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In this work, we are interested in solute transport in fissured porous media. The medium
is considered as a special case of a two-region system, and a two-equation model previously
obtained from a volume averaging technique is used to derive large-scale dispersion coeffi-
cients. These coefficients are obtained as solutions of a set of closure problems and the main
objective of this work is to present an efficient method to solve these closure problems. The
method makes use of an unstructured grid and special techniques to take into account the fis-
sure network. Results are compared with other existing methods on simple fissured media.
Finally, the technique is applied to a complex structure.
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1. Introduction

Mass transport phenomena in porous media is of major concern in a wide variety of
domains ranging from chemical engineering to environmental issues. Most of the time,
one is confronted with heterogeneous structures for which several different scales are
involved, from the pore-scale to the column or field scale. This may result, for instance,
to what is often referred to as anomalous dispersion at the field scale, or, in other words,
to a non-fickian response of the system [3,19,27].

In this work, we focus our attention to a special class of heterogeneous porous
media called fissured porous media. Our definition of a fissured medium is classical,
i.e., this is a class of material characterized by a porous matrix which contains most of
the fluid in place and is embedded in a fissure network, which represents a tiny volume
fraction but has a far greater permeability [25]. The situation is schematically depicted
in figure 1 where we have represented the pore-scale with the solid σ -phase, the liquid
β-phase and their characteristic length scales lσ and lβ , respectively. The next scale can
be identified as the Darcy scale, the characteristic lengths being the matrix block size lω
and fissure length lη. Finally, L represents the column or field macroscopic size.



Figure 1. Different observation scales.

In this paper we are interested in a large-scale description of the flow in the reser-
voir, i.e., the effective behavior of the large-scale volume V∞ represented in figure 1.
The one-phase flow process in fissured porous media has received a lot of attention in
the literature. A review of this problem can be found in [7]. Mixed models have been
obtained by using homogenization theory (see for instance [11]). They corresponds to a
large-scale equation for the effective fissured medium coupled with specific Darcy-scale
problems for the flow in the blocks. Fully large-scale models have been widely used
under the form of two large-scale equations for the effective fissured medium and matrix
medium. The most popular forms are those proposed by Barenblatt and Zheltov [4] or
Warren and Root [29]. A general formulation of the two-equation model for fissured
media has been proposed in [22,23]. All effective properties in this latter theoretical de-
velopment, i.e., the effective permeabilities and the mass exchange coefficient, are given
explicitly by three ‘closure problems’ to be solved over representative unit cells of the
fissured media under consideration. Numerical solutions of these closure problems have
been obtained for unit cells with simple geometries using Cartesian grids [23]. In the
case of more complex fissured media, numerical procedures based on a volume element
formulation have been proposed in [6].

This paper deals specifically with the transport of solutes in fissured media, or,
more generally, in the kind of highly heterogeneous medium represented in figure 2.
The porous medium under consideration can be represented by a two-region system,
identified as the matrix (ω-region) and the fissures (η-region), respectively. Moreover, it
is assumed that the medium obeys a hierarchichal set of length-scales excluding media
with strongly evolving heterogeneities or fractal properties [9]. We further consider that



Figure 2. Porous medium description at the region-averaged scale.

solute transport do not affect the physical properties of the fluid such as viscosity and
density, and that adsorption do not occur on the solid phase. In two-region systems,
we may have two different classes of systems. If the permeability of the two regions
is highly contrasted, advection occurs mainly in the more permeable region, while dif-
fusion takes place in the less permeable one. The time-scales associated with these
different mechanisms leads to local mass non-equilibrium, and this may call for a two-
medium description. The length and time scales constraints for local mass equilibrium
are for instance discussed in [24]. Two-equation models have already been used ex-
tensively in the literature to model such flows [5,8,10,15–17,28,30]. This two-equation
concept has been generalized to a second class of system in which advection may also
occur in the less permeable region [2,12,14,17,18,26]. This is often the case for moderate
permeability ratio. Such a two-equation model has been derived using a volume averag-
ing technique [1], and in this theoretical development local problems are developed to
estimate the effective coefficients in the large-scale equations. These ‘closure problems’
have been solved for simple unit cells, like for instance stratified media. Our objective in
this paper is to compute the effective coefficients on complex heterogeneous media using
the local problems proposed in [1]. The proposed numerical techniques is inspired from
the work in [6]. It is detailed below, and results are presented in subsequent sections.

2. Macro-scale model and related closure problems

The major objective of this work is to present an efficient numerical procedure to
be able to compute the effective large-scale transport coefficients in the two-equation
model. For this reason, we start with the large-scale two-equation model obtained from
the averaging procedure described in [1]. It is beyond the scope of this paper to provide
all the details in this development. Only equations necessary to understand our work are
provided. The large-scale equations obtained by Ahmadi et al. [1] are listed below:
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where εα is the porosity in the α-region, φα is the volume fraction of the α-region in the
large-scale averaging volume, U∗

α and C∗
α are the average filtration velocity and intrinsic

average concentration in the α-region.
These equations are obtained by establishing a direct while approximated link be-

tween the Darcy-scale and the large-scale concentration fields. Following Ahmadi et
al. [1], this link is expressed as
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η = bηη · ∇C∗
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)
, (3)
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ω + rω
(
C∗
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η

)
, (4)

where bηη, bηω, bωη, bωω, rη, and rω are called closure variables. The closure variables
are solution of three closure problems that are detailed later in this paper. These closure
problems depend on the Darcy-scale velocity field Vη and Vω. With the assumptions
made, these fields can be obtained independently from the concentration fields by solv-
ing Darcy’s law over the unit cell representative of the system under consideration. The
problem of the pressure field at the region-averaged scale follows:
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β
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B.C.5 P
β

βω = g(r, t) at Aωe, (10)

I.C. P
β

βη = fη(r), P
β

βω = fω(r) at t = 0. (11)

The effective coefficients in equations (1) and (2) will be expressed as a function
of these closure variables. The large-scale dispersion tensors D∗∗ are calculated with the
formulas below [1],
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Closure problems

We have to solve the three closure problems written below in order to get large-
scale equations. The purpose of the first problem is to find the bηη and bωη vectors. It is
given by
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The velocity deviation is expressed as the deviation between the region-averaged
velocity field and the Darcy’s scale velocity field

Vβ = {Vβ} + ṽβ. (23)

The second problem is similar, and the unknowns are the vectors bηω and bωω.
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bηω = bωω at Aηω. (27)

Boundary conditions

bηω(r + li ) = bηω(r), bωω(r + li) = bωω(r), i = 1, 2, 3. (28)



Average conditions

{bηω}η = 0, {bωω}ω = 0, (29)

cηω = −cωω = 1
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The last problem involves the scalar fields rη and rω.
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Boundary conditions

rη(r + li) = rη(r), rω(r + li ) = rω(r), i = 1, 2, 3. (35)

Average conditions

{rη}η = 0, {rω}ω = 0. (36)

The mass exchange coefficient is given by
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The equations in these three problems appear to be an integro-differential equa-
tion. However, this problem can be overcome by following a similar procedure as those
proposed in [21]. This is explained below for the first closure problem.

The first problem is decomposed as indicated in equation (38), in which the un-
knowns are respectively a vector and a scalar field that must obey problems Ia and Ib
described below,

bηη = bIη + BIηcωη; bωη = bIω + BIωcωη. (38)

Before giving problems Ia and Ib, it must be emphasized that we may introduce
similar decompositions for problems II and III as given in equations (39) and (40):

bηω = bIIη + BIIηcωη, bωω = bIIω + BIIωcωη, (39)

rη = α∗rf , rω = α∗rm − 1. (40)



Only problems Ia and Ib are detailed as the other problems are deduced in a similar
way.

Problem Ia.

∇(VηbIη)+ ṽη = ∇(D∗
η · ∇bIη
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bIη(r + li)= bIη(r), (45)

bIω(r + li)= bIω(r), i = 1, 2, 3. (46)
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{bIη}η + {bIω}ω = 0. (47)
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Large-scale parameters

From the solutions of the three closure problems, the large-scale dispersion tensors
D∗∗ are calculated, while the mass exchange coefficient is given by equation (37).

Problems of similar, while simpler, forms have been solved in [20]. The numerical
solution was obtained by a finite difference scheme over Cartesian grids. Such grids are
not suitable for achieving a good accuracy, especially with fissures of any orientation.
In addition, to the natural complexity of the geometry is associated a difficulty due to
the small thickness of the fractured regions. The objective of this paper is to propose a
numerical solution over an unstructured mesh, with a special treatment of the elements
in the fracture to account for the small thickness. This is presented in the next section.

3. Numerical study

In this section we detail the scheme we have used to solve the closure problems
presented in the previous section.

The main idea is to solve the problems on a fissured porous medium using unstruc-
tured grids fitting closely the fissure network. One example is represented in figure 3.
A finite volume method is used, and in order to reduce the numerical diffusion the clo-
sure problems are slightly modified. We write below the new problem Ia,

∂bIη

∂t
+ ∇(VηbIη)+ Ṽη = ∇(D∗

η · ∇bIη)+ ∇D̃∗
η, in the η-region, (56)

∂bIω

∂t
+ ∇(VωbIω)= ∇(D∗

ω · ∇bIω), in the ω-region. (57)

Interface conditions

nηω · D∗
η · ∇bIη + nηω · D∗

η = nηω · D∗
ω · ∇bIω at Aηω, (58)

bIη = bIω at Aηω. (59)

Figure 3. Fissured porous medium.



Boundary conditions

bIη(r + li)= bIη(r), (60)

bIω(r + li)= bIω(r), i = 1, 2, 3. (61)

Average conditions

{bIη}η + {bIω}ω = 0. (62)

Initial conditions

bIη(t = 0, r) = f (r); bIω(t = 0, r) = g(r). (63)

We have now an evolution problem, and, for long times, the asymptotic solution is
the same as for original problem Ia. We notice that both diffusive and convective terms
appears in the equations. We choose to use an explicit scheme to express the convection,
and an implicit one to model the diffusion.

Another difficulty to overcome is the fact that the dispersion tensor D∗
ω may be

anisotropic. In order to take care of the anisotropy which appears in the diffusive term,
a 10-point finite volume scheme is built. It is a cell center scheme which provides a
symmetric consistent approximation of the flux on each cell. In order to solve for the
convection part, we use a scheme introduced by Eymard et al. [13]. We need to know Vβ
on the domain to be able to solve the problem. First, we have to calculate the pressure
field given in equations (5). However, we only have in this pressure equation a diffusive
term similar with the one for the dispersion if we replace Kβ with D∗. Therefore, we will
use the same scheme for the pressure equation and we will only detail below the scheme
for the dispersion problem. We also note that the Darcy-scale permeability tensor Kβω

may be anisotropic.
We have a fissured porous medium with a high contrast of transport properties

between the matrix and the fissures. The porous matrix is meshed using triangular cells.
In order to avoid the need for a very fine mesh in the fissure network, we adopt the joint
element strategy which proved to be very efficient in solving the one-phase flow case.
This is detailed in [6], and here we only recall what is a joint element.

A joint element is a small rectangle of thickness ε corresponding to the fissure
thickness q and of length δx which is the average step of the triangular mesh in the
porous matrix (figure 4). Some intersection nodes are added when several fissures cross
or when the fissure turns.

On this mesh, we build a first order conservative finite volume scheme. On the
cell  equation (56) takes the form,

V ( )
bn+1

I − bnI
δt

+
∫
 

∇(VβbnI
)+ ṽβη d =

∫
 

∇(D∗ · ∇bn+1
I

)+ ∇D̃∗
η d , (64)

where δt is the time step. Using Green’s formula, the equation becomes



Figure 4. Joint elements in the fissure network.

V ( )
bn+1

I − bnI
δt

+
∫
∂ 

n·(VβbnI
)

d#+
∫
 

ṽβη d =
∫
∂ 

n·(D∗·∇bn+1
I

)
d#+

∫
 

∇D̃∗
η d .

(65)
In this equation, the CFL condition has the following form,

L
δt

δx
< 1, (66)

where L is the domain length, and δx is the average mesh size. Under this condition,
we model first the diffusive term, then the convection term. The treatment of the source
terms is detailed later.

3.1. Diffusive term

Here, we build a first order, symmetric, conservative approximation of the flux on
the cell side. The scheme is a 10 point finite volume method which takes into account
the anisotropy. It is a hybrid scheme, i.e., the approximation is not the same on each cell
but depends on the triangle geometry. With geometric considerations, the best scheme is
applied. Unknowns will be affected in general to the medians intersection. However, this
choice is not acceptable if this intersection is outside the triangle. These cases require a
different treatment as indicated below.

Starting from equation (65), a first order approximation of the diffusion is provided
by the following equation,∫

σ

n · (D∗
ω · ∇bIω

)
dσ = m(σ)n · (D∗

ω · ∇bIω(x)
)
, (67)

where σ is a side of a triangular porous cell, and x is the midpoint of this side. The
scheme is cell center, thus we have to express the value at x using the values at the
centers of the neighbouring cells.



The dispersion tensors may be anisotropic, so n · D∗
ω is generally not in the same

direction as n which is the outwardly oriented normal from a side of a triangular porous
matrix cell. We write then

n · D∗
ω = (

n · n · D∗
ω

)
n + (

n′ · n · D∗
ω

)
n′. (68)

Here, (n,n′) is an orthonormal base. Thus we split the interfacial flux in its normal
and transversal components.

The normal component can be expressed in a similar way as in the isotropic case
which is detailed in [6]. The transversal flux needs two points called γ2 and γ1 on the
interface to get a first order discretization given below,(

n′ · n · D∗
ω

)
n′ · ∇bIω(x1) = (

n′ · n · D∗
ω

)bIω(γ2)− bIω(γ1)

d(γ2, γ1)
. (69)

Several geometric cases are described below. In these examples common notations have
been done. The wi are the centers of the cells, and w is the center of the calculating cell.
The ni vectors are the normals of the sides of the porous cells.

First case: matrix–matrix interface without any neighbouring fissures
A typical situation is described in figure 5. The idea is to judiciously place the

points γ1 and γ2 in order to eliminate them using the others unknowns. γ2 is the midpoint
of α2 and β2, where α2 and β2 are respectively the intersection between the interface and
n2 and the intersection between the interface and n5. So α2, w, and w2 are on the same

Figure 5. Approximation of the flux for a 10-point finite volume.



line. We express bIω(α2) with bIω(w) and bIω(w2) using first order approximations.
Similarly bIω(β2) is written in function of bIω(w1) and bIω(w5). We proceed similarly
for γ1. And we have a symmetric 10 point finite volume method which handle the
anisotropy. The expression for bIω(α2) is given below,

bIω(α2) = d(w2, α2)bIω(w)− d(w, α2)bIω(w2)

d(w,w2)
, (70)

bIω(γ2) is given by

bIω(γ2) = bIω(α2)+ bIω(β2)

2
. (71)

We have a similar expression for bIω(γ1), and the transversal flux is expressed on
the interface. The resulting flux on the interface is given by

n ·D∗
ω ·∇bIω(x) = (n ·n ·D∗

ω)
bIω(w1)− bIω(w)

d(w,w1)
+ (n′ ·n ·D∗

ω

)bIω(γ2)− bIω(γ1)

d(γ2, γ1)
. (72)

Second case: matrix–matrix interface with a neighbouring fissured interface
We suppose that there is a fissure on the interface 2 (figure 6). Thus we express

bIω(α2) as a function of bIω(w) and bIη(F2) and a source term appears. The gradient of
the solution jumps at the fissure-matrix interface (equation (58)) (in x2 on figure 6). We
have the equations below,

bIω(α2) = bIω(x2)− d(x2, α2)n2 · ∇bIω(x2). (73)

Figure 6. Approximation of the flux with a neighbouring fissured interface.



We express the value of the solution at x2 using the jump of the gradient

bIω(w)= bIω(x2)− d(w, x2)n2 · ∇bIω(x2), (74)

bIη(F2)= bIη(x2)+ ε

2
n2 · ∇bIη(x2), (75)

where F2 is the fissured joint element on side 2 of the triangular cell.
Then we use the expression for the jump of ∇bIη in equation (58). We substract

the two equations (74) and (75) in order to eliminate bIω(x2) in equation (76).(
n2 · n2 · D∗

ω

)
n2 · ∇b0

Iω(x2)=
2(n2 · n2 · D∗

η)(n2 · n2 · D∗
ω)(bIη(F2)− bIω(w))

2(n2 · n2 · D∗
η)d(w, x2)+ (n2 · n2 · D∗

ω)ε

+ n2

(n2 · n2 · D∗
η)(n2 · n2 · D∗

ω)ε

2(n2 · n2 · D∗
η)d(w, x2)+ (n2 · n2 · D∗

ω)ε
. (76)

Thus we are able to express the value at α2 using the values at w and F2, thus
obtaining a 10 point finite volume scheme. At this point, we have expressed the fluxes
in the matrix but there are some geometrical cases which remain. That is the case of the
rectangle triangles where a normal may not cross the interface. And on some triangles,
the distance d(γ2, γ1) may be far greater than the side of the cell. In both cases, we use
an alternative scheme described below.

Third case: Alternative scheme – case 1
We consider a rectangle triangle (figure (7)). In this case the normal n2 does not

cross the interface. Thus, a point on the interface must be chosen, and the value has to

Figure 7. Approximation of the flux for a rectangle triangle: case 1.



be expressed with the values of the neighboring centers. Here we say that α2 = x. We
can express the value at x using the values at w and w1.

Thus we have also a 10-point finite volume method, and we build a first order
approximation of the transversal flux.

Fourth case: Alternative scheme – case 2
We consider a rectangle triangle (figure 8). Here the normals n2 and n3 cross at the

same point on the interface, and this point is w.
In order to get a 10-point finite volume scheme α2, and α1 are set at the nodes of

the interface. We call G2 the intersection of n1 and (α2, x2), so we obtain the expression
below,

bIω(α2) = d(x2, α2)bIω(G2)− d(G2, α2)bIω(x2)

d(G2, x2)
. (77)

Thus the value at G2 can be expressed using the values at w and w1 with the equa-
tion below,

bIω(G2) = d(w1,G2)bIω(w)− d(w,G2)bIω(w1)

d(w,w1)
. (78)

We have a similar expression for x2,

bIω(x2) = d(w2, x2)bIω(w)+ d(w, x2)bIω(w2)

d(w,w2)
. (79)

So we express bIω(α2) using bIω(w), bIω(w1), and bIω(w2). And we still have a
10-point finite volume scheme.

Figure 8. Approximation of the flux for a rectangle triangle: case 2.



Note that this scheme is also used when the distance between γ2 and γ1 is far
greater than the side lenght of the cell. This case ends our study in the matrix cells, and
we present our strategy in the fissured joint elements in the next cases.

Fifth case: Fissured joint element
This case is the same already studied in the isotropic case because the dispersion

tensor in the fissure D∗
η is isotropic. So, these results can also be found in [6].

Here we study the approximation of the flux in a fissured zone (figure 9). Once
again, we use the conservation law of the flux in a joint element. In this element, we
have some exchange with the neighbouring fissures and the porous matrix. These two
cases are detailed.

First, the flux in the fissure network (in x3 and x4) can be modeled thanks to first
order Taylor’s formulas because there is no source term on these boundaries. On bound-
ary x3 we have the equation

D∗
ηn3 · ∇bIη(x3) = D∗

η

d(F, F1)

(
bIη(F1)− bIη(F )

)
. (80)

Next, we study the interface between the joint elements and the porous matrix.
A source term appears at the interface (at x1 for our example). With first order Taylor’s
formulas, we build the approximation of the flux in equations (81) and (82).

bIη(F )= bIη(x1)− ε

2
n1 · ∇bIη(x1), (81)

bIω(w1)= bIω(x1)+ d(x1,w1)n1 · ∇bIω(x1). (82)

Figure 9. Typical fissured joint element with its neighbours.



Using the jump of ∇bIη in equation (58), we eliminate bIη(x1) from equations (81)
and (82), and we get the expression forD∗

ηn1 · ∇bIη(x1) in equation (83). This is exactly
the same strategy already used for a fissured boundary in the porous matrix:(

n1 · n1 · D∗
η

)
n1 · ∇bIη(x1)=

2(n1 · n1 · D∗
η)(n1 · n1 · D∗

ω)(bIω(w1)− bIη(F ))

2(n1 · n1 · D∗
η)d(x1,w1)+ (n1 · n1 · D∗

ω)ε

− n1
2(n1 · n1 · D∗

η)
2d(x1,w1)

2(n1 · n1 · D∗
η)d(x1,w1)+ (n1 · n1 · D∗

ω)ε
. (83)

Using this method we obtain an approximation of the flux in the most common
case. However, we must be careful with the joint elements because we have some special
cases to handle. These cases occur when a redirection of the flux is requested in the
fissure ie at the intersection nodes. These cases have been treated by Caillabet et al. [6].

The approximation of the diffusive term is done, and we can note that though the
approximation of the flux is symmetric, the resulting matrix which is to be reversed is
not symmetric. In the next section, the convection term is treated.

3.2. Convection term

We have to model
∫
∂ 

n · (〈vβ〉bnI ) d# on each cell. We use a finite volume scheme
developped by Eymard et al. [13], and we build a first order approximation of this con-
vective term. A typical case is described in figure 10.

We have the following approximation,∫
σ

n · (〈vβ〉bnI ) dσ = m(σ)
(
n · 〈vβ〉

)
bnI (σ ), (84)

where bnI (σ ) is given by

bnI (σ ) =
{

bnI (w), if n · 〈vβ〉 > 0,
bnI (w1), if n · 〈vβ〉 < 0.

(85)

Figure 10. Approximation of the convection term.



We have built an approximation for both the convective and the diffusive terms. In
the next section, we study the source term, and especially the velocity deviation.

3.3. Source terms: velocity deviation

The expression of the velocity is given by

Vβ = − 1

µ
Kβ · ∇〈Pβ〉β . (86)

Solving the pressure equation will provide approximations of the pressure at the
center of each cell. On the contrary, the velocity is known at the boundary of each cell,
which is exactly what we want in the expression of the convection term. However, the
velocity deviation is needed at the center of each cell and is given by

Vβ = {Vβ} + ṽβ. (87)

Thus, we interpolate the velocity at the center using the values at the boundary.
A typical case is shown in figure 11.

The value at y1 is expressed using the values at x2 and x3.

〈vβ〉(y1) = d(y1, x3)〈vβ〉(x2)+ d(y1, x2)〈vβ〉(x3)

d(x2, x3)
. (88)

Thus the following equation is obtained,

〈vβ〉(w) = d(y1,w)〈vβ〉(x1)+ d(w, x1)〈vβ〉(y1)

d(y1, x1)
. (89)

In order to avoid a privileged direction, we average the velocity on each side of the
cell. Then, using equation (87), we obtain the deviation velocity field.

At this point, we have modeled all the terms, and we can start the resolution of the
evolutive problem.

Figure 11. Approximation of the velocity.



3.4. Calculation of the equivalent dispersion tensors

Using the different approximation, we build a system on the domain from equa-
tion (65) which takes the following form,(

A− V ( )

δt

)
bn+1
I =

(
B − V ( )

δt

)
bnI + Source terms, (90)

where A is the matrix built from the approximation of the diffusion part on each cell, and
B is the matrix built from the approximation of the convection part. Therefore, we have
a system to solve at each time step, and we can note that matrix A is not symmetric. We
used a preconditionned Bi-Conjugate Gradient (BiCG) to solve the system. The matrix
is symmetric if both dispersion tensors are isotropic. And the time iterations are done
until we reach the permanent flow.

Following these ideas, we can solve problems Ia and Ib, obtaining the vector bηη
which is the solution to problem I. Similarly, we can solve problem II.

The equivalent dispersion tensors can be determined via the formulas given below:

D∗∗
ηη = D∗

η ·
(
φηI + 1

V∞

∫
Aηω

nηωbηη dA

)
− 1

V∞

∫
Vη

ṽβηbηη dV, (91)

D∗∗
ηω = D∗

η ·
(

1

V∞

∫
Aηω

nηωbηω dA

)
− 1

V∞

∫
Vη

ṽβηbηω dV, (92)

D∗∗
ωη = D∗

ω ·
(

1

V∞

∫
Aηω

nωηbωη dA

)
− 1

V∞

∫
Vω

ṽβωbωη dV, (93)

D∗∗
ωω = D∗

ω ·
(
φωI + 1

V∞

∫
Aωη

nωηbωω dA

)
− 1

V∞

∫
Vω

ṽβωbωω dV. (94)

In these equations, the problem is to determine the value of the integral term. We
know the value of the closure problems at the center of the fissures and in the neighbour-
ing triangle in the porous matrix. However, we need the value at the interface, so, again,
we use the formulas used to establish the approximation of the flux, for instance from
equation (83) we have

bηη(x)=
ε(n · n · D∗ω)bωη(K)+ 2d(x,K)(n · n · D∗

η)bηη(F )

ε(n · n · D∗
ω)+ 2d(x,K)(n · n · D∗

η)

− nηω
εd(x, F )(n · n · D∗

η)

ε(n · n · D∗
ω)+ 2d(x, F )(n · n · D∗

η)
. (95)

This equation is valid for the interface between the fissure and the porous matrix.
However at the intersections, and at the fissure stops, we have some special cases because
there is no porous triangular cell attached to the ε-length interface. A typical case is
summarized in figure 12.



Figure 12. Estimation of the value at an interface.

In this case, we have a matrix–fissure interface following nr , but in this direction
we also have a joint element (here F1). We express bηη(x) with the known values in F
and F1, which gives us

bηη(x) = bηη(F )− ε

2

bηη(F1)− bηη(F )
d(F, F1)

. (96)

Such an expression is also valid for a fissure stop. Using these approximations,
we are able to determine the large-scale dispersion tensors from the closure problem
solutions.

3.5. Mass transfer coefficient

This coefficient is given by the third closure problem, and especially by the average
conditions

Average: {rf}η = 0, {rm}ω = 1

α∗ . (97)

The first equation allows us to fix the constant in order to determine the closure
problem solution. Then, we obtain the mass transfer coefficient. Here we have aver-
age conditions and not interface conditions, so we can simply use the values given by
the closure problems without any further operations unlike the case of the large-scale
dispersion tensors.

This concludes the presentation of the numerical models. In the next section we
give some results and a comparison with other available methods.



4. Results

In this part, we present some results on several fissured porous media. We first test
the method on classical examples like the stratified or ‘sugarbox’ medium. Later on,
more complex cases are presented with inclined fissures and with anisotropic dispersion
tensors.

4.1. Stratified medium

We consider a stratified porous medium (figure 13). On this medium, we know an
analytical solution of the closure problems. We compare it with the numerical results
in order to validate the method. The analytical results are given in [1], and take the
following form: (

D∗∗
ηη

)
yy

= φη
(
D∗
η

)
yy
, (98)(

D∗∗
ηω

)
yy

= (
D∗∗
ωη

)
yy

= 0, (99)(
D∗∗
ωω

)
yy

= φω
(
D∗
ω

)
yy
, (100)

α∗ = 12

(lη + lω)2
(D∗

η)xx(D
∗
ω)xx

φω(D∗
η)xx + φη(D∗

ω)xx
. (101)

First, we solve the pressure problem on this medium, where we suppose that a
pressure gradient is applied on the side of the domain. The pressure and the veloc-
ity fields are displayed in figure 14. The flow is supposed to be in the layer direction
(y-direction in figure 13).

Figure 13. Stratified medium meshed.



Figure 14. Pressure and velocity fields.

Figure 15. Solutions of the closure problems I and III.

Then the dispersion closure problems are solved. In this example, the time and the
space steps are fixed to the following values:

δt = 0.01; δx = 0.025. (102)

The CFL condition is checked, and we note that we need about 20 time iterations
to reach the convergence criteria. Each time iteration costs about 300 iterations in the
BiCG process. So the computation is quite fast, and the numerical results are close to
the analytical ones. For example, on the α∗ coefficient the error is roughly 0.1%. Hence,
two decimal figures are guaranteed on the numerical results, which is in agreement with
the mesh step and with the fact that we have a first order scheme.

The solutions of the closure problems I and III are displayed in figure 15.
The next graph (figure 16) shows the α∗ results when the dispersion tensors are

anisotropic. Five different tensors are studied and displayed below. These tensors will
also be used in the next cases.



Figure 16. Variations of α∗ with dispersion ratio and for various anisotropic properties.

• Case 1 (isotropic):

D∗
ω =

(
1 0
0 1

)
. (103)

• Case 2:

D∗
ω =

(
2 0
0 1

)
. (104)

• Case 3:

D∗
ω =

(
1 0
0 2

)
. (105)

• Case 4:

D∗
ω =

(
1 0.5

0.5 1

)
. (106)

Once again, the numerical results are in good agreement with the analytical ones.
This ends the stratified porous medium case. We have validate our scheme on such
medium. In the next example, we study the sugarbox medium where we have no analyt-
ical solution, but this medium has been often studied [23]).

4.2. Sugarbox medium

This porous medium has two fissure directions which cross at 90 degrees (fig-
ure 17). On this porous medium, no analytical solution is available. We can compare
our results with those obtained by Ahmadi et al. [1] using structured grids. The differ-
ences are small, and we display our results for isotropic dispersion tensors with values
D∗
η = 105 and D∗

ω = 1.

D∗∗
ηη =

(
99.8 0

0 99.8

)
, (107)

D∗∗
ωη =

(−10−3 0

0 −10−3

)
, (108)



Figure 17. Sugarbox medium.

Figure 18. Pressure and velocity fields.

D∗∗
ηω =

(−10−3 0

0 −10−3

)
, (109)

D∗∗
ωω =

(
0.997 0

0 0.997

)
, (110)

α∗ = 28.55. (111)

These results have been obtained after the resolution of the pressure problem,
where we have supposed that a pressure gradient is applied on the sides of the domain.
The pressure and the velocity fields are shown in figure 18.

In figure 19, the solutions of the problems I and III are displayed. We see that the
symmetry of the medium is respected by the closure problem solutions.

Figure 20 shows the variations of the mass transfer coefficient with the anisotropy.



Figure 19. Solution of the closure problems I and III.

Figure 20. Variations of α∗ with dispersion ratio and for various anisotropic properties.

These two first examples have been used to validate the method. The results found
shows only small differences with analytical solutions and others existing method. The
computation time remains small too. In the next examples, we study more complex
cases, and we fully use the advantages of the unstructured grids by studying fissured
network with inclined fissures.

4.3. Nontrivial case: example 1

We consider a porous medium with a complex fissured network (figure 21). On
this fissured medium, we first solve the pressure problem. The pressure and the velocity
fields are displayed in figure 22.

With these values, we can start the resolution of the closure problems. The CFL
condition is satisfied by using the following time and space steps:

δt = 0.01; δx = 0.025. (112)

We solve the closure problems for different D∗
ω either isotropic or anisotropic. The

mass transfer coefficient variations with anisotropy is displayed in figure 23.



Figure 21. Area meshed with 2122 triangles.

Figure 22. Pressure and velocity fields.

Figure 23. Variations of α∗ with dispersion ratio and for various anisotropic properties.

4.4. Nontrivial case: example 2

We consider a porous medium with a complex fissured network (figure 24). On
this fissured medium, we first solve the pressure problem. The pressure and the velocity
fields are displayed in figure 25.



Figure 24. Nontrivial case: example 2.

Figure 25. Pressure and velocity fields.

Figure 26. Variations of α∗ with dispersion ratio and for various anisotropic properties.

Thus we can start the resolution of the closure problems. The CFL condition is
checked by setting the following time and space steps,

δt = 0.01; δx = 0.01. (113)

We solve the closure problems for different D∗
ω either isotropic or anisotropic. The

mass transfer coefficient variations with anisotropy is displayed in figure 26.



Of course, we do not have results available to check the validity of our results.
However, they illustrate the ability of the proposed numerical scheme to solve for very
complex fissured networks.

5. Conclusion

In this paper we have presented a volume element numerical model to calculate the
effective properties in the two-equation models proposed to model dispersion in fissured
media. In the last part, several test cases have been treated. The method has been val-
idated on the stratified medium case for which an analytical solution is available. The
difference between the numerical and analytical solution is less than 1% for a typical
problem. The proposed method is fast and accurate. The stratified medium has also pro-
vided a good test in order to determine how the method handles anisotropy effects. The
obtained results show good agreement with the analytical solution. Here we must note
that the numerical model size remains small because we do not finely mesh the fissures.
Hence, the joint element method gives good results for a small computational cost.

Once validated, the method has been tested on more complex geometries. First, the
classical sugarbox medium has been delt with. Our results are close to those found by
Ahmadi et al. [1] using structured grids. Then the application of the proposed method
has been illustrated on more complex fissure networks.

Two last cases show the advantages of using unstructured grids, because the tri-
angular mesh is able to handle inclined fissures. Moreover, the method is tested for
anisotropic tensors, and shows a good behaviour.

6. Nomenclature

Aηω = Aωη: area of the interface between the η and ω-region contained in the averaging
volume V∞ (m2).
bηη: vector field that maps ∇C∗

η onto Cη − C∗
η in the two-equation model (m).

bηω: vector field that maps ∇C∗
ω onto Cη − C∗

η in the two-equation model (m).
bωη: vector field that maps ∇C∗

η onto Cω − C∗
ω in the two-equation model (m).

bωω: vector field that maps ∇C∗
ω onto Cω − C∗

ω in the two-equation model (m).
bIη: vector field used in the decomposion of bηη (m).
bIω: vector field used in the decomposion of bωη (m).
bIIη: vector field used in the decomposion of bηω (m).
bIIω: vector field used in the decomposion of bωω (m).
BIη: scalar field used in the decomposion of bηη.
BIω: scalar field used in the decomposion of bωη.
BIIη: scalar field used in the decomposion of bηω.
BIIω: scalar field used in the decomposion of bηη.
cη: total compressibility of the η-region, Pa−1.



cω: total compressibility of the ω-region, Pa−1.
Cη: Darcy-scale intrinsic average concentration for the βσ system in the η-region,
moles/m3.
Cω: Darcy-scale intrinsic average concentration for the βσ system in the ω-region,
moles/m3.
〈Cη〉: η-region superficial average concentration, moles/m3.
C∗
η = φ−1

η 〈Cη〉: η-region intrinsic average concentration, moles/m3.
c̃η = Cη − C∗

η : spatial deviation concentration for the η-region, moles/m3.
〈Cω〉: ω-region superficial average concentration, moles/m3.
C∗
ω = φ−1

ω 〈Cω〉: ω-region intrinsic average concentration, moles/m3.
c̃ω = Cω − C∗

ω: spatial deviation concentration for the ω-region, moles/m3.
D∗
η: dispersion tensor for the β–σ system in the η-region, m2/s.

D∗
ω: dispersion tensor for the β–σ system in the ω-region, m2/s.

D∗∗
ηη: dominant dispersion tensor for the η-region transport equation, m2/s.

D∗∗
ηω: coupling dispersion tensor for the η-region transport equation, m2/s.

D∗∗
ωω: dominant dispersion tensor for the ω-region transport equation, m2/s.

D∗∗
ωη: coupling dispersion tensor for the ω-region transport equation, m2/s.
D1, D2, D3: lengths of the sides of a porous triangular cell.
K1, K2, K3, Kj , K: porous triangular cells used to model the flux.
g: gravitational acceleration (m2 s−1).
I: unit tensor.
i, j, k: unit base vectors parallel to the x, y, z coordinate system.
Kη: dimensionless equilibrium coefficient for the η-region.
Kω: dimensionless equilibrium coefficient for the ω-region.
Kβη: Darcy-scale permeability tensor in the η-region (m2).
Kβω: Darcy-scale permeability tensor in the ω-region (m2).
lη: characteristic length for the η-region (m).
lω: characteristic length for the ω-region (m).
l: length of a unit cell (m).
nηω = −nωη: outwardly directed unit normal vector pointing from the η-region toward
the ω-region.
P
β

βη: intrinsic regional pressure for the η-region (Pa).

P
β

βω: intrinsic regional pressure for the ω-region (Pa).
r: position vector (m).
rη: scalar field that maps C∗

ω − C∗
η onto c̃η.

rω: scalar field that maps C∗
η − C∗

ω onto c̃ω.
t : time, s.
Vβη: Darcy-scale, superficial average velocity in the η-region, m s−1.
{Vβη}η: intrinsic regional average velocity in the η-region, m s−1.
ṽβη = Vβη − {Vβη}η: η-region spatial deviation velocity, m s−1.
Vβω: Darcy-scale, superficial average velocity in the ω-region, m s−1.
{Vβω}ω: intrinsic regional average velocity in the ω-region, m s−1.



ṽβω = Vβω − {Vβω}ω: ω-region spatial deviation velocity, m s−1.
V∞: large-scale averaging volume (m3).
Vη: volume of the η-region contained within V∞ (m3).
Vω: volume of the ω-region contained within V∞ (m3).
α∗: mass exchange coefficient for the η–ω system, s−1.
ε: average thickness of the fissures (m).
εη: total porosity for the η-region.
εω: total porosity for the ω-region.
φη: volume fraction of the η-region.
φω: volume fraction of the ω-region.
µβ : shear coefficient of viscosity (Ns m−2).
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