
HAL Id: hal-03827702
https://hal.science/hal-03827702v1

Submitted on 25 Oct 2022 (v1), last revised 20 Apr 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specifying and Verifying Higher-order Rust Iterators
Xavier Denis, Jacques-Henri Jourdan

To cite this version:
Xavier Denis, Jacques-Henri Jourdan. Specifying and Verifying Higher-order Rust Iterators. Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), ETAPS, Apr 2023, Paris,
France. pp.93-110, �10.1007/978-3-031-30820-8_9�. �hal-03827702v1�

https://hal.science/hal-03827702v1
https://hal.archives-ouvertes.fr

Specifying and Verifying Higher-order Rust
Iterators

Xavier Denis[0000−0003−2530−8418] and Jacques-Henri
Jourdan[0000−0002−9781−7097]

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles,
91190, Gif-sur-Yvette, France

Abstract. In Rust, programs are often written using iterators, but these
pose problems for verification: they are non-deterministic, infinite, and
often higher-order, effectful and built using combinators. We present a
general framework for specifying and reasoning with Rust iterators in
first-order logic. Our approach is capable of addressing the challenges
set out above, which we demonstrate by verifying real Rust iterators,
including a higher-order, effectful Map. Using the Creusot verification
platform, we evaluate our framework on clients of iterators, showing it
leads to efficient verification of complex functional properties.

Keywords: Rust · Deductive verification · Iterators · Closures

1 Introduction

The Rust language aims to empower systems software programmers by offering
them safe and powerful linguistic abstractions to solve their problems. The most
notorious of these abstractions, Rust’s borrowing mechanism, enables safe usage
of pointers without a garbage collector or performance penalty. A close second is
perhaps Rust’s iterator system, through which Rust provides composable mech-
anisms to express the traversal and modification of collections. Iterators also
underlie Rust’s for loop syntax, and are thus the primary manner Rust devel-
opers write loops or interact with data structures. It is therefore essential for a
verification tool for Rust to provide good support for iterators.

Rust iterators generate sequences of values. Most importantly, they are
objects providing a method fn next(&mut self) -> Option<Self::Item>. This
method takes a mutable reference (&mut self) to the iterator, allowing it to
change its internal state, and optionally returns a value of type Self::Item, the
type of the values generated by the iterator. If, instead of returning such a value,
the iterator returns None, it means iteration has finished for now, though it
may resume again later. Rust’s for loops are just syntactic sugar for repeatedly
calling next at the beginning of each iteration, until such a call returns None.
For example, the following two pieces of code present a Rust loop for iterating
over integers between 0 (included) and n (excluded), using a range iterator:

2 Xavier Denis and Jacques-Henri Jourdan

for i in 0..n { <body> }

let mut iter = 0..n;
loop { match iter.next() {

None => break,
Some(i) => <body>

} }

The piece of code on the left-hand side uses an idiomatic for loop, while the
other shows its desugared version.

Iterators present unique challenges for verification tools: indeed, because the
use of iterators is pervasive in Rust, it is necessary to allow verification of code
using iterators with as little interaction as possible. In particular, most common
patterns such as iterating over integers in a given range or reading the elements
of a vector should not need any annotation other than the loop invariants the
user would write if not using iterators. On the other hand, Rust’s iterator library
is complex, with many features representing as many challenges for verification:
iterators can be built from various data structures and modified through iterator
combinators, which make it possible to create iterators from simpler ones, by,
e.g., skipping the first few elements or applying a given function to each of the
elements.

Consider the example below:

1 let mut cnt = 0;
2 let w = vec![1,2,3].iter().map(|x|{cnt += 1; x + 1}).collect();
3 assert_eq!(w, vec![2,3,4]); assert_eq!(cnt, 3);

On line 2, quite a lot happens at once. First, we produce an iterator over the
elements of the vector vec![1,2,3] with the syntax .iter(), which we transform
through a call to map. The method map is an iterator combinator : it returns a
new iterator that calls the given closure on each of the elements generated by the
underlying iterator, and forwards the value returned by the closure. Interestingly,
the closure we pass to map captures mutable state: it modifies the variable cnt.
Finally, the method collect gathers the elements generated into a new vector w.

We aim at requiring only lightweight annotations for verifying this kind of
code: the appeal of iterator chains like on line 2 are the ergonomics, they are com-
pact and highly-readable. For verification of iterator-based code to be successful,
it must preserve this ergonomics. However, despite its apparent simplicity, this
piece of code is challenging to verify: it combines higher-order functions and mu-
table state, uses potentially overflowing integers, and assertions on line 3 check
full functional behavior.

More generally, to support iterators, a verification tool for Rust needs to pro-
vide a specification scheme that both provides good ergonomics and overcomes
the following technical challenges:

– Strong Automation: for verification to be used, it must require little to no
user interaction and lead to good verification performance.

– Interruptibility : iterators can produce infinite sequences of values and can
be interrupted before completion, thus specification and verification must
happen as the iterator is used, and not at completion.

Specifying and Verifying Higher-order Rust Iterators 3

– Non-Determinism: iterators can feature both specification or implementa-
tion non-determinism, so the sequence of known values might not be known
in advance to the verifier. For example, the order of elements generated by
an iterator over a hash table may be left unspecified for a client.

– Compositionality : iterators can be consumed by combinators, so their spec-
ifications need to follow a general pattern which make them composable.
For example, the specification of a combinator such as skip(n), which skips
the first n elements of a given iterator, should accept the specification of
any iterator, and provide a sound and useful specification for the combined
iterator.

– Higher-Order & Effects: some iterator combinators, such as map, are higher-
order, they take a closure as parameter. To verify programs using these
combinators, a verification tool should overcome the challenges of higher-
order functions, which potentially capture mutable state.

1.1 Contributions

In order to reach this goal, we propose a new specification scheme for iterators
in Rust. Our contributions can be summarized as follows:

– In Section 2, we provide a general specification scheme for Rust iterators
in first-order logic. It supports possibly non-deterministic, infinite and in-
terruptible iterators. It is inspired by Filliâtre and Pereira’s specification of
iterators in Why3 [4], but it is adapted to our style of specification using a
prophetic mutable value semantics [12] for Rust. This style of specification
is particularly well suited to handle mutable values (of which iterators are
an instance), by leveraging the non-aliasing guarantees provided by Rust’s
type system.

– In Section 3.1, we show that this scheme can be trivially instantiated for
basic iterators such as range of integers.

– In Section 3.2, we show how this scheme can be instantiated to give full
functional specification to mutating iterators. These iterators allow to mutate
the content of a data structure by iterating over mutable references pointing
to the content of the data structure.

– In Section 3.3, we show that our specification scheme is composable, so that it
can be used to specify iterator combinators transforming arbitrary iterators
into more complex ones. We give two examples: take, which truncates an
iterator to at most a given number of elements, and skip, which skips a
given number of elements at the beginning of iteration.

– To support higher-order iterator combinators, we provide a specification
mechanism for closures in Section 4. This mechanism distinguishes the three
kinds of closures of Rust (Fn, FnMut and FnOnce), and allows specifying the
side effects a closure may have on its environment by making explicit the
effect of a call on the state of the closure. It allows reducing the verification
conditions for closures to first-order logic, enabling usage of off-the-shelf au-
tomation.

4 Xavier Denis and Jacques-Henri Jourdan

– In Section 5, we explain how we can combine the techniques presented in
previous sections to specify higher-order iterator combinators, by taking map
as an example. This provides a way to verify the functional correctness of
programs using higher-order iterators, while requiring lightweight annota-
tions.

– We provide a freely available1 implementation of our proposal in
Creusot [3]. This tool is a state-of-the-art verification platform for safe
Rust code, allowing users to verify programs by adding contracts to their
functions. This implementation extends Creusot’s handling of for loops to
benefit from structural invariants provided by the specification of iterators.
We evaluate it in Section 6 on several benchmarks.

2 Reasoning on Iteration

In this section, we present the general mechanism we use to specify iterators
(Section 2.2), and how this kind of specifications are used in a for loop (Sec-
tion 2.3). Before going in depth into these definitions, we give an introduction
to the style of specification we use in this paper.

2.1 Specifications in Rust Programs

One important aspect of specifications of programs written in an imperative
programming language such as Rust is their memory model, that is the way
they handle pointers and mutations performed through them. Following previ-
ous work [6, 7, 3], we choose to leverage non-aliasing guarantees of Rust’s type
system. Because of the non-aliasing guarantees, a given memory location can be
mutated through at most one reference at a given point in time, excluding all
“spooky actions at a distance” that are customary with pointer aliasing. There-
fore, it is possible to give a mutable value semantics [12] to Rust programs,
meaning that, even though Rust programs can perform mutation of memory,
they can be reasoned about in a purely applicative manner. As a result, the
Rust type Box<T> of heap-allocated pointers, and the Rust type &T of read-only
references are simply modeled by wrappers over values of type T in our specifica-
tions. As shown in previous work [3, 6, 7], this interpretation of Rust programs
is key to verifying complex Rust programs, because it avoids the use of any kind
of separation logic or dynamic frames, which are challenging to automate.

The handling of mutable references &mut T requires caution. Such references
represent the temporary borrow of ownership of a memory location, so that
mutations through such a reference will be observed by the initial owner once
the borrow ends. To correctly model the propagation of mutations from the
mutable reference to the borrowed variable, this style of specification models a
mutable reference r: &mut T as a pair of a current value *r of type T (representing
the current value pointed to by the reference) and of a prophecy ^r, representing
the value the reference will point to when the borrow ends.
1 https://github.com/xldenis/creusot/

https://github.com/xldenis/creusot/

Specifying and Verifying Higher-order Rust Iterators 5

This prophetic interpretation makes it possible to give precise specifications
to functions that manipulate mutable references. For example, the function push
adding a new element at the end of a vector in place can be specified as follows:

#[ensures(@^self == (@*self).concat(Seq::singleton(v)))]
fn push(&mut self, v: T);

Here, we use the operator @ to refer to the model of a vector, i.e., the mathemat-
ical sequence of its elements. The postcondition thus ensures that the content of
the final vector pointed to by self, denoted by ^self, is modeled by the sequence
of elements of the initial vector *self, concatenated with the new element v.

We sometimes use purely mathematical functions and predicates, annotated
with the #[logic] and #[predicate] attributes.

We use Rust traits to give composable specifications to iterators. They are
analogous to Haskell’s typeclasses, enabling ad-hoc polymorphism. For example,
an order relation can be specified as a trait containing both a mathematical order
relation with its laws (reflexivity, antisymmetry and transitivity), and a program
function specified as returning the value prescribed by the logical predicate.

To aid in specification and verification of code, we use ghost code, code which
exists only during verification and has no influence on runtime behavior.

2.2 Specifying Iterators

In Rust, the mechanism of iterators is captured by a trait named Iterator, whose
simplified definition can be given as:

trait Iterator { type Item; fn next(&mut self) -> Option<Self::Item>; }

This trait describes the interface an iterator should implement: an iterator
should give a type Item of generated elements, and should implement a method
next which optionally returns the next generated element, and possibly mu-
tates in place the internal state of the iterator through the mutable reference
&mut self.

As can be seen in Figure 1, we extend2 the iterator trait with the purely
logical predicates produces and completed. We require that any implementation
of this trait satisfies the laws produces_refl and produces_trans: such laws are
lemmas stated as specifications of purely logical functions (i.e., the preconditions
should imply the postconditions). The next method is then specified thanks to
the two predicates. Any implementation of the Iterator trait needs to give a
logical definition of produces and completed predicates, prove the laws, give a
program definition for next and finally prove that it satisfies its specification.

Iterators are specified as state machines: a value of an iterator type is seen
as a state, the predicate produces defines the transition relation (noted a

s
⇝ b),

2 In our implementation, to keep better compatibility with existing Rust code, we
choose to define the iterator specification as a sub-trait of the Iterator trait from
Rust’s standard library, and to give the specification of next using Creusot’s
extern_spec! mechanism. For simplicity, we present it here as a unique trait: the
main idea of the specification is the same.

6 Xavier Denis and Jacques-Henri Jourdan

1 trait Iterator {
2 type Item;
3 #[predicate] fn completed(&mut self) -> bool;
4 #[predicate] fn produces(self, visited: Seq<Self::Item>, _: Self)
5 -> bool;
6 #[law] // I.e., ∀ a, a ε

⇝ a
7 #[ensures(a.produces(Seq::EMPTY, a))]
8 fn produces_refl(a: Self);
9

10 #[law] // I.e., ∀ a b c, a
v
⇝ b ∧ b

w
⇝ c ⇒ a

v·w
⇝ c

11 #[requires(a.produces(ab, b) && b.produces(bc, c))]
12 #[ensures(a.produces(ab.concat(bc), c))]
13 fn produces_trans(a: Self, ab: Seq<Self::Item>,
14 b: Self, bc: Seq<Self::Item>, c: Self);
15
16 #[ensures(match result {
17 None => self.completed(),
18 Some(v) => (*self).produces(Seq::singleton(v), ^self)})]
19 fn next(&mut self) -> Option<Self::Item>;
20 }

Fig. 1. Iterator trait extended with specification.

and the predicate completed (noted completed(r)) give the set of final states.
The completed predicate takes a mutable reference &mut self, which allows us
to specify mutations that happen when an iterator returns None. This added ex-
pressivity in the specification allows us to express properties of unfused iterators
which may intermittently produce None during iteration. The produces transi-
tion relation is annotated with sequences of generated values rather than with
unique values so that a user can reason about interesting properties of sequences
as a whole rather than directly reasoning about the notion of transitive closure,
which the automated solvers don’t handle well. The price to pay is the laws of
reflexivity and transitivity which the implementers have to prove.

2.3 Structural Invariant of for Loops

Part of the appeal of for loops is the structure they provide over the looping
process. When a programmer sees a for, they can conclude that the body will be
executed once for each element in the iterator. Unlike with while loops, it is not
possible to decrement the loop index or otherwise perform unpredictable looping
patterns. This informal reasoning can be formalized as a loop invariant, provided
structurally by the for loop itself. The iterator at the i-th iteration is the result
of calling next exactly i times on some initial state. In our formalism, given an
initial iterator state initial and a current iterator state iter, we can state this
invariant as ∃ p, initial p

⇝ iter. This invariant holds for any for loop over
any iterator: it can be derived from the laws produces_refl and produces_trans.

Specifying and Verifying Higher-order Rust Iterators 7

When using our extension to Creusot, every for loop benefits from this
structural invariant: we change the way these loops are desugared into the more
primitive loop construct, by adding ghost variables init_iter and produced and
the new structural invariant init_iter.produces(produced, iter). More pre-
cisely, a simple for loop for x in iter {<body>} is desugared into:

let init_iter = ghost! { iter };
let mut produced = ghost! { Seq::EMPTY };
#[invariant(structural, init_iter.produces(produced, iter))]
loop { match iter.next() {

None => break,
Some(x) => {

produced = ghost! { produced.concat(Seq::singleton(x)) };
<body> },

} }

Interestingly, the ghost variable produced can be referred to in a user invariant
to relate the state of the loop with the iteration state. In the piece of code in
Figure 2, we use a variable count to count the number of elements generated by
an iterator, and use such an invariant to verify its intended meaning.

let mut count = 0;
#[invariant(count_is_n, @count == produced.len())]
for i in 0..n { count += 1; assert!(0 <= i && i < n); }
assert!(n < 0 || count == n);

Fig. 2. A simple for loop using ranges.

3 Examples of Specifications of Simple Iterators

In Section 2, we have presented a general framework to specify iterators and use
them in for loops. In this section, we present several simple examples of iterators
defined in this framework.

3.1 The Range Iterator

We start with a simple Range iterator, whose purpose is to iterate over the
integers in a given range. The notation a..b used idiomatically in Rust is a
syntactic sugar for this kind of iterators. The original definition from the Rust
standard library is generic over the type of integers used, but, for the sake of
simplicity, we use a monomorphic version here:

struct Range { start: usize, end: usize }

8 Xavier Denis and Jacques-Henri Jourdan

If self.start ≥ self.end, the next method returns None. Otherwise, it increments
self.start and returns the initial value of Some(self.start). Note that the upper
bound of the range, end, is excluded in the iteration.

In order to instantiate our iterator specification scheme with Range, we use
the produces and completed predicates defined by:

r
v
⇝ r′ ≜ |v| = r′.start− r.start ∧ r.end = r′.end

∧ |v| > 0 ⇒ r′.start ≤ r′.end

∧ ∀ i ∈ [0, |v| − 1], v[i] = r.start+ i

completed(r) ≜ *r = ˆr ∧ (*r).end ≥ (*r).start

Transitivity and reflexivity are easily verified.
Rust’s standard library also contains ranges whose upper bound is included

rather than excluded, and ranges without an upper bound. They can all be
specified using similar techniques.

Note that with these definitions, the structural invariant of for loops directly
implies that the loop index (the last produced value) is in the range. In addition,
if the range is non-empty, one can deduce that the last iterated value is end− 1.
These two properties usually require an additional invariant if the loop is encoded
using the while construct. For an illustration consider Figure 2.

3.2 IterMut: Mutating Iteration Over a Vector

Our approach to iterators can be used to iterate over elements of a vector. But
instead of presenting the simple case of a read-only vector iterator, we study a
more general iterator, IterMut, permitting to both read and write vector elements
while iterating; the simpler case of the read-only iterator uses the same ideas.

This iterator produces mutable references for each element of a vector in turn.
The state of this iterator is a mutable reference to the slice (i.e., a fragment of
a vector) of elements that remain to be iterated:

struct IterMut<’a, T> { inner: &’a mut [T] }

To define the production relation of IterMut, we use a helper function tr,
which transposes a mutable reference to a slice into a sequence of mutable ref-
erences to its elements. It defining property is:

|tr(s)| = |s| ∧ ∀ i ∈ [0, |s| − 1], tr(*s)[i] = *s[i] ∧ tr(ˆs)[i] = ˆs[i]

With the help of tr, the produces and completed relations of IterMut are
simple to express:

it
v
⇝ it′ ≜ tr(it.inner) = v · tr(it′.inner)

completed(it) ≜ *r = ˆr ∧ |*r| = 0

It means that the iterator it produces a sequence of mutable references, which
must be the initial segment of tr(it.inner), into a final state it′ such that

Specifying and Verifying Higher-order Rust Iterators 9

tr(it.inner) is the sequence of mutable references that are left to be generated.
Such an iterator is completed when the inner slice is empty.

This compact specification is enough to reason about mutating through the
returned pointers as in the following example:

#[invariant(all_zero, forall<i: Int> 0 <= i && i < produced.len()
==> @^produced[i] == 0)]

for x in v.iter_mut() { *x = 0; }
assert!{ forall<i: Int> 0 <= i && i < (@v).len() ==> @(@^v)[i] == 0 }

That is, we are able to prove with a simple loop invariant that this loop sets to
0 all the elements of the vector.

The reasoning that occurs to prove this program is as follows. First, at the
end of a loop iteration, we know that the final value of the borrow x is equal to
0 since we have just written 0 and this value will not change since x goes out
of scope. Together with the invariant of the preceding iteration, this is enough
to prove that the invariant is maintained. Second, after the loop has executed,
the final iterator state is empty, so we know produced contains the complete
sequence of borrows to elements of v. But, thanks to the loop invariant, the
prophetic value of each of these borrows is 0. So we can deduce that the final
content of v is a sequence of zeros.

3.3 Iterator Transformers

Because all iterators implement the same trait Iterator which gives them a
specification, we can easily build combinators which wrap and transform the
behavior of an iterator.

It is important to note that, following Rust’s standard library, these trans-
formers are generic over the type of the underlying iterator; individual values of
a type cannot have different predicates. While the verification tool cannot know
the concrete definitions of produces or completed for the wrapped iterator, it
knows it must satisfy the Iterator trait interface.

The simplest example is Take<I> (where I is another iterator), which trun-
cates an iterator to produce at most n elements. The state of Take<I> is a record
with two fields: a counter n for the remaining elements to take and an iterator
iter to take from. The specification predicates of Take<I> are defined as follows:

it
v
⇝ it′ ≜ it.iter v

⇝ it′.iter ∧ it.n = it′.n+ |v|
completed(it) ≜ (*it).n = 0 ∧ *it = ˆit

∨ (*it).n > 0 ∧ (*it).n = (ˆit).n+ 1 ∧ completed(it.iter)

The subtle definition here is that of completed(it): if the counter is 0, then next
does nothing. But, following Rust’s implementation, if the counter is not 0, then
it is first decremented even if the call to the underlying iterator returns None.

Again, when instantiated to a specific underlying iterator type, we can substi-
tute the definitions of (⇝) and completed(−) for the underlying iterator, to get

10 Xavier Denis and Jacques-Henri Jourdan

a concrete definition of these predicates for Take<I>, which are easier to handle
by automated solvers.

Another common transformer is Skip<I>, whose goal is to skip the first n
elements of an iterator. Similarly to Take<I>, the state is a record with two
fields: a number n of elements to skip and an underlying iterator iter.

The ⇝ relation of Skip<I> is defined as follows:

it
v
⇝ it′ ≜ v = ε ∧ it = it′

∨ it′.n = 0 ∧ |v| > 0 ∧ ∃w, |w| = it.n ∧ it.iter w·v
⇝ it′.iter

The first disjunct is needed to ensure reflexivity of (⇝). The second disjunct
describes what happens after a non-empty sequence of calls. If we produced
some sequence of elements v, then we must have been able to skip n elements
first, which we existentially quantify over.

If the Skip<I> iterator is completed, the underlying iterator has also com-
pleted, but potentially after having generated some skipped elements that we
existentially quantify over:

completed(it) ≜ ∃w i, (ˆit).n = 0 ∧ |w| ≤ (*it).n

∧ (*it).iter w
⇝ *i ∧ completed(i) ∧ ˆi = (ˆit).iter

Using Skip<I> and Take<I> we are able to prove an algebraic property of
iterators: if we take n elements and then skip n elements from that iterator, we
must necessarily get the empty iterator.

assert!(iter.take(n).skip(n).next().is_none())

This property is easy to prove from the composition of both production relations.

4 Closures in Rust

Unlike traditional functional languages, Rust has no function type for closures.
Two closures, even with identical bodies, are not of the same type: closures are
each given a unique, anonymous type representing the captured environment.
This design is motivated by the need to fully resolve closures during compilation:
the compiler is always able to identify exactly which piece of code is used at
every call site. To abstract over closures and write higher-order functions, Rust
provides three traits that the closure type may implement: FnOnce, FnMut, and Fn.
They describe the different ways a closure’s environment can be passed during a
call: by ownership, by mutable reference or by immutable reference. The compiler
automatically provides the relevant instances when a user writes a closure.

Traditionally, verifying higher-order code with mutable state has needed
seperation logic or dynamic frames, but because of Rust’s mutable value seman-
tics we can avoid these tools. Instead, we provide a specification for higher-order
functions in first-order logic, which generates simple verification conditions (see
code of Section 6). Specifically, we extend FnOnce, FnMut, and Fn with logical
predicates that capture the pre- and post- conditions of closures. We begin by
considering the simplest case, FnOnce:

Specifying and Verifying Higher-order Rust Iterators 11

pub trait FnOnce<Args> {
#[predicate] fn precondition(self, a: Args) -> bool;
#[predicate] fn postcondition_once(self, a: Args, res: Self::Output)

-> bool;
#[requires(self.precondition(args))]
#[ensures(self.postcondition_once(args, result))]
fn call_once(self, args: Args) -> Self::Output;

}

The predicates precondition and postcondition_once refer to the specification
added to the call_once method used to call the closure.

A call to a FnOnce closure consumes it. On the other hand, FnMut allows a
mutable closure to be called multiple times. Here is our extended FnMut trait:

pub trait FnMut<Args> : FnOnce<Args> {
#[predicate] fn unnest(self, _: Self) -> bool;
#[ensures(self.unnest(self))]
#[law] fn unnest_refl(self);
#[requires(self.unnest(b) && b.unnest(c))]
#[ensures(self.unnest(c))]
#[law] fn unnest_trans(self, b: Self, c: Self);
#[predicate] fn postcondition_mut(&mut self, _: Args, _: Self::Output)

-> bool;
#[requires((*self).precondition(arg))]
#[ensures(self.postcondition_mut(arg, result))]
fn call_mut(&mut self, arg: Args) -> Self::Output;

[...] }

Because every FnMut closure is also an FnOnce closure, we can reuse the precon-
dition predicate to specify call_mut. However, we need a new predicate for the
richer postconditions that become possible: since the closure is called using a
mutable borrow, the postcondition specify changes made to captured variables.

Rust compiles closures via closure conversion, the state of each closure be-
comes a struct holding references to all captured variables. However, this struct
can only be modified in a restricted fashion: we can only mutate the values
pointed by the captures, and not the captures themselves. In particular, this
means the prophecies of captures remain constant. We capture this property in
an unnesting predicate F::unnest(a, b). It expresses that the prophecies in the
state of type F have not changed from a to b. This property is both reflexive and
transitive which we capture via laws. The unnesting predicate is essential to link
the states of a closure throughout repeated calls. Without it we would lose track
of the contained prophecies.

In addition to these predicates, our FnMut trait contains laws we elided:
unnest is implied by postcondition_mut, and postcondition_mut is linked to the
postcondition predicate of the FnOnce trait.

Finally, Fn imposes that the closure is immutable. Each call upholds the
postcondition and leaves the state intact. Again, in the following, we elided laws
relating postcondition, postcondition_mut and postcondition_once:

pub trait Fn<Args> : FnMut<Args> {

12 Xavier Denis and Jacques-Henri Jourdan

#[predicate] fn postcondition(&self, _: Args, _: Self::Output) -> bool;

#[requires((*self).precondition(arg))]
#[ensures(self.postcondition(arg, result))]
fn call(&self, arg: Args) -> Self::Output;

[...] }

5 A Higher-order Iterator Combinator: Map

The challenge with the specification of Map is proving the preconditions of the
closure being called. Map treats the closure opaquely, it cannot tell what the
concrete pre- and post- conditions are, the justification for the precondition must
come from elsewhere. To help work through this, we use a thought experiment
where we see Map implemented as a loop with a yield instruction to generate
elements, in the style of e.g., Python generators:

fn map<I : Iterator, B, F: FnMut(I::Item) -> B>(iter: I, func: F) {
for a in iter { yield (f)(a) }

}

To verify it, we need f.precondition(a) to be true at each iteration, so we need
an invariant which implies it. This exposes the key property that must be true
of our closure: the postcondition at iteration n must be able to establish the
precondition for iteration n+ 1. In the vocabulary of iterators:

it
s·e1·e2⇝ i′ → pre(*f, e1) → post(f, e1, r) → pre(ˆf, e2)

This expresses that if we eventually produce an element e1 which satisfies the
precondition of the initial closure *f , then combined with the postcondition of
f , we must be able to establish the precondition for the final closure ˆf with the
following element e2. Quantifying over a prefix s in the iteration from a known
initial state i ensures this property holds for all possible subsequent iterations.

To encode this property in Map, we use a type invariant, which allows spec-
ifying a property that values of a type must uphold. Here, the invariant states
that (1) the precondition for the next call will be verified; (2) the preserva-
tion property above holds for the current state it; (3) these two invariants are
reestablished if the underlying iterator returns None (this is usually trivial since
the underlying iterator often is fused: it cannot generate new elements once it
returns None); and (4) the type invariant of the underlying iterator holds.

These invariants are initially required as a precondition of the map method
used to create the Map iterator. In order to be tackled by automated solvers, this
verification condition need to be unfolded: it is therefore crucial that closures
and their pre- and post- conditions are statically resolved thanks to the unique
anonymous closure types in Rust.

Specifying and Verifying Higher-order Rust Iterators 13

The specification predicates for Map can now be stated:

it
v
⇝ it ≜ ∃v′ fs, |v′| = |fs| = |v| ∧ it.iter v′

⇝ it′.iter

∧ (it.func = *fs[0] ∧ ˆfs[0] = *fs[1] ∧ .. ∧ ˆfs[n] = it′.func)

∧ ∀ i ∈ [0, |v| − 1], pre(*fs[i], v′[i]) ∧ post(fs[i], v′[i], v[i])

∧ unnest(it.func, it′.func)

completed(it) ≜ completed(it.iter) ∧ (*it).func = (ˆit).func

In ⇝, we quantify existentially over two pieces of information: the sequence
of values v′ produced by the underlying iterator and the sequence of mutable
references of states fs that the closure traverses. We require that fs forms a
chain, the final state of each element being the same as the current value of
the following one. Finally, we require the closure pre- and post- conditions for
every iteration, and that the first and last state are related by the unnesting
relation. The unnesting relation is implied by the postcondition chain, but stating
it directly makes it easier for clients to use this definition. The definition of
completed(−), on the other hand, straightforwardly states that the underlying
iterator is completed.

Interestingly, the user of this specification can use the precondition of the
closure to encode closure invariants that she wishes to maintain along the iter-
ation (as with loop invariants). This specification for Map allows us to specify
many use cases, so long as the supplied closure is “history-free”: its specifica-
tion does not depend on the sequence of previously generated values, like in
x.map(|a : u32| a + 5). While this is certainly the most common usage of map,
we sometimes need a more powerful specification.

Extending Map With Ghost Information. If we attempt to use the previous spec-
ification of Map to verify the counter-example of Section 1, we will rapidly en-
counter an issue: to establish that cnt properly counts the number of iterations
would require a (manual) induction on the iterator. While the prior specification
allows the closure to specify the impact of its immediate call, it has no way of
reasoning on its position in the iteration itself. In our prior thought experiment
using a generator, we have no way of writing an invariant which depends on
produced, as we allowed for usual for loops.

To make the verification of this kind of code simpler, we extend the signature
of Map to the provide to the closure the sequence of elements generated by
the underlying iterator since the creation of the mapping iterator object. This
information does not change the behavior of the program: we make it ghost, so
it can only be used in specifications.

The extended version, MapExt, is thus given an additional ghost field,
produced, containing this sequence. The relation (⇝) is extended to account
for this ghost information, by adding a conjunct stating that it′.produced =
it.produced·v′ and passing the additional ghost parameter it.produced·v′[0..i−1]
to the pre- and post- conditions. The completed() relation is extended by adding

14 Xavier Denis and Jacques-Henri Jourdan

the conjunct (ˆit).produced = ε (the produced field is reset when the iterator
returns None). The type invariants are adapted accordingly.

Having this extra information avoids the need for an explicit induction after
the fact to establish that we’ve properly counted the number of iterations. It
suffices to look at the postcondition of the last call to next. While this example
only makes use of the length of the sequence, this ghost information is useful in
a wide variety of situations.

6 Evaluation

In this section we measure the performance of both the proofs of iterators and
their clients, using the Creusot [3] tool for verification of Rust programs. It al-
lows for verification of Rust programs, and require some annotations to verify the
functional correctness of Rust programs. Verification is performed by translating
annotated Rust code into a pure, first-order functional program. Then, Creusot
uses Why3 [14] to generate verification conditions, which are discharged using
automated solvers such as CVC5, Z3 or Alt-Ergo.

The results in Figure 3, were gathered using a Macbook Pro with an M1 Pro
CPU and 32 GB of RAM, running macOS 12.2. Why3 was limited to using four
provers simultaneously among Z3 4.11.2, CVC5 1.0.2, and Alt-Ergo 2.4.1.

Why3 supports proof transformations: manual tactics which can be used in
combination with automated solvers. Because we wish to obtain ergonomic spec-
ifications which work well with automation, we minimize their use. Nevertheless,
certain complex proofs required minor manual work, which we clearly indicate.

Iterator LOC Spec Time Fully auto.
Range 13 39 0.40 ✓
IterMut 12 34 0.61 ✓
Map 23 46 0.89 ✗

MapExt 42 115 1.06 ✗

Skip<I> 20 53 0.51 ✗

Take<I> 17 43 0.40 ✓
Fuse 29 51 0.52 ✗

Benchmark LOC Spec Time Fully auto.
all_zero 5 3 0.43 ✓
skip_take 3 2 0.40 ✓
counter 12 4 0.55 ✓
concat_vec 3 3 0.41 ✓
decuple_range 9 3 0.64 ✓
hillel 89 109 0.86 ✓
knights_tour 89 55 1.15 ✓

Fig. 3. Selected evaluation results. “LOC” counts the lines of program code, while
“Spec” counts specification code and assertions. “Time” measures in seconds the time
taken to solve the proofs. “Fully auto.” determines whether manual tactics were used.

The left table in Figure 3 contains a selection of the iterators and combinators
we have verified. The Range and IterMut iterators are implementations of the
iterators described in Sections 3.1 and 3.2. Likewise for Skip and Take. The Fuse
combinator is responsible for transforming any iterator into a fused one, which
will always return None after the first, never resuming iteration. Two versions
of Map are provided, the first is the standard library Map, which is restricted to

Specifying and Verifying Higher-order Rust Iterators 15

closures whose preconditions are ‘history-free’, the version in MapExt is provided
with ghost information about previous calls as explained in Section 5.

Some manual proof steps were required to prove several iterators. For
Skip<I> and Fuse, the manual tactics consist only of telling Why3 to access
lemmas about sequences. For Map and MapExt, tactics were used to instantiate
the existential quantifiers within the production relation.

We also verified several clients of iterators, in particular featuring combina-
tions of several iterators. The example decuple_range maps a Range, multiply-
ing elements by 10, collecting the results into a vector and verifying functional
correctness; counter is an annotated version of the example in the introduc-
tion, verifying we can use mutable state to count the elements of an iterator;
concat_vec uses extend to append an iterator to the end of a vector; all_zero
is uses IterMut to zero every cell of a vector; take_skip checks that if we take n
elements and then skip the n next elements of the resulting iterator, we must get
None. hillel is a port of a prior Creusot solution to Hillel Wayne’s verification
challenges [15]. knights_tour is a port of a prior solution to the Knight’s Tour
problem. In both of these cases, updating the code to use for-loops and iterators
actually reduced the number of lines of specification.

Because our lines of specification include the assertions which test functional
properties, we believe the resulting overhead is reasonable, especially in our client
examples. Additionally, our specifications for iterators seem to have low impact
on verification times. We compared hillel and knights_tour with alternative
versions that only differ by using traditional while loops instead of iterators,
verification times are 0.91 and 1.14 respectively. This provides evidence that
integrating our iterators does not cause prohibitive increases in verification time.

7 Related and Future Work

RustHorn [6] and RustHornBelt [7] show how the non-aliasing guarantees
of Rust can be used for reducing the verification of Rust programs into the proof
of first-order logic formulas. These works serve as theoretical foundations for
Creusot [3], which we use to evaluate our specification scheme for iterators.

Prusti [1] is a semi-automatic verifier for Rust built on the Viper [9] sepa-
ration logic verification platform. Prusti models mutable borrowing and own-
ership using separation logic permissions, unlike our choice of using a prophetic
mutable value semantics. This leads to differences in the specification languages:
whereas we use the “final” operator to reason about borrows, Prusti uses a
notion called pledges. Pledges are assertions which must be true at the end of
a specific lifetime. At the time of writing, pledges are not fully first-class in
Prusti’s specification logic: they are used through a kind of postcondition. In
particular a ghost predicate like produces cannot contain a pledge. The “final”
operator can be used anywhere in specifications, which allows us to give a natural
specification to mutating iterators like IterMut (Section 3.2).

The verification of higher-order programs is a well-studied problem, Régis-
Gianas and Pottier [13] show how to verify them using higher-order logic. Prusti

16 Xavier Denis and Jacques-Henri Jourdan

supports closures by modeling them in Viper’s separation logic [16]. Like our
approach, Prusti transforms higher-order specifications into simpler first-order
verification conditions, but in separation logic. They introduce several constructs
to specify closures: history invariants, specification entailment, and call descrip-
tions. We instead enable users to refer to pre- and post- conditions of closures
via a trait. While we not have the constructs Prusti provides primitively for
closures, we believe these constructs can be encoded using our primitives, at the
cost of lower ergonomics. Our approach is more expressive: unlike Prusti’s call
descriptions, we can distinguish the order of calls (see Section 5).

Like us, Aeneas [5] verifies Rust programs by translation to a functional
language, and targets traditional proof assistants such as Coq, or F∗. They
use a technique called backward functions to interpret mutable borrows. To our
knowledge, Aeneas supports neither closures nor iterators.

The formalization of iterators is a well-studied subject with implementations
in a variety of imperative and functional languages: WhyML [4], Eiffel [10],
Java [8], and OCaml [11]. Of particular relevance is the approach developed
by Filliâtre and Pereira [4], which specifies iterators in WhyML using a ghost
field visited : seq ’a and two predicates permitted : cursor ’a -> bool and
completed : cursor ’a -> bool where cursor ’a is an iterator for values of type
’a. This work leverages Why3’s regions system to distinguish individual cursors
over time. In contrast, in our context, we lose object identity : there is no way to
identify that two iterator values are two successive states of the same iterator.
We thus generalize this approach to our setting by explicitly providing pre- and
post- states in produces. Our work is also more expressive: we specify and verify
higher-order iterators using potentially mutable closures, which are ruled out
by Why3’s region system. The framework of iteration described by Polikarpova,
Tschannen, and Furia [10] is limited to finite, deterministic iteration: the user
must provide up front the sequence of abstract values the iterator will produce.
Pottier [11] presents an implementation of iterators for a hash map written in
OCaml. They do this by working in the separation logic CFML [2], utilizing Coq’s
powerful but manual reasoning mechanisms for theorem proving. While Pottier
does not provide a general specification of iterators (cascades) with mutable
state, CFML should permit it, though usage may require a challenging proof.

Future Work. While we have specified and proved key iterators, many more re-
main. The filter transformer is interesting as each call to next may make an
unbounded number of steps with the underlying iterator using the provided mu-
table closure. Rust provides a hierarchy of traits that further refine iterators like
DoubleEndedIterator, and ExactSizeIterator. The recent integration of generic
associated types enables new, more flexible forms of iteration like lending itera-
tors. We believe these would naturally integrate into our framework, but remains
to be done. Finally, while we believe we have developed a correct, and simple
approach to specify closures, the ergonomics leave much room for improvement.
Improving this will help make our specifications more concise and user-friendly.
In particular, we would like to explore automatic inference of pre- and post-
conditions of simple closures.

Specifying and Verifying Higher-order Rust Iterators 17

References

[1] Vytautas Astrauskas et al. “The Prusti Project: Formal Verification for
Rust”. In: NASA Formal Methods. Vol. 13260. LNCS. 2022. doi: 10.1007/
978-3-031-06773-0_5.

[2] Arthur Charguéraud. “Characteristic formulae for the verification of im-
perative programs”. In: ICFP. 2011. doi: 10.1145/2034773.2034828.

[3] Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. “Creusot: A
Foundry for the Deductive Verication of Rust Programs”. In: ICFEM.
Vol. 13478. LNCS. 2022. doi: 10.1007/978-3-031-17244-1_6.

[4] Jean-Christophe Filliâtre and Mário Pereira. “A Modular Way to Reason
About Iteration”. In: NASA Formal Methods. Vol. 9690. LNCS. 2016. doi:
10.1007/978-3-319-40648-0_24.

[5] Son Ho and Jonathan Protzenko. “Aeneas: Rust Verification by Functional
Translation”. In: ICFP. 2022. doi: 10.1145/3547647.

[6] Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. “RustHorn:
CHC-based verification for Rust programs”. In: TOPLAS 43.4 (2021),
pp. 1–54. doi: 10.1145/3462205.

[7] Yusuke Matsushita et al. “RustHornBelt: A Semantic Foundation for Func-
tional Verification of Rust Programs with Unsafe Code”. In: PLDI. 2022.
doi: 10.1145/3519939.3523704.

[8] João Mota, Marco Giunti, and António Ravara. On Using VeriFast, Ver-
Cors, Plural, and KeY to Check Object Usage. 2022. url: http://arxiv.
org/abs/2209.05136.

[9] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. “Viper: A
Verification Infrastructure for Permission-Based Reasoning”. In: VMCAI.
Vol. 9583. LNCS. 2016. doi: 10.1007/978-3-662-49122-5_2.

[10] Nadia Polikarpova, Julian Tschannen, and Carlo A. Furia. “A Fully Verified
Container Library”. In: Formal Aspects of Computing 30.5 (2018). doi:
10.1007/s00165-017-0435-1.

[11] François Pottier. “Verifying a Hash Table and Its Iterators in Higher-Order
Separation Logic”. In: CPP. 2017. doi: 10.1145/3018610.3018624.

[12] Dimitri Racordon et al. “Implementation Strategies for Mutable Value Se-
mantics.” In: J. Object Technol. 21.2 (2022), pp. 2–1.

[13] Yann Régis-Gianas and François Pottier. “A Hoare Logic for Call-by-Value
Functional Programs”. In: MPC. Vol. 5133. LNCS. 2008.

[14] The Why3 development team. The Why3 verification platform. url:
https://why3.lri.fr/.

[15] The Great Theorem Prover Showdown. Hillel Wayne. Apr. 25, 2018. url:
https://www.hillelwayne.com/post/theorem- prover- showdown/
(visited on 10/14/2022).

[16] Fabian Wolff et al. “Modular Specification and Verification of Closures in
Rust”. In: OOPSLA. 2021. doi: 10.1145/3485522.

https://doi.org/10.1007/978-3-031-06773-0_5
https://doi.org/10.1007/978-3-031-06773-0_5
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1007/978-3-031-17244-1_6
https://doi.org/10.1007/978-3-319-40648-0_24
https://doi.org/10.1145/3547647
https://doi.org/10.1145/3462205
https://doi.org/10.1145/3519939.3523704
http://arxiv.org/abs/2209.05136
http://arxiv.org/abs/2209.05136
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/s00165-017-0435-1
https://doi.org/10.1145/3018610.3018624
https://why3.lri.fr/
https://www.hillelwayne.com/post/theorem-prover-showdown/
https://doi.org/10.1145/3485522

	Specifying and Verifying Higher-order Rust Iterators

