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A Boundary Element Method Applied to Gas-Liquid Drainage in a Capillary Cavity

The boundary element method is applied to the Stokes problem with a moving boundary in capillary cavities. The numerical method uses a stress/velocity formulation, which is very suitable for the boundary conditions involved. The displacement of the moving surface is calculated explicitly; smoothing and regridding insure stability of the overall scheme. The method allows one to simulate directly the behavior of very thin dynamic films left behind a receding meniscus. The numerical results are compared with both experimental observations and calculations based on a simplified theoretical analysis.

INTRODUCTION

Drainage processes in porous media are of great practical importance in petroleum engineering, a typical problem being gas-oil drainage in the presence of water. Micromodel studies (Chatzis et al., 1988 1 ) suggest that these flows are largely influenced by the existence of dynamic films left behind receding menisci. These mechanisms are highly sensitive to pore geometry; however, direct numerical simulations, simplified theoretical results, and experimental studies for simple capillary geometries can help understand the dynamics of such flows.

Simplified solutions, based on lUbrication-type approximations, are available for flow in tubes (Bretherton 2 ) or in Hele Shaw cells (Park et Homsy3). In these configurations, it is possible to derive a simple relationship between the film thickness, e, and the capillary number, Ca, in the following form e/b =1.337 Ca 2 / 3 (1) where b is half the distance between the two plates in the Hele Shaw case. In addition to the lubrication-type approximation, this result is based on several simplifications such as: (i) the film thickness is supposed to be constant in a region far from the meniscus, (ii) the Bond number, Bd, is assumed to have negligible effect on the flow. Furthermore, the correlation given by Equation ( 1) is not valid for large capillary numbers for obvious reasons. Thus, it is

The liquid domain Boundary Elements in Fluid Dynamics very attractive to obtain a full solution of the two-phase flow problem to extend the range of validity of the above correlation. [START_REF] Lu | Boundary Element Analysis of Free Surface Problems of Axisymmetric Taylor Bubbles[END_REF] . In this paper, we present a numerical solution of the Hele Shaw case. We consider the drainage of a wetting phase (liquid) by a gas phase, the flow taking place between two plates as it is illustrated in Figure 1 .

NUMERICAL METHOD

The two-phase flow free boundary problem under consideration is solved numerically using a boundary element technique. This method bas proved to be suitable and accurate in many cases of free surface flow as reported in Wrobel and Brebbia n [START_REF] Wrobel | Fluid Flow', Section 4, Free Surface Flow[END_REF] . and its boundary ô!l=S 1 uS 2 uS 3 are illustrated in Figure 1 . The liquid phase is limited on each side by two vertical, impermeable, rigid boundaries S 2 • The distance between the two vertical planes is equal to 2b. The lower boundary corresponds to a fictitious horizontal plane S 3 in the liquid phase. The upper gas phase is separated from the liquid by the free surface S 1 .

The velocity field on S 3 is a Poiseuille flow at a constant flow rate. We assume that the flow pattern in n is purely two-dimensional in the plane (e h , e z ) represented in Figure 1 . Furthermore, we assume that: (i) the viscosity and the density of the gas phase are negligible compared to the viscosity and the density of the liquid phase; (ii) the drainage velocity is small enough for the Stokes approximation to be valid in the liquid phase. As a consequence, the boundary value problem can be written as follows v.s = 0

(2) V.v=O (3) in the liquid phase, where S is the stress tensor, and v the dimensionless velocity.

The appropriate boundary conditions are (B.C. 1) v l = 0 (4)

s2 (B.C. 2) (B.C. 3) v l = (h 2 -l)e s z 3 S _ [ 1/R -Bd z ] n. - Cao Il (5) (6) 
Because of the assumptions we have made, the pressure in the gas phase is assumed to be constant, equal to P 0 • Boundary Elements in Fluid Dynamics In Equation (2) S is the dimensionless stress tensor defined by S = -p I + Vv + 1 Vv (7) in which p is the dimensionless pressure in the liquid phase. The dimensionless velocity is defined from the dimensional corresponding variable, denoted with superscript *, by v = v*N 0 (8) where V O is the reference velocity on the symmetry axis on S 3 • Similarly the dimensionless pressure is defined by p* -P 0 + p g b z p = µ Vo (9) where p, µ , and g represent the density, the viscosity of the liquid phase and the gravitational acceleration respectively; h and z are the coordinates made dimensionless by b.

In Equation ( 6 This fondamental solution can be found for example in DaCosta Sequeira 6 or in Ladyzhenskaya 8 and is given by

1 [ (Yr -Xr )(Yk -Xk) ] u 1 ix-y) = 4 1t -ô1 k ln r+ r 2 1 r) ln r t k = 2 1t d Xk (15) (16)
Boundary Elements in Fluid Dynamics with r = lx -YI (17) According to the boundary conditions for the problem considered here, equation ( 13) can be re-written in a more convenient form as k=l,2

(18) At this point, it is seen that the velocity/normal stress formulation is very suitable for the problem under consideration since the boundary conditions appear directly in the above equation. This last equation allows to compute the normal stress n.S on S 2 uS 3 , and v on the moving boundary S 1 .

Discretization:

The continuous problem (Equations ( 2) to ( 6) and ( 12)) is now discretized in order to produce a linear system and give the unknown values on an (Huyakom and Pinder 9 ). Our computation bas been performed using a constant boundary elements method which consists in dividing the boundary an into m straight line segments r. On each segment, n.S and v are assumed to have a constant value, equal to the value at the central node.

The choice for constant boundary elements is mainly justified by the fact that this method gives an accurate approximation of the solution either on the boundary or for points inside the domain far enough from the boundary. This bas also been pointed out in other works conceming free surface flows of viscous newtonian fluids (Bush IO ). In addition, the numerical scheme for constant boundary elements is fast and simple to implement, making this method a very attractive one (Bush lO , Lu 4 , Sugino and Tosaka 11 ).

The first step is to discretize the boundary integral given by Equation (18). This is done by writing (19) In this relation, x j means that xis taken at node j (or on the jth element); x j and Yi denote positions of nodes j and i on an; m 1 is the number of nodes (or elements) on S 1 , l=l,3. Node numbering is such that the node number increases while an is described clockwise and node number one is the first node on S 1 which has a positive h coordinate. We will denote m as the total number of nodes (m=m 1 +m 2 +m 3 ).

The next step consists in discretizing the boundary conditions given by Equations (4) through (6). According to the method used here, this can be done by writing where � and n j are the radius of curvature of S 1 at node j and the unit outward normal vector of element j respectively. At this point, one clearly sees that the right hand side of Equation ( 19) is completely known. In addition, the symmetry of the problem gives a solution symmetric with respect to the z-axis. Therefore the number of unknowns is reduced accordingly.

From Equations ( 15), ( 16) and ( 19), it is clear that the fondamental solution of the elementary two dimensional Stokes problem has singularities at each interpolation node. However, because of the constant boundary elements method retained here, each integral in Equation ( 19) can be explicitly calculated (see Lasseux 7), therefore avoiding the use of approximations with quadrature formulae such as those used in Sato et al . 12 .

The last discretization step consists of finding a suitable discretized form of Equation (12). Points on the free boundary are moved according to z_n+I = Z. Even under the constraint expressed by Equation (25), the updating process described by Equations (23) and (24) generates instabilities which can be observed after only few time steps. This fact bas also been noted by Sugino and Tosaka 11 . The reason for this lies in the fact that the element size on S 1 is altered by the updating process. This is due to the velocity gradient along S 1 which causes elements near the symmetry axis to become larger while elements near S 2 become smaller. To remedy this problem, a smoothing and relocation technique bas been used. At each time step, the free boundary S 1 is smoothed with local cubic spline fonctions. These piecewise fonctions allow one to relocate and eventually add nodes on S 1 in order to keep an approximately constant element size during the whole computation. In addition, as the z coordinate of the lower point on S 1 decreases, it is necessary to increase the vertical size of the domain, i.e., increase the number of nodes m 2 on S 2 .

Numerical experiments showed that the above mentioned instabilities are dramatically enhanced when capillary effects are dominant, and this increases the stiffness of the problem while an accurate evaluation of the radius of curvature R of S 1 (see Equation ( 22)) is required. As the spline fonctions are only piecewise fonctions, the evaluation of this last quantity by direct derivation bas proved to be unsatisfactory. Bence, the value of � is approximated by averaging the distances along the normal line from the j th node to the intersections of the normal lines from the adjacent nodes.

The free boundary is set initially to be the discretized solution of the gravity/capillary two-phase equilibrium. This solution is detailed in Lasseux [START_REF] Lasseux | Caractérisation expérimentale, analytique et numérique d'un film dynamique lors du drainage d'un capillaire[END_REF] . Finally, the algorithm is summarized below as

1) The radius of curvature on S 1 is evaluated as described above.

2) Discretized boundary conditions are computed at each node.

3) Integrals in Equation (19) are calculated and the linear system is formed.

4) The linear system is then solved, providing v i on S 1 and (n.S) i on S 2 and S 3 • The system is solved by using a QR factorizing method. This method bas been chosen on the basis of stability criteria, knowing that the system matrix, which is folly populated and non symmetric, is more ill Boundary Elements in Fluid Dynamics conditioned as the discretization is refined. An alternative algorithm for solving this type of system can be found in Cai et al. [START_REF] Cai | A Partitioning Solution of Non Symmetrical Fully Populated Matrix System in the Boundary Element Method and its Subroutines[END_REF] . 5) The free boundary is updated according to Equations (23) (24) and (25). 6) The boundary S 1 is smoothed. Boundaries S 1 and S 2 are re-gridded, keeping the initial element size and vertical extent. Calculations continue until a significant volume of fluid is displaced. At each time step, precision is checked via the fluid volume balance, which is better than 1 % for all our simulations.

Results

Our simulations have been performed for two values of the Bond number (Bd = 0 and Bd = 1.03) and different values of the capillary number. As the total calculation time becomes prohibitive when the capillary number is small (see Equation (25)), our numerical experiments are performed for capillary numbers greater than 2.10-3 • In addition, our numerical experiments presented here are limited to the case of perfectly wetting liquid.

In Figure 2 are shown the right hand side shapes of the symmetrical free surface for various times and the two Bond numbers. This figure clearly shows the wetting film, of approximately constant thickness, on the immobile boundary S 2 . Furthermore, the important effect of the Bond number is unambiguously outlined as a much thicker filin is obtained when gravity forces are set equal to zero. This is confirmed on Figure 3 where our numerical results, in terms of film thickness, are represented as a fonction of the capillary number and the Bond number. These results suggest that a consistent power law relationship between the film thickness, e, (computed at z = (Zm 1 -z 1 )/2) and the capillary number Ca (calculated from the mean velocity V of the first node on S 1 during the overall computation) can be found. As shown in this figure, this kind of relationship is valid for capillary numbers smaller than 0.1. A power law fitted to these numerical results, in this range of capillary numbers, gives e/b = 0.71 Ca 2l3 Bd= 1.03 (26) e/b = 1.17 Ca 2l3 Bd = 0 (27) These results are compared with our theoretical and experimental ones in the following. lt should be noticed however that the last equation is in good agreement with the analytical result given by Park and Homsy 3 . In addition, for large values of the capillary number (Ca>0.1), our calculations indicate that the film thickness reaches an asymptotical value of 0.35. This value has also been obtained in several experimental, theoretical and numerical works in similar cases (Reinelt and Saffman 14 , Schwartz et aJ. [START_REF] Chatzis | On the investigation of gravity assisted inert gas injection using micromodels, long Berea cores and computer assisted tomography[END_REF] 5, and Lu 4 ).

THEORETICAL RESULTS

The theoretical approach we developed for an approximate analysis of the free boundary problem is summarized below (see Park and Homsy 3 for details). Our calculations are performed in a coordinate system fixed relative Boundary Elements in Fluid Dynamics to the lower point of the free surface moving downward at a constant velocity V . The free boundary, which is assumed to be symmetric with respect to e z , is divided into three regions: (1) the region far upstream from the meniscus, called the film developed region, in which capillary forces are small and where the film thickness is assumed to be stationary and equal to e 0 ; (2) the transition region where all the forces involved in the physical process are of the same order of magnitude, a priori; the film thickness is denoted e in this region; (3) the meniscus region, which is assumed to be identical to the meniscus at equilibrium under capillary and gravity forces in the same cavity (this requires that the capillary number is small).

In region ( 1) and ( 2), the lubrication approximation is retained. After the flow rate balance condition is fulfilled between these two regions, and assuming that Ca= µ V << 1 (28)

'Y one can write the approximate differential equation governing the free surface shape away from the meniscus in a dimensionless form as 

(32) (33) (B.C. 9) Xee ➔ 0 as E ➔ +oo (34) The boundary condition (B.C. 8) indicates that the liquid perfectly wets the solid, which is the restriction of our study.

While the flow pattern is complicated in the meniscus region (its description is beyond the scope of this paper), a satisfactory matching condition between the transition region and the meniscus region is given by the required continuity of the curvature (i.e. the capillary pressure) instead of the flow rate balance. In fact, when the liquid perfecHy wets the solid, this matching condition is equivalent to the continuity of the second derivative of X.

Hence, it is necessary to investigate the second derivative behavior of the profile in the transition region as the meniscus region is approached, knowing that e is expected to be large compared to e 0 when approaching the meniscus. This requires integrating Equation (29) to deterrnine the limit value of Xee as X tends to infinity. After returning to the dimensional form, we obtain (with the notation <l> = b -e) (37) e o -Bd Àz It can be shown (Lasseux 7) that this important result is valid for any Bond number. Equation (37) gives Equation (1) when Bd=O, and when Bd=l.03 we have e 0 / b = 0.81 Ca 2 / 3 (38) As can be from Equations ( 26), ( 27), ( 1) and (38), numerical results for the film thickness are in good agreement with these analytical predictions. This comparison confirms the consistency of a power law relationship between the dimensionless film thickness and the capillary number (Ca<0.1) and the important effect of the Bond number on the physical process.

Our own experimental results are now presented and compared to both of the above mentioned approaches.

COMP ARISON WITH EXPERIMENTAL RESULTS

Several drainage experiments of different silicone oils by air have been performed for capillary numbers ranging from 5. 10-5 to 2. 10-2 using a vertical Hele Shaw cell (Lasseux and Quintard [START_REF] Lasseux | Epaisseur d'un film dynamique derrière un ménisque récessif[END_REF] ). These experiments were such that: (i) the cell walls were perfectly wetted by the oils; (ii) the Bond number was constant equal to 1.03 for all the experiments; (iii) the temperature was constant, equal to 20 •c.

The Hele Shaw cell was f irst saturated with oil to the height Z o and then drained at a constant flow rate using a syringe pump until the meniscus reached the position z 1 ( 1 z 0 -Z 1 1 .. 150 b). This stage corresponds to the physical problem studied in this paper. In order to estimate the film thickness, the experiments were subsequently conducted as follows. The bulk drainage was stopped and fluids inside the cell were isolated. Then, the film remaining on the walls drained under gravity and produced a free surface rise until final equilibrium, for which the interface reached a position labelled Zr, AH the positions referred above are those of the lower point of the meniscus on the cell symmetry axis and were detected by photographs. The capillary number was evaluated using the mean velocity of the lower point of the interface, calculated from the positions of this point during the bulle drainage period.

Boundary Elements in Fluid Dynamics

From a volume balance equation, assuming that the film thickness, e, is constant during the bulk drainage, and neglecting the adsorbed film, it can be shown that Zt-Z1 e/ b = z z (39) 0 -1

In Figure 4 are reported our experimental dimensionless film thickness results versus the capillary number, together with the numerical and analytical predictions. The comparison shows a rather good agreement since the following power law e / b = (0.97±0.14) Ca (0.67±0.0 2) (40) bas been fitted on our experimental data.

CONCLUSION

A boundary element method bas been successfully developed to describe the Stokes free boundary value flow within two plane parallel plates (Hele Shaw cell). Our numerical code allows to determine the film thickness behind the receding interface during the constant flow rate drainage of a wetting liquid by a gas with a good accuracy. The numerical results are in good agreement with both extended analytical predictions of the film thickness for any value of the Bond number and with experimental data when the capillary number is smaller than 0.1. In this range of capillary number, the consistency of a power law relationship between the film thickness and the capillary number is unambiguously outlined. Furthermore, the important effect of the Bond number on the physical process is confirmed. For large capillary numbers (Ca>l) and any value of the Bond number, a limit film thickness is obtained. This limit value corresponds to that reported in the literature. --------------------1 ------------------ 
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  ), Ris the dimensionless radius of curvature at the point of S 1 located at position z; Bd and Cao are respectively the Bond number and the capillary number defined by Bd = p g b 2 /y (10) C a o = µ V c/Y (11) in which y is the interfacial tension. While the liquid phase flows, the free surface S i , of equation <l>(h,z,t) = 0, evolves following the classical kinematic condition D<l> r)<l> Dt =ai+ v.V<l> = 0 (12) From Equations (2) and (3), one forms the boundary integral equation of the problem (see DaCosta Sequeira 6 and Lasseux 7 for details) which can be written as an k = 1,2(13)for any points x and y on an. In this formula, (u 1 , u 2 ) and t are the fondamental solution of the elementary two-dimensional Stokes problem -V,[ (Voix -y) + 1 Vuix -y)) -t k (x -y)I] = o(x -y)e k k=l,2 (14) where o(x -y) is the Dirac distribution at point y .
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  e zz 1 = 1 <Pzz 1 = 1.338 Ca 213 / eo (35) Boundary Elements in Fluid Dynamics while approaching the meniscus region. In addition, from the study of the meniscus at equilibrium (h = <l>(z)), we get the following equation 1 <l>zz 1 = Bd '½/ b (36) at a point z=b Àz corresponding to the contact point, z = 0 corresponding to the flat interface level outside the plates. Matching 1 <l>zz I between Equations (35) and (36) yields / b -1.338 Ca 213
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 2 Position of the interface at t 1 =1.44, t 2 =4.48, t 3 =7 for Ca 0 =.I. The solid linc corresponds LO Bd=l.03, the discontinuous linc corresponds to Bd=0.
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  where fü represents the time step, and superscripts n and n+ 1 denote variables at time steps n and n+l respectively. Equations (23) and (24) are the approximate form of Equation(12) using an explicit Euler method. This approximation bas also been employed successfolly for updating the free boundary in Sugino and Tosaka 11 and Sato et a 1 .[START_REF] Sato | Numerical Analysis of the Behavior of a Cavitation Bubble near a Vibrating Rigid Wall by the Boundary Integral Method[END_REF] .In this work, the relations (23) and (24) have been used with the empirical stability condition which expresses the fact that the time step is inversely proportional to the normal stress on S 1 (see for example (B.C. 3) in Equation (6)).
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