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Introduction

Pressure swing adsorption processes-referred to as PSA in this work-are widely used in a variety of industrial applications like air drying, gas puriÿcation, solvent recovery among the principals. For oxygen production from air in particular, this technique o ers interesting advantages in terms of energy consumption, as compared to cryogenic processes for instance, and allows on-site installation due to a relatively light infrastructure. Basically, the technique consists in adsorbing nitrogen of air on reactive sites within a porous bed made of zeolite to produce oxygen at the bed outlet.

Originally, PSA is based on the so-called [START_REF] Skarstrom | Use of adsorption phenomena in automatic plant-type gas analysers[END_REF] cycle, even though many other cycles were derived afterwards for performance purposes [START_REF] Turnock | Separation of nitrogen and methane via periodic adsorption[END_REF][START_REF] Kowler | The optimal control of a periodic adsorber[END_REF]. The Skarstrom cycle involves two main steps: an adsorption step during which oxygen is actually produced, and a depressurization one which corresponds to a regeneration of the bed.

The overall process is characterized by its performance which is usually estimated with the aid of two main parameters: product recovery and adsorbent productivity. The former represents the concentration ratio between the inlet and outlet of the non-adsorbed componentoxygen for instance-while the latter is the amount of the non-adsorbed component produced per unit of adsorbent. Many studies on the PSA process have been carried out in order to improve its performance. For instance, [START_REF] Turnock | Separation of nitrogen and methane via periodic adsorption[END_REF] and [START_REF] Kowler | The optimal control of a periodic adsorber[END_REF] developed a variation of the Skarstrom one-column process (called pressure swing parametric pumping process). This was designed to separate a mixture of nitrogen and methane. They focused their attention on the feed pressure wave-form, and observed experimentally that the optimum feed pressure wave-form was a square one. Considerable improvements of this parametric pumping process, in the case of oxygen and nitrogen separation from air, was obtained later by [START_REF] Jones | Pressure swing parametric pumping-a new adsorption process[END_REF] by modifying the time steps in the cycle. Another idea to increase PSA performance has been proposed. It consists in coupling the process with other gas separation techniques. For instance, Vaporciyan andKadlec (1987, 1989), [START_REF] Lu | Pressure swing adsorption reactors: Simulation of three-step one-bed process[END_REF] combined chemical reaction to PSA, and [START_REF] Bhaumik | Hollow-ÿber membrane-based rapid pressure swing adsorption[END_REF] integrated the best features of membrane contacting, gas liquid absorption and PSA to give rise to the so-called rapid pressure swing absorption (RAPSAB). Other investigations were performed on the PSA performance. E ciency of various adsorbents, like carbon molecular sieves (CMS) and zeolite, was compared by [START_REF] Farooq | A comparison of linear driving force and pore di usion models for a pressure swing adsorption bulk separation process[END_REF]. They found that CMS lead to a higher product recovery whereas zeolite productivity is better. For this reason, most of the PSA processes are designed with zeolite as adsorbent material. Later, [START_REF] Lemco | E ect of regeneration pressure level in kinetically controlled pressure swing adsorption[END_REF] and [START_REF] Shirley | Novel pressurization methods in pressure swing adsorption systems for the generation of high purity gas[END_REF] stressed the importance of the regeneration pressure on the performance. Their conclusion was that a better performance is achieved when pressurization is done by feed gas and product backÿll. E ects of parameters like "dead" zones, adsorption isotherms, incomplete pressurization and blow-down, as well as feed composition, isothermal or adiabatic operations on the separation performance were investigated by [START_REF] Lu | Simulation of a three-step one-column pressure swing adsorption process[END_REF]. They showed that the number of cycles required to achieve the cyclic steady state is shorter in the isothermal case than in the adiabatic one. A recent study of [START_REF] Shirley | High-purity nitrogen by pressure-swing adsorption[END_REF] highlighted the e ect of cycle time on performance as well as on purity of the product. It was found that performance improves with increasing cycle time especially for high purity whereas purity is independent of cycle time for low purity regimes.

In existing works, two main approaches have been followed to model the process. On the one hand, the pore di usion model was introduced to represent the intra-particle di usional mass transfer resistance. This model was used by [START_REF] Yang | Gas separation by pressure swing adsorption: A pore-di usion model for bulk separation[END_REF], [START_REF] Sun | An improved ÿnite di erence method for ÿxed-bed multicomponent sorption[END_REF] and [START_REF] Lu | Simulation of a three-step one-column pressure swing adsorption process[END_REF] to predict concentration evolution during the di erent steps. On the other hand, a more simpliÿed model, referred to as the linear driving force (LDF) model, has been used. It is based on an approximated description of the ow within the pores, and does not take explicitly into account molecular di usion [START_REF] Carter | The pressure swing adsorption drying of compressed air[END_REF]. Comparisons between these two models and experimental data were performed by [START_REF] Farooq | A comparison of linear driving force and pore di usion models for a pressure swing adsorption bulk separation process[END_REF]. Their results indicated that the pore di usion model provides a better agreement with actual data than the LDF model, in spite of a significantly longer computational time. Di erences observed between model predictions and experimental data may result from simpliÿcations involved in the physical model. They may also be explained by additional mechanisms that are not taken into account in these models. Among the most important ones, heterogeneity e ects or development of hydrodynamic instabilities may a ect dramatically the ow. In this paper, we consider the possible occurrence of instabilities, and we investigate the in uence of various physical parameters involved in the process on the development of such instabilities.

Hydrodynamic instabilities have been reported for a long time in the literature in the case of passive dispersion in porous media (see a review by [START_REF] Homsy | Viscous ÿngering in porous media[END_REF], or in the case of the development of a thermal di usion zone (see [START_REF] Quintard | Stabilità e d'une zone instationnaire de di usion thermique dans un milieu poreux: Analyse linà eaire, modà elisation numà erique[END_REF]. Interaction of these instability mechanisms with heterogeneities in the porous bed has also been investigated [START_REF] Homsy | Viscous ÿngering in porous media[END_REF][START_REF] Tan | Viscous ÿngering with permeability heterogeneity[END_REF]. However, occurrence of instabilities during dispersion and adsorption, and for the case of compressible gases, has not been studied so far. In the present work, a stability analysis was performed on the basis of a pore di usion model used to describe the transport of the two chemical species-oxygen and nitrogen. The regular ow corresponds to the 1D solution of the governing equations. Since our objective is to develop the analysis in the case of PSA processes, the resulting 1D base ow is time-dependent, periodic in time, with a complex evolution due to the periodic change in the boundary conditions. To investigate the stability of this time-dependent solution, a linear amplitude equation associated with 2D inlet perturbations was developed [START_REF] Quintard | Stabilità e d'une zone instationnaire de di usion thermique dans un milieu poreux: Analyse linà eaire, modà elisation numà erique[END_REF]. A numerical model was derived to solve for this amplitude equation. Time evolution of the disturbance amplitude indicates whether instabilities can develop or not. Results allow us to discuss the e ect of the perturbation wavelength and amplitude on the development of instabilities.

Physical problem

The system under consideration was designed to produce oxygen from air (mixture of 78% nitrogen and 21% oxygen). Air ows within three columns containing a bed of porous zeolite beads. Zeolite adsorb nitrogen more than oxygen. The air-ow cycle under study derives from the Skarstrom cycle, and corresponds to three main steps that are detailed below. To ensure a continuous production [START_REF] Yang | Gas separation by pressure swing adsorption: A pore-di usion model for bulk separation[END_REF], all three columns are used simultaneously, each of them undergoing one cycle step (see Fig. 1).

The three main steps of a cycle correspond to:

(1) adsorption during two distinct periods: (I) a feeding period: air is injected and adsorption of nitrogen results in oxygen production; (II) a delay period during which adsorption continues while depressurization begins; (2) purge:

(III) during this period, the bed is depressurized with the help of a vacuum pump; (3) pressurization during which one can observe:

(IV) an elution period which corresponds to a pressurization with gas coming from the bed running in period (II). A consequence of this design is that elution period has the same time length as period II; (V) a compression period to regenerate the bed using oxygen produced in period (I).

Production of oxygen occurs during the two ÿrst periods, while the three other ones are designed to regenerate the bed in order to restore the adsorption capacity of zeolite. The overall process is represented schematically in Fig. 2 where we have represented the evolution of the entrance pressure. It is important to notice that all the three columns are coupled so that gas production at the outlet of one column is used as inlet for another one.

Physical mechanisms in this problem can be considered at many di erent scales: the pore scale which corresponds to pores within the porous zeolite beads; the macro-pore scale, with a characteristic length of beads diameter; the scale of few beads corresponding to an homogeneous pack which is often referred to as Darcy-scale in the porous media literature; and the mega-scale corresponding to the entire column with packing heterogeneities. In the following, the solution to the stability problem is proposed at the macroscopic-Darcy-scale and equations at this scale are taken from the literature. The problem of deriving these macroscopic equations from some averaging technique applied to the pore-scale equations is beyond the scope of this paper (see, for instance, [START_REF] Whitaker | Flow in porous media. I: A theoretical derivation of Darcy's law[END_REF][START_REF] Hassanizadeh | General conservation equations for multi-phase systems: 2. Mass, momentum, energy and entropy equations[END_REF][START_REF] Quintard | Convection, dispersion and interfacial transport of contaminants: Homogeneous porous media[END_REF], and they are taken without further discussion. For the initial boundary-value problem, we assume that physical parameters of the porous bed, like porosity, dispersion coe cients, heat capacities and heat conduction coe cients are constant. Since the column diameter is much smaller than its length, the ow problem is considered as 1D and is solved on the homogeneous system schematically depicted in Fig. 3. Because gas phase density is small, gravity is neglected since this type of force is assumed to play a minor role compared to adsorption forces.

The gas phase, or ÿ-phase, is a binary mixture of oxygen, ÿ 1 , and nitrogen, ÿ 2 , while the solid phase,

, is assumed to be rigid and immobile. The initial boundary-value problem is given by mass, momentum and energy balance equations, associated with boundary conditions corresponding to the cycle under study. The set of equations are given below.

Mass balance

Mass balance for component i (i = ÿ 1 or ÿ 2 ) in the gas mixture is a convection=dispersion equation with additional terms taking into account gas compressibility and adsorption. For the oxygen component, this writes

@ ÿ @t C ÿ1 + ÿ @C ÿ1 @t compression + (1 -) @f(C ÿ1 ) @t adsorption + • ( ÿ V ÿ C ÿ1 ) convection = • ( ÿ D * ÿ • C ÿ1 ) dispersion ; (1)
where C ÿ1 is the macroscopic oxygen mass fraction in the gas phase deÿned by

C ÿi = m i m ; (2) 
m i being the mass of component i (i = 1; 2) in a mass m of the mixture; V ÿ and D * ÿ are the macroscopic velocity and dispersion tensor; is the porosity of the medium and f represents the adsorption isotherm deÿned below. Rather than writing the equivalent equation for the nitrogen component, it is more convenient to write the total mass balance that results from the sum of Eq. ( 1) for both components to obtain

@ ÿ @t compressibility + • ( ÿ V ÿ ) convection = -(1 -) @ C 1 @t + @ C 2 @t adsorption ; (3) 
where C 1 and C 2 denote, respectively, the mass of oxygen and nitrogen adsorbed per unit mass of the porous medium.

Adsorption is a physico-chemical phenomenon that depends in a nonlinear way on pressure, temperature and species concentration in the uid phase. For a given adsorbent, this relationship is generally given under the form of a so-called isotherm, and in the present work, a Langmuir relationship was used. This kind of relationship has proved to be very accurate for the air=zeolite system at low pressure [START_REF] Van Tassel | New lattice model for adsorption of small molecules in zeolite micropores[END_REF]. In addition, we assumed that the macroscopic concentration is equal to the pore-scale equilibrium concentration. This assumption corresponds to a local chemical equilibrium assumption and was discussed in some details by Quintard andWhitaker (1998), and[START_REF] Ahmadi | Transport in chemically and mechanically heterogeneous porous media V: Two-equation model for solute transport with adsorption[END_REF]Whitaker (1998). As a consequence the following Langmuir isotherm was used, which, for component i reads

C i = f(C ÿi ) = i exp( h i =RT )C m ÿi P ÿ 1 + Ä i exp( h i =RT )C m ÿi P ÿ : (4) 
In this isotherm, C m ÿi represents the molecular fraction of component i and is given by

C m ÿi = n i n m ; ( 5 
)
where n i is the number of molecules of component i contained in a mixture of n m molecules; h i represents the molar enthalpy of adsorption; i and Ä i are system dependent constants and R is the ideal gas constant.

Momentum balance

Provided the pore Reynolds number is less than 10, it is usually admitted that a valid model for momentum conservation in a homogeneous porous medium is the classical Darcy's law. In our case, the Reynolds number estimated from the mean pore diameter and interstitial velocity is below this critical value and consequently, since gravity is neglected, the following relationship was used for the ÿ-phase momentum balance:

V ÿ = - 1 ÿ K • P ÿ ; ( 6 
)
where K is the permeability tensor deÿned on a homogeneous representative sample of the bed.

Energy balance

Following some ideas put forth for the local chemical equilibrium assumption, local thermal equilibrium between the gas phase and the solid phase was further assumed [START_REF] Quintard | Two-medium treatment of heat transfer in porous media: Numerical results for e ective properties[END_REF]. This yields a unique macroscopic equation to describe the temperature evolution within the uid-solid system which reads ( C p ) * @T @t accumulation term

+ • (( C p ) ÿ V ÿ T ) convection = • (K * • T ) heat di usion + (1 -) @ C 1 @t h 1 + @ C 2 @t h 2 adsorption + @P ÿ @t + V ÿ • P ÿ pressure reduction : (7) 
In the above equation, K * and ( C p ) * represent the equivalent heat conductivity tensor and the equivalent volumetric heat capacity of the uid=solid system, respectively. This latter property is deÿned by a mixing law of the following type:

* = ÿ + (1 -) : (8) 
To close the problem, one needs a constitutive equation for the gas phase. For simplicity, an ideal gas law was used to deÿne gas density. According to the deÿnitions of the mass fractions of the two components, one obtains the density of the mixture as

ÿ = P ÿ [C ÿ1 =M ÿ1 + (1 -C ÿ1 )=M ÿ2 ]RT ; (9)
where M ÿi is the molar mass of component i.

Initial and boundary conditions

Boundary conditions at entrance, e , and exit, s , of one column are those corresponding to the successive periods over a complete cycle. For sake of clarity, they are listed below for each period:

Period I (feeding):

(B:C:1) T (t) = T e on e ; (10) 
(B:C:2) C ÿ1 (t) = C ÿ1 e on e ; (11) 
(B:C:3) P ÿ (t) = P ÿe on e ;

(12) (B:C:4) P ÿ (t) = P ÿs on s ;

(13)

(B:C:5) n • K * • T (t) = 0 on s ; (14) (B:C:6) n • D * ÿ • C ÿ1 (t) = 0 on s : (15) 
Period II (delay):

(B:C:7) V ÿ (t) = 0 on e ; (16) 
(B:C:8) n • K * • T (t) = 0 on e ; (17) 
(B:C:9) n • D * ÿ • C ÿ1 (t) = 0 on e ; (18) 
(B:C:10) P ÿ (t) = P ÿs (t) on s ;

(B:C:11) n • K * • T (t) = 0 on s ; (20) (B:C:12) n • D * ÿ • C ÿ1 (t) = 0 on s : (19) 
During this period, P ÿs (t) corresponds to a ÿxed linear pressure evolution. Values of V ÿ ; C ÿ1 and T over time at the outlet are later used in period IV.

Period III (depressurization):

(B:C:13) P ÿ (t) = P ÿe (t) on e ;

(B:C:14) n • K * • T (t) = 0 on e ; ( (22) 
) (B:C:15) n • D * ÿ • C ÿ1 (t) = 0 on e ; (24) (B:C:16) V ÿ (t) = 0 on s ; (25) (B:C:17) n • K * • T (t) = 0 on s ; (26) (B:C:18) n • D * ÿ • C ÿ1 (t) = 0 on s : 23 
During this depressurization period, P ÿe (t) is an imposed linear decreasing function of time.

Period IV (elution):

(B:C:19) P ÿ (t) = P ÿe (t) on e ;

(28)

(B:C:20) n • K * • T (t) = 0 on e ; (29) 
(B:C:21) n • D * ÿ • C ÿ1 (t) = 0 on e ; (30) 
(B:C:22) V ÿ (t) = 0 on s ; (31) (B:C:23) T (t) = T s (t) on s ; (32) 
(B:C:24) C ÿ1 (t) = C ÿ1 s (t) on s : (33) 
During this period, P ÿe (t) is an imposed linear increasing function of time and conditions at any time on s are those corresponding to period II.

Period V (pressurization):

(B:C:25) V ÿ (t) = 0 on e ; (34) 
(B:C:26) n • K * • T (t) = 0 on e ; (35) 
(B:C:27) n • D * ÿ • C ÿ1 (t) = 0 on e ; (36) 
(B:C:28) P ÿ (t) = P ÿs (t) on s ;

(37)

(B:C:29) T (t) = T initial on s ; (38) 
(B:C:30) C ÿ1 (t) = C ÿ1 initial on s : (39) 
During this ÿnal period, P ÿs (t) is a ÿxed linear pressure evolution, whereas oxygen concentration as well as temperature on s are kept constant and equal to their initial values at the beginning of the cycle.

This initial boundary-value problem was solved numerically and a stability analysis with respect to pressure or concentration perturbations was performed. Methodology and numerical procedures used to compute the regular solution on the ÿ phase pressure, P 0 ÿ , temperature, T , oxygen concentration, C 0 ÿ1 , and velocity, V 0 ÿ , as well as the corresponding disturbances are now presented.

Hydrodynamic stability

Our study of the hydrodynamic stability of the PSA process under consideration is inspired by techniques developed for the case of miscible displacements [START_REF] Wooding | The stability of an interface between miscible uids in a porous medium[END_REF][START_REF] Bachu | Stability of displacement of a cold uid by a hot uid in a porous medium[END_REF][START_REF] Bertin | Stabilità e d'un à ecoulement miscible radial en milieu poreux: à Etude thà eorique et expà erimentale[END_REF][START_REF] Tan | Stability of miscible displacements in porous media: Rectilinear ow[END_REF][START_REF] Homsy | Viscous ÿngering in porous media[END_REF][START_REF] Yortsos | Dispersion driven instability in miscible displacement in porous media[END_REF][START_REF] Prouvost | Stability criteria for the design of graded polymer bu ers[END_REF] or transient heat diffusion [START_REF] Gresho | The stability of a uid layer subjected to a step change in temperature: Transient vs. frozen time analyses[END_REF][START_REF] Homsy | Global stability of time-dependent ows: Impulsively heated or cooled uid layers[END_REF][START_REF] Quintard | Instabilità es de zones de di usion thermique instationnaires en milieu poreux[END_REF].

A very popular technique is the classical bifurcation theory-or linear stability analysis- [START_REF] Iooss | Elementary stability and bifurcation theory[END_REF] which is well adapted to the case of autonomous regular solution. In fact, if W 0 denotes the regular solution vector or base state, and w the associated disturbance, then the equations for the disturbance can be linearized in the neighborhood of the regular solution and formally written as @w(x; t) @t = L(w(x; t); W 0 (x));

(40

)
where L is the linear operator and W 0 the regular solution which is a function of the spatial coordinates, x, only.

The stability analysis can be performed by studying the behavior of the operator L with respect to an elementary perturbation of the form:

w(x; t) = e t '(x); (41) 
which implies

'(x) = L('(x); W 0 ); ( 42 
)
where and ' are, respectively, eigenvalues and eigenvectors of the operator L. Marginal stability is obtained for values of the physical parameters such that = 0. In our case, however, the regular solution (we also used the term base ow) is time dependent in a complex non-linear fashion and the resulting disturbance equations lead to a non-autonomous system. A non-autonomous system is characterized by the fact that coe cients in the disturbance equations are time dependent while the regular solution is a non-stationary one. For this kind of system, more complex approaches are required [START_REF] Homsy | Global stability of time-dependent ows: Impulsively heated or cooled uid layers[END_REF][START_REF] Homsy | Viscous ÿngering in porous media[END_REF][START_REF] Quintard | Stabilità e d'une zone instationnaire de di usion thermique dans un milieu poreux: Analyse linà eaire, modà elisation numà erique[END_REF][START_REF] Quintard | Convection naturelle en milieu poreux: Syst emes non-stationnaires, dà eplacements[END_REF][START_REF] Tan | Stability of miscible displacements in porous media: Rectilinear ow[END_REF], 1992;[START_REF] Yortsos | Dispersion driven instability in miscible displacement in porous media[END_REF] like the frozen time method, the linear amplitude equation method or the energy method that are very brie y presented below.

(i) Frozen time or quasi-static or quasi-steady-state analysis. As mentioned above, the bifurcation theory between steady-state ows is no longer valid when W is a function of space and time. However, assuming that t is a parameter in W (x; t),-this is a strong hypothesis in this theory and is di cult to justify-the base ow concentration ÿeld becomes frozen, and the linear analysis can be formally applied to the disturbances. A lot of sta-bility studies [START_REF] Foster | Stability of homogeneous uid cooled uniformly from above[END_REF]Robinson, 1967;[START_REF] Gresho | The stability of a uid layer subjected to a step change in temperature: Transient vs. frozen time analyses[END_REF][START_REF] Tan | Stability of miscible displacements in porous media: Rectilinear ow[END_REF] have been based on this method since it is easier to implement than the two other methods described below. However, it is of limited usefulness for most transient cases. In particular, the marginal stability, which corresponds to zero time derivative for the disturbance is certainly the worst situation compared to the ÿnite time variations of the base ow. Therefore, it is better to use the conditions for rapid disturbance growth as instability criteria [START_REF] Tan | Stability of miscible displacements in porous media: Rectilinear ow[END_REF]. However, in our case the base state is periodic in time, with complex variations due to the various changes in the boundary conditions. Therefore, it is di cult to estimate the validity conditions for this quasi-steady-state approach.

(ii) Linear amplitude equation method. Linear amplitude equations can be derived from the original governing equations in the case of non-autonomous systems. Solutions of the resulting equations give valuable information about the possible development of perturbations and, in this respect, yields better results than the previous theory. However, it is not suitable for describing well-developed perturbations, which can interact in a non-linear fashion [START_REF] Malher | Stability of a uid layer with time dependent density gradients[END_REF][START_REF] Quintard | Stabilità e d'une zone instationnaire de di usion thermique dans un milieu poreux: Analyse linà eaire, modà elisation numà erique[END_REF].

(iii) Energy method. This method can account for well-developed perturbations [START_REF] Joseph | Stability of uid motions[END_REF][START_REF] Homsy | Global stability of time-dependent ows: Impulsively heated or cooled uid layers[END_REF]. In order to determine the stability conditions, a Liapounov functional is built from the governing equations. This method is interesting since non-linearities present in the system are taken into account. In particular, this method can show how a perturbation can actually vanish when combined with time evolution of the regular solution while it is considered as an unstable one for the two other methods [START_REF] Quintard | Convection naturelle en milieu poreux: Syst emes non-stationnaires, dà eplacements[END_REF]. In other words, this analysis provides critical times at which perturbations may increase or decrease depending on the evolution of the base ow and other parameters [START_REF] Quintard | Instabilità es de zones de di usion thermique instationnaires en milieu poreux[END_REF]. However, it might be di cult to obtain the solution in the case of very complicated problems, i.e., many coupled, non-linear equations. Therefore, the e ect of the non-linearities is often investigated by solving the full set of non-linear equations for various disturbance patterns. This is used to validate the conclusions of the stability analyses. However, it generally requires heavy computations, and cannot be used for a parametric study.

Because of the cyclic nature and the complexity of the system under study in the present work, linear amplitude equations were derived and solved numerically for the stability analysis. To simplify the mathematical treatment of the problem, we assumed that the temperature disturbance has a negligible e ect on the overall stability. This implies that the energy equation will not be considered in the stability analysis, i.e., it will be reduced to Darcy's law combined with the mass conservation. and a can be identiÿed to the wave number as a = 2 : (59)

Initial and boundary conditions

To complete the system of equations, Eqs. ( 46) -( 48), initial and boundary conditions are required and their choice is of capital interest in the stability analysis of non-autonomous systems. In fact, in the case of classical bifurcations between steady solutions, it is su cient to know that perturbations exist. If the system is under unstable conditions, the solution eventually switch from the stable base ow to another solution and the structure of the perturbed state does not often depend on the choice of the initial disturbance. Physically, this means that the source of the instability is irrelevant for the analysis. This statement has to be slightly moderated, however, in the case of sub-critical conditions since the jump from one solution to another may depend in that case upon the disturbance amplitude. This is much more complicated when the system is non-autonomous. The behavior of the system is highly dependent on sources giving rise to the perturbations. For instance, in the case of the stability of transient thermal di usion zones in porous media, it was found that the observed critical times depend on the choice of the initial perturbations [START_REF] Quintard | Convection naturelle en milieu poreux: Syst emes non-stationnaires, dà eplacements[END_REF]. In some cases for which the di usion zone is convected through the porous medium, i.e. a base ow with a non-zero velocity, the perturbation seems to be of limited growth compared to the case of a stagnant zone if we observe the ow over a limited length. This is simply because convection ushes the disturbance away from the domain before it has reached a ÿnite amplitude accessible to observation [START_REF] Quintard | Criteria for the stability of miscible displacements through porous columns[END_REF]. All these aspects are illustrated and discussed below with the presentation of results on the particular problem studied in this paper.

From a mathematical point of view, several di erent choices are possible for the perturbation sources. For instance, the source may be an initial perturbation of ÿnite amplitude. If the system is unstable for the conditions under study, we may observe an increase in the perturbation amplitude. However, and this is especially true for cyclic conditions, the disturbance may be carried away from the domain under consideration by convection, and if there is no source associated with the boundary conditions the disturbances will eventually vanish. Subsequently, there will be virtually no perturbation sources for the following cycles. In a real system, perturbation may originate from sources that do not support the scheme of a ÿeld only perturbed initially. For instance, if the perturbation is initiated by small uctuations of physical properties-like heterogeneities-one can easily imagine that this perturbation is kept all along the cycle and not only at the early stage of the ow. For this reason, a stationary disturbance could be maintained for instance at the entrance, in addition to an initial perturbation. Alternatively, a perturbation could be superimposed to the solution at each time step in a random manner. This last idea was not investigated in the present work and results obtained in the case of an initial perturbation on the one hand and for a stationary disturbance at the boundary on the other hand are presented. This allows the discussion of the stability problem on a general basis keeping in mind that detailed practical applications would require more knowledge of the possible perturbation sources.

Stationary boundary conditions of the perturbed problem were taken similar to the boundary conditions of the regular problem. For instance, Neuman conditions for the regular concentration, Eqs. ( 15), ( 18), ( 21), ( 24), ( 27), ( 30) and ( 36), remain Neuman conditions for the disturbed ÿelds, while Dirichlet conditions for regular concentration and regular pressure, Eqs. ( 11) -( 13), ( 19), ( 22), ( 28), ( 33), ( 37) and ( 39), remain Dirichlet conditions. These Dirichlet conditions were prescribed as follows (B:C:31) Cÿ1 (t; y) = 0 on e (Period I); 

where e and s represent the entrance and exit surfaces. The boundary condition in Eq. ( 62) takes into account pressure uctuations occurring at the entrance of the domain. In the case of impervious boundaries, the regular velocity is zero, as expressed by the boundary conditions in Eqs. ( 16), ( 25), ( 31), (34), and this implies that the pressure perturbation is also equal to zero.

In the case of an initial perturbation ÿeld, two different concentration conditions were investigated: an over-oxygenation and an under-oxygenation.

Discretization and numerical procedure

A classical ÿnite volume method was used to solve the regular problem, Eqs. ( 1), ( 3), ( 4), ( 6), ( 7) and ( 9), and the perturbed one, Eqs. ( 46) -( 48), with their corresponding boundary conditions. Integration was performed on the control volume depicted in Fig. 4 where we have also indicated the positions of the unknowns. represented the results for concentration versus the dimensionless position along the porous column axis. These results were obtained during the feeding period after a dimensionless time of 0.033 and 0.133 in the ÿrst cycle. As a comparison, the regular solution was also computed using a 2D numerical model 1 over the same period of time and concentration results obtained at a ÿxed value of y corresponding to the mid-section are also depicted in Fig. 5.

One can observe a small di erence between the two adsorption waves due to the fact that the 2D numerical model takes into account the time to reach adsorption equilibrium, i.e., it uses a local non-equilibrium model, whereas adsorption equilibrium is assumed to be instantaneous in the 1D model. However, the agreement between the two approaches is good, and the regular solution obtained from the 1D model was considered to be accurate enough for the subsequent stability analysis. For the same ow rate, results on oxygen mass fraction and temperature evolution over a complete cycle are represented in Figs. 6 and7 versus dimensionless time and position along the column axis, respectively.

To complete the regular ow analysis, it is also necessary to test the e ect of the cyclic nature of the process on the regular solution. Results on the regular concentration evolutions along the porous column during the early stage of the feeding period over four cycles are depicted in Fig. 8. They indicate that: (i) A cyclic steady state is reached after few cycles (typically 2 or 3) depending on the ow rate. This is in agreement with previous reported results obtained un-1 The 2D numerical model was developed in RAMPANT TM by Fluent Inc.. der isothermal conditions [START_REF] Lu | Simulation of a three-step one-column pressure swing adsorption process[END_REF]. As a consequence, cyclic steady-state conditions are considered as initial conditions in the subsequent stability analysis.

(ii) The porous bed recovery decreases with increasing ow rate. (iii) Steady state is reached more rapidly for low ow rates. In practice, however, gas production rate may require high ow rates despite lower ones are in favor of higher bed recovery and earlier steady state.

Starting from these results, the perturbed equations were solved according to the scheme described above.

Perturbed case

Before presenting our results, it is important to emphasize that the unstable behavior is intrinsic of the system under consideration and is not a pure artifact resulting from the 1D linearization of the system of equations. As an illustration, a 2D numerical solution was obtained on the feeding period using RAMPANT TM with a perturbation for the pressure boundary condition given, as in Eq. ( 62), by Pÿ (t; x = 0; y) = P sin 2 y ;

(66) and a concentration initial perturbation of the form:

Cÿ1 (t = 0; x; y) = Cx(L -x) sin 2 y ; 0 6 x 6 L:

(67)

Pressure results obtained with P =20 Pa, =L and C = 0:05 at t = 0:133 during the feeding period are reported in Fig. 9.

Clearly, the perturbation grows and spreads inside the porous column conÿrming that disturbances may develop inside the medium and justifying a more thorough computation over a complete cycle with the 1D simpliÿed model.

To begin with, perturbed equations were solved with an initial concentration perturbation only, i.e., P = 0, and no disturbances applied on the boundaries. Two di erent types of concentration perturbations were investigated: one corresponding to an over-oxygenation of the column, the other one to an under-oxygenation. Both disturbance ÿelds were of the form given in Eq. ( 67). Computation was performed on the overall cycle and results obtained with C = ±0:05 and = L are reported in Fig. 10 were we have represented the time evolution, over the ÿve periods, of the relative norm of the oxygen concentration, Cÿ1 (t) r; 2 , deÿned by

Cÿ1 (t) r; 2 = Cÿ1 (t) 2 Cÿ1 (t = 0) 2 = L 0 C2 ÿ1 (x; t) dx L 0 C2 ÿ1 (x; t = 0) dx : (68)
It is clear from these results that the perturbation evolution di ers from step to step and depends on the initial perturbation. During purge and delay, the perturbed concentration increases, whatever the initial perturbation. During elution and pressurization steps the perturbed concentration decreases. On the contrary, one can observe a di erent behavior during the feeding period since perturbation increases with an over-oxygenation while it decreases with an under-oxygenation. Although its evolution depends on the velocity inside the column, (see results in Fig. 11 for C = -0:05 and two di erent ow rates), perturbations are always dampened after few steps.

In fact, in this problem, perturbations are carried away from the porous medium by convection while a zero perturbation condition at the inlet tends to be convected into the porous domain since there is no perturbation maintained at the inlet. Therefore, since we are considering a cyclic behavior it is expected that the system is relatively stable. Here the word stable has to be understood in terms of transient analysis. Indeed, several calculations showed that the ow is stable with these boundary conditions and for the physical situation under consideration, whatever the initial concentration perturbation and the wave number. In terms of practical applications, such a situation may seem to be too drastic. In order to release this constraint, it is interesting to investigate the case of a perturbation maintained at the inlet of the column. This kind of condition is physically justiÿed by experimental observations of velocity uctuations at the entrance during feeding, purge and elution steps.

Computations were performed with a perturbed pressure boundary condition of the form given in Eq. ( 62). Results on Cÿ1 (t) r; 2 versus dimensionless time obtained with a ÿxed wavelength, , equal to L, and P ranging from 5 to 30 Pa are represented in Fig. 12. These results clearly highlight the conditional stability of the system. For this wavelength, for instance, the concentration disturbance begins to grow for an amplitude of the pressure perturbation greater than 5 Pa.

However, disturbance amplitude at the entrance is not the only factor in uencing stability since the wavelength is also a key factor conditioning the stability. In Fig. 13, are reported our results for Cÿ1 (t) r; 2 versus dimensionless time, obtained with the inlet pressure disturbance amplitude ÿxed to 20 Pa and wavelengths ranging from 0:13 × L to 10 × L. These results indicate that stability occurs for relatively large wavelengths (roughly larger than 5L in our case), while the time to reach the instability decreases with decreasing wavelengths. For very short wavelengths, the solution diverges very quickly and this directly results from the linear character of the operator.

To synthesize the above results, we have summarized the stability analysis in Fig. 14 providing the stability diagram in terms of amplitude and wavelength of the pressure disturbance at the entrance of the column. This diagram was obtained for a pressure drop of 600 Pa along the column during the feeding period.

As shown in this ÿgure, unstable ow results from large enough disturbance amplitudes at the entrance, i.e., for a su ciently large amount of energy input in the system. The amount of energy required to reach this unstable behavior is an increasing function of the wavelength.

Conclusions

In this work, stability during cyclic gas ow with dispersion and adsorption in a porous column, as encountered during pressure swing adsorption, was investigated. On the basis of a 1D linearized amplitude equation, and from the computed solution of the time-dependent regular ow, a numerical solution was obtained for the concentration perturbation in the case of two di erent kinds of disturbance. For an initial concentration disturbance, it was found that the system is always stable. This result can be explained if one considers the e ect of convection through the porous domain. In fact, since no disturbance is maintained at the entrance, a zero disturbance tends to be convected through the column so that the initial disturbance is ÿnally dampened away. A somewhat di erent behavior was observed if a perturbation is maintained at the inlet for the pressure boundary condition for instance. In this case a conditional stability is obtained on the adsorption front inside the porous medium. It was found that instability occurs for large enough perturbation amplitude at the inlet, and that the amplitude required to destabilize the dispersion=adsorption process increases with increasing wavelengths. Although the in uence of all the physical parameters has not been investigated since it was beyond our scope in the present work, a stability diagram in terms of amplitude and wavelength of the pressure perturbation at the inlet was obtained. 
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In the following, we use P 0 ÿ ; T; C 0 ÿ1 and V 0 ÿ for the solution to the base ow corresponding to the initial boundary-value problem described by Eqs. ( 1) -( 30). The disturbance ÿelds, Pÿ ; Ṽÿ ; Cÿ , are deÿned as Pÿ = P ÿ -P 0 ÿ ;

(43)

The disturbance linearized equations were obtained by introducing these decompositions into the governing equations, Eqs. ( 1) -( 7). During the linearization process, products of disturbances of the form X ÿ Ỹ ÿ were discarded and the following disturbance equations were obtained:

Darcy's law:

Oxygen mass balance:

Mass balance for the mixture: @ ˜ ÿ @t compression

In the two above equations, a series of approximations were used. In particular, adsorption and compressibility terms were developed on the basis of the following Taylor's expansions:

in which higher second-order terms were neglected. Moreover, in Eq. ( 47), the following inequalities were assumed in order to simplify the dispersive and convective terms:

Physically, this corresponds to the hypothesis of a negligible density disturbance with respect to the concentration and pressure disturbances. This leads to

in Eq. ( 48).

Since the base ow is assumed to be one-dimensional, and due to the structure of the operator, it is possible to decompose the pressure and concentration disturbances under the form Cÿ1 (t; x; y) = C(t; x)g(y);

(55) Pÿ (t; x; y) = P(t; x)g(y):

Once inserted in the linearized equations, this implies that 2 y g + a 2 g = 0;

(57) in which a is a constant. Since the system can be considered as inÿnite in the y-direction, an elementary solution for g is hence, The base ow and disturbed problems are coupled and involve seven unknowns, P 0 ÿ ; Pÿ ; C 0 ÿ1 ; Cÿ1 ; V 0 ÿ ; Ṽÿ and T , which must be computed at the same time step. To do so, convective, dispersive and accumulation terms present in each set of equations were, respectively, discretized according to a speciÿc scheme. Convective (or hyperbolic) terms, like • ( ÿ V ÿ C ÿ1 ) and • (( C p ) ÿ V ÿ T ), were discretized using an explicit upwind ÿrst-order and conservative scheme. The explicit formulation was chosen in order to get a linear form of the problems, and moreover, to provide an e cient way of limiting numerical di usion. Di usive (or elliptic) terms

were discretized with an implicit scheme based on second-order centered ÿnite di erences. Accumulation terms including compressibility and adsorption e ects, @ ÿ =@t and @ C 1 =@t, respectively, were discretized according to the following scheme: @ ÿ @t = @ ÿ @C ÿ1 n @C ÿ1 @t + @ ÿ @P ÿ n @P ÿ @t + @ ÿ @T n @T @t :

(64)

As a result, the discretized form of Eq. ( 1), for instance, reads 55) and ( 56), and these terms were discretized by an explicit scheme.

For each problem, unknowns were computed as the solution of the linear system formed from the set of linearized discrete equations using a classical Gauss elimination method.

Results and discussion

In all our results presented below, length and time are made dimensionless by the column length, L, and complete cycle time, , respectively. Computations were performed using the values of the physical parameters reported in Table 1.

Regular case

To begin with, the 1D base ow was solved using the above-mentioned numerical scheme. In Fig. 5, we have