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Dissolution of a porous medium creates, under certain conditions, some highly con-
ductive channels called wormholes. The mechanism of propagation is an unstable 
phenomenon depending on the microscopic properties at the pore scale and is con-
trolled by the injection rate. The aim of this work is to test the ability of a Darcy-scale 
model to describe the di
erent dissolution regimes and to characterize the influence of the flow parameters 
on the wormhole development. The numerical approach is validated by model 
experiments reflecting dissolution processes occurring during acid injection in 
limestone. Flow and transport macroscopic equations are written under the 
assumption of local mass non-equilibrium. The coupled system of equations is 
solved numerically in two dimensions using a finite volume method. Results are 
discussed in terms of wormhole propagation rate and pore volume injected.

1. Introduction
Acid injection is a process widely used for stimulation of petroleum wells to

increase rock permeability (Rowan 1959; Williams, Gidley & Schechter 1979; Chang,
Qu & Frenier 2001). The dissolution of the porous matrix is an unstable process
similar to viscous fingering that leads to the formation of dissolved channels called
wormholes. When a part of the medium is etched, the local permeability is increased
and consequently the mass transfer is also increased, leading to more dissolution.
The result is the formation of ramified channels with typical sizes ranging from the
pore size to a few mm. Many experimental and theoretical studies have attempted to
describe the roles of the various factors on the formation of the wormholes: injection
rate, acid volume, permeability, reaction kinetics, etc. Today, most of the mechanisms
can be considered as understood but the models available in the literature are still
qualitative. The purpose of this paper is to propose a numerical model for predicting
the development of wormholes at the scale of a core sample.

The dissolution kinetics at the level of the solid walls of the grains is well understood.
The dissolution process can be separated into three successive steps: acid transport
by diffusion and advection to the solid surface, chemical reaction at the solid surface,
and transport of the products of the reaction away from the surface. If the chemical
reaction characteristic time is very short compared to the mass-transfer kinetics, the



process is called mass-transfer limited. This is the case for limestone dissolution with
HCl at temperatures greater than 0 ◦C (Lund et al. 1975). On the other hand, if
mass-transfer kinetics is slow, then the process is reaction-rate limited. It is the case
for dolomite dissolution with HCl at temperatures less than 50 ◦C (Lund, Fogler &
McCune 1973). Both mass-transfer and reaction-rate-limited mechanisms may lead
to Darcy-scale non-equilibrium dissolution, which means that acid is not immediately
consumed as soon as it enters into the porous medium. The dissolution zone within
the porous domain is characterized by a variable porosity. On the other hand,
local-equilibrium dissolution corresponds to immediate consumption of the acid at
the fluid–porous medium interface, and this leads to a sharp interface between the
fluid region and the porous medium. In this paper we will study at the Darcy-scale
local-equilibrium and non-equilibrium dissolution by considering only mass-transfer-
limited dissolution processes. This mechanism has been studied both experimentally
and theoretically.

Several experiments on dissolution have been performed in a variety of fluid–
mineral systems, and for mass-transfer-limited or reaction-rate-limited processes.
Fredd, Hoefner and Fogler (Hoefner & Fogler 1988; Fredd & Fogler 1998a, 1999)
used limestone core samples and HCl injection. The wormhole structure is visualized
by injecting a low-melting-point alloy and then dissolving the porous medium or by
neutron radiography. In addition to HCl–limestone systems, Daccord, Lenormand &
Lietard (1993a) also studied the water–plaster-of-Paris system in various geometries
(disks and cylinders). Wang, Hill & Schechter (1993) investigated the effect of tem-
perature, acid concentration, rock mineralogy and injection rate for some Indiana or
Glenn Rose limestone and dolomite cores. Bazin and co-workers (Bazin & Abdulahad
1999; Bazin 2000) have conducted acidizing experiments using both limestone and
dolomite and various acid fluids including acids in emulsion. All the experiments led
to the same conclusion of different dissolution regimes with compact dissolution, ram-
ified wormholes and uniform dissolution. A more detailed description of the regimes
will be given with the presentation of our experimental data. Another important result
is the determination of an optimum injection rate (Hoefner & Fogler 1988; Wang et al.
1993; Bazin, Roque & Bouteca 1995). It corresponds to the maximum of penetration
of the wormhole for a given volume of acid injected. It is reported that the optimum
conditions are related to the formation of a dominant wormhole with little branching
through the core. The optimum flow rate depends on several parameters, including
rock mineralogy (calcite or dolomite for carbonate formations), temperature and acid
concentration. The influence of the various parameters on the acid injection process
has been studied in detail by Bazin & Abdulahad (1999).

Several models have been developed to represent the wormhole formation and
growth:

(i) The simplest approach assumes that a cylindrical wormhole already exists
(Hung, Hill & Sepehrnoori 1989; Wang et al. 1993; Buijse 1997; Huang, Hill &
Schechter 1997; Huang, Zhu & Hill 1999). In the first models, the solid is not porous
and dissolution of the wall of the tube is studied by solving the transport equation
inside the tube. The velocity field (radial and longitudinal component C(r, x)) is cal-
culated by using Stokes equations inside the tube (Poiseuille flow). The concentration
field is determined with the real dissolution kinetics condition at the wall (zero concen-
tration in the case of a mass-transfer-limited process) and introducing the molecular
diffusion in the liquid phase. This simple model gives a good understanding of the
dimensionless numbers that govern the dissolution. The other interest of the model
is to illustrate the notion of upscaling. If the concentration is averaged along the



longitudinal axis, the average concentration is no longer in equilibrium with the ‘wall’
concentration, and a kinetic term appear in the one-dimensional transfer equation.
Improvements have been introduced by considering porous walls (fluid loss) and a
wormhole population density. However this model is based on a pre-existing shape of
the wormhole and cannot describe the ramified structure observed in the experiments.

(ii) The network approach considers the dissolution of the grains of the solid
in a two- or three-dimensional structure. Generally, the space between two pores is
represented by a cylindrical capillary. Contrary to the previous model, velocity and
concentration are not solved by the Stokes equation but replaced by the averaged
properties. The average flow rate is assumed to be proportional to the pressure
difference (Poiseuille’s law) and the dissolution proportional to the average velocity
and average concentration (Hoefner & Fogler 1988; Daccord, Lenormand & Touboul
1989). Network simulations are able to reproduce, at least qualitatively, the trends
observed experimentally for the dissolution regimes and obtain an optimum injection
rate. The major difficulty with the network approach lies in the application to large-
scale systems, because of the limited number of pores considered in the simulators.
In addition to the problem of size, the network approach does not account for the
pore merging, and this may lead to a lack of representativity of the model in the
fluid zone. This may explain some discrepancy observed in comparing experimental
data and simulation results, especially for the optimum flow rate as reported by
Fredd & Fogler (1998b). Attempts to obtain a more physically representative network
have been undertaken (Fredd & Fogler 1998b). While a better representation of
the geometry and the physics was achieved, this kind of model still requires an
approximate solution for the evolution of the geometry as well as for the solution of
the Navier–Stokes equations. Moreover, this has been developed so far for packed
beds only.

(iii) A different approach, used in fluid mechanics or thermal processes, is based
on correlations at the scale of the core sample itself (Daccord, Lenormand & Lietard
1993a, b; Frick, Kurmayr & Economides 1994). All the physical parameters involved
in the problem are introduced in the form of dimensionless numbers. The relationships
between observed parameters and dimensionless numbers are determined either from
experiments or using theoretical considerations. For instance, Daccord et al. (1993a)
used the properties of self-similarity of the structure of the wormholes in the ramified
regime to write the scale dependence as a power law characterized by the fractal
dimension. These approaches have been partially validated for experiments on the
water-gypsum system. Although these works give some qualitative results (dissolution
behaviour diagram), they cannot be used as fully predictive tools. A similar approach
was used by Hoefner & Fogler (1988), Fredd & Fogler (1999) and Fredd (2000) to
estimate a Damköhler number corresponding to the optimum flow rate. It reproduces
the trends observed experimentally for the dissolution regimes, but the optimum
injection rate cannot be predicted without a model of wormhole growth. Moreover,
the concentration effect on the wormhole development is not taken into account.

(iv) A model based on continuum equations written at Darcy’s scale has been
developed by Liu et al. (1997) and Chen et al. (1997). The resulting simulator solves the
Darcy-scale equations of fluid flow, acid transport and solid–fluid reaction. Although
fingering and wormholing phenomena were captured, a complete description of the
different dissolution regimes was not provided and prediction for optimum injection
conditions was lacking.

All these efforts have led to the understanding of the physics of porous media
dissolution and wormhole development. However, most of the existing models fail in
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Figure 1. The different scales of the problem.

describing quantitatively the coupled nature of flow and reaction without assuming
a wormhole geometry, or, otherwise, are limited to porous domain of small size
or of particular shape (packed bed structure for instance). In addition, the use of
Darcy-scale models has not led to a thorough investigation of all dissolution patterns.
The purpose of this paper is to build a Darcy-scale numerical simulator based on
improved physics and test it with existing or new experiments that will be presented.

The first part of this paper describes the physical model used to account for the
coupling between flow and dissolution. In the second part the numerical implemen-
tation of our model is presented. The numerical schemes used to solve the set of
equations, boundary and initial conditions are detailed. Finally, results are presented
and compared to experimental results from porous media made of salt, in which
solutions of under-saturated salt water were injected at a constant flow rate. The
main result is a good agreement in terms of dissolution regimes and prediction of
wormhole evolution.

2. Physical model
The different scales of our problem are represented in figure 1 from the pore scale

to the core scale. In this paper our interest is focused on the intermediate scale,
or Darcy scale (also identified as the local scale) where the properties are averaged
over a large number of pores. Since the development of a Darcy-scale dissolution
model is not straightforward, we need to start with the pore-scale description in order
to understand the limits and the problems associated with Darcy-scale continuum
description.

2.1. Pore-scale equations

At the pore-scale, the solid phase and the fluid phase are identified as the σ-phase
and the β-phase respectively. In the following equations, Aβσ represents the area of
the interface between the two phases and nβσ the unit normal vector directed from
the β-phase towards the σ-phase. We denote respectively as cAβ and cσβ the mass
concentration of the acid species and the solid species in the β-phase, and cBβ is the
water mass concentration.

We consider that the concentrations of the diffusing species in the β-phase are
small, and that the acid (or dissolved rock) transport in water does not change
the liquid density ρβ and viscosity µ. Therefore, the flow velocity can be solved
independently from the reaction–transport problem (for a given porosity field, εβ).
Furthermore, inertial terms are neglected in the momentum equations and we use



Stokes’ equations. We denote as vAβ and vβ the velocity of the acid species and the
average velocity in the β-phase, respectively.

In the general case, the overall reaction between acid and rock can be expressed by
the following boundary condition at the interface Aβσ:

−D∇cAβ · nβσ = kc(cAβ)n at Aβσ, (2.1)

where D is the molecular diffusion coefficient, kc is the reaction rate constant and n is
the order of the chemical reaction (Fogler 1999). For mass-transfer-limited reactions,
i.e. HCl–calcite, the dissolution process is very fast and the boundary condition at the
fluid–solid interface, (2.1), becomes

cAβ = 0 at Aβσ. (2.2)

This condition will be used in the rest of the paper. However, there would be no
mathematical difficulty in developing a similar calculation for the general case.

Given all the above assumptions, the final pore-scale boundary value problem can
be written as follows:

momentum balance

−∇pβ + µ∇2vβ = −ρβg, (2.3)

BC 1

vβ − nβσnβσ · vβ = 0 at Aβσ; (2.4)

species and total mass balance

∇ · vβ = 0, (2.5)

∂cAβ

∂t
+ ∇ · (vAβcAβ) = 0 in the β-phase, (2.6)

∂cσβ

∂t
+ ∇ · (vσβcσβ) = 0 in the β-phase, (2.7)

∂ρσ

∂t
= 0 in the σ-phase, (2.8)

BC 1

ρβ(vBβ − w) · nβσ = 0 at Aβσ, (2.9)

where w · nβσ is the velocity of the Aβσ interface. Here, we have written the boundary
condition for the passive fluid constituent (usually water), instead of a boundary
condition for the mixture, since it will be useful in developing the dissolution model:

BC 2

cAβ = 0 at Aβσ; (2.10)

BC 3

−ρσw · nβσ = cσβ(vσβ − w) · nβσ at Aβσ

= −βcAβ(vAβ − w) · nβσ. (2.11)

Equation (2.11) represents the relation between the dissolved solid flux and the
consumed acid flux, with β being the stoichiometric coefficient of the chemical
reaction.

Solving the set of equations at this scale is a tremendously complicated task and
would require knowledge of the pore structure; we adopt in this paper a more
macroscopic point of view, using Darcy-scale equations.



2.2. Darcy-scale equations

It is beyond the scope of this paper to present a complete derivation of the Darcy-
scale equations from the above pore-scale problem. Equations have been introduced
heuristically in chemical engineering (see for instance a general introduction about
chemical reaction engineering in Fogler 1999). Attempts have been made to obtain the
Darcy-scale equations using averaging techniques, and a discussion of the associated
approximations can be found in Quintard & Whitaker (1999). However, it is im-
portant to understand the limitations and problems associated with any Darcy-scale
dissolution model. On this basis and in the light of a quite complete analysis of
the different approaches used to describe the fluid–solid reactions in porous media
provided by Sahimi, Gavalas & Tsotsis (1990), we shall recall below the main aspects
of the difficulties in deriving such a macroscopic model.

We will follow the notation associated with the volume-averaging theory presented
in Quintard & Whitaker (1999). Darcy-scale averaged quantities are defined according
to Anderson & Jackson (1967), Marle (1967), Slattery (1967) or Whitaker (1967). For
instance the superficial velocity is given by

V β = 〈vβ〉 =
1

V

∫
Vβ-phase

vβ dV , (2.12)

where Vβ-phase represents the volume of the β-phase contained within the averaging
volume, V , represented in figure 1, and the intrinsic average pressure and concentration
are defined by

Pβ = 〈pβ〉β =
1

Vβ-phase

∫
Vβ-phase

pβ dV , (2.13)

CAβ = 〈cAβ〉β =
1

Vβ-phase

∫
Vβ-phase

cAβ dV . (2.14)

2.2.1. Liquid flow and momentum equations

At the Darcy scale shown in figure 1, three regions can be identified: a fluid
zone created by complete dissolution, the initial porous medium and a transient
zone characterized by a porosity gradient which may eventually develop under local
non-equilibrium conditions. Fluid and porous zones will be modelled using either
the Stokes equations or Darcy’s law. This approach is only valid if we assume that
the interface velocity is small, which is currently acceptable for most dissolution
problems. At the dissolution front, a macroscopic matching must be satisfied between
these two models through a macroscopic interface between the fluid zone and the
porous medium in the case of local equilibrium, or through a zone with a finite
porosity gradient in the case of local non-equilibrium.

The treatment of a fluid–porous medium interface has received much attention
(Arquis & Caltagirone 1984; Vafai & Thiyagaraja 1987; Vignes-Adler, Adler &
Gougat 1987; Larrea 1991; Larrea, Prat & Boisson 1992; Naimi 1997). The first
approach consists in writing appropriate boundary conditions at the interface and
the most popular form corresponds to the work of Beavers & Joseph (1967). For
a one-dimensional flow in the x-direction of a fluid above a porous medium, this
condition is written in the following form:

∂V Stokes
x

∂y
=
αBeaver

K1/2
(V Stokes

x − VDarcy
x ), (2.15)



where αBeaver is a dimensionless parameter which depends on the porous medium,
V Stokes is the fluid velocity, VDarcy is the superficial velocity in the porous medium, K is
the permeability and x and y are coordinates along the fluid–porous medium interface
and its normal respectively. The introduction of such boundary conditions has also
been discussed in Ochoa-Tapia & Whitaker (1995a, b). Upscaling considerations (see
a recent discussion in Goyeau et al. 1997) show that the Stokes equations, Darcy’s law
and boundary condition (2.15) can be approximated, for porous media with moderate
or low permeability, by a continuous formulation corresponding to the so-called
Darcy–Brinkman equation (Brinkman 1947) usually written as

µ

εβ
∆V β − ∇Pβ + ρβg− µK−1 · V β = 0, (2.16)

which can be expressed, in dimensionless form, as

1

εβ
∆V ′ − ∇P ′ + Re

Fr

g

|g| −
1

ND

V ′ = 0, (2.17)

where the dimensionless variables are defined as follows:

V ′ =
V β

|v0| , P ′ =
Pβl

µ|v0| , Re =
ρβ |v0|l
µ

, Fr =
|v0|2
|g|l , ND =

K

l2
. (2.18)

Here, ND represents the Darcy number which can be used to compare the relative
magnitude of the Darcy term to the Stokes viscous term, whereas the ratio between
the Reynolds number Re and the Froude number Fr defines the relative influence of
gravity and viscosity effects. In (2.18) l is a pore-scale characteristic length and v0 is
the inlet velocity. The error made in using this continuous formulation is of the order
of the grain size (Vignes-Adler et al. 1987).

The model was originally developed as a correction to Darcy’s law in the case of
large porosities (Brinkman 1947) and was further justified on a theoretical basis by
Tam (1969), Levy (1981) and Rubinstein (1986). The coefficient µ/εβ in (2.16), often
referred to as the effective viscosity, µ̃, has been the subject of debate in the literature,
essentially because direct experimental measurements are very difficult. For instance,
Brinkman, suggested using µ̃ = µ whereas more complex forms involving εβ were
proposed by Lundgren (1972), Durlofsky & Brady (1987) and Lhuillier, Goyeau &
Gobin (1999). Although this is still a matter of controversy (Nield 1983), the use
of such a continuous approach is also appealing for describing the flow in a fluid–
porous system like the one under consideration in the present work (Beckermann,
Ramadhyani & Viskanta 1987; Beckermann, Viskanta & Ramadhyani 1988; Gartling
1988). In the case of local equilibrium, it avoids the use of special conditions like the
one proposed by Beavers & Joseph required to match the Stokes model and Darcy’s
law. Moreover, the diffusive viscous term can properly describe the boundary layer
type of flow that develops in the porous zone close to the interface and this has
been validated by Vafai and co-workers (Vafai & Tien 1982; Vafai & Thiyagaraja
1987) and by Liu et al. (1997). In the fluid zone where ND is very large (theoretically
infinite), the Stokes model is recovered while in the porous zone for which ND is small,
the viscous diffusive term becomes negligible and the model reduces to Darcy’s law.

In the case of local non-equilibrium where a zone of finite length with porosity
gradients appears, more complicated questions arise if the continuous Brinkman
model is used. In this case, it can be shown theoretically that additional terms
associated with porosity gradients are required when upscaling the momentum pore-
scale equation (Ochoa-Tapia & Whitaker 1995a, b; Goyeau et al. 1997; Whitaker



1999). Although further work is required for more precision about the contribution
of such terms, studies on real structures with varying porosities indicate that this
model is very precise when used with a varying permeability provided these porosity
gradients are not too large (Goyeau et al. 1999). As a first approach, this encourages
the use of the Brinkman equation (2.16) for the momentum balance in the different
situations under consideration in this work. Moreover, the transition zone, when
present, between the Stokes and Darcy types of flow, is probably of very small extend.
Results will be used a posteriori to check the validity of this hypothesis.

Now we will study the relationship between permeability and porosity. Permeability
is only well defined when the geometry of the fluid–solid interface is known. However,
this interface may evolve during the dissolution process in a complex manner leading
to an evolution of the phase indicator and hence of the porosity. A direct relationship
between these two macroscopic quantities may depend on the history of the disso-
lution, due to the coupling between flow and dissolution processes. This has been
investigated on the basis of pore-scale simulations by Bekri, Thovert & Adler (1995).
Similar problems arise with dendritic mushy zones (Poirier 1987; Goyeau et al. 1999).
For a given class of dissolution problem and a given sample, it is reasonable to assume
a direct relationship between the permeability and the porosity, i.e. K(ε) instead of
K(t) and ε(t) (Fogler et al. 1976; Liu et al. 1997). Here, we will adopt this point
of view, remembering that it may be the cause of discrepancies between observed
results and predictions. It should be emphasized however that the dissolution model
proposed here does not depend on a particular choice for the permeability–porosity
relationship. Any choice could be made, depending on the amount of information
available for the system under consideration. In the section concerning the com-
parison between experiments and theoretical predictions, we will use the classical
Kozeny–Carman relation (Ergun 1952) to represent such a relationship, mainly be-
cause no information on the real pore-scale structure is available. If we consider that
the tortuosity of the medium evolves linearly according to the particle specific area
during the dissolution, we can write

K

l2β
= kcte

(
εβ

1− εβ
)3

, (2.19)

where lβ is the characteristic length at the pore-scale (mean size of the grains) and
kcte is a constant depending on the nature of the medium. Moreover, although the use
of the Kozeny–Carman relationship is a strong approximation, it plays a minor role
in local equilibrium dissolution where a sharp front delimits fluid and porous zones
(no transition zone for porosity or permeability). Its influence is sensitive only for the
ramified or uniform regime (local non-equilibrium dissolution) where a small change
in porosity may result in a change in permeability of several order of magnitude
during wormhole formation.

It will be shown in Appendix A that the overall mass balance equation for the fluid
phase may be approximated by

∇ · V β = 0, (2.20)

and this completes the formulation for the flow problem.

2.2.2. Dissolution and mass balance equations

From the literature review either for the tube model or the network, we have
seen that the mean concentration in the porous medium is not necessarily zero and
for this reason a model of local mass non-equilibrium is adopted. Doing so yields a



rather general model able to reproduce any kind of dissolution regime from compact
(sharp fluid–porous medium interface), to uniform (small porosity gradient). It must
be recalled here that the assumption of a mass-transfer-limited reaction, which leads
to a boundary condition of zero acid concentration at the interface between the liquid
and the solid at the pore scale, should not be confused with a local mass equilibrium
dissolution, which corresponds to a condition of zero acid concentration at the fluid–
porous medium interface at the Darcy scale. Both are distinct mechanisms at different
scales, and a mass-transfer-limited reaction may lead to either a local equilibrium or
a local non equilibrium process. This is a key distinction that must be emphasized
since it has often been a source of confusion in the literature, especially in capillary
tube models. Non-equilibrium models are frequently used for the problem of heat
transfer (non-local thermal equilibrium). Results by Carbonell & Whitaker (1984),
Zanotti & Carbonell (1984a, b), Kaviany (1991) and Quintard, Kaviany & Whitaker
(1997) have shown that this assumption requires the introduction of two macroscopic
equations. With regard to the dissolution, this type of assumption has been used
for the modelling of pollutant transport (DeZabala & Radke 1986; Powers et al.
1991; Miller et al. 1998), or for sandstone acidizing, for example (Fogler et al. 1967;
Schechter 1992).

In this paper, we do not discuss thoroughly the comprehensive development of
the dissolution Darcy-scale model. Several points have already been discussed in the
literature. However, since we believe it is important to understand the limitations
of the Darcy-scale approach, the reader will find in Appendix A a summary of the
different steps and assumptions made in order to obtain the macroscopic equations
outlined below. When the change in the interface shape is slow enough, a good
approximation of the problem leads to the following form of the local equations:

εβ
∂CAβ

∂t
+ V β · ∇CAβ = ∇ · (D∗β · ∇CAβ)− αCAβ, (2.21)

∂εβ

∂t
=
βαCAβ

ρσ
, (2.22)

in which some additional terms have been discarded because of their negligible effect.
The key parameter is the mass exchange coefficient α, and it should be noted that
if its value is large enough, the resulting averaged concentration will be close to the
equilibrium concentration, i.e. CAβ = 0. Therefore, this model can be used to simulate
both local equilibrium and local non-equilibrium conditions.

In the theoretical development presented in Quintard & Whitaker (1999), two pore-
scale ‘closure problems’ are described relating the pore-scale physical characteristics to
the ‘effective’ properties in (2.21). These closure problems can be used to estimate the
β-phase dispersion tensor, D∗β , and the mass transfer coefficient, α, for a given shape
of the fluid–solid interface. As outlined by those authors, these closure problems may
be used in two different ways:

(i) To compute the effective transport parameters for a series of given interface
geometry. For instance, one may assume homogeneous dissolution of the interface.

(ii) To compute the effective transport parameters, starting with a given interface,
and then, for specified Darcy-scale concentration fields, these closure problems may
be used to calculate the dissolution rate at each point of the interface. This will allow
us to compute the new interface shape, and this process could be repeated iteratively.
In that way, pore-scale closure problems, and Darcy-scale equations would be solved
in a coupled manner, and this would account for very complex dissolution processes.



This second approach is of course much more sophisticated than the first, and it is
of some importance in terms of computational time to see under which conditions it
is necessary to maintain this complexity.

For permeability, effective properties may depend on the dissolution process in
an historical manner (see for instance the pore-scale simulations developed by Bekri
et al. 1995). In this work, we adopt the traditional approach, and we approximate
the historical behaviour of the system by a direct relationship with the porosity of
the system, and a pore-scale Péclet number: D∗β(εβ, Pecell) and α(εβ, Pecell). However,
similarly to the discussion on the permeability–porosity relationship, the choice of a
particular correlation is of secondary importance in the model. Any choice can be
made without causing difficulties for the model implementation. Values of the mass
transfer coefficient reported in the literature were determined experimentally either
on annular flow reactors (Mumallah 1991, 1997, 1998) or rotating disk devices (Lund
et al. 1975). Nevertheless, since the value of the α-coefficient strongly depends on the
geometry of the domain, it is difficult to extrapolate from these works an effective
value for the dissolution of a real porous medium. In the work of Fredd & Fogler
(1998b), the mass transfer coefficient was extracted from the analytical solution of
the convection–diffusion equation in the laminar regime in a capillary tube as derived
by Levich (1962):

Kmt = 1.86D2/3

(
uw

dwLw

)1/3

, (2.23)

where Kmt is the Levich’s mass transfer coefficient, dw and Lw are the diameter
and length of the capillary tube, respectively, and uw is the superficial velocity in
the capillary tube. This correlation has the advantage of being dependent on the
diffusion coefficient and velocity. However, it is important to recall that it is obtained
by neglecting the second-order derivative of the concentration along the tube axis,
implying that the diffusive part is not taken into account in the expression for the
mass transfer coefficient. As a consequence, this form remains valid for large enough
Péclet number and its use in the conical regime where the Péclet number is small may
underestimate the diffusion effects. Moreover, there is confusion between the different
scales when using the wormhole properties instead of pore-scale properties in order
to define the mass transfer coefficient. As expressed by (2.23), Kmt is a core-scale mass
transfer coefficient and not a Darcy-scale mass transfer coefficient. In the Darcy-scale
approach, such Darcy-scale non-equilibrium processes are modelled directly by the
interplay of the different diffusion and convection mechanisms.

In the absence of experimental data for salt dissolution, the mass transfer and
dispersion coefficient used in our simulations were obtained first from a numerical
solution of the closure problems proposed in Quintard & Whitaker (1994, 1999). The
unit cell geometry used in our computations (see Appendix B) can be as complex as
necessary in order to capture the features of a real system and can account for the
complexity of the velocity field due to the non-local effects in the porous medium.
Furthermore, results presented in the next section show that the qualitative behaviour
of the model, in terms of dissolution regimes, does not significantly depend on a
particular choice of the unit cell. Because of the lack of information on the porous
medium used in the experiments, the unit cell is relatively simple. However, for the
comparison with the experimental data and the prediction of the optimum flow rate,
it was necessary to use an estimation of the effective coefficients closer to the real
structure, and this is where the above-mentioned upscaling techniques may provide



some quantitative information. The reader can find a presentation of these ‘closure
problems’ and the outline of the calculations in Appendix B.

At this point, we have a complete system of macroscopic equations able to describe
acid transport and dissolution in the domain at the Darcy scale. These equations can
be made dimensionless by introducing the classical dimensionless variables as follows:

D ′ =
D∗β
D
, V ′ =

V β

|v0| , x′i =
xi

l
, t′ =

|v0|t
l
, C ′ =

CAβ

c0

, (2.24)

where |v0| and c0 correspond to inlet flow and concentration conditions, and l is a
characteristic length. This leads to

εβ
∂C ′

∂t′
+ V ′ · ∇C ′ =

1

Pe
∇ · (D ′ · ∇C ′)− DaC ′, (2.25)

∂εβ

∂t′
=

(1− εβ)

εβ
DaNacC

′. (2.26)

It is clear from these two equations that, in addition to Re, Fr and ND already
mentioned, the wormhole propagation is a function of the following dimensionless
numbers classically reported in the literature (Buijse 1997; Daccord et al. 1993a, b):

the Péclet number which represents the magnitude of the convective transport
versus the diffusional transport,

Pe =
|v0|l
D

; (2.27)

the Damköhler number defined as the ratio of acid consumed and the acid trans-
ported by convection,

Da =
αl

|v0| ; (2.28)

the kinetic number defined as the ratio between the acid flux consumed by the
chemical reaction and the diffusive flux,

Ki = DaPe =
αl2

D
; (2.29)

the acid capacity number which represents the dissolving power of the acid solution,
that is to say the mass of solid dissolved per unit mass of the rock,

Nac =
εβc0β

(1− εβ)ρσ
. (2.30)

These dimensionless numbers include a characteristic length, l, which has been
chosen arbitrarily equal to

√
K , a representative length at the pore scale.

In the next section, the numerical model developed to solve the complete system
of equations is presented.

3. Numerical model
The equations are discretized on a three-dimensional uniform Cartesian grid. The

geometry of the medium under consideration is approximated by taking constant
values for permeability and porosity on every mesh of the domain at each time step.
Various boundary conditions have been implemented: symmetry, impermeable wall,
periodic conditions and, for the inlet, injection at constant pressure or constant flow
rate.



3.1. Momentum equations

The numerical model uses a multiple-step approach to account for the various
mechanisms. Due to the tracer assumption, the stationary Darcy–Brinkman problem
is solved first for a given porosity field using a Predictor–Corrector method coupled
with a Uzawa algorithm (Robichaud, Tanguy & Fortin 1990). The difficulty of this
linear system is the coupling between a first-order and a second-order operator, which
prevents the use of a classical resolution method for the Stokes equations, such as
the Augmented Lagrangian method. We decompose the pressure and velocity fields
as follows:

Pβ = P ∗β + P̃β, (3.1)

V β = V ∗β + Ṽ β, (3.2)

where P ∗β and P̃β represent respectively the predicted and corrected pressure field, and

V ∗β and Ṽ β the predicted and corrected velocities respectively.

3.1.1. Predictor step

We first calculate the predicted pressure and velocity fields on the basis that they
will lead to a good approximation of the Darcy part in the equations. Therefore, P ∗β
and V ∗β are sought as solutions of the following classical Darcy problem:

∇P ∗β = ρβg− µK−1 · V ∗β, (3.3)

∇ · V ∗β = 0. (3.4)

Equations (3.3) and (3.4) are combined to yield

∇ ·
(
K

µ
· (∇P ∗β − ρβg)

)
= 0. (3.5)

Classical schemes to solve one-phase Darcy flow in heterogeneous media can be
applied. Here, a finite volume formulation is used over the Cartesian grid and cell-
to-cell fluxes are approximated by using a harmonic averaged transmissivity ensuring
an order-2 scheme (Ahmadi & Quintard 1996). This results in a linear system that is
solved using an iterative algorithm like bi-cgstab which is found to be 15% to 20%
more effective than the classical conjugated bigradient (Van Der Vorst 1992). The
V ∗β-field is computed from the pressure field P ∗β by making use of (3.3).

3.1.2. Corrector step

After the predictor step, we solve the equations for the corrected pressure and
velocity, which are written as

µ

εβ
∆Ṽ β − ∇P̃β − µK−1 · Ṽ β = − µ

εβ
∆V ∗β, (3.6)

∇ · Ṽ β = 0. (3.7)

We solve this system with a Uzawa iterative algorithm (Fortin & Glowinski 1982)
which can be summarized as follows

Given P̃ n
β , find P̃ n+1

β and Ṽ
n

β solutions of

µ

εβ
∆Ṽ

n

β − µK−1 · Ṽ n

β = ∇P̃ n
β − µ

εβ
∆V ∗β, (3.8)



P̃ n+1
β = P̃ n

β − ρ∇ · Ṽ n

β, (3.9)

where ρ is the descent step parameter (with 0 < ρ < 2).
The convergence of the scheme is imposed by the following condition:

|P̃ n+1
β − P̃ n

β | 6 ε0, (3.10)

corresponding to a velocity field with divergence lower than ε0/ρ.
A staggered mesh for pressure and velocity is used in order to avoid pressure

oscillations with respect to the space coordinates.

3.2. Mass transport equations

Effective coefficients in the transport equations are computed next for a given poros-
ity and velocity field. A time-splitting method is used which splits the equation
into a hyperbolic part (convective terms) and an elliptic part (diffusive term). A
scheme proposed by Takacs (1985) is used for the hyperbolic part in order to reduce
numerical diffusion (Bruneau, Fabrie & Rasetarinera 1997). It is a TVD (total vari-
ation diminishing), oscillation-free, and L∞-stable scheme. The diffusive part is solved
using a classical implicit discretization. The scheme is written in three dimensions by
direction. Numerical tests were performed to check the sensitivity of the scheme to
the grid orientation, which is found to be very weak. The resulting acid concentration
profile is then used to solve the dissolution equation, (2.22), providing a new porosity
field. From this point on, the overall procedure is repeated iteratively to update the
dissolution pattern.

3.3. Instability formation

In order to obtain instability formation, it is necessary to introduce some distur-
bances in the system. Several possibilities are available: (i) perturbation of the initial
concentration field, (ii) perturbed boundary condition, (iii) perturbed porous medium
characteristics. We chosed the third by adding to the homogeneous permeability field
a random noise using a uniform distribution law of zero correlation length. In a real
medium, these heterogeneities always appear at all scales. Small fluctuations, ε, added
to the permeability field can be seen as a consequence of the pore-scale heterogeneities.
The influence of the initial perturbation on the dissolution pattern and dynamics has
been tested by varying the amplitude. For small amplitudes (around 10%), a very
small impact on the wormhole development has been observed. This is the range of
pertubations used in all our quantitatives studies. However, we observe few lateral
ramifications in this case, the wormhole shape being more schematic. In order to
obtain more detailed dissolution pattterns, it is necessary to increase the amplitude of
the permeability perturbations (about a factor 5). This type of perturbation was only
used for the presentation of the dissolution patterns.

Computations have been performed for many different conditions on two-
dimensional domains, and results are now discussed in the next section and compared
to the experimental data.

4. Results and discussion
In this section, we first present the experimental data that will be used in the

subsequent discussion. We explain why the studied system is of interest and the
results obtained.

In most experiments on dissolution available in the literature, the dissolution pattern



is three-dimensional and detailed evolution of the dissolution pattern with time is
not available. For direct comparison with two-dimensional numerical simulations
presented in this work, detailed experimental results are needed and for this reason,
simple dissolution experiments were performed on two-dimensional beds of packed
grains of salt.

4.1. Experimental study

4.1.1. Choice of the system

The experimental results are obtained by the injection of an under-saturated salt
solution in a porous medium made of salt grains. This system is comparable to
limestone dissolved by acid since the dissolution is limited by the mass-transfer
mechanism. The main advantage is that it is possible to take pictures as the injection
proceeds. In addition, experiments are fast and easy to perform. Comparison between
the acid–limestone and the water–salt pack systems is easy to perform on the basis
of the dissolution power quantified with Nac. The fraction of rock dissolved by the
acid, βCAβ , corresponds to the difference between the solubility limit of NaCl in water
(Csat = 360 g l−1 at 20 ◦C) and the salt concentration CNaCl . We have

CAβ =
Csat − CNaCl

β
. (4.1)

Since the model is written for acid injection, this relation is used for the modelling
of the experimental results where an equivalent acid concentration is associated with
every salt concentration. Note that in this system an increase in salt concentration is
equivalent to a decrease of the acid concentration in the acid–limestone system.

4.1.2. Experimental procedure

The experimental setup is represented in figure 2. Salt is packed in a transparent
Hele-Shaw cell of 25 cm in length, 5 cm wide, and 1 mm in depth which can there-
fore be considered as two-dimensional for comparison with numerical simulations.
Salt grains are about 300 µm in mean size, having the form of small plates. Once
packed, the porosity is about 0.36. At the beginning of the experiment, the medium
is completely saturated with salt water at 360 g l−1 and permeability is measured. The
average value of the permeability is 1.5× 10−11 m2. A solution of given concentration
is injected at constant flow rate at ambient temperature while the pressure drop
between the inlet and outlet is measured with a pressure transducer. The evolution of
the dissolution pattern is recorded using a video camera. Both camera and pressure
transducer are computer-monitored. Experiments have been performed for salt con-
centrations between 50 and 340 g l−1, and for injection rates between 5 and 350 cm h−1.
Reproducibility of the experiments has been checked and is very good as illustrated
by the results in figure 3 where we have reported the wormhole length versus time
for two experiments performed at the same conditions.

4.1.3. Dissolution patterns

Qualitative results (figure 4) are identical to those of the classical acid–calcite
system, as reported in the literature (Hoefner & Fogler 1988). According to Fredd
& Miller’s (2000) classification based on experimental observations, five different
dissolution structures are observed depending on the flux rate: two limit cases (a,e)
and three intermediate cases (b,c,d ) as explained below.

(a) Face or compact dissolution: At low injection rates, acid is completely consumed
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Figure 2. Experimental setup.
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Figure 3. Experiment reproducibility for the same injection conditions:
CNaCl = 150 g l−1, Q = 100 cm3 h−1.

at the inlet of the core. The diffusion mechanism dominates over transport by
convection and instabilities cannot develop.

(b) Conical wormholes: On increasing slightly the injection rate, instabilities begin
to develop although the regime is still strongly influenced by diffusion. Reactant
starts to penetrate the medium and erodes the walls of the flow channels, to form a
conical-shaped wormhole.

(c) Dominant wormholes: At intermediate flow rates, acid penetrates preferentially
into the biggest pores to form flow channels and this leads to the formation of a
dominant wormhole. The optimum flow rate is found in this regime. Concentration
variations in the porous medium start to be significant while porosity variations
continue to signify a sharp front.

(d) Ramified wormholes: At high injection rates, wormholes become more highly
branched or ramified and the dissolution front is more spread within the porous
domain.



(a) (b) (c) (d)

Figure 4. Example of experimental patterns of dissolution: (a) face dissolution, Q = 5 cm3 h−1,
CNaCl = 150 g l−1; (b) conical wormhole, Q = 10 cm3 h−1, CNaCl = 230 g l−1; (c) dominant wormhole,
Q = 50 cm3 h−1, CNaCl = 150 g l−1; (d ) ramified wormhole, Q = 250 cm3 h−1, CNaCl = 150 g l−1.

(e) Uniform dissolution: Finally, at very high injection rates, the reactant is forced
into all pores in the porous matrix. The dissolution front is spread over the whole
core length and this corresponds to a non-equilibrium dissolution. It is remarkable
that a local non-equilibrium leads to another stable displacement.

This latter regime could not be reached in our experimental setup due to the
use of an unconsolidated porous material. It was impossible to perform injection at
very high velocities to investigate the uniform dissolution. Finally, an example of the
wormhole growth is presented in figure 5, where Lw is the wormhole length.

4.1.4. Optimum flow rate

The experiments confirmed the existence of an optimum injection rate, i.e. minimum
quantity of injected solution to break through the core. The experimental results
obtained for salt concentrations equal to 150 and 230 g l−1 are presented, in terms of
the number of pore volumes required to extend the dissolution channels to a specified
length, here the core length L, in figures 6(a) and 6(b). This volume is usually referred
to as the pore volume to breakthrough, VBT . Clearly, these figures show the existence
of an optimum injection rate and are characterized by two different behaviours.
Breakthrough times decrease as the injection rate increases until the optimum flow
rate is reached. Then the breakthrough times increase again for injection flow rates
higher than the optimum.

In order to emphasize the existence of an optimum flow rate, results from figure 6
were combined, along with results obtained with CNaCl = 50 g l−1, in figure 7 where we
have represented the pore volume to breakthrough as a function of the injection rate.
The optimum flow rate is reported in log-log coordinates. We obtained experimentally
optimum flow rates of 100, 80 and 70 cm3 h−1 for the salt solutions at 50, 150 and
230 g l−1 respectively. A slope of 1/3 for injection rates higher than the optimum is
observed, which is in perfect agreement with results obtained for HCl–calcite systems
(Daccord et al. 1989; Bazin 2000).

Considering the effect of the salt concentration on the optimum flow rate, we
observe an increase of the optimum flow rate when the salt concentration decreases.



t = 8 min
Lw =10 cm

t =11.9 min
Lw =13 cm

t = 23.5 min
Lw = 22 cm

t = 27 min
Lw = 24 cm

Figure 5. Dissolution history in the wormholing regime; CaNaCl = 150 g l−1, Q = 50 cm3 h−1.

This result is consistent with results obtained with the limestone–acid system since
decrease of the salt concentration in the salt–undersaturated salt solution system
corresponds to an increase of the acid concentration in the acid–limestone system
(Wang et al. 1993; Bazin, Chauveteau & Bouteca 1997).

Finally, breakthrough times decrease with NaCl concentration, following the trend
observed with the acid–limestone system.

As mentioned above, we have observed trends in the experimental results in
agreement with results obtained by previous investigators. They can be interpreted
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a priori with a two-dimensional model. In the next section, results obtained from
numerical simulations are compared to these experimental data. Given the equivalence
between salt and acid dissolution models, we will keep the terminology of acid
injection for both phenomena.

4.2. Numerical simulations and comparison with experimental data

A large number of simulations have been performed, at various flow rates and other
parameter values. They are presented below.

4.2.1. Dissolution regimes

It is first of interest to check whether the model is able to reproduce the dissolution
regimes observed experimentally. The two-dimensional configuration under study is
illustrated figure 8 and conditions for the simulation are given in table 1. We set the
mass transfer coefficient and the diffusion coefficient at constant values to eliminate
Da and Pe variations during the simulation. Our numerical model works as well
with non-constant α, which will be used in the rest of the paper. However, keeping α
constant provides a good illustration of this Darcy-scale model, in terms of dissolution
instabilities, and this opens a large field of investigations for further studies.

Figure 9 shows the different dissolution patterns obtained numerically for different
acid injection rates. The concentration fields are represented in figure 10. Figure 11
shows the porosity field during the wormhole growth in the wormholing regime. The
obtained dissolution patterns are remarkably similar to the experimental dissolution
patterns shown figure 4. They are used to clarify the dissolution mechanisms. The con-
centration fields show that regimes (a–c) correspond to local equilibrium conditions,
while regimes (d–e) feature local non-equilibrium dissolution.

At this point, we see that the Darcy–Brinkman non-equilibrium model proposed
in this paper has all the required features to capture the complex observed physical
behaviour. It is shown that all the dissolution structures can be described with a
mass transfer coefficient, i.e. without considering a reaction-limited kinetics, and a
flow description which allows the Stokes and Darcy equations. We observed that
the Stokes flow is prominent in the wormhole zone when the porosity is close
to 1, while Darcy’s law becomes dominant in the surrounding porous medium.
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Figure 9. Porosity fields representative of the dissolution structures obtained numerically. (a) Face
dissolution, Pe = 8.32×10−4, Da = 120; (b) conical wormhole, Pe = 4.14×10−3, Da = 24; (c) domi-
nant wormhole, Pe = 1.66, Da = 6.01× 10−2; (d ) ramified wormhole, Pe = 83.2, Da = 1.2× 10−3;
(e) uniform dissolution, Pe = 832, Da = 1.2× 10−14.

201× 101 nodes D = 1× 10−9 m2 s−1

Cacid = 150 kg m−3 µ = 1× 10−3 Pa s
εβ = 0.38 β = 1.37
ρσ = 2700 kg m−3 α = 10 s−1

K = 10−11 ± εm2

Table 1. Numerical data for constant inlet pressure injection.

(a) (b) (c) (d ) (e)

0

25

50

75

100

125

150

Figure 10. Concentration fields representative of the dissolution structures obtained numerically;
(a–e) same as figure 9.

We can conclude that the Darcy–Brinkman model is well suited to describe fluid
loss through the wormhole. Considering mass transfer, local-equilibrium and non-
equilibrium situations are described as a result of the interplay between fluid flow
and the mass transfer coefficient.

4.2.2. Dissolution diagrams

We take advantage of the physics introduced in the numerical model to map
the dissolution structures in behaviour diagrams (figures 12 and 13). The Pe–Da
and Pe–Ki diagrams have been drawn from simulations where some different and
independent constant values for the effective coefficients α and D have been taken for
each run. This offers an interesting general perspective on the theory of such unstable
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Figure 11. Porosity fields representative of the dissolution history in the wormholing regime.

displacements, which we will use here. Of course, it might be difficult in practice to
keep all the parameters independent, and this will be the case when the nonlinear
relations for α and D∗β are used, as presented in Appendix B. This will be illustrated,
for instance, in the discussion about figure 17.
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Figure 13. Pe–Ki diagram; Nac = 4.66× 10−2, L = 10 cm.

Boundaries have been drawn between the different regimes based on a qualitative
observation of the dissolution structures and some uncertainties are associated with
the transition lines. Moreover, we have fixed Nac and the value of the core length, L.
It must be emphasized that the modification of these values leads to a displacement
of the transition lines, as it will be shown in the last part of the paper. Although the
choice of the α-correlation will have an impact on the boundary position, the use of
a constant value for the mass transfer coefficient gives an accurate enough idea of
transitions between the regimes.

The Pe–Da diagram (figure 12) shows that the transition between the compact, con-
ical wormhole and dominant wormhole regimes does not depend on the Damköhler
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Figure 14. Behaviour diagram according to Daccord et al. (1993).

value. It is only determined by the value of the Péclet number. Decreasing the
Damköhler number will lead to more local non-equilibrium effects and consequently
to transitions towards uniform dissolution. This is also illustrated in the Pe–Ki dia-
gram, figure 13, which shows that it is possible to go from the compact to the uniform
regime by increasing only the injection flow rate.

The Pe–Da diagram (figure 12) provides other information concerning the worm-
hole formation: the instabilities, i.e. wormholes, start developing above threshold
values of the Damköhler and Péclet numbers. For Pe 6 2× 10−3, the diffusion mech-
anism is dominant and the dissolution patterns are in compact or uniform regimes.
In the same way, for Da 6 8.10−4, the dissolution front is completely spread over the
whole width of the core, the instabilities are eliminated and the uniform regime is
observed.

Finally, we compare our Pe–Ki diagram to the diagram previously proposed by
Daccord et al. (1993b), figure 14, for the simple geometry of a straight capillary.
They consider a capillary of radius R, in a soluble mineral, in which a reactive fluid
of concentration C is injected at a constant rate, q. The dimensionless numbers are
expressed as

PeDaccord =
q

πRD
, (4.2)

and

KiDaccord =
krC

aD
, (4.3)

where kr is the reaction rate constant and a the specific molar area of the mineral
constitutive of the capillary.

The comparison of figure 14 and figure 13 shows many similarities. The same slopes
between the regimes of compact/conical wormholes–dominant wormholes and com-
pact/conical wormholes–ramified wormholes/uniform are obtained. The difference in
slope for the limit between the ramified wormholes/uniform regime and dominant
wormholes (1/3 instead of 1 in the present work) could be explained by the fact



201× 101 nodes Cacid = 545 kg m−3

ρσ = 2160 kg m−3 µ= 1× 10−3 Pa s
εβ = 0.2 β= 1.62
Dβ = 2× 10−9 m2 s−1 K = 10−11 ± εm2

Table 2. Numerical data for constant flow rate injection.

that Daccord et al. (1993b) do not distinguish the uniform regime from the ramified
wormhole regime.

4.2.3. Optimum flow rate

Numerical experiments were performed to calculate the wormhole growth curves
for various injection flow rates. In these simulations the mass transfer coefficient
is varied according to the local porosity and velocity. The expression for the mass
transfer coefficient is

α = Aαo(Pecell , εβ), (4.4)

where αo is given by figure 25 (Appendix B). The A coefficient is introduced arbitrarly
as a shape factor to account for various pore structures and to test the effect of α
on the breakthrough times and optimum flow rates. Values of A are 0.1, 0.2 and 0.5.
The numerical data used for the simulations are shown in table 2. The core is 25 cm
in length and 5 cm in width. Note that the numerical estimation of the wormhole
length depends on the choice of the porosity threshold used to determine the tip of
the channel. Arbitrarily, we have considered that the wormhole ends when porosity
reaches 0.75, but a different choice would slightly modify the value of the pore volume
to breakthrough. For instance, time to breakthrough may be about 5% longer if we
had chosen 1 as the final porosity value. Resulting data are plotted in figures 15(a),
15(b) and 15(c). Results showed qualitatively a wormhole growth comparable to the
experimental results and the existence of an optimum flow rate. The optimum flow
rates are 10, 20 and 50 cm3 h−1 for A values of 0.1, 0.2 and 0.5 respectively. The
optimum flow rate increases linearly with α. As expected, the mass transfer coefficient
is the key parameter of the model, and a small variation in the estimation of α leads
to an error of the same order of magnitude in the prediction of the optimum flow
rate. Therefore, this coefficient must be determined carefully.

Figure 16 shows that the α value has a substantial impact on wormhole growth at
flow rates lower or higher than the optimum. For flow rates higher than the optimum,
the wormhole growth increases with the value of the mass transfer coefficient whereas
it is the opposite for the flow rates lower than the optimum. This result may be
explained physically by considering the dissolution mechanisms. As demonstrated with
the dissolution patterns, the dissolution occurs at the tip of the wormhole for high flow
rates whereas for small injection velocities, a larger quantity of reactant is consumed
at the walls of the wormholes, thus decreasing the wormhole tip propagation.

4.2.4. Optimum Damköhler number

The results of the numerical experiments performed for different values of the mass
transfer coefficient are reported in a Pe–Da diagram (figure 17). It is found that
optimum flow rates actually correspond to a unique constant Damköhler number,
Daopt, in agreement with previous work (Fredd & Fogler 1998b). This is evident as
we claim in the preceding paragraph that the optimum flow rate varies linearly with
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α. This optimum Damköhler number is located near the transition zone between a
dominant wormhole and ramified wormholes, an idea also put forth by Wang et al.
(1993). Once again, it should be recalled that all the results are obtained for a given
core length and acid concentration, as expressed through Nac. Fredd & Fogler (1998b)
obtain DaFredd-opt = 0.29, whatever the system, with a definition of the Damköhler
number involving the characteristic length of the domain. However, Fredd & Fogler’s
characterization of the optimum Damköhler number has been verified for several
experiments performed only at a constant acid capacity number Nac and a given
core length (concerning the influence of the acid capacity number, they claim that it
slightly modifies the 0.29 value obtained for the DaFredd-opt). They use the following
definition:

DaFredd =
4Lwktot
dwuw

, (4.5)

where uw is the interstitial velocity in the wormhole, dw and Lw are the diameter
and length of the wormhole respectively (their evaluation is based on final wormhole
dimensions), and ktot is the dissolution rate constant (ktot = Kmt for a mass-transfer-
limited reaction). With the formalism used in this work, Kmt corresponds to αl, l being
a microscopic characteristic length. In the case of a mass-transfer-limited reaction,
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considering the Levich expression, (2.23), used for the mass transfer coefficient, the
Fredd & Fogler Damköhler number takes the following form:

DaFredd = 6.33

(
LwD

qw

)2/3

, (4.6)

where qw is the flow rate in the wormhole. According to this definition, the optimum
flow rate must increase linearly with the core length and this is not consistent with
other experimental results (Bazin 2000).



Using our numerical data and
√
K as the microscopic characteristic length scale

l, we can estimate the optimum Damköhler number according to the definition of
Fredd & Fogler:

0.28 6 DaFredd-opt =
4Lwα

√
K

dwuw
6 0.35. (4.7)

This apparent excellent agreement between the two values of the optimum
Damköhler number must however be put into context since this results from the
choice of the characteristic length. For instance, the choice of lβ (the unit cell length
of figure 24), as the pore characteristic length, would give

Daopt =
4Lwαlβ
dwuw

≈ 14.8. (4.8)

Yet the choice of
√
K as the pore characteristic length seems the best one in the

context of Fredd & Fogler’s model. Their estimate of the mass transfer coefficient
is based on a tube model and we have already discussed the limitations of Levich’s
solution, especially at very low Péclet number. If we leave this discussion open and
apply this estimate to the conditions of our numerical experiments (in the case
A = 0.5, for example), we obtain

Kmt = 1.86D2/3

(
uw

dwLw

)1/3

= 8.06× 10−6 m s−1 (4.9)

for the value of the Levich’s mass transfer coefficient Kmt. This can be compared to
the value of our mass transfer coefficient, i.e.

α
√
K = 6.32× 10−6 m s−1. (4.10)

The two values are very close.

Among various consequences of these results, it is interesting to point out that
the variation of the acid diffusion coefficient in the fluid phase does not directly
modify the value of the optimum injection rate. Actually, the Damköhler number
depends only on the injection velocity and the mass transfer coefficient and diffusion
effects are incorporated into this latter coefficient. However, injection of weak acid
or microemulsion (Hoefner et al. 1987; Bazin & Abdulahad 1999; Conway et al.
1999; Lynn & Nasr-El-Din 2001), for which diffusion coefficients are two orders
of magnitude lower than in HCl aqueous solutions, were revealed to be efficient
acidification processes with optimum conditions for lower velocity injections, and
this may be explained by the relation between the mass transfer coefficient, α, and
D (see Appendix B). Since α decreases when D decreases, the optimum Damköhler
number is reached for small values of the flow rate in the case of weak diffusion of
the acid. As a consequence, cores stimulated with weak acids exhibit a more uniform
dissolution. This is consistent with the fact that, for a given flow rate, decreasing
the Damköhler number, leads to dissolution patterns closer to ramified wormholes.
The same argument can be put forth to explain the effect of temperature variations.
When temperature increases, the diffusion coefficient increases, and, therefore, the
optimum flow rate increases while dissolution patterns are closer to conical wormholes.
Experimental results (Wang et al. 1993; Bazin et al. 1997) are in agreement with these
trends.
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Figure 18. Pore volume to breakthrough for different concentrations.

4.2.5. Effect of concentration

We shall now test the model by looking at the effect of the acid concentration on the
optimum flow rate. Some simulations were performed at Cacid = 326 g l−1 and A = 0.5.
Note that there is a priori no reason to change the α value when the concentration
changes since α is a parameter which depends only on the porosity and the velocity.
Results obtained for the different concentrations are illustrated in figure 18 in terms
of pore volume to breakthrough as a function of the injection rate. Contrary to the
experimental results, we do not observe a significant variation of the optimum flow
rate. This could be explained by the small increase of the concentration. However we
obtain an increase of the pore volume to breakthrough, as it has been observed in
the literature.

Finally, the effect of the concentration on the Pe–Da diagram is illustrated figure 19.
The results are reported in the behaviour diagram, where the symbols refer to the
highest concentration. There is an appreciable shift of the boundaries between the
various dissolution structures. As an example, conditions leading to conical dissolution
structures lead to compact structures when the concentration in the injected fluid
increases. Consequently, a shift towards a higher optimum flow rate is expected when
the acid concentration is increased. This is in agreement with the results observed
experimentally.

4.2.6. Representation of the experimental data and calibration of the model

We shall now investigate the ability of the Darcy-scale model to correctly reproduce
the experimental data and, in particular, to predict the pore volume to breakthrough,
i.e. the dissolution kinetic. Two parameters have a strong influence on the break-
through time: (i) α-correlation and (ii) the permeability–porosity correlation (Civan
2001). Therefore the calibration of the model reduces to adjusting these two param-
eters to the experimental results. While the procedure to determine the mass transfer
coefficient may be applied to any pore-scale structure, the current unit cell used to
solve the closure problem is a crude representation of the real medium with strong
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constraints: two-dimensional cell, periodic boundary condition, rectangular geometry.
Moreover, it has been shown that inaccuracy in the estimation of the mass transfer
coefficient leads to a similar inaccuracy in the prediction of the optimum flow rate.
An illustration of the influence of the cell geometry on the value of α is shown in
figure 28 of Appendix A.

Possible routes would be to use the full coupling between the Darcy-scale model
and the microscale closure problems, as outlined in Quintard & Whitaker (1999).
However, a detailed characterization of the pore scale would be necessary. It is
beyond the scope of our work to do such a task for the salt porous domains. In the
absence of pore-scale simulations on unit cells more representative of the real medium
(three-dimensional calculation, no periodic boundary condition, geometry variation),
and given the lack of detailed information on the pore-scale geometry for our porous
system, the model is calibrated through the choice of the shape factor A. Only one
series of simulations is necessary to adjust the parameter α. Once α is determined, it is
in principle possible to predict the optimum flow rate and dissolution pattern of the
system under consideration for other injection conditions: variation of the injected
acid concentration or the core length. However, we have shown in the theoretical
development that there is a priori no intrinsic value of α because of historical effects,
and this is also true for other effective properties. It is therefore expected that the
α-correlation may require adjustments under experimental conditions far from the
range of parameters studied. We do not have a comprehensive analysis of this problem
for our experimental setup; however, some elements of this discussion are presented
below.

The impact of the choice of the permeability–porosity correlation on the time to
breakthrough has been tested with two different correlations. The numerical simula-
tions were performed either with the Kozeny–Carman relationship used previously,
or with a correlation obtained from the volume averaging method based on the work
of Whitaker (1986). The unit cell used to solve the closure problem associated with
the calculation of the permeability is the same as for the mass transfer coefficient or
the dispersion tensor. Comparison between these correlations is represented figure 20.
Permeability value Kf for the fluid region, i.e. the permeability for a near unity



10–7

10–8

10–9

10–10

10–11

Kozeny–Carman

Closure problem
Pe

rm
ea

bi
li

ty

0.36 0.46 0.56 0.66 0.76 0.86 0.96 1.00

Porosity

Figure 20. Comparison of the permeability–porosity correlations; Kfluid = 8.33× 10−8.

1 
m

m

Figure 21. Flow profile in the Hele-Shaw cell.

porosity, was not considered as infinite in the Darcy–Brinkman but was calculated by
averaging the flow profile in the Hele-Shaw cell in the direction perpendicular to the
plates. In fact, the Hele-Shaw cell is not really a two-dimensional medium. As we can
see in figure 21, the flow profile seen from the top does not correspond to a Poiseuille
flow in the fluid zone. Classically, this effective permeability depends on the thickness
b of the cell (here b = 1 mm), i.e.

Kf =
b2

12
= 8.33× 10−8 m2. (4.11)

Numerical data used for the simulations are shown in table 3. The core is 25 cm in
length and 5 cm in width. The injected acid concentration, Cacid, corresponds to a salt
concentration of 150 kg m−3.

A first series of simulations was performed in order to calibrate the mass transfer
coefficient with respect to the optimum flow rate. Shape factor A was fixed to 1.1
for the Kozeny–Carman K–εβ relationship, and to 3 for the second correlation. The
impact of the K–εβ correlation on the numerical simulations is represented in figure 22
in terms of extension of the dissolution pattern versus pore volume for two injection
flow rates. One corresponds to a local equilibrium dissolution (Q = 1 cm3 h−1, conical
regime), the other corresponds to a local non-equilibrium dissolution (Q = 80 cm3 h−1,
optimum flow rate). As expected, the K–εβ correlation plays a minor role in local
equilibrium dissolution where a sharp front delimits the fluid and porous zones (no
transition zone for porosity or permeability).
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On the other hand, there is a great sensitivity of the model in the local non-
equilibrium situation and a precise calibration of the model is therefore necessary.

Numerical simulations were performed with K estimated from the closure problem
and A = 3. Comparison between experimental and numerical results in terms of
pore volume to breakthrough versus injection flow rate is presented in figure 23.
Considering the assumptions made about the pore-scale geometry of the medium, the
results are in fair agreement with an accuracy for the time to breakthrough of about
25% in the region near the optimum flow rate. Improvements would require a better
characterization of the pore-scale structure, which is beyond the scope of this paper.



201× 101 nodes Cacid = 210 kg m−3

ρσ = 2160 kg m−3 µ= 1× 10−3 Pa s
εβ = 0.36 β= 1
Dβ = 2.10−9 m2 s−1 K = 1.5× 10−11 ± εm2

Table 3. Numerical data; constant flow rate injection.

5. Conclusion

A three-dimensional coupled reaction–transport Darcy-scale model has been pre-
sented in this paper. Compared to previous dissolution models, its originality lies in
the fact that it is based on a combination of a Darcy–Brinkman model and a local
non-equilibrium dissolution model. A specific numerical procedure has been devel-
oped to solve for the coupled equations. The Darcy-scale model, and the associated
‘effective’ properties are linked to pore-scale properties. Historical behaviour is dis-
regarded by using simple representative unit cells and a simple pore-scale dissolution
framework.

Several numerical simulations have been performed. They show that this mathe-
matical model can reproduce all the dissolution regimes observed in the literature.
Not only does the model capture the different dissolution regimes, but it can be
used to give a physical interpretation of the dissolution mechanisms. It also can be
used to propose quantitative diagrams representing transitions between these different
regimes. In addition, important features such as optimum flow rates are recovered,
provided that correct local-scale physical characteristics are determined.

New experimental results have been obtained in the saltpack–undersaturated salt
solution system. They show the same dissolution patterns as previously published
experiments in the acid–limestone system. For a quantitative analysis, it appears that
the most sensitive parameter in the model is the mass transfer coefficient, α, since
the Damköhler number plays a key role as a controlling parameter for the wormhole
propagation. The permeability–porosity relation is also very important, especially for
local non-equilibrium regimes.

The link between the mass transfer coefficient and the Damköhler number allowed
us to define an optimum Damköhler number, denoted Daopt. By a comparison between
numerical and experimental data, we were able to determine the most probable α
coefficient, for the system under consideration.

Our Darcy-scale model offers a very interesting tool to understand the physics
involved, and to predict the wormhole propagation in a quantitative manner. It
may be used to study the effect of many external parameters, such as the variation
of temperature or concentration, or process modifications like the use of acids in
emulsion, which give lower diffusion effects. Such a model can also be used to obtain
information on tricky questions, such as dissolution patterns for porous media of
very large extent, since most of the pore-scale physics is incorporated in the effective
coefficients appearing in the Darcy-scale description, which are difficult to handle with
pure pore-scale models. This could be useful in understanding the transient evolution
of unstable dissolution patterns around a wellbore for instance, or in semi-infinite
media. Finally, a Darcy-scale model presents a simpler mathematical form, and it can
be be used very efficiently for further stability studies for instance, which in turn may
provide valuable information.



Appendix A. Dissolution and mass balance equations
In this Appendix, we make explicit the relationship between the pore-scale physics

and the Darcy-scale model used in our previous work (Quintard & Whitaker 1994,
1999).

Taking the volume average of the fluid mass balance equation, (2.5), and after using
the averaging theorem (Marle 1967; Howes & Whitaker 1985; Gray et al. 1993), we
obtain

∂εβ

∂t
+ ∇ · V β = − 1

V

∫
Aβσ

nβσ · (vβ − w) dA. (A 1)

From (2.9) we have

nβσ · (vBβ − w) = 0 at Aβσ. (A 2)

Moreover, from the tracer case assumption used for species A and σ, we can write

cBβvBβ = cBβvβ − D∇cBβ ≈ cBβvβ, (A 3)

and the use of (A 3) along with the boundary condition in (A 2) provides the following
relation:

nβσ · (vβ − w) ≈ 0 at Aβσ. (A 4)

Finally, (A 1) can be approximated by

∂εβ

∂t
+ ∇ · V β = 0. (A 5)

At this point, we can make the assumption that the dissolution mechanism is
slow enough to be considered as a quasi-steady-state process, and this is consistent
with the assumption associated with (A 4). As a consequence, we can couple the
Darcy–Brinkman equation with the following relation:

∇ · V β = 0. (A 6)

We can now average the acid mass balance equation (2.6)〈
∂cAβ

∂t

〉
+ 〈∇ · (vAβcAβ)〉 = 0. (A 7)

Applying the general transport theorem and the spatial averaging theorem
(Whitaker 1985) to this equation, yields

∂〈cAβ〉
∂t

+ ∇ · 〈vAβcAβ〉+
1

V

∫
Aβσ

cAβnβσ · (vAβ − w) dA = 0. (A 8)

The assumption of a dilute solution for species A leads to

cAβvAβ = cAβvβ − D∇cAβ. (A 9)

By introducing this relation in (A 8), we can write

∂(εβCAβ)

∂t︸ ︷︷ ︸
accumulation

+∇ · 〈vβcAβ〉︸ ︷︷ ︸
convection

+
1

V

∫
Aβσ

cAβnβσ · (vAβ − w) dA︸ ︷︷ ︸
interfacial flux

= ∇ · 〈D∇cAβ〉︸ ︷︷ ︸
diffusion

. (A 10)

Here this equation is coupled with the pore-scale boundary value problem, and in
particular with (2.10). This latter equation associated with rapid pore-scale transport
may lead to a local equilibrium model characterized by

CAβ = 0. (A 11)



A local non-equilibrium model has been discussed in the literature, and the reader
will find a discussion in Quintard & Whitaker (1999). When the change in the interface
shape is slow enough, a good approximation of the problem leads to the following
form of the local equation:

εβ
∂CAβ

∂t
+ V β · ∇CAβ = ∇ · (D∗β ·∇CAβ)− αCAβ. (A 12)

We are ready now to move on to the dissolution rate of the σ-phase. The upscaling
method applied to (2.8) leads to

∂εσ〈ρσ〉σ
∂t

− 1

V

∫
Aβσ

ρσnσβ · w dA = 0. (A 13)

Since ρσ is constant, we have 〈ρσ〉σ = ρσ and using the straightforward relationship
εσ + εβ = 1, we obtain

∂εβ

∂t
=

1

V

∫
Aβσ

nβσ · w dA. (A 14)

Quintard & Whitaker (1999) showed that

1

V

∫
Aβσ

cAβnβσ · (vAβ − w) dA = − 1

V

∫
Aβσ

nβσ · D∇cAβ dA. (A 15)

We can now make use of this result and the boundary condition on Aβσ given by
(2.11) to express (A 14) as

∂εβ

∂t
= − β

ρσ

(
1

V

∫
Aβσ

nβσ · D∇cAβ dA

)
(A 16)

in which we recognise the mass exchange flux of species A. Given the approximations
made in the theoretical development, we obtain

∂εβ

∂t
=
βαCAβ

ρσ
. (A 17)

Appendix B. Correlations for the effective coefficients
The correct estimation of the effective coefficients (α and D∗β , equation (2.21)) is a

fundamental step in order to properly model the acid propagation into the porous
medium. In the absence of experimental data for salt dissolution, we have used in
our simulations a numerical estimation obtained from pore-scale calculations using
closure problems proposed in Quintard & Whitaker (1994, 1999). A brief summary
of the introduction of these problems is given below.

We introduce Gray’s decomposition of velocity and concentration (Gray 1975) as

vβ = ε−1
β V β + ṽβ, (B 1)

cAβ = CAβ + c̃Aβ, (B 2)

where ṽβ and c̃Aβ are velocity and concentration spatial deviation, respectively.
Use of the spatial decomposition in (A 10) provides (Carbonell & Whitaker 1983)

∂(εβCAβ)

∂t
+ ∇ · (V βCAβ) +

1

V

∫
Aβσ

nβσ · cAβ(vAβ − w) dA



= ∇ ·
[
D

(
εβ∇CAβ +

1

V

∫
Aβσ

nβσc̃Aβ dA

)]
− ∇ · 〈ṽβc̃Aβ〉 (B 3)

At this point we need to make use of (A 1). We multiply this relation by CAβ and
subtract the result from (B 3) to obtain (Chella, Lasseux & Quintard 1998)

εβ
∂CAβ

∂t
+ V β · ∇CAβ +

1

V

∫
Aβσ

nβσ · cAβ(vAβ − w) dA

= ∇ ·
[
D

(
εβ∇CAβ +

1

V

∫
Aβσ

nβσc̃Aβ dA

)]
− ∇ · 〈ṽβc̃Aβ〉. (B 4)

Finally, use of (A 15) in (B 4) leads to

εβ
∂CAβ

∂t
+ V β · ∇CAβ − 1

V

∫
Aβσ

nβσ · D∇CAβ dA

=
1

V

∫
Aβσ

nβσ · D∇c̃Aβ dA− ∇ · 〈ṽβc̃Aβ〉

+∇ ·
[
D

(
εβ∇CAβ +

1

V

∫
Aβσ

nβσc̃Aβ dA

)]
. (B 5)

In order to develop an equation for the spatial deviation concentration, we divide
(B 5) by εβ and subtract the result to (2.6) to construct the following result:

∂c̃Aβ

∂t
+ ṽβ · ∇CAβ︸ ︷︷ ︸

convective term

+vβ · ∇c̃Aβ − ε−1
β ∇ · 〈ṽβc̃Aβ〉︸ ︷︷ ︸
�vβ ·∇c̃Aβ

= ∇ · (D∇c̃Aβ)− ε−1
β D∇ ·

[
1

V

∫
Aβσ

nβσc̃Aβ dA

]
︸ ︷︷ ︸

�∇·(D∇c̃Aβ )

−ε
−1
β

V

∫
Aβσ

nβσ · D∇c̃Aβ dA. (B 6)

The spatial decomposition applied to the boundary condition (2.10) completes the
closure problem:

BC2

c̃Aβ = −CAβ︸ ︷︷ ︸
source term

at Aβσ. (B 7)

In these equations, non-homogeneous terms can be viewed as source terms for c̃Aβ
and this suggests that c̃Aβ can be represented by

c̃Aβ = cAβ − CAβ (B 8)

= bβ · ∇CAβ − sβCAβ (B 9)

where bβ and sβ are the mapping variables of the following associated problems:
Problem I a

ṽβ + vβ · ∇bβ = ∇ · (D∇bβ)− (εβ)−1 uβ, (B 10a)

BC1 bβ = 0 at Aβσ, (B 10b)
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Figure 24. Unit cell for the calculations of effective properties.

bβ(r + li) = bβ(r), i = 1, 2, 3, (B 10c)

〈bβ〉β = 0, (B 10d)

where uβ in (B 10a) is given by

uβ =
1

V

∫
Aβσ

nβσ · (D∇bβ) dA; (B 11)

Problem I b

vβ · ∇sβ = ∇ · (D∇sβ) + (εβ)−1α, (B 12a)

BC1 sβ = 1 at Aβσ, (B 12b)

sβ(r + li) = sβ(r), i = 1, 2, 3, (B 12c)

〈sβ〉β = 0, (B 12d)

where the mass transfer coefficient α (B 12a) is defined by

α =
1

V

∫
Aβσ

nβσ · (D∇sβ) dA. (B 13)

In these equations, we make use of periodicity conditions to complete the closure
problems, and this means that the effect of strong gradients close to the macroscale
dissolution interface have been neglected.

Using these forms in (B 5) leads to the following macroscopic equation for acid
transport:

εβ
∂CAβ

∂t
+ V β · ∇CAβ − ∇ · (dβCAβ)− (uβ − D∇εβ) · ∇CAβ

= ∇ · (D∗β ·∇CAβ)− αCAβ (B 14)

with

dβ = −D 1

V

∫
Aβσ

nβσsβ dA+ 〈ṽβsβ〉, (B 15)

D∗β = D

(
εβ I +

1

V

∫
Aβσ

nβσbβ dA

)
− 〈ṽβbβ〉. (B 16)

The two last terms on the left-hand side of (B 14) are usually negligible, and under
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these circumstances, this equation can be replaced by the classical form reported in
(2.21).

The hydrodynamic dispersion tensor D∗β is assumed to be a function of the in-
terstitial velocity through the dispersivities αL, αT in the longitudinal and transverse
directions respectively, and a coefficient of effective diffusion Deff taking into account
molecular diffusion and tortuosity of the medium (Bear 1961). It is a second-rank
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Figure 27. Transversal dispersion coefficient D∗yy .
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Figure 28. Comparison of the values of the transfert coefficient, α, for different
geometries, εβ = 0.2.

tensor, which for an isotropic medium is often expressed as

D∗ij = (αT |V β |+ Deff )δij + (αL − αT )
ViVj

|V β | , (B 17)

where δij is the Kronecker delta function.
The numerical procedure designed for the resolution of the closure problems

is described in the literature (Quintard & Whitaker 1994; Quintard 1996). As a
starting point for a comparison with our experiments, i.e. NaCl grains, a crude
representation of the porous medium structure was adopted and is represented by



the two-dimensional periodic unit cell shown in figure 24. Results for the different
effective parameters are represented versus porosity in figures 25, 26 and 27 in terms
of the cell Péclet number defined by

Pecell =
|V β |lβ
εβD

, (B 18)

where lβ is the size of the unit cell as shown in figure 24. All the results show a
diffusive regime followed by a dispersive regime, more pronounced for the longitudinal
dispersion coefficient. If we assume that the pore-scale dissolution process corresponds
to a uniform dissolution of the solid interface, we can replace the historical dependence
of the effective parameters by these correlations with porosity and velocity. Figure 28
shows the influence of the geometry of the unit cell. As shown in this paper, the
mass exchange coefficient plays an important role in the quantitative analysis of the
wormhole formation, and this is supported by previous reports in the literature. Since
we had no means to better characterize our porous medium structure, we scaled the
correlation obtained to fit experimental data.
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Brinkman: Approche self-consistante. 4èmes Journées d’Etude sur les Milieux Poreux de Nancy.

Liu, X., Ormond, A., Bartko, K., Li, Y. & Ortoleva, P. 1997 A geochemical reaction-transport
simulator for matrix acidizing analysis and design. J. Petrol. Sci. Engng 17, 181–196.

Lund, K., Fogler, H. S. & McCune, C. C. 1973 The dissolution of dolomite in hydrochloric acid.
Chem. Engng Sci. 28, 691.

Lund, K., Fogler, H. S., McCune, C. C. & Ault, J. W. 1975 The dissolution of calcite in
hydrochloric acid. Chem. Engng Sci. 30, 825.

Lundgren, T. S. 1972 Slow flow through stationary random beds and suspension of spheres.
J. Fluid Mech. 51, 273–299.

Lynn, J. D. & Nasr-El-Din, H. A. 2001 A core based comparison of the reaction characteristics
of emulsified and in-situ gelled acids in low permeability, high temperature, gas bearing
carbonates. SPE 65386, Intl Symp. on Oilfield Chem., Houston.

Marle, C. M. 1967 Ecoulements monophasiques en milieu poreux. Rev. Inst. Français du Pétrole
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