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Input-Output Stability of a Reaction Diffusion Equation with
In-domain Disturbances

Suha Shreim1, Francesco Ferrante2 and Christophe Prieur1

Abstract— The input-output stability (IOS) of a reaction-
diffusion equation by means of a finite-dimensional linear time-
invariant control system is studied. The reaction-diffusion plant
admits a finite number of unstable poles and is open-loop
unstable. The infinite-dimensional plant is put in feedback
with a dynamic controller to achieve output stability via a
Dirichlet boundary measurement and regulated output. The
control design problem consists of deriving sufficient conditions
in the form of matrix inequalities which allows us to show that
the order of the finite-dimensional controller can be selected
large enough to achieve IOS even when the control design is
not optimal.

I. INTRODUCTION

To properly model and meet the performance require-
ment of numerous engineering systems, control scientists
have to use models given by partial differential equations
(PDEs). Those types of equations are examples of dis-
tributed parameter systems (DPS) in which the state-space
is infinite-dimensional. Infinite-dimensional systems emerge
to be of utmost relevance when describing physical systems
such as quantum systems, fluid mechanical systems, wave
propagation, diffusion phenomena. Practical applications in
all engineering domains are subjected to delays, reaction-
diffusion dynamics, thermodynamics, etc. Therefore, the
control theory of infinite-dimensional systems remains a
necessary area of research and its motivation has been well
established (see more in [3], [14], [5], [8], [7]).

One of the most important problems in control theory
is global stabilization by means of output-feedback control.
While the problem of the input-output stability (IOS) prop-
erty with respect to domain or boundary disturbances has
been widely investigated in the general context of finite-
dimensional linear time-invariant (LTI) control systems and
is considered classical, its extension to distributed parameter
systems is a challenge and is still an open problem. Recently,
one can find several works on the IOS property extension to
PDEs ([16], [4]) and output-feedback control extensions to
PDEs ([15], [2], [17], [19]).

From a practical point of view, there is an emphasized
interest in designing finite-dimensional feedback control
for infinite-dimensional DPS mainly because the controllers
must be implemented by online digital computers with finite
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memory-access time and finite wordlength. In past work,
finite-dimensional approximations of an infinite-dimensional
system was obtained to design the controllers on those so-
called reduced-order models ([1], [11], [9]). However, we
cannot theoretically guarantee the stability of the closed-loop
system consisting of the actual DPS and the reduced order
controller. In contrast, in this paper, the controller synthesis
is considered with respect to a closed-loop system consisting
of the infinite-dimensional system and the finite-dimensional
control system. In particular, we propose, for the first time,
an output feedback control design procedure to achieve the
input-output stability (IOS) of a reaction diffusion system by
means of a finite-dimensional, LTI control system.

The considered reaction-diffusion plant, which may be
unstable, is modeled by a Sturm-Liouville operator as classi-
cally introduced in the context of parabolic partial differential
equation (see [10]). We focus on a boundary control input
along with a Dirichlet boundary measurement and regulated
output since this configuration is interesting from a practical
engineering perspective. This renders our problem more chal-
lenging since they require to deal with unbounded control
operators. Furthermore, the disturbance is in-domain. The
proposed control design strategy is based on an appropriate
coupling of an output-feedback with finite-dimension LTI
control system and Lyapunov stability methods. It is im-
portant to note that when Dirichlet boundary conditions are
considered for the control input and to-be-regulated output
respectively, the solutions need to be sufficiently regular.
However, our conditions do not need further regularity
than the ones required by the existence results of classical
solutions. The main result of this article is presented as
matrix inequalities which constitute sufficient conditions for
the input-output stability of the reaction-diffusion plant with
respect to in-domain disturbances. We compute the control
gain matrices using the method of single-objective synthesis
and use numerical examples to assess the feasibility of the
sufficient conditions as a function of the order of the finite-
dimensional controller.

The paper is organized as follows. Section II introduces
necessary notations and properties. Section III introduces
the reaction-diffusion plant with Dirichlet measurement and
Dirichlet regulated output. The spectral reduction of the
given plant is then partitioned such that a finite-dimensional
system, beyond which the system is stable, is coupled with
the infinite-dimensional stable plant. Section IV presents the
general framework for the output-feedback control problem
by means of a finite-dimensional LTI control system. The
problem of input-output stability is explicitly stated. In



Section V, the Lyapunov stability analysis is studied to
derive sufficient conditions in the form of matrix inequalities.
Section VI proposes the single-objective method to compute
the control gain matrices and minimize the effect of the
IOS gain. In Section VII, we illustrate a numerical example
to verify our results and in Section VIII, we present a
brief summary to the contributions of this paper and future
perspective.

II. NOTATIONS AND PROPERTIES

The sets R≥0 and R>0 represent the set of nonnegative
and positive real scalars, respectively. The symbol Snp denotes
the set of real n × n symmetric positive definite matrices.
For a matrix A ∈ Rn×m, A⊤ denotes the transpose of A.
For a symmetric matrix A, positive definiteness (negative
definiteness) and positive semidefiniteness (negative semidef-
initeness) are denoted, respectively, by A > 0 (A < 0) and
A ≥ 0 (A ≤ 0). Also, λmin(A) (respectively λmax(A))
denotes its minimal (respectively maximal) eigenvalue. In
partitioned symmetric matrices, the symbol ∗ stands for
symmetric blocks. For a vector z ∈ Rn, ∥z∥ denotes its
Euclidean norm. For U ⊂ R, f : U ⊂ R −→ V , we denote
by ∥f∥L2 = (

∫
U
∥f(z)∥2 dz) 1

2 , the L2-norm of 1f and the
Fréchet derivative of f at z and is denoted by Df(z). Given
f : U ⊂ R −→ V , we say that f ∈ L2 if f is measurable
and ∥f∥L2 is finite. The symbol C2(U, V ) denotes the set
of functions f : U −→ V that are continuously differentiable
and their derivatives are continuously differentiable. For an
integer m ≥ 1, the Sobolev space of order m is denoted
by Hm(0, 1) and the m-order Soblev space is denoted by
∥·∥Hm .

Let p ∈ C1([0, 1]) and q ∈ C0([0, 1]) with p, q > 0. Let the
Strum-Liouville operator A : D(A) ⊂ L2(0, 1) −→ L2(0, 1)
be defined by

Af = −(pf ′)′ + qf

on the domain D(A) ⊂ L2(0, 1) given by D(A) =
{f ∈ H2(0, 1) : f ′(0) = f(1) = 0}. The eigenvalues
λn, n ≥ 1 of A are simple, non-negative, and form an
increasing sequence with λn −→ +∞ as n −→ +∞.
Moreover the associated unit eigenvectors ϕn ∈ L2(0, 1)
form an orthonormal basis and we also have D(A) =
{f ∈ H2(0, 1) :

∑
n≥1 |λn|2|⟨f, ϕn⟩|2 < +∞} and Af =∑

n≥1 λn⟨f, ϕn⟩ϕn. Let p∗, p
∗, q∗, q∗ ∈ R be such that

0 < p∗ ≤ p(x) ≤ p∗ and 0 < q∗ ≤ q(x) ≤ q∗ for all
x ∈ [0, 1], then it holds (see e.g [10]):

0 ≤ π2(n− 1)2p∗ + q∗ ≤ λn ≤ π2n2p∗ + q∗ (1)

for all n ≥ 1.
Finally, one can check that for all f ∈ D(A)

⟨Af, f⟩ =
∑
n≥1

λn⟨f, ϕn⟩2 =

∫ 1

0

p(x)f ′(x)2+q(x)f(x)2dx.

(2)
Moreover, for any f ∈ D(A), we have f(x) =∑

n≥1⟨f, ϕn⟩ϕn(x) and f ′(x) =
∑

n≥1⟨f, ϕn⟩ϕ′
n(x).

1In this paper, we only consider Lebesgue measurable functions.

III. PRELIMINARIES

We consider the one-dimensional reaction-diffusion sys-
tem with Dirichlet boundary measurement and regulated
output described for t > 0 and x ∈ (0, 1) by

zt(t, x) = (p(x)zx(t, x))x + (qc − q)z(t, x) +m(x)d(t)

zx(t, 0) = 0, z(t, 1) = u(t)

z(0, x) = z0(x)

y(t) = z(t, 0)
(3)

where p ∈ C1([0, 1]). Here qc ∈ R is a constant, u(t) ∈
R is the control input, y ∈ R is a boundary measurement
and the to-be-regulated output, z0 ∈ H2(0, 1) is the initial
condition, z(t, ·) ∈ H2(0, 1) is the state and d ∈ R is the
disturbance with m ∈ C0([0, 1]). The objective is to design a
finite-dimensional controller to achieve input-output stability
(IOS) with respect to the in-domain disturbance.

A. Spectral Reduction

Following [6], and as classically done in the context of
boundary control systems (see [3, Sec 3.3]), we transform
problem (3) into an in-domain controlled equivalent system.
To this end, we introduce the change of variable

w(t, x) := z(t, x)− x2u(t). (4)

For which we have
wt(t, x) = (p(x)wx(t, z))x + (qc − q)w(t, x))

+ a(x)u(t) + b(x)u̇(t) +m(x)d(t)

wx(t, 0) = 0, w(t, 1) = 0

y(t) = w(t, 0)

(5)

with a, b ∈ L2(0, 1) defined by a(x) = 2p(x) + 2xp′(x) +
(qc − q)x2, and b(x) = −x2. In addition, w0(x) =
z0(x)−x2u(0). Considering that v(t) = u̇(t) is an auxiliary
command input, we obtain

ẇ(t) = −Aw(t) + qcw(t) + au(t) + bv(t) +md(t)

u̇(t) = v(t)
(6)

with D(A) := {f ∈ H2(0, 1) : f ′(0) = f(1) = 0}. We in-
troduce the coefficients of projection wn = ⟨w(·), ϕn⟩, an =
⟨a, ϕn⟩, bn = ⟨b, ϕn⟩ and mn = ⟨m,ϕn⟩. We consider the
classical solutions associated with any z0 ∈ H2(0, 1) and
any u(0) ∈ R such that z′(0) = 0 and z0(1) = u(0)
(their existence for the upcoming closed-loop dynamics is
a direct consequence of [3, Chapter 10, Thm 10.1.4] with m
continuously differentiable and d ∈ C2(0, τ) for all τ > 0).
We have w(t) ∈ D(A) for all t ≥ 0 and for n ≥ 1

ẇn(t) = (−λn + qc)wn(t) + anu(t) + bnv(t) +mnd(t),

u̇(t) = v(t),

y(t) =
∑
i≥1

ϕi(0)wi(t).

(7)

Let N0 ≥ 1 and δ > 0 be given such that −λn+qc < −δ < 0
for all n ≥ N0 + 1. We now introduce an arbitrary integer
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Fig. 1. Closed-loop system.

N ≥ N0 which will be further constrained later. We design
an output feedback controller that will act on and modify the
first N modes of the plant. First, we introduce the following
vectors:

WN (t) := [w1(t) . . . wN (t)]⊤

Au := [a1 . . . aN ]⊤

B1 := [b1 . . . bN ]⊤

B2 := [m1 . . .mN ]⊤.

A0 :=


−λ1 + qc 0 · · · 0

0 −λ2 + qc
. . .

...
...

. . . . . . 0
0 · · · 0 −λN + qc


and, we focus on the following finite-dimension truncation
of (7) which will be later used in the stability analysis:

ẆN (t) = A0W
N (t) +Auu(t) +B1v(t) +B2d(t)

u̇(t) = v(t).
(8)

Our objective is to design a finite-dimensional linear
time invariant control system that renders the closed-loop
system (7) exponentially stable in the H1-norm while
achieving a quadratic performance specification on the
controlled system. This controller serves to achieve IOS
for the infinite-dimensional system (3) with respect to the
disturbance d. The general framework of such a controller
is given in the next section.

IV. GENERAL SET-UP FOR THE OUTPUT-FEEDBACK
CONTROL PROBLEM

In this section, we present the general framework of the
control problem using output measurement feedback. This is
presented in Fig. 1 which conveys the problem of a feedback
interconnection of a plant P given by (6) and controller K
with inputs d, u and regulated output y.

We suppose that plant (7) is controlled by the following
dynamic output feedback controller K given below:

K :

(
Ẋc

v

)
=

(
Ac Bc

Cc Dc

)(
Xc

ym

)
(9)

where Ac ∈ R(N+1)×(N+1), Bc ∈ R(N+1), Cc ∈ R1×(N+1)

and Dc ∈ R2 are to be designed, with N being the

dimension of WN . Let C := [ϕ1(0) . . . ϕN (0)]⊤, and ỹ :=∑
i≥N+1 ϕi(0)wi. Then, the closed-loop system dynamics

(P,K) can be formally written as follows:


ẆN (t)
u̇(t)

Ẋc(t)
ẇn(t)

 =


A0 +B1DcC Au B1Cc 0

DcC 0 Cc 0
BcC 0 Ac 0

bnDcC an bnCc −λn + qc



WN (t)
u(t)
Xc(t)
wn(t)

+


B1Dc

Dc

Bc

bnDc

 ỹ(t) +


B2

0
0
mn

 d(t) n ≥ N + 1

y(t) = CWN (t) + ỹ
(10)

From now on, we denote ζ :=
(
w, u,Xc

)
and for all ζ ∈

D(A)× R× RN+1:

∥ζ∥s :=
√
∥w∥2H1 + u2 +X⊤

c Xc. (11)

We will refer to this norm as the H1
s-norm.

We are now able to formally state the problem we solve
in this paper.

Problem 1. Given p ∈ C1([0, 1]), q ∈ C0([0, 1]) with p, q >

0 and qc ∈ R. Design the control parameters
(
Ac Bc

Cc Dc

)
such that the following properties hold for the closed-loop
system: (10):

• the origin of the closed-loop system is zero-input glob-
ally exponentially stable;

• for some (solution independent) ρ > 0 for each classical
solution pair (ζ, d) with ζ(0) = 0 to the closed-loop
system (10) the bound:

|y(t)| ≤ ρ

√∫ t

0

d(θ)
2dθ ∀t ≥ 0 (12)

holds for all t ∈ domz.

Inequality (12) corresponds to an input-output stability
(IOS) bound for the closed-loop system (3) with (9). The
main contribution of this paper is to design an optimal
controller K in order to minimize the effect of the gain ρ. In
Section V, we provide an explicit estimate of the IOS gain
ρ.

V. MAIN RESULTS

In this section we provide sufficient for the solution to
Problem 1. First, we propose sufficient conditions for H1

s

stability and then construct a Lyapunov functional to derive
the sufficient conditions in the form of quadratic inequalities.

A. Sufficient conditions

The following section presents sufficient conditions for
the solution to Problem 1. The result relies on a dissipation
inequality. This is done by proving the following proposition:

Proposition 2. Assume there exist a Fréchet differen-
tiable functional V : H1(0, 1) × R × RN+1 −→ R≥0 and



c1, c2, c3, χ ∈ R>0 such that for each d ∈ R and ζ ∈
D(A)× R× RN+1

c1 ∥ζ∥2s ≤ V (ζ) ≤ c2 ∥ζ∥2s , (13)

DV (ζ)ζ̇ ≤ −c3V (ζ) + χ2d2. (14)

Then, the origin of the closed-loop system (10) is zero-input
globally exponentially stable and (12) holds with

ρ =
χ

√
c1

(15)

Proof. First we consider a classical solution pair (ζ(t), d(t)),
i.e, ζ ∈ H1(0, 1) × R × RN+1 and d ∈ R for all t ∈ domζ
where domζ is an interval of R≥0 including zero. Now,
consider the following function:

W : domζ −→ R
t 7→ (V ◦ ζ)(t) (16)

Then, since V : H1(0, 1) × R × RN+1 −→ R≥0 is Fréchet
differentiable everywhere and w : domζ −→ H1(0, 1) × R ×
RN+1 is differentiable everywhere, it follows that for all
t ≥ 0:

Ẇ(t) = DV (ζ)ζ̇(t).

Thus we have for all t ∈ domζ

Ẇ(t) = DV (ζ)


−Aw(t, ·) + qcw(t, ·) + au(t)

+bv(t) +md(t)
v(t)

AcXc(t) +Bcy(t)


Using (14), one gets, for all t ∈ domζ,

Ẇ(t) ≤ −c3W(t) + χ2d(t)
2
.

Therefore, since W is continuous on domζ, from comparison
lemma, we have:

W(t) ≤ e−c3tW(0)+χ2

∫ t

0

e−c3(t−θ)d(θ)
2
dθ, ∀t ∈ dom ζ.

This bound, thanks to (13), ensures that the origin of the
closed-loop system is globally exponentially stable with
respect to the norm defined in (11) when d = 0. At this
stage, notice that for all t ∈ domζ, one has:∫ t

0

e−c3(t−θ)d(θ)
2
dθ ≤

∫ t

0

d(θ)2dθ

which allows one to conclude that for all t ∈ domζ

W(t) ≤ e−c3tW(0) + χ2

∫ t

0

d(θ)2dθ.

Finally by using (13), it follows that for all t ∈ domζ

∥ζ(t)∥s ≤ e−
c3
2 t

√
c2
c1

∥ζ(0)∥s +
χ

√
c1

√∫ t

0

d(θ)2dθ. (17)

Assume that ζ(0) = 0, then we have

∥ζ(t)∥2s ≤ χ2

c1

∫ t

0

d(t)
2
dt. (18)

Since y(t) = w(t, 0), and we know that since w(t, 1) = 0,
we have

y(t)2 =

(∫ 1

0

wx(t, s)ds

)2

≤
∫ 1

0

w2
x(t, s)ds ≤ ∥w(t)∥2H1

(19)

Then, since
∥w(t)∥2H1 ≤ ∥ζ∥2s

using (19) and (18), we get

y(t)
2 ≤ χ2

c1

∫ t

0

d(t)
2
dt. (20)

This concludes the proof.

Remark 3. Inequality (17) in the proof corresponds to a
classical input-to-state stability (ISS) bound for the closed-
loop system (10) with respect to the disturbance d. The ISS
asymptotic gain is equal to the IOS gain ρ = χ√

c1
given in

(15) to-be-minimized [13].

B. Construction of the functional V

Proposition 2 provides sufficient conditions for input-
output stability (IOS) for the closed-loop system in the form
of functional inequality. In this section we provide a specific
structure for the functional V in Proposition 2, which allows
one to cast the solution of Problem 1 in the solution to some
matrix inequalities.

We define the following matrices which will be necessary
for the proof of the next theorem.

A1 :=

A0 +B1DcC Au B1Cc

DcC 0 Cc

BcC 0 Ac

 ,

B11 :=

B1Dc

Dc

Bc

 , B12 :=

B2

0
0

 ,

A2 :=

4D2
cC

⊤C 0 0

∗ α ∥a∥2L2 0

∗ ∗ 2α ∥b∥2L2 C⊤
c Cc

 .

(21)

We also define the constant Mϕ =
∑

n≥N+1
ϕn(0)

2

λn
which is

finite when p ∈ C2([0, 1]) since ϕn(0) = O(1) as n −→ +∞
(see [10]) and (1) holds.

Theorem 4. Assume that p ∈ C2([0, 1]). Suppose there exist
P ∈ S2N+2

p , Ac ∈ RN×N , Bc ∈ RN , Cc ∈ R1×N , Dc ∈ R
and α, β, χ, γ ∈ R>0 such that:

Θ =

A3 PB12 PB11

∗ α ∥m∥2L2 − χ2 0

∗ ∗ 2α ∥b∥2L2 D2
c − β

 ≤ 0

(22)
where A3 := A⊤

1 P + PA1 +A2 + 2ηP .
Select N sufficiently large such that for all n ≥ N + 1

Γn := λn

(
−λn + qc + η +

3

α
+

β

2γ
Mϕ

)
≤ 0. (23)



Then, the parameters Ac, Bc, Cc, Dc solve Problem 1. In
particular (12) holds with:

ρ = χ√
min{λmin(P ),γp∗,γq∗} . (24)

Proof. Let P ∈ S2N+2
p , γ > 0, and X1 := (WN , u,Xc).

Consider the following Fréchet differentiable Lyapunov func-
tional:

V : D(A)× R× RN+1 −→ R w
u
Xc

 7→ X⊤
1 PX1 + γ

∑
n≥N+1

λn⟨w, ϕn⟩2.
(25)

The first term corresponds to the dynamics of the truncated
model (8) and the control model (9) while the second term,
which is related to the H1-norm of the PDE trajectories as
depicted in 24, is used to handle the modes wn for n ≥
N + 1. We have c1 := min{λmin(P ), γp∗, γq∗} and c2 :=
max{λmax(P ), γp∗, γq∗} are strictly positive. Consider the
first term of the functional V :

V1(X1) := X1
⊤PX1 (26)

and the closed-loop system (10). Then,

DV1(X1)Ẋ1 =X⊤
1 (A⊤

1 P + PA1)X1

+ ỹ⊤B⊤
11PX1 + d⊤B⊤

21PX1

+X⊤
1 PB11ỹ +X⊤

1 PB12d.

(27)

We obtain the computation of the time derivative of V1 along
the solution pair to (7) and (8):

DV1(X1)Ẋ1 =

X1

d
ỹ

⊤

Ω1

X1

d
ỹ

 (28)

where the matrix Ω1 is given by:

Ω1 =

A⊤
1 P + PA1 PB12 PB11

∗ 0 0
∗ ∗ 0

 .

Now, consider V2(w) := γ
∑

n≥N+1 λn⟨w, ϕn⟩ with γ >
0. The time derivative of V2 along the solution pair to (7),
(8) yields:

DV2(w)ẇ = 2γ
∑

n≥N+1

λn((−λn + qc)w
2
n + anuwn

+ bnvwn +mndwn).

(29)

Thus, knowing that V = V1+V2, we conclude the following
expression:

DV (X1, w)

(
Ẋ1

ẇ

)
+ 2ηV =

X1

d
ỹ

⊤

Ω2

X1

d
ỹ


+ 2γ

∑
n≥N+1

λn[(−λn + qc + η)w2
n + anuwn

+ bnvwn +mndwn]

(30)

and Ω2 = Ω1 +

2ηP 0 0
∗ 0 0
∗ ∗ 0

. Using Young’s inequality,

we have:

2
∑

n≥N+1

λnanwnu ≤ 1

α

∑
n≥N+1

λ2
nw

2
n + α||a||2L2u2

2
∑

n≥N+1

λnbnwnv ≤ 1

α

∑
n≥N+1

λ2
nw

2
n + α||b||2L2v2

2
∑

n≥N+1

λnmnwnd ≤ 1

α

∑
n≥N+1

λ2
nw

2
n + α||m||2L2d2

for any α > 0.Recall that v = CcXc +Dc(CWN + ỹ). We
have the following inequality:

v2 ≤ 2(XcC
⊤
c CcXc) + 2D2

c (CWN + ỹ)2

≤ 2(XcC
⊤
c CcXc) + 4D2

c (CWN⊤
C⊤CWN )

+ 4D2
c ỹ

2

(31)

Hence, using (31), (30) is bounded by:

DV (X1, w)

(
Ẋ1

ẇ

)
+ 2ηV ≤

X1

d
ỹ

⊤

Ω3

X1

d
ỹ


+ 2γ

∑
n≥N+1

λn(−λn + qc + η +
3

α
)w2

n

(32)

and Ω3 is given by:

Ω3 =

A⊤
1 P + PA1 +A2 PB12 PB11

∗ α ∥m∥2L2 0

∗ ∗ 4α ∥b∥2L2 D2
c


where

A2 =

4D2
cC

⊤C 0 0

∗ α ∥a∥2L2 0

∗ ∗ 2α ∥b∥2L2 C⊤
c Cc

 .

Knowing that

ỹ2 =

 ∑
i≥N+1

ϕi(0)wi

2

and Mϕ =
∑

i≥N+1
ϕi(0)

2

λi
is finite and

∑
i≥N+1 λiw

2
i is

finite due to (2), we use Cauchy-Schwarz inequality to obtain
the following

ỹ2 ≤
∑

i≥N+1

ϕi(0)
2

λi

∑
i≥N+1

λiw
2
i

Hence, for any β > 0,

βMϕ

∑
i≥N+1

λiw
2
i − βỹ2 ≥ 0 (33)



Combining (32) and (33), we obtain

DV (X1, w)

(
Ẋ1

ẇ

)
+ 2ηV ≤

X1

d
ỹ

⊤

Ω4

X1

d
ỹ


+ 2γ

∑
n≥N+1

λn

(
−λn + qc + η +

3

α
+

β

2γ
Mϕ

)
w2

n

(34)

where Ω4 is given by:

Ω4 =

A⊤
1 P + PA1 +A2 PB12 PB11

∗ α ∥m∥2L2 0

∗ ∗ 2α ∥b∥2L2 D2
c − β


and A2 is given in (21).

The latter implies that, for all d ∈ R, (w, u,Xc) ∈ D(A)×
R× RN+1, we have

DV (X1, w)

(
Ẋ1

ẇ

)
− χ2d⊤d ≤ −2ηV (X1, w)

+

X1

d
ỹ

⊤

Θ

X1

d
ỹ

+ 2γ
∑

n≥N+1

Γnw
2
n

(35)

where Θ = Ω4 −

0 0 0
∗ χ2I 0
∗ ∗ 0

. At this stage, notice that

(22), (23) state that Θ ≤ 0 and Γn ≤ 0 for sufficiently large
N ; therefore, (35) implies that

DV (X1, w)

(
Ẋ1

ẇ

)
≤ −2ηV (X1, w) + χ2d⊤d

The previous equation reads as (14) and the proof is com-
plete.

Notice that the sufficient condition (22) is a nonlinear
matrix inequality in the decision variables P,Ac, Bc, Cc,
and Dc. Therefore (22) is hard to exploit from a numerical
standpoint for the design of the controller. To overcome this
drawback, next we provide sufficient conditions in the form
of linear matrix inequalities. To achieve this, we adapt the
approach introduced in [12] for the design of dynamical
output feedback controllers. This is the objective of the
upcoming section.

VI. CONTROL SYNTHESIS

To simply our approach, we enforce Dc = 0. This is not
restrictive and leads to strictly proper controllers that can be
more appealing in practice.

Let X,Y ∈ SN+1
p and U, V ∈ R(N+1)×(N+1) be non-

singular matrices such that Y X + V U⊤ = I . Let Y =(
Y I
V ⊤ 0

)
and P =

(
X U
U⊤ •

)
where “•” denotes “don’t

care” symmetric positive definite matrix. Under the consid-
ered assumptions Y is nonsingular and a simple congruence
transformation shows that

Θ ≤ 0 ⇐⇒ Σ ≤ 0

with

Σ :=

Y⊤A3Y Y⊤PB12 Y⊤PB11

α ∥m∥2L2 − χ2 0
∗ ∗ −β


We define the following matrices:

Â :=

(
A0 Au

0 0

)
, B̂1 :=

(
B1

1

)
,

B̂2 :=

(
B2

0

)
, Ĉ := (C, 0).

At this stage, as in [12], we consider the following invertible
change of variables:(

K L
M 0

)
=

(
XÂY 0
0 0

)
+

(
U XB̂1

0 I

)(
Ac Bc

Cc 0

)(
V ⊤ 0

ĈY I

) (36)

This transforms the old variables (P,Ac, Bc, Cc) into the
new variables ν = (X,Y,K,L,M). Using the change of
variable (36), applying the Schur compliment lemma [18]
and by following [12], one can show that Σ ≤ 0 is equivalent
to the following linear matrix inequalities:

X(ν) > 0 (37)

and
A(ν)⊤ +A(ν) B1(ν) B2(ν)

⊤ C(ν)

∗ α ∥m∥2L2 − χ2 0 0
∗ ∗ −β 0
∗ ∗ ∗ −S−1

 ≤ 0

(38)
where

X(ν) =

(
Y I
I X

)
,

A(ν) =

(
ÂY + B̂1M Â

K XÂ+ LĈ

)
,

B1(ν) =

(
0
L

)
, B2(ν) =

(
B̂2

XB̂2

)
,

C(ν) =

Y
(
0
I

)
V C⊤

c(
0
I

)
0

 , S =

(
α ∥a∥2L2 0

∗ 2α ∥b∥2L2

)
.

If conditions (37), (38) are feasible for certain K,L,M , one
can use equation (36) to deduce the values of Ac, Bc, Cc that
satisfy condition (22).

In the formulation of Problem 1, no specific requirements
on the scalar ρ are considered. On the other hand, it is
obvious that to minimize the effect of the disturbance d
on the closed-loop system, the control parameters should be
designed so that (12) holds with a minimal ρ. This goal can
be achieved by choosing γ = β, χ = 3 and considering the
following optimization problem

sup
P,c

c

s.t: (37), (38) hold P ∈ S2N+2
p , P − cI > 0.

(39)



The optimization problem (39) is equivalent to finding a
maximal c such that

Y⊤(P − cI)Y > 0

We apply the Schur compliment lemma [18] on the latter
nonlinear inequality to obtain the equivalent condition: 1

c I Y V
∗ Y I
∗ ∗ X

 > 0 (40)

which is linear in µ = 1
c . Problem (39) can now be seen as

designing minimal µ such that (40) holds.

A. Control Design Algorithm

We present the following algorithm to design the dynamic
output feedback controller given in (9).
Input: Specify the values of the system parameters p(x),
q(x) and qc.
Step 1: Calculate the value of N0, the minimum value of n
for which −λn + qc < 0.
Step 2: Calculate the value of N ≥ N0, the minimum value
of n for which (23) holds. This N exists due to the fact
that λn is positive definite and increasing. This will be the
dimension of the dynamic controller.
Step3: Use a numerical solver to find a feasible solution
X,Y,K,L,M,N, c under which (37), (38), (39) hold.
Step4: Derive the control parameters Ac, Bc, Cc, Dc using
(36).
Output: The designed control parameters are given by
Ac, Bc, Cc, Dc and ρ given by (24) is computed.
In the next section, we use a numerical example to showcase
our method.

VII. NUMERICAL ANALYSIS

In this section, we use the YALMIP package in MATLAB
to solve linear matrix inequalities. We illustrate the result
of this paper using a modal approximation that captures the
50 dominant modes of the reaction-diffusion plant with an
in-domain disturbance given by:

d(t) = 0.1 sin(2t)

We set p = 1, q = 1, m = 1, and qc = 4 for which the
open-loop plant is unstable. We select δ = 0, and we obtain
that N0 = 1 and N = 2, which is the minimum n for which
(23) holds. We choose the dimension of WN to be N = 3.
The following control matrices renders (37), (38) and (39)
feasible.

Ac =


−15.24 11.9 −6.47 14.62
−4.84 −24.87 −25.51 −2.25
145.35 −73.53 −126.97 −49.13
−36.28 −3.48 −5.86 −14.43



Bc =


5.46
0.32

−29.98
0.66


Cc =

(
6.91 −0.45 −0.57 8.8

)
Dc = 0

(41)
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Fig. 3. Time and-evolution of the output y(t)

We solve inequality (22) for the designed control parameters
{Ac, Bc, Cc, Dc} and notice that we do in fact have a fea-
sible solution. The initial condition of the reaction-diffusion
system described by (3) is z0(x) = 1 + x2. We simulate
the closed-loop system (10) for the first 50 modes. Thus, we
can deduce the time-evolution of the state z(x, t) in closed-
loop system and it is depicted in Fig. 2 which showcases a
convergence to a neighborhood of the origin as predicted in
Theorem 4 and one can observe the effect of the disturbance
at steady state. Finally, Fig. 3 demonstrates the decay in the
output y(t) verifying the dissipation inequality in Proposition
2 with ρ = 1.8.

VIII. CONCLUSION

The design of a finite-dimensional linear time-invariant
(LTI) control system is proposed in order to achieve the
input-output stability (IOS) of a reaction-diffusion equation
with a Dirichlet regulated output and in-domain disturbance.
Sufficient conditions in the form of matrix inequalities are
derived to solve the control design problem. Control Syn-
thesis method proposed by [12] is applied to the nonlinear



matrix inequality to derive a suitable LMI. A control design
algorithm is proposed to provide a solution to the sufficient
conditions. Finally, a numerical example is presented to
showcase the effectiveness and validity of our method. For
future work, we propose to extend the study to robust
stability analysis using the sub-optimal small-gain theorem.
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