllable if and only if 0 does not belongs to the union of the Sj, while System (1)
is not L1 exactly controllable if 0 does belongs to the union of the Cj.

In conclusion, if N “ 2, d “ 3, and m “ 1, Theorem 3.6 (respectively, Theorem 3.7)
allows one to derive frequency-free necessary and sufficient (respectively, necessary) criteria
for Lq approximate (respectively, L1 exact) controllability, and the results are qualitatively
similar to those obtained if N “ d “ 2 and m “ 1, with the difference in Case III) where
now we may have up to four distinct countable sets Sj, 1 ď j ď k, each of them dense in a
circle Cj.
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