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The unstable dissolution of a porous medium leads to complex patterns which are difficult to 
model quantitatively. A Darcy-scale dissolution model is proposed involving a local non- 
equilibrium dissolution equation. A 3D numerical model has been developed to solve for the 
resulting PDEs using an operator splitting technique and high resolution TVD schemes. 
Results are shown for 2D and 3D configurations for both homogeneous and heterogeneous 
systems. The qualitative and quantitative features of the numerical results are discussed with 
respect to the published literature. 
Based on the 2D results, a first attempt is made at deriving a core-scale dissolution model 
based on cross-sectional averages. Several possibilities are explored including one-equation 
models, i.e., the core-scale medium incorporates the wormholes and the remaining porous 
matrix, and two-equation models for which the wormholes are treated separately. Theoretical 
implications are discussed based on numerical experiments. 

1 INTRODUCTION 

Dissolution mechanism in porous media is frequently encountered in several domains: 
stimulation of petroleum wells by acid injection to increase the rock permeabili@, NAPL 

2 transport in hydrogeology, or raisin[~ the ground level of the Dutch coast by sulfuric acid 
injection into subsurface limestones ~. This dissolution process is coupled with the fluid 
momentum equation in an unstable way: flow velocity is higher in the largest pores, which in 
generally produces faster dissolution processes. These processes increase locally the pore 
diameter and this may in turn facilitate the acid transport to these large pores. These physical 
mechanisms can lead to the formation of highly conductive flow channels called wormholes. 
As a consequence, prediction of wormhole propagation and the understanding of dissolution 
regimes present a major interest to optimize acidizing treatments. However, the description of 
dissolution macroscopic patterns is a very complex problem, determined by the flow 
microscopic characteristics, and with many factors in play such as the injection rate, the acid 
volume, and rock permeability. 
At the pore-scale, the dissolution mechanism involves acid transport by diffusion and 
advection to the solid surface, chemical reaction at the surface and product transport away 
from the surface. If the chemical reaction characteristic time is very short compared to the 
mass-transfer kinetics, the reaction is called mass-transfer-limited, and this is generally the 
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case for limestone dissolution with HC1. On the other side, if mass-transfer kinetics is slow, 
then the reaction is reaction-rate limited, and this is the case for dolomite dissolution at the 
room temperature. 
Several experiments of dissolution have been performed in a variety of fluid-mineral systems, 
for mass transfer limited as well as reaction-rate limited processes. Hoefner et al. 4 and Fredd 
et al. 5 used limestone core samples and HC1 injection. The wormhole structure is visualized 
by injecting a low melting point alloy and then dissolving the porous medium or by neutron 
radiography. In addition to HCl-limestone systems, Several researchers 6'7 investigated the 
effect of temperature, acid concentration, rock mineralogy and injection rate for some Indiana 
or Glenn Rose limestone and dolomite cores. All the experiments led to the observation of 
similar dissolution regimes: face dissolution, conical wormhole, dominant wormhole, 
ramified wormholes and uniform dissolution. Another result is the existence of an optimum 
injection rate 4'6. It corresponds to the maximum penetration of the wormhole for a given 
volume of acid injected. It is reported that the optimum conditions are related to the formation 
of a dominant wormhole with little branching through the core. The optimum flow rate 
depends on several parameters, including the rock mineralogy (calcite or dolomite for 
carbonate formations), the temperature and the acid concentration. 
In order to predict this optimum injection rate and the wormhole development at the Darcy- 
scale, several numerical models have been developed. Among the different approaches found 
in the literature, we can distinguish �9 the network models 4'5 which consider the dissolution of 
the solid grains in a two or three dimensional structure at the pore-scale, or the capillary tube 
model 6, based on a pre-existing shape of the wormhole. We can also cite the dimensionless 
apl~roach 5'8 based on correlations at the scale of the core sample itself, or the model of Liu et 
al." which was a first attempt to develop a macroscopic dissolution model. The reader can 
refer to the paper by Fredd et al. ~~ for a detailed presentation of these different models. 
Nevertheless, since none of these models could describe all the features of the dissolution 
physics, in particular they failed to describe the coupled nature of flow and reaction without 
assuming a wormhole geometry, a macroscopic acid-transport model has been implemented 
based on a macro-scale description involving a non-equilibrium mass balance model ~'~2. 
Concerning the momentum equation, assuming that the velocity of the pore-scale interfaces is 
small enough, we have adopted a Darcy-Brinkman formulation which allows to simulate 
correctly the flow in the fluid or porous zones in a continuous manner 13. The effect of 
dissolution history on the effective properties, such as the permeability, is approximated by 
direct relationships between the macro-scale parameters. For instance, a direct relationship is 
adopted between the permeability and the porosity, which is a classical assumption made in 
geochemistry. We will present in this paper original results obtained by this model for both 
homogeneous and heterogeneous systems and for 2D and 3D configurations. Finally, we will 
use the 2D results to discuss the possible features of a core-scale dissolution model. 

2 PRESENTATION OF THE DARCY-SCALE MODEL 

The dissolution macroscopic equations can be obtained from the coupled equations of flow 
and species transport at the pore-scale, and this lead to a local non-equilibrium dissolution 
problem. Most of the theoretical questions associated with this development have been 
discussed in Quintard et al. 14. 
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Figure 1. Different scales of the problem. 

We just recall below the Darcy-scale model we have used and some of the various results that 
have been obtained. The solid phase and the fluid phase are identified as the o-phase and the 
I3-phase respectively. In order to be clear about the equations we have used, we will follow 
the notations associated with the volume averaging theory presented in Quintard et al. 14. For 
instance the superficial velocity is given by 

1 ~vadV v, 
V p- vhase 

(I) 

where Vfl-plu~se represents the volume of the 13-phase contained within the averaging volume, V, 
represented Figure 1. The intrinsic mass concentration is defined by 

C A fl -- ( C A fl ) fl -" ~ l  I C A fl d V (2) 
Vfl-phase Vi3_;~s e 

and we have a similar definition for the intrinsic pressure. We consider that the reaction is 
mass-transfer limited, and the acid is immediately consumed as soon as it reacts with the solid 
surface. Additional convective terms which appear during the upscaling are neglected. By this 
way, we obtain a complete system of equations which combines a Darcy-Brinkman model for 
the flow description in both zones (fluid and porous region) with a local non-equilibrium 
dissolution model. It can be written under dimensionless form as follows 

Flow equations: 

/z AV# - VP, -/zK~.V# = 0 (3) 
c# 

where Ix is the viscosity, K and @ are the permeability tensor and the porosity respectively. 
This equation is coupled with the overall mass balance equation for the fluid phase which 
may be approximated by 

V.Vt~ =0  (4) 
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Species transport equations : 

OC Afl 
ep /)t + Vp "VCap = V.(D* .VCap)-ct Cap (5) 

be.._...~fl __ ~O~ CAmp (6) 
0t p~ 

where [3 represents the stoechiometric coefficient of the chemical reaction. The mass transfer 
coefficient ct and the dispersion tensor D* are calculated from closure problems 14. 
A numerical model has been developed to solve these equations I~. Given the different 
mechanisms involved, the numerical model uses a multiple-step approach. First, the stationary 
Darcy-Brinkman problem is solved for a given porosity field by a predictor-corrector method 
coupled with an Uzawa algorithm. The effective coefficients in the transport equations are 
obtained previous to the simulation as a function of the porosity and velocity field by 
numerically solving on a representative periodic unit cell the pore-scale closure problems 
presented in Golfier et al. 1~. The acid concentration profile resulting from the transport 
equation can be used to solve for the dissolution equation, Eq. (6). This will eventually lead to 
a new porosity field which will be used in the next iteration. In practice, the permeability field 
is directly obtained from the porosity field, by the use of a classical Kozeny-Carman relation 
K - el3. This particular choice is not a constraint of the model, and other correlations can be 
used. Various calculations have been performed on two-dimensional and three-dimensional 
domains, and the different results are discussed in the next section. 

3 RESULTS AND DISCUSSION 

3.1 Homogeneous system 
In a recent paper ~ we have shown that the simulations allow to capture the different 
dissolution regimes for "Darcy-scale homogeneous systems". We can see in Figure 2 the 
different 2D dissolution figures obtained numerically for different acid injection rates. All 
these figures represent the porosity field. The obtained dissolution patterns are remarkably 
equivalent to the experimental dissolution patterns obtained for calcite dissolution 5'~~ or for 
water/salt system l~. These results allowed us to study in some details the transitions between 
the different regimes in terms of behavior diagrams. In addition, the performed simulations 
have shown the existence of an optimum injection rate ~, similarly to the experimental results. 
This proves the potential of the proposed model. New results are presented in the sequel of 
the paper to illustrate this potential. 
First, the model can be used to obtain 3D dissolution figures as it is illustrated in Figure 3. To 
our knowledge, none of the existing models can actually capture the wormholing 
phenomenon in three dimensions The only attempt made with the PRN network model 5, was 
strongly limited by the maximal size of the domain (0.1cm x 0.003 cm2). 
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Figure 2. Porosity fields representative of the dissolution patterns (From Golfier et al.~l). 

It must be emphasized here the importance of the choice of the Darcy-Brinkman formulation 
for the flow model. In fact, we could have used a classical Darcy / Darcy model, which is 
simpler compared to the Darcy-Brinkman formulation. However, it requires the introduction 
of an appropriate value for the permeability in the wormhole, i.e., in the fluid zone (noted 
Knuia and called fluid permeability). This concept of fluid permeability is artificial and it must 
be chosen by a posteriori arguments to recover the correct physics. For the Darcy-Brinkman 
model, the fluid permeability needs only to be large enough so that the model leads 
asymptotically towards the Stokes equation, i.e., the Darcy term vanishes as the porosity is 
close to one and the fluid permeability does not play any role. On the contrary, with the 
Darcy-Darcy formulation, the obtained velocity varies with the fluid permeability value. 
Therefore, an appropriate value of the fluid permeability must be chosen to model correctly 
the flow into the wormhole. If this value may be estimated in some cases, flow between two 
parallel plates, for example, this estimation is practically impossible in a 3D flow without 
assuming a tube geometry for the wormhole. 

Figure 3.3D porosity field in 
conical regime. 

Figure 4. 3D porosity field in 
wormholing regime. 

3.2 Heterogeneous systems 
Such a model can also be applied easily to heterogeneous systems. We consider a stratified 
system made of two different porous media of permeability K~ = 10 l l  m 2 and K2 = 10 s m 2 
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respectively. We will limit here our study to two simple limit cases" a domain in which the 
acid solution is injected perpendicularly to the strata and a domain in which the acid solution 
is injected parallel to the strata. The numerical data for both simulations are given in Table 1. 

Table 1 
Numerical data 

Constant Flow Rate �9 Q = 272 cm3.h l 
201 x 101 nodes 

Pcr= 2700 kg.m -3 

D* el3 = 0.38 
= 10 -9 m2.s -1 

CAB = 150 kg.m -3 
, t t= 10 -3 Pa.s 

f l=  1.37 
gr= 10 s l 

"-'0.8 

0.6 
{r 

0.4 
t -  

O . m  

~0.2  

E 
i:5 0 

0 1 2 3 4 5 6 7 8 9 10 
Pore volume injected Pore volume injected 

7 a 

Figure 5. Wormhole length as a function 
of the pore volume injected and associated 
dissolution pattern for strata in series. 

Figure 6. Wormhole length as a function 
of the pore volume injected and associated 
dissolution pattern for strata in parallel. 

The results in Figure 5 shows how complex is the evolution of the unstable dissolution front 
due to the heterogeneity effects: early stage in one stratum similar to the homogeneous case, 
then interaction of the dominant wormhole with the second medium, and subsequent 
complicated evolution, different from the homogeneous case. On the contrary, for the flow 
parallel to the strata, Figure 6, dissolution occurs essentially in the more permeable region like 
in the homogeneous case. This illustrates the interest of the proposed model. However, 
numerical limitations exists, and domain of very large extent are beyond our possibilities. A 
larger-scale averaged model, or core-scale model (Figure 1), if available, would open new 
possibilities, and this is the subject of the next section. 

4 CORE-SCALE M O D E L I N G  

In this section, we discuss the introduction of the macroscopic equations which may be used 
to describe the problem at the core-scalenE. For the flow description at this scale, a classical 
Darcy's law is obtained by averaging the Darcy-Brinkman formulation. With regard to the 
transport and dissolution part, it is not obvious to apply an upscaling method which leads to 
some core-scale equations valid in a general way. In fact, the value of the mass transfer 
coefficient can strongly modify the acid transport behavior and the corresponding Darcy-scale 
dissolution pattern. 
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One-equation model. First, a simple one-equation model can be proposed similar to the 
Darcy-scale model presented in the previous sections. 

. + c : ,  . . ( D "  " ) " " 
~'fl ()t "]" Vfl "VCAfl -" V .  .VCAfl - - a  CAr l (7) 

04 / dci  
- -  = ~ ( 8 )  

i)t p+ 

where e*p is the macroscopic porosity, a* and Cap the core-scale mass transfer coefficient 
and acid mass concentration respectively. The 1D core-scale velocity is taken as constant. 
Two-equation model. If the value of the mass transfer coefficient is very important, we obtain 
two different regions: a fluid region in the dissolved areas, and a porous region where 
dissolution has not occurred. This looks like a double-porosity system, and this suggests the 
introduction of a two-equation model for which the wormholes (m-region) and the remaining 
porous matrix (r/-region) are treated separately. The transport equations are written as 

0CA. . . . .  
~ '  /) t  +V~.VCA~, =V. (D~ .VCA, , ) - a  C,u, in the m - region (9) 

~9~, = fla* Ca._______.____m~ in the m - region (10) 
/)t p~ 

where #w represents the fluid fraction, Caw and C'a,7 the core-scale regional acid mass 
concentrations and V • the superficial velocity in the m-region. These equations are 

completed by CA, = 0 in the r/- region. 

The dissolution patterns obtained numerically at the Darcy-scale are used to determine the 
correlations for the core-scale effective coefficients (macroscopic permeability K*, core-scale 
mass transfer coefficient a*, fluid fraction #w and macroscopic porosity e'p) by spatial 
integration. The obtained results show an acceptable independence of these coefficients with 
respect to the dissolution history at least for certain conditions (wormholing regime in 
particular, see an example of correlation in Figure 7). 
From the system of equations obtained at the core-scale and the mass transfer and 
permeability correlations provided by the numerical simulations at the Darcy-scale, a 1D 
core-scale model can be developed for both approaches to verify the validity of such a 
representation. To check the validity, we compared predictions provided by these core-scale 
models with direct Darcy-scale simulations. Figure 8 presents the comparison of these 
simulations for Q = 50 cm3.h 1 and Cap = 545 kg.m 3. If the results obtained by the one- 
equation model are not satisfactory, the two-equation model correctly predicts the wormhole 
propagation and presents a relatively good agreement with the Darcy-scale model. This 
suggests that a simple, fickian, dispersive model with chemical reaction is not well suited to 
model the dissolution of a porous medium at the core-scale in the presence of wormholes. If 
one is looking at a one-equation model, it must be more complicated. Work is currently 
undertaken in this direction. 
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Figure 7. K * -  ~wcorrelation 
in the wormholing regime. 

Figure 8. Wormhole length as a function 
of time for different models. 

5 CONCLUSION 

A three-dimensional Darcy-scale dissolution model has been presented in this paper. Its 
originality lies in the fact that it is based on a combination of a Darcy-Brinkman model 
coupled with a local non-equilibrium dissolution model. Simulations have been performed for 
2D and 3D configurations for both homogeneous and heterogeneous systems and present a 
good agreement with the literature. Based on the 2D results, different approaches have been 
explored to model dissolution phenomena at the core-scale. A double-porosity model has 
shown a relatively good agreement with the direct simulations, at least under local 
equilibrium conditions, compared to a simple one-equation model. This indicates that 
complicated dynamic effects are present which may require the use of a more complex one- 
equation model. Developments are made in this direction. 
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