X-ray diffraction, IR spectrum, optical properties, AIM, NBO, RDG, HS, Fukui function, biological and molecular docking analysis of a novel hybrid compound (C9H15N3)[CuCl4(H2O)]

Afef Gannouni, Wiem Tahri, Thierry Roisnel, Kefi Riadh

To cite this version:

Afef Gannouni, Wiem Tahri, Thierry Roisnel, Kefi Riadh. X-ray diffraction, IR spectrum, optical properties, AIM, NBO, RDG, HS, Fukui function, biological and molecular docking analysis of a novel hybrid compound (C9H15N3)[CuCl4(H2O)]. Journal of Molecular Structure, 2023, 1271, pp.134094. 10.1016/j.molstruc.2022.134094 . hal-03827522

HAL Id: hal-03827522
https://hal.science/hal-03827522
Submitted on 24 Jan 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

X-Ray diffraction, IR spectrum, optical properties, AIM, NBO, RDG, HS, Fukui function, biological and molecular docking analysis of a novel hybrid compound $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$

Afef Gannouni ${ }^{[a]}$, Wiem Tahri ${ }^{[b]}$, Thierry Roisnel ${ }^{[c]}$, Kefi Riadh ${ }^{[a]}$

${ }^{[a]}$ Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisie.
${ }^{[b]}$ Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), University of Carthage, Te Ministry of Higher Education and Scientifc Research, Zarzouna, 7003 Bizerte, Tunisia.
${ }^{[c]}$ Université Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F35000 Rennes, France.

Graphical Abstract

Abstract

The paper reports the preparation and structural characterization of a novel hybrid complex $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ grown by slow evaporation technique in aqueous solution at room temperature and characterized by X-ray diffraction, spectroscopy measurement, optical absorption, photoluminescence proprieties, Hirshfeld surface analysis, thermal and biological study. The title organic-inorganic material, $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, crystallizes in the monoclinic space group $\mathrm{P} 2_{1} / \mathrm{n}$. The crystal arrangement consists of $\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}{ }^{2 n-}$ chains spreading alone c axis at $\mathrm{x}=1 / 2$ and $\mathrm{y}=1 / 2$. To build the three-dimensionality of the structure, the organic cations are linked to the chains through hydrogen bond type, $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$, OW1 $\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$. The new prepared compound was screened for its antioxidant activity. The Photoluminescence proprieties were also reported. The nature and proportion of contacts and the rapport of enrichment in the crystal packing were studied by the Hirshfeld surfaces. The vibrational properties FT-IR and UV-VIS spectral analyses of present compound have been researched by theoretical calculations. Energy gap (Eg) of the molecule was found using LUMO and HOMO calculation. The local reactivity analyses (Fukui functions) were evaluated to identify the reactive sites in the protonated organic part. Intermolecular interactions were analyzed by molecular electrostatic potential surface (MEPS), the reduced density gradient (RDG), natural bond orbital (NBO) and topological AIM are reported. The thermal analysis (ATD/TG) reveals the decomposition of title compound. The NBO analysis of title compound shows that the maximum energy is equal to $37.61 \mathrm{Kcal}^{1} \mathrm{~mol}^{-1}$ confirmed the charge transfer between organic and inorganic groups. The activation of thermodynamic parameters is calculated by DFT/ B3LYP/LanL2DZ. Photoluminescence measurements (PL) showed two peaks at around 331 and 393 nm . The biological activities of $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ were investigated by DPPH and ABTS tests. Finally, docking studies have been conducted to predict 2PPCU anti-tubercular activity and as a potential therapeutic target for anticancer treatment against transaminase- Bio A and VEGFR-2 kinase inhibitor respectively type PDB's.

Keywords: X-ray single crystal diffraction, Hirshfeld surface analysis, Fukui, RDG, AIM, biological study.

1. Introduction

In recent years, the design and synthesis of organic-inorganic material that's on the concept of crystal engineering have attracted considerable attention regarding the application of these solids by the different proprieties of organic and inorganic components into one material.

Hybrid materials (organic-inorganic) compound represent a new class of materials when we combined desirable physical-chemical properties characteristic of both organic and inorganic components within a single molecular scale composite $[1,2]$. In particular, the Cu^{2+} is an attractive transition metal with a d^{9} electronic system and presents a variety of coordination, four [3], five [4, 5] and six coordination [6] compounds predominating. The transition metal complexes, especially, Cu (II) complexes are known to be effective against rheumatoid arthritis and they also show anti-ulcer activity [7, 8]. The copper (II) halide complexes have played an important role in optoelectronic devices, in the developments of electronic, in optical communication and wireless temperature sensors [9, 11]. In addition the piperazines derivations are a family of strongly basic amines able to from dications, in which all of the $\mathrm{N}-\mathrm{H}$ bonds are generally active in H -bond formation. For that, hybrid compounds with piperazines and substituted piperazines have been used in biological compounds across a number of different therapeutic areas such as antidepressant, antibacterial, antifungal, antitumor and antipsychotic [12-13]. The molecular docking study of hybrid compound was performed to understand the molecular interaction and binding mode [14-16]. In the present work, we report on our investigations on a new hybrid solid, $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, how is chemical preparation and structural study are discussed, Hirshfeld surface analysis, vibrational studies, optical absorption UV-Vis and photoluminescence were performed. In addition, the theoretical studies by B3LYP were performed to analyze the structure topology using AIM, RDG, NBO and MEP analyses. The functional theory (DFT) calculations and then compared to experimental data. Finally, the molecular docking studies of the present work have been performed in the search for a therapeutic agent for the anti-tubercular activity and as a potential therapeutic target for anticancer treatment.

2. Experimental

2.1 Synthesis of $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$

The $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ crystals were obtained by dissolving in a concentrated HCl solution a stoechiometric mixture of 1-(2-pyridyl)piperazines a solution of $\mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ in a minimum volume of methanol and stirring for one hour, until the formation of a clear mixture without any precipitate. The reaction mixture was stirred for half an hour resulting in a yellow-colored clear solution. The crystals can be stable for five weeks under normal conditions of temperature (yield 85\%). Anal. Calc.: C: 27.79 \%, N: 10.81 \%, Cu: 16.35 \%, Cl: 36.49 \% and O: 4.11 \%.

$$
\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3}+\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{HCl} \xrightarrow{\mathrm{MeOH}}\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]+\mathrm{H}_{2} \mathrm{O}
$$

$22 X$-ray single crystal structural analysis

A suitable crystal for X-ray diffraction, single crystal experiment of a new solids $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(0.510 \times 0.440 \times 0.190 \mathrm{~mm}^{3}\right)($ Fig $S-1)$ was selected and mounted with a cryoloop on the goniometer head of a APEXII Kappa-CCD diffractometer equipped with a CCD plate detector, using Mo- K_{α} radiation ($\lambda=0.71073 \AA$, graphite monochromator) at $\mathrm{T}=296$ (2) K. Crystal structure has been described in monoclinic symmetry and $\mathrm{P} 2_{1} / \mathrm{n}$ (I.T\# 14) centric space group. The structure was solved by dual-space algorithm using the SHELXT program [17], and then refined full-matrix least-squares methods based on F^{2} (SHELXL program [18]). All non-Hydrogen atoms were refined with anisotropic atomic displacement parameters. Except Hydrogen atoms linked to Nitrogen atoms and of the water molecule that were introduced in the structural model through Fourier deference map analysis, H atoms were finally included in their calculated positions and treated as riding on their parent atom with constrained thermal parameters. A final refinement on F^{2} with 3444 unique intensities and 179 parameters converged at $\omega \mathrm{R}\left(\mathrm{F}^{2}\right)=0.0795(\mathrm{RF}=0.0345)$ for 3004 observed reactions with $(I>2 \sigma)$. Drawings were made with Diamond [19].

2.3 Spectroscopic Measurements

The infrared spectrum was measured at room temperature in the $400-4000 \mathrm{~cm}^{-1}$ frequency range with a Nicolet IR200 FT-IR spectrometer. The IR spectroscopy is used to identify the functional groups and to determine the molecular structure. The UV-Vis absorption was measured at ambient temperature with a Perkin Elmer Lambda 35 UV-Vis spectrophotometer in the range of $200-1000 \mathrm{~nm}$. The photoluminescence analysis was performed at room temperature by Perkin-Elmer LS55 spectrofluorometer.

2.4 Thermal analysis

The simultaneous TG-DTA analysis curves of the compound (I) were carried out in argon atmosphere at a heating rate of $5^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$ in the temperature range $25-700^{\circ} \mathrm{C}$ on a sample of 13.1 mg .

2.5 Quantum chemical calculation

All the calculations of compound $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ were carried out using Gaussian 09 W program package [20] with the B3LYP functional [21, 23] and using the LanL2DZ basis set [24]. The chosen cluster is built up from one $\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}$ triangular bipyramid and two $\left[\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right]^{2+}$ organic cations. All the parameters were allowed to relax and all the
calculations converged to an optimized geometry. The local minima were confirmed by the absence of an imaginary mode in vibrational analysis calculations. Theoretical vibrational spectra of the title compound were interpreted by means of potential energy distributions (PEDs) using VEDA 4 program [25]. For the optimized structure of the molecule in the title compound, the electronic characteristics such as HOMO and LUMO energies and the NBO analysis have a role to determine the intermolecular orbital interaction in the crystal. The iGEMDOCK program [26] was used, with the following parameters: population size 800, generations 80 and number of solutions 10 . To represent the different docking conformations, PyMOL [27] was used.

2.6 In vitro Antioxidant Study

The antioxidant activity of the sample was analyzed by using DPPH an ABTS assays. The free radical scavenging ability of the title compound against DPPH (1,1-diphenyl-2 picrylhydrazyl) was evaluated as reported by Braca and al.(2001) [28].Appropriate dilution of the sample (prepared at different concentrations ranging between 5 and $50 \mathrm{mg} / \mathrm{ml}$) was mixed with 3 mL of DPPH^{++}solution and incubated for 30 min in the dark. The DPPH^{++}was generated by reacting a 0.1 mM DPPH (in methanol), in the dark for 40 min and adjusting the Abs at 734 nm to 0.700 with methanol. The absorbances were measured using a spectrophotometer (Shimadzu UV-Vis 160A, Japan) at 734 nm . The antioxidant activity of compound (I) was expressed as percentage inhibition of the DPPH^{++}radical which was subsequently calculated by using the following equation:
$\mathbf{D P P H}^{+}$radicals scavenged activity $(\%)=[(\mathbf{A 0}-\mathbf{A} 1) / \mathbf{A} 0] \times \mathbf{1 0 0}$. where A 0 and A 1 refer to the absorbance measured for the reaction mixture without and in the presence of the test of $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ compound, respectively. The $\mathrm{ABTS}^{\bullet+}$ scavenging ability of title compound were determined according to the method described by Guesmi and al. (2014) [29]. The ABTS^{++}was generated by reacting an $(7 \mathrm{mmol} / \mathrm{L}) \mathrm{ABTS}$ aqueous solution with sodium acetate buffer $(20 \mathrm{mM}, \mathrm{pH} 4.5)$ in the dark for $16 \mathrm{~h}\left(4^{\circ} \mathrm{C}\right)$ and adjusting the Abs at 734 nm to 0.700 with ethanol. A measurement of $20 \mu \mathrm{~L}$ of sample (I) at different concentrations was added to $3 \mathrm{~mL} \mathrm{ABTS}^{++}$solution and reaction mixture was allowed to stand at $30{ }^{\circ} \mathrm{C}$ the absorbance were measured using a spectrophotometer (Shimadzu UV-Vis 160A, Japan) at 734 nm after 30 min . The percent scavenging of $\mathrm{ABTS}^{\bullet+}$ was calculated using the formula: $\mathbf{A B T S}^{+}$radicals scavenged activity $(\%)=[(\mathbf{A 0}-\mathbf{A 1}) / \mathbf{A} 0] \times \mathbf{1 0 0}$. where A 0 and A 1 refer to the absorbance measured for the reaction mixture without and in the presence of the tested compound, respectively.

3. Results and discussion

3.1 Structure description

The 1-(2-pyridinium) piperazinium aquatetrachloridocuprate (II) (Abbreviated 2PPCU) crystallizes in monoclinic space group $\mathrm{P} 2_{1} / \mathrm{n}(\mathrm{Z}=4)$, with $\mathrm{a}=10.2986$ (8) $\AA, \mathrm{b}=19.1385$ (13) $\AA, c=7.6984$ (5) $\AA, \beta=90.134(4)^{\circ}$ at $T=173 \mathrm{~K}$, as deduced from X-ray single crystal diffraction study. A summary of the crystallographic data and the structure refinement results is given in Table 1. Configurations of the different organic and inorganic species, including the vibrational ellipsoids at 50% probability are depicted in (Fig. 1). The Cu (II) atom is fourfold coordinated by chloride ions and one molecule $\mathrm{H}_{2} \mathrm{O}$, forming a triangular bipyramid. The atomic arrangement of $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ can be described as built up by inorganic chains of $\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2 \mathrm{n}-}$ triangular-based bipyramid extending along the c direction held together by $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Fig. 2, Table 2). Four such chains cross the unit cell at $x=1 / 2$ and $y=1 / 2$ (Fig. 2). The organic groups are located between these chains and connect to them through $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds to form a three dimensional infinite network. In addition, the $\mathrm{N}-\mathrm{Cl}$ and $\mathrm{H}(\mathrm{N}) \cdots \mathrm{Cl}$ distances varying between 3.093$3.386 \AA$ and 2.71-2.34 \AA, respectively. While, the $\mathrm{OW} 1-\mathrm{Cl}$ and H (OW1) $\cdots \mathrm{Cl}$ distances are between 3.179-3.231A and 2.36-2.43 \AA, respectively. Furthermore, the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$, OW $\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ angles are varying between $133-157^{\circ}$, 150.6-151.4 ${ }^{\circ}$ and 129.3-156.6 ${ }^{\circ}$, respectively. The description of $\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}$ entity is justified by $\mathrm{Cu} 1-\mathrm{Cl}$ bond length from 2.2650 (8) to 2.5494 (9) \AA and $\mathrm{Cu} 1-\mathrm{O}$ bond distances which equals 1.996 (2) \AA. Meanwhile, the $\mathrm{Cl}-\mathrm{Cu} 1-\mathrm{Cl}$ bond angles range between $93.51(3)$ and $160.49(4)^{\circ}$ and $\mathrm{O}-$ $\mathrm{Cu} 1-\mathrm{Cl}$ bond angles vary from $84.22(8)$ to $168.40(9)^{\circ}$ (Table 3). In addition, the calculated average values of the distortion indices as described by Baur [30] corresponding to the different distances and angles in $\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, ID $(\mathrm{Cu} 1-\mathrm{Cl}(\mathrm{O}))=0.2288$ and $\mathrm{ID}(\mathrm{Cl}-\mathrm{Cu} 1$ $-\mathrm{Cl}(\mathrm{O}))=22.753$, show a remarkable distortion due to the existence of two types of ligands (Cl and O) of different electronegativities surrounded by copper and the different electrostatic interactions between these entities.

The asymmetric unit contains a single organic entity 1-(2-pyridinium) piperazinium. $\mathrm{C}-\mathrm{C}$ distances values are between 1.344 (5) and 1.502 (2) $\AA, \mathrm{N}-\mathrm{C}$ distances are between 1.338 (4) and $1.497(4) \AA, \mathrm{C}-\mathrm{C}-\mathrm{C}$ angles are from $118.2(3)^{\circ}$ to $121.2(3)^{\circ}, \mathrm{N}-\mathrm{C}-\mathrm{C}$ angles are between $108.9(3)^{\circ}$ and $125.0(3)^{\circ}$ and $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles range from $111.4(2)^{\circ}$ to $124.5(3)^{\circ}$. The main geometrical characteristics of these entities are grouped in (Table 4). Examination of the organic cation shows that the piperazine fragment is cyclic, it adopts the most stable chair
conformation characterized by the following Puckering parameters: $\mathrm{q}_{1}=0.5681 \AA, \mathrm{q}_{2}=$ $0.0273 \AA, \mathrm{q}_{3}=0.5764, \theta=2.75^{\circ}$ and $\varphi=15.74^{\circ}[31]$.

3.2 Hirshfeld surface

In order to analyze the function of the organic base in structural propagation, Hirshfeld surface analyses on $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ were carried out. Hirshfeld surface has been calculated using Crystal Explorer 3.1 [32]. The contributions from different interaction types of title compound which overlap in the full fingerprint is represented in the fig. 4a. The 3D $\mathrm{d}_{\text {norm }}$ surfaces representation of the Hirshfeld surface makes it possible to identify the contacts that take place between the organic $\left[\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right]^{2+}$ and inorganic $\left[\mathrm{CuCl}_{4}\left(\mathrm{OH}_{2}\right)\right]^{2-}$ entities previously studied (Fig. 4b). The Hirshfeld surface of the asymmetric unit mapped with dnorm property, the large circular depressions (deep red) are indicators of hydrogen bonding contacts, which can be attributed to interactions of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$, $\mathrm{OW}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Cl}$ interactions. The shape index (Fig. 4c) and the curvedness (fig. 4d) are the most suitable for identifying the $\pi-\pi$ interactions. In present compound, the curvedness map represents the large flat green areas delimited by bold blue outline around the pyridinium cycle; moreover the shape index has the adjacent red and blue triangles which confirm the presence of the $\pi-\pi$ stacking interactions between two neighboring pyridinium rings.

The 2D fingerprint plots were displayed by using the standard view with the d_{e} and d_{i} distance scales displayed on the graph axes obtained by Hirshfeld surface analysis. Globally, $\mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}$, and $\mathrm{H} \cdots \mathrm{H}$ interactions were most abundant in the crystal packing (54.1, 31.5% respectively) (Fig S-2). On the cation $\left[\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right]^{2+}$ and anion $\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}$ in the asymmetric unit, these contacts are attributed to hydrogen bonds, $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$, $\mathrm{OW} 1-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$. Therefore, the $\mathrm{Cl} \cdots \mathrm{H}$ contacts represent the hydrogen bonds which have more than half of the total Hirshfeld area (54.1\%) and have a slightly enriched $\mathrm{E}=1.57$. The $\mathrm{Cl} \cdots \mathrm{H}$ contacts appear two sharp symmetric spikes in the 2D fingerprint maps with a prominent long spike at $\mathrm{de}+\mathrm{di}=2.2 \AA$. The fingerprint plots of different Hirshfeld surfaces were decomposed into fractions due to individual atom types to highlight particular atom pair close contacts. This analysis shows that for $\left[\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right]^{+2}$, the complementary regions result from two types of close contacts: $\mathrm{C} \cdots \mathrm{C}(4.2 \%)$ and $\mathrm{N} \cdots \mathrm{C}(1.5 \%)$. These interactions have fairly high enrichment values of E_{CC} (36.99) and E_{NC} (8.33), indicates the presence of $\pi-\pi$ interactions. Red hollows on the second side result from interactions $\mathrm{C}(\pi) \cdots \mathrm{Cl}(0.4 \%)$ have a high enrichment ratio $\mathrm{E}=2.22$. Moreover, the $\mathrm{O}-\mathrm{H}$ interactions represent 1.8% to the total Hirshfeld surfaces and appear as two shap spikes in the two-dimensional fingerprint maps with $\mathrm{de}+\mathrm{di}=2.8 \AA$. These interactions have fairly high enrichment values of $\mathrm{E}_{\mathrm{OH}}=1.5$
attributed to hydrogen bonds types ($\mathrm{OW}-\mathrm{H} \cdots \mathrm{Cl}$). The $\mathrm{N}-\mathrm{H}$ and $\mathrm{Cl}-\mathrm{O}$ contact in fingerprint plots (1.6% and 0.1%, respectively) have enrichment ratios of 0.82 and 0.19 , respectively. The $\mathrm{Cl} \cdots \mathrm{H}$ is the driving forces in the molecular arrangement (Table 5). Finally, the Hirshfeld surface and related fingerprint plots of $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ complex have been presented in order to understand the nature of intermolecular interactions and stability of the molecule.

3.2 Vibrational analysis

To give more information on the structure 2PPCU we have studied the vibration proprieties of the title compound, using infrared absorption spectroscopy at room temperature, to better assign the vibration modes we use the theoretical calculations (DFT). The experimental (b) and theoretical (a) infrared spectra are shown in Fig. 5. Furthermore, in Table S - 1, we have gathered assignment attempts of IR vibrational modes based mainly on the theoretical results. The IR spectrum is clearly composed of five absorption bands in the $3642-2800 \mathrm{~cm}^{-1}$ range, which is assigned to the symmetric and asymmetric valence vibration modes $v(\mathrm{OH}), v\left(\mathrm{NH}_{2}\right), v(\mathrm{CH}), v(\mathrm{NH})$ and $v\left(\mathrm{CH}_{2}\right)$. The theoretical calculation of this compound made in gaseous phase (free hydrogen bond) for this reason, the vibration bands are delimited (between 3695 and $3007 \mathrm{~cm}^{-1}$). Moreover, the peaks located at 1627, 1531, 1450 and 1607 cm^{-1} can be attributed respectively to the deformation vibrations $\left(\mathrm{NH}_{2}\right)$, (NH) and (CNC), to the valence vibration of $(\mathrm{C}=\mathrm{C})$. In addition, the peak detected at $1547 \mathrm{~cm}^{-1}$ corresponds to the deformation vibration of the water $\delta\left(\mathrm{H}_{2} \mathrm{O}\right)$. The valence and deformation vibrations of (C - C) are between $1414-900 \mathrm{~cm}^{-1}$ and $1515-1220 \mathrm{~cm}^{-1}$ respectively. The vibrations between 1520 and $1500 \mathrm{~cm}^{-1}$ correspond to the symmetric and asymmetric deformation of the CH . The vibration bands in the range $1450-1200 \mathrm{~cm}^{-1}$ are assigned to valence and deformation (CN) vibrations. The peak around $1220 \mathrm{~cm}^{-1}$ corresponds to $\delta_{\text {as }}(\mathrm{CC})$. The vibrations between 1100 and $723 \mathrm{~cm}^{-1}$ correspond to the symmetric and asymmetric deformation of (NCC) and (CCC). The group of peaks at $1438-890 \mathrm{~cm}^{-1}$ can be attributed to the modes of movement, torsion (HNCC), (HCNC), (HCCN), (CCNC) and (HCCC). Finally, the peak around $650 \mathrm{~cm}^{-1}$ confirms the out-of-plane vibrations of the links (CCCN). It is worthily noting the relative good agreement observed between the theoretical and experimental vibrational modes. This is well proved with the best correlation between almost all the observed and calculated vibrational frequencies depicted in the correlation graph shown in Fig S - $\mathbf{3}$ (The calculated correlation coefficient (R) is 0.99903).

3.4 Optical study

The experimental and the theoretical UV-Visible absorption spectrum of $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)$] are gathered in (Fig S - 4). The title solid exhibits a wide optical absorption between 200 and 1000 nm at room temperature. The results reveal that the present compound have four bands at $\lambda=281.25 \mathrm{~nm}, \lambda=295.80, \lambda=323.39$ and at $\lambda=463.16 \mathrm{~nm}$ attributed to TCML, $\pi \rightarrow \pi^{*}$ and $n \rightarrow \pi^{*}$ transitions, TCML and TC anions-cation, respectively (Table 6). The strong absorption at 350 nm is relative to the aromatic conjugation in the cations $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)^{2+}$. The Kubelka-Munk theory (K.M) is generally used for analyzing the diffuse reflectance spectra obtained from weakly absorbing compounds. The Kubelka-Munk remission function is given by the following form [33]: $F(R)=(1-R) / 2 R$, where R is the reflectance of $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ and $\mathrm{F}(\mathrm{R})$ is the Kubelka-Munk function. Fig $\mathrm{S}-5$ (a) and (b) present the plots of the diffuse reflectance spectrum and the (K.M) curve of present compound, respectively at different wavelengths. Assuming a direct band gap energy of the title compound $\left[(\mathbf{F}(\mathbf{R}) \times \mathbf{h} \boldsymbol{v})^{\mathbf{2}}=\mathbf{h v}\right]$, the extrapolation of the linear part of the TAUC plot method extraction [34] indicates a band gap energy $\mathrm{Eg}=2.05 \mathrm{eV}$ in Fig. 6. This result was similar to compound $\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{~S}\right)$ [CuCl Cu_{4} [35]. The absorption peaks found in the absorption spectrum are very similar to those observed in other previously reported organic-inorganic compound.

The frontier molecular orbitals are two types: highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). The difference between these two orbitals called gap energy is useful to characterize the chemical stability of a molecule. A high gap indicates a high stability of the molecule and therefore low reactivity and vice versa. The HOMO, HOMO-1, LUMO, LUMO+1 orbitals as well as the gap energy, calculated in the gas phase are mapped in Fig. 7 in which red and green regions represent positive and negative phase, respectively. The energy values of HOMO, LUMO, LUMO+1, HOMO-1 were calculated from the TD-DFT method associate B3LYP/LanL2DZ is: EHOMO $=-10.909 \mathrm{eV}$; Elumo $=-8.27 \mathrm{eV}$; Elumo $+1=-6.922944 \mathrm{eV}$; EhOmo-1 $=-11.133232 \mathrm{eV}$, corresponding to HOMO-LUMO gap of 2.64 eV . This value was similar to compound $\left\{\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{2}\right)\left[\mathrm{CuCl}_{4}\right]\right\}$ [36]. Moreover the Ehomo and Elumo values are easily used to calculate the chemical hardness $(\eta=(I-A) / 2)$, the global softness $(S=1 / 2 \eta)$, the electron affinity $(I=-$ EНOMO $)$ and the ionization potential ($\mathrm{A}=-$ ElumO). Also, the values of electronegativity can be determined according to the definition of Mulliken [37] $(\chi=(\mathrm{I}+\mathrm{A}) / 2)$, the global chemical potential $(\mu=-(\mathrm{I}+\mathrm{A}) / 2)$ and the global electrophilicity introduced by Parr et al. [38] ($\omega=$ $\left.\mu^{2} / 2 \eta\right)$.The chemical softness (S) and Hardness (η), of the molecule study, are related to gap energy. If the crystal has small gap energy makes the molecule as soft. These molecules are
more polarizable because they need a small energy for excitation. The potential $\mu(-9.5895)$ is negative which means that the title compound is stable. Table 7 regroups all the calculated values of chemical reactivity descriptors. The optical transmittance spectrum of $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)$ $\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ is obtained from the absorption spectrum ($\mathrm{Fig} \mathrm{S}-6$). For any material the optical transmission range, transparency cut-off and the absorbance band are the most important optical parameters for laser frequency conversion applications. In our hybrid compound the transmission percentage does not exceed 27% transmission in the visible region and cut-off wavelength was found to be $\lambda=300 \mathrm{~nm}$. The absence of absorption in the visible region (300-900 nm) reveals that our crystal $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ could be exploited for optical applications.

3.5 Photoluminescence properties

The emission spectrum of $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ at room temperature is shown in Fig S - 7. The excitation of compound (I) with $\lambda_{\mathrm{ex}}=270 \mathrm{~nm}$ reveals that luminescence band is located at two positions. The fluorescence spectrum shows two peaks in increasing order of intensity, 331 and 339 nm , respectively. The emission band located at $\lambda_{\mathrm{em} 1}=331 \mathrm{~nm}$ is probably due to $\pi^{*} \rightarrow \pi$ and $\pi^{*} \rightarrow \mathrm{n}$ transition of 1-(2-pyridinium)piperazinim. The emission band observed at $\lambda_{\mathrm{em} 2}=339 \mathrm{~nm}$ can be attributed to ligand-metal charge transfer (LMCT) transition.

3.6 NBO analysis

The NBO analysis of $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ structure presents the high electro-negativity of chlorine; oxygen and nitrogen give a high value of polarization coefficients (Table $S-2$). The second order perturbation theory analysis of the Fock matrix in natural bond orbital (NBO) basis shows strong intermolecular hyper conjugative interactions. These interactions are formed by orbital which results in an intermolecular charge transfer causing stabilization of the system. In table $S-3$ the perturbation energies of donor-acceptor interaction are presented. In our title molecule $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, the $\mathrm{LP}(\mathrm{Cl} 4)-\mathrm{LP} *(\mathrm{Cu} 1)$ has 37.61 Kcal. mol^{-1}, $\mathrm{LP}(\mathrm{Cl} 5)-\mathrm{LP} *(\mathrm{Cu} 1)$ has $28.63 \mathrm{Kcal}^{\mathrm{K}} \mathrm{mol}^{-1}, \mathrm{LP}(\mathrm{Cl} 3)-\mathrm{LP} *(\mathrm{Cu} 1)$ has 26.26 and $\mathrm{LP}(\mathrm{Cl} 2)-\mathrm{LP}^{*}(\mathrm{Cu} 1)$ has $15.54 \mathrm{Kcal}^{2} \mathrm{~mol}^{-1}$, these energies confirmed the charge transfer between organic and inorganic entities. The interaction $\operatorname{LP}(\mathrm{O} 6)-\mathrm{LP} *(\mathrm{Cu})$ have the stabilization energy equal $26.15 \mathrm{Kcal}_{\mathrm{K}} . \mathrm{mol}^{-1}$. In addition, the $\mathrm{LP}(\mathrm{N} 20)-\pi *(\mathrm{~N} 17-\mathrm{C} 19)$ having the stabilization energy $22.94 \mathrm{Kcal} . \mathrm{mol}^{-1}$ are responsible for hyper conjugation in organic entities. Furthermore, the interactions $\pi(\mathrm{N} 17-\mathrm{C} 19)-\pi^{*}(\mathrm{C} 9-\mathrm{C} 11)$ and $\pi^{*}(\mathrm{C} 13-\mathrm{C} 15)$ having the stabilization energy $23.72 \mathrm{Kcal} . \mathrm{mol}^{-1}$ and $11.66 \mathrm{Kcal} . \mathrm{mol}^{-1}$, respectively. The interaction $\pi(\mathrm{C} 9-\mathrm{C} 11)-\pi^{*}(\mathrm{~N} 17-\mathrm{C} 19)$ and $\pi^{*}(\mathrm{C} 13-\mathrm{C} 15)$ having the stabilization energy
$21.48 \mathrm{Kcal}^{\mathrm{mol}}{ }^{-1}$ and $6.97{\mathrm{Kcal} . \mathrm{mol}^{-1} \text {, respectively. The } \pi(\mathrm{C} 13-\mathrm{C} 15)-\pi^{*}(\mathrm{~N} 17-\mathrm{C} 19) ~}_{\text {(}}$ (interactions having an $\mathrm{E}(2)=6.71 \mathrm{Kcal} . \mathrm{mol}^{-1}$. These important interactions prove the existence of $\pi \pi$ interaction in our compound. Finally, the $\operatorname{LP}(\mathrm{Cl} 3)-\sigma^{*}(\mathrm{~N} 17-\mathrm{H} 18)$ interactions having the stabilization energy $8.53 \mathrm{Kcal}^{2} \mathrm{~mol}^{-1}$, which shows the presence of intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond in title compound. Finally, to investigate the chemical reactivity and stability of the title complex, we carried out the quantum descriptors analysis, the natural bond orbital (NBO) helps us to study the intra and intermolecular interactions.

3.7 Molecular electrostatic potential surface (MEPS)

The molecular electrostatic potential of $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ was calculated by B3LYP/6-31 G*. The maximum positive region, which preferred site for nucleophilic attack symptoms as blue color and the maximum negative region, which preferred site for electrophilic attack indicate as red color. The importance of MEP lies in the fact that is simultaneously display molecular size, shape as well as negative, neutral and positive electrostatic potential regions. MEPS analysis allows the determination of electron-donor and electron-acceptor sites, which is especially useful for investigation the intra and intermolecular interactions such as hydrogen bonding. In title compound, the negative electrostatic potential sites are on the chlorine atoms surrounding the Cu atoms, whereas the positive electrostatic potential sites are on the hydrogen of the nitrogen atoms in $\left[\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right]^{2+}$ cation ($\mathbf{F i g} \mathbf{S}-\mathbf{8}$). The dispersion of potential in the title compound is -4.191 a.u to 0.290 a.u. Finally, the molecular electrostatic potential confirms the X-Ray results in the existence of an $\mathrm{N}-\mathrm{H} . . . \mathrm{Cl}$ intermolecular interaction.

3.8 Reduced Density Gradient (RDG) analysis

The weak interactions play an important role in many chemical, physical, or biological phenomena [39]. They can be used in various applications such as hydrogen storage for renewable energies [40]. Reduced density gradient (RDG) is a very popular and powerful method for analyzing weak interactions such as repulsive interactions, Van der Waals interactions and hydrogen bonds using a simple color code. The RDG approach is based on the charge density introduced by Johnson and al. [41] and Contreras-Garcia and al. [42]. Fig S - 9 (a) and (b) gives a visualization of non covalent interaction in the molecular space of 2PPCU molecules by using VMD and Multiwfn programs [43, 44], respectively. Fig S - 9 (b) illustrates the RDG function versus the electron density ρ multiplied by the sign of the second eigenvalue $\lambda 2$ for $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ compound. Through a color code we can differentiate between different regions of interactions (show Fig S - 9 (c)). This figure
highlights regions of color that allow us to describe the type of interaction. When sign ($\lambda 2$) ρ takes a negative value, we have a strong attractive interactions (blue color). The last case, we have Van der Waals interactions when sign ($\lambda 2$) ρ is close to zero (green color). Strong repulsive interactions when sign ($\lambda 2$) ρ has a positive value (red color). As clearly seen, the blue spot between the hydrogen atom carried by the nitrogen atom and the chloride atom indicates the formation of a strong attractive interaction $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$. Moreover the green plates with slight brown located between the anionic and cationic entities, are attributed to Van der Waals interactions and the elliptic red plate located in inorganic part $\left[\mathrm{CuCl}_{4}\right]^{2-}$ is related to repulsive interactions. Along with this, the non-covalent interaction shows that strong repulsive interactions showed from two spikes along with sign ($\lambda 2$) positive values, located at the center of the cycle are related to repulsive interactions present between the atoms of aromatic molecules.

3.9 Quantum theory of atoms in molecules (QTAIMs) analysis

Atoms-In-Molecule (AIM) analysis is an efficient tool to determine the presence of critical points (CPs) of $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$. This point is used for the identification of chemical bonds between atoms and interatomic interactions. The topological parameters proposed by Bader [45] can be calculated in the bond critical point using the Multiwfn program [44] such as the electron density $\rho(\mathrm{r})$, the Laplacien values $\nabla^{2} \rho(\mathrm{r})$, the elliplicity (ε), which makes it possible to evaluate the properties of the bonds in the compound and more particularity the hydrogen bonds. The latter can be classified into three categories according to Rozas and all [46]. A strong or very strong hydrogen bonds: $\nabla^{2} \rho(\mathrm{rBCP})<0$ and $\mathrm{H}(\mathrm{rBCP})<0$, a moderate hydrogen bonds: $\nabla^{2} \rho(\mathrm{rBCP})>0$ and $\mathrm{H}(\mathrm{rBCP})<0$ and a weak hydrogen bonds: $\nabla^{2} \rho(\mathrm{rBCP})$ >0 and $\mathrm{H}(\mathrm{rBCP})>0$.

The graphical representation of AIM analysis of title compound is illustrated in Fig. 8 and the calculated topological parameters are assembled in Table 8. The AIM topological analysis reveals that our crystal is stabilized by six hydrogen bonds $\mathrm{H} \cdots \mathrm{Cl}$. The BCP analysis in Table 8 shows that the six hydrogen bonds $\mathrm{H} \cdots \mathrm{Cl}$ are considered a moderate hydrogen bonds energies of -69.5697, -88.8643, -107.6828, -91.6268, -77.3533 and $-90.5268 \mathrm{Kcal}^{2} \mathrm{~mol}^{-1}$, and the energy density $(0.2061250,0.2641818,0.3208060,0.2724941,0.2295457$ and 0.2691843 a.u) confirm the strength of these hydrogen bonds compared to other compounds [47]. These values are greater than zero according to the Rozas criterion. In addition, the AIM analysis allows us to detect the presence of cycles in a molecular system through the presence of a new ring critical point RCP1, RCP2, NRCP1, NRCP2 and NRCP3 cycles that are formed through the interactions between the organic group and the inorganic anion via hydrogen bonds.

Finally, the study of atom-atom interactions in the present compound was explored with the aid of the quantum theory of atom-in-molecule (QTAIM) to confirm la presence of $\mathrm{H} . . \mathrm{Cl}$ hydrogen bonds.

3.10 Fukui function

Fukui function is recognized as highly a recommendable local reactive factor. Fukui functions are prominent functions which give idea related to the capacity of the molecule to accept or donate an electron. Therefore, reveal information about an atom being nucleophilic or electrophilic. Generally, nucleophilic $\mathrm{f}^{+}(\mathrm{r})$ and electrophilic $\mathrm{f}^{-}(\mathrm{r})$ attacks are computed via Fukui function. $\mathrm{f}^{-}=\mathrm{N}-(\mathrm{N}-1)$ and $\mathrm{f}^{+}=(\mathrm{N}+1)-\mathrm{N}$; the atomic charge of cationic $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)^{2+}$, anionic $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)$ and neutral $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)^{+}$calculated by B3LYP/6-311++G (p, d) level of theory. Besides, to get Fukui's functions, the neutral molecule is calculated to know the corresponding molecular structure two of the lowest energy and its multiplicity. The molecular geometry obtained above makes it possible to calculate on its anion and its cation while changing the charge and the multiplicity in each case. Therefore, more than MEPS that allows recognizing nucleophilic and electrophilic sites; these sites can be identified from these Fukui's functions. From Table $S-4$, it is observed that the higher Fukui function f^{+}values are in order of $18 \mathrm{C}>2 \mathrm{C}>5 \mathrm{C}>3 \mathrm{C}>15 \mathrm{C}>12 \mathrm{C}>11 \mathrm{~N}>\ldots$ etc, these are the nucleophilic attack sites. In addition, higher Fukui function f^{-}values are in order of $4 \mathrm{C}>19 \mathrm{H}>12 \mathrm{C}>24 \mathrm{~N}>15 \mathrm{C}>$ $17 \mathrm{H}>25 \mathrm{H}>23 \mathrm{H}>6 \mathrm{H}>7 \mathrm{H}>9 \mathrm{H}>\ldots$ etc, these are the electrophilic attack sites. Dual descriptor $\mathrm{f}(\mathrm{r})$ exposes a reactive site more suitably [48]. It is presented by, $\Delta \mathrm{f}=\mathrm{f}^{+}-\mathrm{f}^{-}$. The $\Delta \mathrm{f}$ provides an effective distinction among nucleophilic and electrophilic attack at accurate region along their sign.

- If $\Delta \mathrm{f}<0$, the site is favorite for electrophilic attack.
- If $\Delta \mathrm{f}>0$, the site is favorite for nucleophilic attack.

For that, we have shown in Fig. 9, the variation of $\Delta \mathrm{f}$ in functions of the atoms. Results reveal that, from the calculated values of $\Delta \mathrm{f}$ given in Table $\mathrm{S}-4$, the atoms $1 \mathrm{C}, 2 \mathrm{H}, 4 \mathrm{C}, 6 \mathrm{H}$, $7 \mathrm{H}, 8 \mathrm{H}, 9 \mathrm{H}, 10 \mathrm{~N}, ~, 14 \mathrm{H}, 15 \mathrm{C}, 16 \mathrm{H}, 17 \mathrm{H}, 20 \mathrm{H}, 21 \mathrm{C}, 23 \mathrm{H}, 24 \mathrm{~N}$ and 25 H present electrophilic sites since the value of $\Delta \mathrm{f}$ is negative. It is seen that the atoms $1 \mathrm{C}(\Delta \mathrm{f}=-1.939)$ are the favorable sites for electrophilic attack. While, 2C, 3C, 5C, 11N, 12C, 13H, 18C and 19 H correspond to the positive $\Delta \mathrm{f}$ so they present the nucleophilic sites. 18 C and 2 C are the favorable sites for nucleophilic attack where $\Delta \mathrm{f}$ equal to 2.109 and 1.629 , respectively.
Fig. 9 mentioned the Fukui functions ($\mathrm{f}^{-}, \mathrm{f}^{+}$and $\Delta \mathrm{f}$) of $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)^{2+}$ are shown. The Fukui Function (FF) confirms the protonation to be done on N10 or N11. When the amine
protonated only once, the second protonation was made on N10, Fukui's calculation confirms the experimental results since N 10 is more favorable by electrophilic attack than N11.

3.11 Thermal study

The differential thermal and thermogravimetric analysis (ATD/ATG) of the title compound produced by a mass of 13.1 mg , a temperature varies between $25-700{ }^{\circ} \mathrm{C}$ with a heating rate equal to $5^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$ and under an atmosphere of argon are given in $\mathrm{Fig} \mathrm{S}-\mathbf{1 0}$. Our compound $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, loses its water molecule at $150{ }^{\circ} \mathrm{C}$, the loss of mass is $\Delta \mathrm{ml}=$ 4.616%, corresponds well to the loss of relative theoretical mass at the start of the coordinating water molecule of the compound (theoretical mass loss $\approx 4.6 \%$). The endothermic peak located at $210{ }^{\circ} \mathrm{C}$ can be assigned to the release of two molecules of hydrochloric acid, good agreement with the experimental mass loss ($\Delta \mathrm{m} 2 \approx 10 \%$) and the calculated mass loss $\left(9.4 \%\right.$). The $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ compound is stable at temperatures below 373 K .

3.12 Biological study

In vitro antioxidant activity of 2 PPCU showed an interesting scavenging activity in both the DPPH and ABTS tests. The antioxidant capacities of title compound are summarized in Fig S - 11. The highest antioxidant capacities were detected for title compound by DPPH assay (a percentage of inhibition $57.95 \% \pm 7.05$ at $50 \mathrm{mg}_{\mathrm{ml}} \mathrm{ml}^{-1}$). This finding was confirmed by the result obtained in the ABTS test $\left(51.20 \% \pm 0.55\right.$ at $\left.50 \mathrm{mg} . \mathrm{ml}^{-1}\right)$. This in vitro scavenging activity can be explained by the proton diffusion ability as well as the composition of $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ which contains reactive sites such as Nitrogen, Chlorine and Carbon atoms, which could be proton donors or electron acceptors.

3.13 Molecular docking

In order to explore the different modes of binding that can be established between 2PPCU as a new protein inhibitor candidate, we have chosen eight co-crystal structures removed from the protein data bank (pdb) with the following codes: $4 \mathrm{MQQ}, 6 \mathrm{GQO}, 6 \mathrm{GQP}, 3 \mathrm{TFT}, 3 \mathrm{G} 60$, $3 \mathrm{PWH}, 3 \mathrm{~W} 37$ and 1Y6B. All ligands and water molecules are removed for each protein and hydrogen atoms are added to them using Autodock Tools [49]. Table 8 summarizes the docking energies with the different proteins. We have carried out this work with 5 poses for each protein and we have represented only the best poses which represent the minimum energy. This minimum is the sum of three types of interaction, namely VDW, H-band and electronic binding energy. According to the results found in Table 9, it is clear that the two proteins 4 MQQ and 6 GQO show strong interactions with energies respectively equal to 96.5416 and $-96.4865 \mathrm{Kcal}^{2} \mathrm{~mol}^{-1}$. Moreover, the proteins receptors 4 MQQ have strong
interactions in similar bibliographic [50]. We can see that the compound 2PPCU makes electronic interactions with all the proteins except for 3G60 and 1Y6B. H-Bond-like interactions with the 6 GQO protein are most intense, while the strongest VDW-like interactions are with the 4MQQ protein. Fig S - 12 illustrates the intermolecular interaction between the 2 PPCU ligand and the proteins 4 MQQ , 6 GQO , while Fig $\mathrm{S}-\mathbf{1 3}$ shows those established with 6GQP, 3TFT, 3G60, 3PWH, 3W37 and 1Y6B. The analysis of Fig. 10 - a (protein 6GQO) shows three polarized interactions. Two with residue ARG-1126 type $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ and one with ARG-1118 type $\mathrm{N}-\mathrm{H} \cdots \mathrm{Ow}$. On the other hand, for Fig. 10 - b (protein $4 \mathrm{MQQ})$, the inorganic group $\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ plays the role of an electron acceptor residue TYR-25 via its alcohol function. Finally, the activity of 2PPCU compound against transaminase-Bio A type PDB (4MQQ) and with VEGFR-2 kinase inhibitor with respect to one of these receivers (6GQO), which reveals respectively the anti-tubercular activity and as a potential therapeutic target for anticancer treatment. These results have a good agreement with similar article [51].

Conclusion

Finally, the present compound $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, was prepared as single crystals at room temperature and characterized by physicochemical methods. On the structural level, the atomic arrangement of this material consists of a network of $\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}$ anions and 1-(2pyridinium) piperazinium cations $\left[\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right]^{2+}$ connected by $\mathrm{OW} 1-\mathrm{H} \cdots \mathrm{Cl}, \mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and C $-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding interactions. Investigation of intermolecular interactions and crystal packing via Hirshfeld surface analysis reveals that the structure is maintained primarily by $\mathrm{H} \cdots \mathrm{Cl}$ strong hydrogen bonds and hydrophobic contacts $\mathrm{H} \cdots \mathrm{H}$. The shape index and curvedness represents a $\pi-\pi$ stacking interactions between two neighboring pyridinium rings. In fact, the vibrational spectrum (FT-IR) and the UV-Visible absorption calculated by DFT are in good agreement with the experimental results. Furthermore, the HOMO-LUMO energy gap value ($\mathrm{Eg}=2.64 \mathrm{eV}$) confirmed that this compound can be classified as semiconductor material. The optical properties of title compound were investigated by UVVis absorption and photoluminescence measurements and revealed that the complex exhibits a blue light emission at room temperature. The NBO analysis indicated that the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}, \mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Cl}, \pi \rightarrow \pi^{*}$ and $\mathrm{n} \rightarrow \pi^{*}$ intermolecular interactions significantly influence crystal packing in $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$. This result has been confirmed by Hirshfeld surface analysis. Moreover, the AIM and RDG approach suggests a good stability of the title compound. MEPs
mapping and Fukui function are determined to predict the electrophilic and nucleophilic reactions also the hydrogen bonding interactions of the molecule. Fukui's calculation confirms the experimental results since N10 is more favorable by electrophilic attack than N11. Finally the bioassay results showed that the structure exhibits significant antibacterial activity and the activity of 2 PPCU molecule against proteins receptor 4 MQQ and 6 GQO is significant with a binding energy of -96.5416 and $-96.4865 \mathrm{Kcal}^{2} \mathrm{~mol}^{-1}$ respectively.

Acknowledgments: We are grateful to the Tunisian Ministry of Higher Education Scientific Research for the provided financial support

Supplementary Data: CCDC 2069472 contains all data related to this crystal.
Conflict of interest: The authors don't have any conflict of interest.

Highlights

*A New Organic-Inorganic Hybrid Compound $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ was successfully synthesized and structurally characterized.
*Intermolecular interactions were explored using Hirshfeld surface analysis and RDG approach.
*Optical properties and vibrational bands of the compound were discussed and investigated by DFT calculations.
*Antibacterial activity of compound has been tested by DPPH and ABTS.
*Molecular docking studies confirmed the inhibitory activity of $\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$.

References

[1] C. R. Mariappan, G. Govindaraj, S. Vinoth. Rathan, G. Vijaya. Prakash, Mater. Sci. Eng. B 123 (2005) 63-68.
[2] David. B. Mitzi. Phillip Brock. Inorg. Chem. 40 (2001) 2096-2104.
[3] A. Hachani, I. Dridi, A. Othmani, T. Roisnel, S. Humbel, R. Kefi, J. Mol. Struct. 1229(5) (2020) 129838.
[4] A. Kessentini, M. Belhouchet, J. J. Sunol, Y. Abid, T. Mhiri. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 134 (2015) 28.
[5] P. Arularasan, B. Sivakumar, G. Chakkaravarthi, R. Mohana, Acta Cryst. E 69, (2013), 583.
[6] T. Dammak, H. Boughzala, A. Mlayah, Y. Abid, J. Lumin. 173 (2016) 213.
[7] R. H. Al-Far R H, B. F. Ali, J. Chem. Crystallogr, 38 (2008) 373.
[8] Sorenson J R J 1976 J. Med. Chem, 19135
[9] A. Kessentini, M. Belhouchet, J. J. Sunol, Y. Abid, T. Mhiri, J. Luminescence. 149 (2014) 341-347.
[10] R. Almairac, A. Astito, J. Lapasset, J. Moret, P.Saint-gregoire, J. Ferroelectr. 125 (1992) 203-208.
[11] N. Drissi, K. Karoui, F. Jomni, A. Ben Rhaiem, Phys. E Low Dimens. Syst. Nanostructures. 83 (2016) 349-357.
[12] Humle, C. Cherrier, M.P.Tetrahedronlett, 40 (1999) 5295-5299.
[13] S. Bhati, V. Kumar, S. Singh, J. Singh, Synthesis, biological activities and docking studies of piperazine incorporated 1, 3, 4-oxadiazole derivatives, Journal of Molecular Structure. 1191 (2019) 197-205.
[14] O. Noureddine, S. Gatfaoui, Silvia Antonia Brandán, H. Marouani, N. Issaoui, Structural, docking and spectroscopic studies of a new piperazine derivative, 1-Phenylpiperazine-1,4diium bis (hydrogen sulfate), Journal of Molecular Structure. 1202 (2020) 127351.
[15] Alaa Z.Omar, Tawfik M.Mosa, Samer K.El-sadany, Ezzat A.Hamed, Mohamed Elatawy, Novel piperazine based compounds as potential inhibitors for SARS-CoV-2 Protease Enzyme: Synthesis and molecular docking study, Journal of Molecular Structure. 1245 (2021) 131020.
[16] H. S. Nagendra Prasad, A. P. Ananda, T. N. Lohith, P. Prabhuprasad, H. S. Jayanth, N.B. Krishnamurthy, M. A. Sridhar, L. Mallesha, P. Mallu, Design, synthesis, molecular docking and DFT computational insight on the structure of Piperazine sulfynol derivatives as a new
antibacterial contender against superbugs MRSA, Journal of Molecular Structure. 1247 (2022) 131333.
[17] G. M. Sheldrick. Acta. Cryst. (2015) A71 3-8.
[18] G.M. Sheldrick. Acta. Cryst. (2015) C71 3-8.
[19] K. Brandenburg, Diamond Version 2.0 Impact GbR. Bonn, Germany, (1998).
[20] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. GAUSSIAN 09, Revision A.1, GAUSSIAN, Inc, Wallingford CT, 2009.
[21] A.D. Becke, Phys. Rev. 38 (1988) 3098-3100.
[22] A.D. Becke, J. Chem. Phys. 98 (1993) 1372-1377.
[23] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785-789.
[24] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 270-283.
[25] M.H. Jamroz. Vibrational Energy Distribution Analysis: VEDA 4 Program, Warsaw, Poland (2004). http://www.smmg.pl.
[26] J.M. Yang, C.C. Chen, GEMDOCK: A Generic Evolutionary Method for Molecular Docking, Proteins Struct, Funct, Bioinf, 55 (2004) 288-304.
[27] W.L. DeLano, PyMOL DeLanoScientific, 700, San Carlos, CA, 2002
[28] A. Braca, N. De Tommasi, L. Di Bari, C. Pizza, M. Politi, I. Morelli, Journal of Natural Products, 64 (2001) 892-895.
[29] G. Fatma, Ben Farhat Mouna, M. Mejri, A. Landoulsi, Lipids in Health and Disease, 13 (2014)114.
[30] W. Baur, Acta Cryst, (B30), 1974, 1191-1195
[31] D. Cremer and J. A. Pople (1975). J. Am. Chem. Soc. 97, 1354-1358.
[32] J.J. McKinnon, M.A. Spackman, A.S. Mitchell, Acta. Crystallogr. B B60 (2004) 627666.
[33] Y. Dang, L. Yang, S. Youxuan, Y. Dongsheng, L. Xiaolong, L. Weiqun, L. Guangfeng, X. Haibing, T. Xutang, J. Cryst. Eng. Comm. 17 (2015) 665-670.
[34] J. Tauc, J. Mater. res. Bull. 3 (1968) 37-46.
[35] A. Kessentini, M. Belhouchet, Y. Abid, C. Minot, T. Mhiri, J. Spectro. Acta. PA. 122 (2014) 476-481.
[36] F. Harzi, Y. Arfaoui, C. Silvestru, N. Fakhar Bourguiba, Synthesis, structural and spectroscopic studies, DFT calculations, thermal characterization and Hirshfeld surface analysis of copper(II) organic-inorganic hybrid material $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{2}\right)\left[\mathrm{CuCl}_{4}\right]$, J of coordination chemistry. 75 (2022) 70-83.
[37] R.S. Mulliken, A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities, J. Chem. Phys. 2 (1934) 782-794. [38] R.G. Parr, L. von Szentpály, S. Liu, Electrophilicity index, J. Am. Chem. Soc. 121 (1999) 1922-1924.
[39] K. Autumn, and al., Proc. Natl. Acad. Sci. U.S.A. 117 (792) (1995) 99, 12252 _2002; R.
L. Baldwin, J. Mol. Biol. 371, 283 2007; P. Hobza et al.J. Am. Chem. Soc.
[40] A.C. Dillon, and al, Nature London 386 (377) (1997).
[41] E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen, W. Yang, J. Am. Chem. Soc. 132 (2010) 6498-6506.
[42] J. Contreras-Garcia, W. Yang, E.R. Johnson, Analysis of hydrogen-bond interaction potentials from the electron density: integration of non covalent interaction regions, J. Phys. Chem. A 115 (2011) 12983-12990.
[43] W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics, J. Mol. Graph. 14 (1996) 33-38 and 27-8.
[44] T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem. 33 (2012) 580-592.
[45] R.F.W. Bader, Atoms in Molecules. A Quantum Theory, Oxford University Press, Oxford, 19900198558651.
[46] I. Rozas, I. Alkorta, J. Elguero, J. Am. Chem. Soc. 122 (2000) 11154 - 11161.
[47] C. Doghar, N. Issaoui, T. Roisnel, V. Dorcet, J. Mol. Struct, 1230 (2021), 129820.
[48] Christophe Morell, Andre' Grand, Alejandro Toro-Labbe, J. Phys. Chem. A 109 (2005) 205-212.
[49] G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009) 2785-2791.
[50] H. Marshan Robert, D Usha, M. Amalanathan, R. Racil Jeya Geetha, M. Sony Michael Mary, Vibrational spectral, density functional theory and molecular docking analysis on 4nitrobenzohydrazide, Journal of Molecular Structure. 1223 (2021) 128948
[51] I. Jomaa, O. Noureddine, S. Gatfaoui, N. Issaoui, T. Roisnel, H. Marouani, Experimental, computational, and in silico analysis of $\left(\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{CdCl}_{6}\right]$ compound, Journal of Molecular Structure. 1213 (2020) 128186.

```
data_AG21_02
#-----------------------------------------------------------------------------------
# Date of experiment: 03 fevrier 2021 #
#----------------------------------------------------------------------------------
#------------------------------------------------------------------------------------------------
# CHEMICAL INFORMATION #
#----------------------------------------------------------------------------------------------
_chemical_name_systematic
;
?
;
\begin{tabular}{ll} 
_chemical_formula_moiety & 'C9 H15 N3, C14 Cu H2 O' \\
\begin{tabular}{l} 
_chemical_formula_sum
\end{tabular} & 'C9 H17 C14 Cu N3 O' \\
_chemical_formula_weight & 388.59 \\
_chemical_compound_source & 'synthesis as described'
\end{tabular}
```



```
# SPACE GROUP AND UNIT CELL INFORMATION
#
#--------------------------------------------------------------------------------------------
_space_group_crystal_system
monoclinic
```

_space_group_name_H-M_alt	alt 'P 21/n'
_space_group_name_Hall	'-P 2yn'
_space_group_IT_number	14
loop_	
_space_group_symop_operation_xyz	
'x, y, z'	
'-x+1/2, y+1/2, -z+1/2'	
'-x, -y, -z'	
'x-1/2, -y-1/2, z-1/2'	
$\text { _cell_length_a } \quad 10.2986(8)$	
_cell_length_b 19.1385(13)	
_cell_length_c 7.6985(5)	
_cell_angle_alpha 90	
_cell_angle_beta 90.139(4)	
_cell_angle_gamma 90	
_cell_volume 1517.37(19)	
_cell_formula_units_Z 4	
_cell_measurement_temperature 296(2)	
_cell_measurement_reflns_used 3388	
_cell_measurement_theta_min 2.8519	
_cell_measurement_theta_max 27.1497	
_cell_measurement_wavelength	ngth 0.710730

```
#-
```

_diffrn_orient_matrix_UB_11 0.0541924
_diffrn_orient_matrix_UB_21 -0.0732455
_diffrn_orient_matrix_UB_31 -0.0335677
_diffrn_orient_matrix_UB_12 -0.0395683
_diffrn_orient_matrix_UB_22 -0.0152957
_diffrn_orient_matrix_UB_32 -0.0305046
_diffrn_orient_matrix_UB_13 0.0442342
_diffrn_orient_matrix_UB_23 0.0760923
_diffrn_orient_matrix_UB_33 -0.0955319

```


\# CRYSTAL INFORMATION \#

\#-----------------------------------------------------------------------------------------
_exptl_crystal_description prism
_exptl_crystal_colour green
_exptl_crystal_size_max 0.510
_exptl_crystal_size_mid 0.440
_exptl_crystal_size_min 0.190
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.701
_exptl_crystal_density_method ?
_exptl_crystal_F_000 788
_exptl_special_details
```

;
?
;
\#--

ABSORPTION CORRECTION

\#---
_exptl_absorpt_coefficient_mu
2.135
_exptl_absorpt_correction_type
multi-scan
_exptl_absorpt_process_details
;
[Sheldrick, G.M. (2014). SADABS Bruker AXS Inc., Madison, Wisconsin, USA] ;
_exptl_absorpt_correction_T_min 0.494
_exptl_absorpt_correction_T_max
0 . 6 6 7

```

```

| \# Software $\quad:$ BIS 2014.5.0.0/23-May-2014 \&\& APEX2_2014.11-0 \# | | | |
| :--- | :---: | :---: | :---: | :---: |
| \# Number of scans | $:$ | 2 | |
| \# Total number of frames | $:$ | 201 | \# |
| \# Total length of scans | $:$ | $201.00(\mathrm{deg})$. | \# |
| \# Rotation speed | $:$ | 8.00 sec./deg. | |
| \# Total exposition time | $:$ | 26.8 min. | $\#$ |

```
```


Scan Time(s) Width DX (mm) Frames Theta Omega Phi Chi T(K)

\#.
\#..\#

1 Omega 8.0 1.00 35.0 93 343.95 350.71 333.14 316.27 299.26

2 Omega 8.0 1.00 35.0 108 16.05 14.52 101.73 304.12 299.26

_diffrn_measurement_device_type
'APEXII Bruker-AXS'
_diffrn_measurement_method 'CCD rotation images, thin slices'
_diffrn_detector 'CCD plate'
_diffrn_detector_area_resol_mean 8.33
_diffrn_ambient_temperature 296(2)
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoKla
_diffrn_radiation_probe x-ray
_diffrn_radiation_source 'fine-focus sealed tube'
_diffrn_radiation_monochromator graphite
_diffrn_reflns_av_uneti/neti 0.0513
_diffrn_reflns_av_r_equivalents 0.0329
_diffrn_reflns_number 7420
_diffrn_reflns_limit_h_min -13
_diffrn_reflns_limit_h_max 9
_diffrn_reflns_limit_k_min -15
_diffrn_reflns_limit_k_max 24
_diffrn_reflns_limit_1_min -9

```
\begin{tabular}{lc} 
_diffrn_reflns_limit_1_max & 9 \\
_diffrn_reflns_theta_min & 1.977 \\
_diffrn_reflns_theta_max & 27.470 \\
_diffrn_reflns_theta_full & 25.242 \\
_diffrn_measured_fraction_theta_full 0.994 \\
_diffrn_measured_fraction_theta_max 0.993 \\
_reflns_number_total & 3444 \\
_reflns_number_gt & 3004 \\
_reflns_threshold_expression & \(>2\) sigma(I) \\
\\
reflns_special_details & \\
;
\end{tabular}

Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.
;

\# COMPUTER PROGRAMS USED \#
\#-----------------------------------------------------------------------------------------
_computing_data_collection 'Bruker APEX2 (Bruker, 2014)'
_computing_cell_refinement 'Bruker APEX2 (Bruker, 2014)'
_computing_data_reduction 'Bruker APEX2 (Bruker, 2014)'
_computing_structure_solution 'SHELXT 2018_2 (Sheldrick, 2018)'
_computing_structure_refinement 'SHELXL-2018_3 (Sheldrick, 2018)'
_computing_molecular_graphics
;
'SXGRAPH (L. Farrugia, 1999), Mercury (CSD, 2020)'
;
_computing_publication_material 'CRYSCALC (T. Roisnel, local program, ver. 2021)'

_refine_special_details
;
Refinement of \(\mathrm{F}^{\wedge} 2^{\wedge}\) against ALL reflections. The weighted R -factor wR and goodness of fit S are based on \(\mathrm{F}^{\wedge} 2^{\wedge}\), conventional R -factors R are based on F , with F set to zero for negative \(\mathrm{F}^{\wedge} 2^{\wedge}\). The threshold expression of \(\mathrm{F}^{\wedge} 2^{\wedge}>2 \operatorname{sigma}\left(\mathrm{~F}^{\wedge} 2^{\wedge}\right)\) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on \(\mathrm{F}^{\wedge} 2^{\wedge}\) are statistically about twice as large as those based on F , and R factors based on ALL data will be even larger.
;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
\(' \mathrm{w}=1 /\left[\mathrm{s}^{\wedge} 2^{\wedge}\left(\mathrm{Fo}^{\wedge} 2^{\wedge}\right)+(0.0339 \mathrm{P})^{\wedge} 2^{\wedge}\right]\) where \(\mathrm{P}=\left(\mathrm{Fo}^{\wedge} 2^{\wedge}+2 \mathrm{Fc}^{\wedge} 2^{\wedge}\right) / 3^{\prime}\)
_atom_sites_solution_primary dual
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens mixed
```

_refine_ls_hydrogen_treatment mixed
_refine_ls_extinction_method none
_refine_ls_extinction_coef
_refine_ls_number_reflns 3444
_refine_ls_number_parameters 179
_refine_ls_number_restraints 2
_refine_ls_R_factor_all 0.0421
_refine_ls_R_factor_gt 0.0345
_refine_ls_wR_factor_ref 0.0825
_refine_ls_wR_factor_gt 0.0795
_refine_ls_goodness_of_fit_ref 1.044
_refine_ls_restrained_S_all 1.045
_refine_ls_shift/su_max 0.000
_refine_ls_shift/su_mean 0.000
_refine_diff_density_max 0.561
_refine_diff_density_min -0.352
_refine_diff_density_rms 0.072

```

```


ATOMIC TYPES, COORDINATES AND THERMAL PARAMETERS

\#--
loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag

```
_atom_type_scat_source
C C 0.00330 .0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
H H 0.00000 .0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
\(\begin{array}{lll}\mathrm{N} & \mathrm{N} \quad 0.00610 .0033 \text { 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' }\end{array}\)
Cu Cu 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
Cl Cl 0.14840 .1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
```

loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
_atom_site_site_symmetry_order
_atom_site_calc_flag
_atom_site_refinement_flags_posn
_atom_site_refinement_flags_adp
_atom_site_refinement_flags_occupancy
_atom_site_disorder_assembly
_atom_site_disorder_group

```

Cu1 Cu 0.49215(4) 0.11560(2) 0.21791(5) 0.02525(11) Uani \(11 d\)
Cl1 Cl 0.59337(9) 0.08838(4) 0.47871(11) 0.0376(2) Uani \(11 \mathrm{~d} . \quad .\).
\(\mathrm{Cl} 2 \mathrm{Cl} 0.68189(7) \quad 0.11167(4) \quad 0.00606(11) 0.03068(19)\) Uani \(11 \mathrm{~d} . \quad . .\).


\begin{tabular}{lllllll} 
C18 & \(0.0201(15)\) & \(0.0271(16)\) & \(0.0324(18)\) & \(0.0013(14)\) & \(0.0063(14)\) & \(-0.0005(13)\) \\
C19 & \(0.0245(15)\) & \(0.0323(16)\) & \(0.0352(18)\) & \(0.0009(16)\) & \(-0.0004(15)\) & \(0.0023(14)\) \\
N20 & \(0.0325(15)\) & \(0.0271(14)\) & \(0.0400(16)\) & \(0.0007(12)\) & \(0.0080(17)\) & \(0.0004(13)\) \\
C21 & \(0.0225(15)\) & \(0.0309(16)\) & \(0.041(2)\) & \(0.0052(16)\) & \(0.0078(15)\) & \(0.0028(13)\) \\
C22 & \(0.0240(16)\) & \(0.0341(18)\) & \(0.038(2)\) & \(0.0015(15)\) & \(-0.0049(15)\) & \(0.0019(15)\)
\end{tabular}

```

_geom_special_details

```
;

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
;
loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_2
_geom_bond_publ_flag
Cu1 OW1 1.996(2) . ?
\begin{tabular}{|c|c|c|}
\hline Cu1 & Cl3 2.2650(8) & ? \\
\hline Cu 1 & Cl4 2.2875(9) & ? \\
\hline Cu1 & Cl1 2.3193(9) & ? \\
\hline Cu1 & C12 2.5494(9) & . ? \\
\hline OW1 & H1A 0.89(2) & . ? \\
\hline OW1 & 1 H1B 0.90(2) & ? \\
\hline C11 & C12 1.355(5) & ? \\
\hline C11 & C16 1.420(4) & ? \\
\hline C11 & H11 0.9300 & ? \\
\hline C12 & C13 1.388(5) & ? \\
\hline C12 & H12 0.9300 & ? \\
\hline C13 & C14 1.344(5) & ? \\
\hline C13 & H13 0.9300 & ? \\
\hline C14 & N15 1.357(4) & ? \\
\hline C14 & H14 0.9300 & ? \\
\hline N15 & C16 1.351(4) & ? \\
\hline N15 & H15 0.82(3) & ? \\
\hline C16 & N17 1.338(4) & ? \\
\hline N17 & C22 1.463(4) & ? \\
\hline N17 & C18 1.464(4) & \(?\) \\
\hline C18 & C19 1.502(4) & ? \\
\hline C18 & H18A 0.9700 & ? \\
\hline C18 & H18B 0.9700 & . ? \\
\hline C19 & N20 1.485(4) & ? \\
\hline C19 & H19A 0.9700 & ? \\
\hline C19 & H19B 0.9700 & ? \\
\hline N20 & C21 1.497(4) & ? \\
\hline
\end{tabular}

Cu1 OW1 H1B 117(2) ..... ?
H1A OW1 H1B 116(3) ..... ?
C12 C11 C16 120.4(3) ..... ?
C12 C11 H11 119.8 ..... ?
C16 C11 H11 119.8 ..... ?
C11 C12 C13 121.2(3) ..... ?
C11 C12 H12 119.4 ..... ?
C13 C12 H12 119.4 ..... ?
C14 C13 C12 118.2(3) ..... ?
C14 C13 H13 120.9 ..... ?
C12 C13 H13 120.9 ..... ?
C13 C14 N15 120.7(3) ..... ?
C13 C14 H14 119.7 ..... ?
N15 C14 H14 119.7 ..... ?
C16 N15 C14 123.8(3) ..... ?
C16 N15 H15 125(3) ..... ?
C14 N15 H15 111(3) ..... ?
N17 C16 N15 119.3(3) ..... ?
N17 C16 C11 125.0(3) ..... ?
N15 C16 C11 115.7(3) ..... ?
C16 N17 C22 123.9(3) ..... ?
C16 N17 C18 124.5(3) ..... ?
C22 N17 C18 111.4(2) ..... ?
N17 C18 C19 110.9(3) ..... ?
N17 C18 H18A 109.4 ..... ?
C19 C18 H18A 109.4 ..... ?
N17 C18 H18B 109.4
C19 C18 H18B 109.4 . . ?
H18A C18 H18B 108.0 . . ?
N20 C19 C18 108.9(3) . . ?
N20 C19 H19A 109.9 . . ?
C18 C19 H19A 109.9 . . ?
N20 C19 H19B 109.9 . . ?
C18 C19 H19B 109.9 . . ?
H19A C19 H19B 108.3 . . ?
C19 N20 C21 112.6(2) . . ?
C19 N20 H20A 108(3) . . ?
C21 N20 H20A 110(3) . . ?
C19 N20 H20B 110(3) . . ?
C21 N20 H20B 105(2) . . ?
H20A N20 H20B 112(3) . . ?
N20 C21 C22 110.5(3) . . ?
N20 C21 H21A 109.5 . . ?
C22 C21 H21A 109.5 . . ?
N20 C21 H21B 109.5 . . ?
C22 C21 H21B 109.5 . . ?
H21A C21 H21B 108.1 . . ?
N17 C22 C21 109.8(2) . . ?
N17 C22 H22A 109.7 . . ?
C21 C22 H22A 109.7 . . ?
N17 C22 H22B 109.7 . . ?
C21 C22 H22B 109.7 . . ?
H22A C22 H22B 108.2 . . ?
```

loop_
_geom_torsion_atom_site_label_1
_geom_torsion_atom_site_label_2
_geom_torsion_atom_site_label_3
_geom_torsion_atom_site_label_4
_geom_torsion
_geom_torsion_site_symmetry_1
_geom_torsion_site_symmetry_2
_geom_torsion_site_symmetry_3
_geom_torsion_site_symmetry_4
_geom_torsion_publ_flag
C16 C11 C12 C13 -0.3(5) ?
C11 C12 C13 C14 -1.4(6) ?
C12 C13 C14 N15 1.5(6) ?
C13 C14 N15 C16 0.1(6) ?
C14 N15 C16 N17 177.0(3) ?
C14 N15 C16 C11 -1.7(5) ?
C12 C11 C16 N17 -176.9(3) ?
C12 C11 C16 N15 1.8(5) ?
N15 C16 N17 C22 161.1(3) ?
C11 C16 N17 C22 -20.3(5) ?
N15 C16 N17 C18 -13.7(4) ?
C11 C16 N17 C18 164.9(3) ?
C16 N17 C18 C19 114.9(3) ?
C22 N17 C18 C19 -60.5(3) ?
N17 C18 C19 N20 56.7(3) ?
C18 C19 N20 C21 -54.6(4) ?

```
```

C19 N20 C21 C22 54.8(3) ?
C16 N17 C22 C21 -116.3(3) ?
C18 N17 C22 C21 59.0(3) ?
N20 C21 C22 N17 -55.4(4) ?
loop_
_geom_hbond_atom_site_label_D
_geom_hbond_atom_site_label_H
_geom_hbond_atom_site_label_A
_geom_hbond_distance_DH
_geom_hbond_distance_HA
_geom_hbond_distance_DA
_geom_hbond_angle_DHA
_geom_hbond_site_symmetry_A
_geom_hbond_publ_flag

Hydrogen bonding scheme

\# D H A D-H H...A D...A D-H...A symm publ

OW1 H1A Cl2 0.89(2) 2.43(3) 3.231(3) 151(3) 3_655 yes
OW1 H1B Cl1 0.90(2) 2.36(3) 3.179(3) 151(3) 3_656 yes
C14
N15 H15 Cl2 0.82(3) 2.34(4) 3.093(3) 153(4) 4_566 yes
C19 H19B Cl3 0.97 2.83 3.533(4) 129.7 . yes
N20 H20A Cl1 0.82(3) 2.44(4) 3.212(3) 157(3) . yes

```
```

N20 H20B Cl2 0.89(3) 2.71(4) 3.386(3) 133(3) 1_556 yes
N20 H20B Cl4 0.89(3) 2.57(4) 3.254(3) 134(3) 1_556 yes
C21 H21A Cl4 0.97 2.80 3.480(3) 128.3 4_666 yes
\#---

EMBEDDED FILES

\#--

\#.

.RES SHELXL file: job.res

\#.

```
\(\qquad\)
```

_shelx_res_file
;
TITL AG21 [Space group= P2(1)/n]
job.res
created by SHELXL-2018/3 at 12:44:28 on 03-Feb-2021
CELL 0.71073 10.2986 19.1385 7.6985 90.000 90.139 90.000
ZERR 4.00 0.0008
LATT 1
SYMM 1/2-X, 1/2 + Y, 1/2-Z
SFAC C H N CU CL O
UNIT 36 68 12 4 4 16 4
MERG 2
OMIT 1 1 0
TWIN 1.00 0.00 0.01 0.00-1.00 0.00 0.00 0.00-1.00 2

```

DFIX 0.95 0.03 Ow1 H1a
DFIX 0.95 0.03 Ow1 H1b
EQIV \$1-x+1, -y, -z
HTAB OW1 Cl2_\$1
EQIV \$2-x+1,-y, -z+1
HTAB OW1 Cl1_\$2
EQIV \(\$ 3-x+1 / 2, y+1 / 2,-z+1 / 2\)
HTAB C14 Cl4_\$3
EQIV \(\$ 4 \mathrm{x}-1 / 2,-\mathrm{y}+1 / 2, \mathrm{z}+1 / 2\)
HTAB N15 Cl2_\$4
HTAB C18 Cl1_\$4
EQIV \(\$ 5 \mathrm{x}, \mathrm{y}, \mathrm{z}+1\)
HTAB C18 Cl3_\$5
HTAB C19 Cl4_\$5
HTAB C19 Cl3
HTAB N20 Cl1
HTAB N20 Cl3
HTAB N20 Cl2_\$5
HTAB N20 Cl4_\$5
EQIV \(\$ 6 x+1 / 2,-y+1 / 2, z+1 / 2\)
HTAB C21 Cl4_\$6
HTAB C21 Cl2_\$5
HTAB C22 C13_\$5
FMAP 2
PLAN 20
\(\begin{array}{llll}\text { SIZE } & 0.19 & 0.44 & 0.51\end{array}\)
ACTA

HTAB 2.00000
BOND \$H
CONF
LIST 4
WPDB -2
L.S. 4

TEMP 23.00
WGHT 0.033900
BASF 0.25396
FVAR 0.35175
MOLE 1
\(\begin{array}{llllllll}\text { CU1 } & 4 & 0.492147 & 0.115601 & 0.217911 & 11.00000 & 0.02961 & 0.02279=\end{array}\) \(\begin{array}{llll}0.02336 & 0.00033 & 0.00156 & -0.00237\end{array}\)
\(\begin{array}{llllllll}\text { CL1 } & 5 & 0.593371 & 0.088381 & 0.478714 & 11.00000 & 0.05183 & 0.03198=\end{array}\) \(\begin{array}{llll}0.02887 & 0.00556 & -0.00747 & -0.00586\end{array}\)
\(\begin{array}{lllllllll}\text { CL2 } & 5 & 0.681888 & 0.111667 & 0.006063 & 11.00000 & 0.02366 & 0.04117=\end{array}\) \(\begin{array}{llll}0.02721 & -0.00131 & 0.00228 & 0.00272\end{array}\)
\(\begin{array}{llllllll}\text { CL3 } & 5 & 0.497676 & 0.231173 & 0.280872 & 11.00000 & 0.06371 & 0.02393=\end{array}\) \(\begin{array}{llll}0.03165 & -0.00197 & -0.00233 & -0.00034\end{array}\)
\(\begin{array}{lllllllll}\text { CL4 } & 5 & 0.333255 & 0.128396 & 0.012223 & 11.00000 & 0.02735 & 0.03713=\end{array}\) \(\begin{array}{llll}0.03822 & -0.00009 & -0.00461 & -0.00155\end{array}\)
\(\begin{array}{llllllll}\text { OW1 } & 6 & 0.462164 & 0.012768 & 0.202464 & 11.00000 & 0.09128 & 0.02695=\end{array}\) \(\begin{array}{llll}0.03833 & 0.00470 & -0.02210 & -0.01840\end{array}\)

AFIX 2
\(\begin{array}{lllllll}H 1 A & 2 & 0.414532 & -0.007916 & 0.121546 & 11.00000 & 0.05000\end{array}\)
\(\begin{array}{lllllll}\text { H1B } & 2 & 0.477937 & -0.012452 & 0.299325 & 11.00000 & 0.05000\end{array}\)
AFIX 0

\section*{MOLE 2}
\(\begin{array}{lllllllll}\text { C11 } & 1 & 0.614099 & 0.468500 & 0.830321 & 11.00000 & 0.02771 & 0.03761=\end{array}\) \(0.02896-0.00301 \quad 0.00461-0.00463\)

AFIX 43
\(\begin{array}{lllllll}H 11 & 2 & 0.691338 & 0.450894 & 0.875310 & 11.00000 & -1.20000\end{array}\)
AFIX 0
\(\begin{array}{llllllll}\text { C12 } & 1 & 0.604041 & 0.537479 & 0.792883 & 11.00000 & 0.03961 & 0.03914=\end{array}\) \(\begin{array}{llll}0.03688 & -0.00422 & 0.00795 & -0.01495\end{array}\)

AFIX 43
\(\begin{array}{lllllll}\mathrm{H} 12 & 2 & 0.674658 & 0.566682 & 0.813079 & 11.00000 & -1.20000\end{array}\)
AFIX 0
\(\begin{array}{lllllllll}\text { C13 } & 1 & 0.490321 & 0.565371 & 0.724955 & 11.00000 & 0.06598 & 0.02581=\end{array}\) \(\begin{array}{llll}0.04474 & 0.00427 & -0.00087 & -0.00629\end{array}\)

AFIX 43
\(\begin{array}{lllllll}H 13 & 2 & 0.483275 & 0.612914 & 0.701809 & 11.00000 & -1.20000\end{array}\)
AFIX 0
\(\begin{array}{llllllll}\text { C14 } & 1 & 0.390648 & 0.521759 & 0.693550 & 11.00000 & 0.05147 & 0.03607=\end{array}\) \(\begin{array}{llll}0.04832 & 0.00818 & -0.01141 & 0.00690\end{array}\)

AFIX 43
\(\begin{array}{lllllll}\mathrm{H} 14 & 2 & 0.314219 & 0.539100 & 0.645537 & 11.00000 & -1.20000\end{array}\)
AFIX 0
\(\begin{array}{lllllllll}\mathrm{N} 15 & 3 & 0.400456 & 0.452692 & 0.731211 & 11.00000 & 0.03207 & 0.02999=\end{array}\) \(\begin{array}{llll}0.03728 & -0.00126 & -0.00869 & -0.00100\end{array}\)

AFIX 2
\(\begin{array}{lllllll}H 15 & 2 & 0.333813 & 0.431718 & 0.706050 & 11.00000 & -1.20000\end{array}\)
AFIX 0
\(\begin{array}{llllllll}\mathrm{C} 16 & 1 & 0.507412 & 0.422948 & 0.801268 & 11.00000 & 0.02482 & 0.03101=\end{array}\)
\(\begin{array}{llll}0.02157 & -0.00509 & 0.00150 & 0.00073\end{array}\)
\(\begin{array}{lllllllll}\mathrm{N} 17 & 3 & 0.505591 & 0.354874 & 0.840970 & 11.00000 & 0.01919 & 0.02817=\end{array}\) \(\begin{array}{llll}0.04262 & -0.00117 & 0.00098 & 0.00077\end{array}\)
\(\begin{array}{llllllll}\mathrm{C} 18 & 1 & 0.387960 & 0.312095 & 0.849282 & 11.00000 & 0.02010 & 0.02705=\end{array}\) \(0.03239 \quad 0.00133 \quad 0.00631-0.00053\)

AFIX 23
\(\begin{array}{lllllll}H 18 A & 0.312302 & 0.341668 & 0.833969 & 11.00000 & -1.20000\end{array}\)
\(\begin{array}{llllll}\text { H18B } & 2 & 0.382176 & 0.290260 & 0.962706 & 11.00000\end{array}-1.20000\)
AFIX 0
\(\begin{array}{llllllll}\mathrm{C} 19 & 1 & 0.388910 & 0.256620 & 0.711210 & 11.00000 & 0.02446 & 0.03232=\end{array}\) \(\begin{array}{llll}0.03520 & 0.00091 & -0.00043 & 0.00235\end{array}\)

AFIX 23
\(\begin{array}{lllllll}H 19 A & 0.312518 & 0.227315 & 0.722145 & 11.00000 & -1.20000\end{array}\)
\(\begin{array}{llllll}\text { H19B } 2 & 0.387569 & 0.278131 & 0.597133 & 11.00000 & -1.20000\end{array}\)
AFIX 0
\(\begin{array}{llllllll}\mathrm{N} 20 & 3 & 0.508026 & 0.213635 & 0.731544 & 11.00000 & 0.03253 & 0.02708=\end{array}\) \(\begin{array}{llll}0.04004 & 0.00071 & 0.00803 & 0.00041\end{array}\)

AFIX 2
H20A \(20.5100830 .1856360 .651051 \quad 11.00000-1.20000\)
\(\begin{array}{llllll}\text { H20B } 2 & 0.507336 & 0.192762 & 0.834692 & 11.00000 & -1.20000\end{array}\)
AFIX 0
\(\begin{array}{llllllll}\text { C21 } & 1 & 0.629420 & 0.256655 & 0.731459 & 11.00000 & 0.02253 & 0.03094=\end{array}\) \(\begin{array}{llll}0.04062 & 0.00520 & 0.00781 & 0.00281\end{array}\)

AFIX 23
\(\begin{array}{llllll}H 21 A & 0.640876 & 0.277918 & 0.618153 & 11.00000 & -1.20000\end{array}\)
\(\begin{array}{llllll}\text { H21B } 2 & 0.703708 & 0.226824 & 0.754060 & 11.00000 & -1.20000\end{array}\)
AFIX 0
```

C22 1 0.622370
0.03815 0.00148 -0.00488 0.00190

```

AFIX 23
H22A \(20.6202440 .291483 \quad 0.982008\) 11.00000 -1.20000
\(\begin{array}{llllll}\text { H22B } & 2 & 0.698765 & 0.342152 & 0.860742 & 11.00000\end{array}-1.20000\)
AFIX 0
HKLF 4

REM AG21 [Space group \(=\mathrm{P} 2(1) / \mathrm{n}\) ]
REM \(\omega R 2=0.0825, G o o F=S=1.044\), Restrained \(\mathrm{GooF}=1.045\) for all data
REM R1 \(=0.0345\) for \(3004 \mathrm{Fo}>4 \operatorname{sig}(\mathrm{Fo})\) and 0.0421 for all 3444 data
REM 179 parameters refined using 2 restraints

END

WGHT 0.03390 .0000

REM Instructions for potential hydrogen bonds
HTAB OW1 Cl2_\$1
HTAB OW1 Cl1_\$2
HTAB C14 Cl4_\$3
HTAB N15 Cl2_\$4
HTAB C18 Cl1_\$4
HTAB C18 Cl3_\$5

\section*{HTAB C19 Cl4_\$5}

HTAB C19 Cl3
HTAB N20 Cl1
HTAB N20 Cl3
HTAB N20 Cl2_\$5
HTAB N20 Cl4_\$5
HTAB C21 Cl4_\$6
HTAB C21 Cl2_\$5
HTAB C22 Cl3_\$5

REM Highest difference peak 0.561 , deepest hole -0.352 , 1 -sigma level 0.072
\(\begin{array}{llllllll}\text { Q1 } & 1 & 0.5195 & 0.0891 & 0.5017 & 11.00000 & 0.05 & 0.56\end{array}\)
\(\begin{array}{lllllllllll}\text { Q2 } & 1 & 0.4247 & 0.0896 & 0.5156 & 11.00000 & 0.05 & 0.50\end{array}\)
Q3 \(1 \begin{array}{llllllll} & 0.2859 & 0.1160 & 0.0453 & 11.00000 & 0.05 & 0.41\end{array}\)
Q4 \(\quad 1 \quad 0.6346 \quad 0.1351 \quad 0.0601 \quad 11.00000 \quad 0.05 \quad 0.31\)
\(\begin{array}{lllllllllll}\text { Q5 } & 1 & 0.5678 & 0.2264 & 0.2947 & 11.00000 & 0.05 & 0.30\end{array}\)
\(\begin{array}{llllllllllllllll}\text { Q6 } & 1 & 0.3857 & 0.1020 & -0.0292 & 11.00000 & 0.05 & 0.30\end{array}\)
Q7 \(1100.56170 .44240 .803911 .000000 .05 \quad 0.27\)
\(\begin{array}{llllllll}\text { Q8 } & 1 & 0.5842 & 0.2367 & 0.7338 & 11.00000 & 0.05 & 0.25\end{array}\)
Q9 \(1 \begin{array}{llllllll} & 0.2984 & 0.0902 & -0.0591 & 11.00000 & 0.05 & 0.25\end{array}\)
\(\begin{array}{lllllll}\text { Q10 } & 1 & 0.6815 & 0.0616 & 0.0201 & 11.00000 & 0.05\end{array} 0.25\)
Q11 \(1 \quad 0.31370 .1028-0.078711 .000000 .050 .24\)
\(\begin{array}{lllllllll}\text { Q12 } & 1 & 0.7003 & 0.1523 & -0.0323 & 11.00000 & 0.05 & 0.24\end{array}\)
\(\begin{array}{lllllll}\text { Q13 } & 1 & 0.5011 & 0.1736 & 0.2451 & 11.00000 & 0.05\end{array} 0.24\)
\(\begin{array}{llllllll}\text { Q14 } & 1 & 0.3631 & 0.0861 & 0.0414 & 11.00000 & 0.05 & 0.23\end{array}\)
\(\begin{array}{lllllllllll}\text { Q15 } & 1 & 0.6497 & 0.2707 & 0.6538 & 11.00000 & 0.05 & 0.23\end{array}\)
\(\begin{array}{llllllllll}\text { Q16 } & 1 & 0.7375 & 0.1145-0.0012 & 11.00000 & 0.05 & 0.23\end{array}\)
```

Q17 1 0.3125 0.1764-0.0229 11.00000}0.05 0.23
Q18 1 0.6755 0.1539 0.0346 11.00000 0.05 0.22
Q19 1 0.3755 0.0759 0.2541 11.00000}0.05 0.21
Q20 1 0.3349 0.5287 0.6999 11.00000 0.05 0.21

```

\section*{checkCIF/PLATON report}

Structure factors have been supplied for datablock(s) AG21_02
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR
PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.
No syntax errors found. CIF dictionary Interpreting this report
Datablock: AG21_02
Bond precision: \(C-C=0.0048\) A Wavelength \(=0.71073\)
Cell: \(a=10.2986(8) \quad b=19.1385(13) \quad c=7.6985(5)\)
alpha=90 beta=90.139(4) gamma=90
Temperature: 296 K
Calculated Reported
Volume 1517.37(19) 1517.37(19)
Space group P 21/n P 21/n
Hall group -P \(2 y n-P 2 y n\)
Moiety formula C9 H15 N3, Cl4 Cu H2 O C9 H15 N3, Cl4 Cu H2 O
Sum formula C9 H17 Cl4 Cu N3 O C9 H17 Cl4 Cu N3 O
Mr 388.61 388.59
Dx,g cm-3 1.701 1.701
Z 44
\(\mathrm{Mu}(\mathrm{mm}-1) 2.1352 .135\)
FOOO 788.0 788.0
FOOO' 791.78
h, k, lmax \(13,24,913,24,9\)
Nref 34703444
Tmin, Tmax \(0.350,0.6670 .494,0.667\)
Tmin' 0.324
Correction method= \# Reported T Limits: Tmin=0. 494 Tmax=0.667
AbsCorr = MULTI-SCAN
Data completeness \(=0.993\) Theta \((\max )=27.470\)
\(R(\) reflections \()=0.0345(3004)\)
wR2 (reflections) \(=\)
0.0825 ( 3444)
\(S=1.044\) Npar= 179
The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.
Alert level C

PLAT911 ALERT 3 C Missing FCF Refl Between Thmin \& STh/L= 0.60015 Report

\section*{Alert level G}
```

PLATO02 ALERT 2 G Number of Distance or Angle Restraints on AtSite 3 Note
PLAT158 ALERT 4 G The Input Unitcell is NOT Standard/Reduced Please Check
PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records 2 Report
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels 1 Note
PLAT860_ALERT_3_G Number of Least-Squares Restraints 2 Note
PLAT870 ALERT 4 G ALERTS Related to Twinning Effects Suppressed .. ! Info
PLAT910 ALERT 3 G Missing \# of FCF Reflection(s) Below Theta(Min). 2 Note
PLAT912_ALERT_4_G Missing \# of FCF Reflections Above STh/L= 0.600 9 Note
PLAT931_ALERT_5_G CIFcalcFCF Twin Law (0 0 1) Est.d BASF 0.25 Check
PLAT933 ALERT 2 G Number of HKL-OMIT Records in Embedded .res File 1 Note
PLAT941 ALERT 3 G Average HKL Measurement Multiplicity 2.1 Low
O ALERT level A = Most likely a serious problem - resolve or explain
O ALERT level B = A potentially serious problem, consider carefully
1 ALERT level C = Check. Ensure it is not caused by an omission or oversight
11 ALERT level G = General information/check it is not something unexpected
O ALERT type 1 CIF construction/syntax error, inconsistent or missing data
2 ~ A L E R T ~ t y p e ~ 2 ~ I n d i c a t o r ~ t h a t ~ t h e ~ s t r u c t u r e ~ m o d e l ~ m a y ~ b e ~ w r o n g ~ o r ~ d e f i c i e n t
4 ~ A L E R T ~ t y p e ~ 3 ~ I n d i c a t o r ~ t h a t ~ t h e ~ s t r u c t u r e ~ q u a l i t y ~ m a y ~ b e ~ l o w ~
5 ~ A L E R T ~ t y p e ~ 4 ~ I m p r o v e m e n t , ~ m e t h o d o l o g y , ~ q u e r y ~ o r ~ s u g g e s t i o n
1 ALERT type 5 Informative message, check

```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor
alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so
attention to these fine details can be worthwhile. In order to resolve some of the more serious problems
it may be necessary to carry out additional measurements or structure refinements.
However, the
purpose of your study may justify the reported deviations and the more serious of these should
normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual
parameters, but every test has its limitations and alerts that are not important in a particular case may
appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing
attention. It is up to the individual to critically assess their own results and, if necessary, seek expert
advice.

\section*{Publication of your CIF in IUCr journals}

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs
submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E or IUCrData, you should make sure that full publication checks are
run on the final version of your CIF prior to submission.
Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF
submission.
PLATON version of 18/05/2022; check.def file version of 17/05/2022
Datablock AG21_02 - ellipsoid plot


\section*{Highlights}
- A New Organic-Inorganic Hybrid Compound \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\) was successfully synthesized and structurally characterized.
- Intermolecular interactions were explored using Hirshfeld surface analysis and RDG approach.
- Optical properties and vibrational bands of the compound were discussed and investigated by DFT calculations.
- Antibacterial activity of compound has been tested by DPPH and ABTS.
- Molecular docking studies confirmed the inhibitory activity of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\).

\title{
X-Ray diffraction, IR spectrum, optical properties, AIM, NBO, RDG, HS, Fukui function, biological and molecular docking analysis of a novel hybrid compound \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)
}

\author{
Afef Gannouni \({ }^{a}\), Wiem Tahri \({ }^{b}\), Thierry Roisnel \({ }^{c}\), Riadh Kefi \({ }^{a}\)
}

\begin{abstract}
\({ }^{[a]}\) Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisie. \({ }^{[b]}\) Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), University of Carthage, Te Ministry of Higher Education and Scientifc Research, Zarzouna, 7003 Bizerte, Tunisia.
\({ }^{[c]}\) Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
\end{abstract}

\section*{Figure caption}

Fig. 1 (a) Asymmetric unit and atom labeling scheme of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\), (b) optimized geometry of the cluster model used in the DFT and TDDFT calculations.
Fig. 2 A view of down b-axis of chains \(\left\{\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}\right\}_{\mathrm{n}}\) linkage by means \(\mathrm{O}-\mathrm{H} \ldots \mathrm{Cl}\) hydrogen bonds.

Fig. 3 Projection along the c-axis of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\). The dotted lines indicate hydrogen bonds.
Fig. 4 (a) 2d fingerprint of the whole molecule (b) Hirshfeld surfaces mapped with \(\mathrm{d}_{\text {norm }}\), (c) Hirshfeld surface mapped with shape index and (d) curvedness of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\).

Fig. 5 Experimental and theoretical FT-IR Spectra of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)
Fig. 6 Energy dependence of \((F(R) h v)^{2}\) versus photon (hv) for \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\).
Fig. 7 Molecular orbital surfaces for the LUMO, LUMO+1, HOMO et HOMO-1 of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\).

Fig. 8 Graphical representation of the AIM analysis of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\) : Red and Yellow dots indicate the position of the bond and new ring critical points, respectively
Fig. 9 (a) and (b) \(f^{-}\)and \(f^{+}\)Fukui functions of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)^{+}\)respectively, the (c) Dual descriptor of the title compound.

Fig. 10 Different types of interactions between \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\) [CuCl \(\left.4\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\), 4MQQ and 6GQO bacteria.

(a)
(b)

Figure 1


Figure 2


Figure 3


Figure 4


Figure 5


Figure 6


Figure 7


Figure 8


Figure 9

(a)

(b)

Figure 10

Graphical Abstract


\title{
X-Ray diffraction, IR spectrum, optical properties, AIM, NBO, RDG, HS, Fukui function, biological and molecular docking analysis of a novel hybrid compound \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)
}

\author{
Afef Gannouni \({ }^{[a]}\), Wiem Tahri \({ }^{[b]}\), Thierry Roisnel \({ }^{[c]}\), Kefi Riadh \({ }^{[a]}\) \\ \({ }^{[a]}\) Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisie. \\ \({ }^{[b]}\) Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), University of Carthage, Te Ministry of Higher Education and Scientifc Research, Zarzouna, 7003 Bizerte, Tunisia. \\ \({ }^{\text {[c] }}\) Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
}

\section*{Table captions}

Table 1 Crystallographic data and structure refinement parameters of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)
Table 2 Hydrogen bonding parameters \(\left(\AA{ }^{\circ}\right.\), \({ }^{\circ}\) ) for \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)
Table 3 Selected bond lengths \((\AA)\) and bond angles \(\left({ }^{\circ}\right)\) in anions \(\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-2}\)
Table 4 Selected bond lengths ( \(\AA\) ) and bond angles \(\left({ }^{\circ}\right)\) in cations \(\left[\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right]^{2+}\)
Table 5 Hirshfeld contact surfaces, derived random contacts and enrichment ratios of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)

Table 6 Main calculated optical transitions for the cluster with oscillator strength and major contribution. A comparison between the theoretical and experimental absorption features of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\).
Table 7 The calculated HOMO-LUMO energy values, gap energy, chemical potential, chemical hardness, electrophilicity index, softness and electronegativity of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\).
Table 8 Topological parameters (distance, electron density, Laplacien, Potential energy density, interaction energy, ellipticity and eta index) of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\).
Table 9 Molecular docking results of binding energies in kcal. \(\mathrm{mol}^{-1}\) via Igemdock program.

\section*{Crystal data}

Chemical formula
Formula weight ( \(\mathrm{g} / \mathrm{mol}\) )
Crystal system
Space group
a, b, c ( \(\AA\) )
\(\beta\left({ }^{\circ}\right)\)
Volume V \(\left(\AA^{3}\right)\)
Z
Crystal size ( \(\mathrm{mm}^{3}\) )
Radiation (Wavelength ( \(\AA\) ))
F (000)
Density (calculated), ( \(\mathrm{mg} / \mathrm{m}^{3}\) )
Diffractmeter
Theta range for data collection \(\left({ }^{\circ}\right)\)
Reflections collected
Index ranges
No. of measured, independent \&
observed \([\mathrm{I}>2 \mathrm{~s}(\mathrm{I})\) ] reflections
Absorption coefficient/[ \(\left.\mathrm{mm}^{-1}\right]\)
Abs.correction
Max and min. transmission
Goodness-of-fit on \(\mathrm{F}^{2}\)
Final R indices [ \(\mathrm{I}>2 \mathrm{~s}(\mathrm{I})\) ]
R indices [all data]
Largest diff. peak and hole [e \(\AA^{3}\) ]
\(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)
388.59
monoclinic
P21/n
10.2986 (8), 19.1385 (13), 7.6984 (5)
90.134(4)
1517.37(19)

4
\(0.510 \times 0.440 \times 0.190\)
0.71073

788
1.701

APEX-II Kappa-CCD
2.8719-27.1497

7420
\(\mathrm{h}=-13 / 9 ; \mathrm{k}=-15 / 24 ; 1=-9 / 9\)
3444, 3388
3004
2.135

Multi-scan
0.667 and 0,494
1.044

0,024
0,052
\(-0.352,0.561\)

\section*{Table 2}
\begin{tabular}{|c|c|c|c|c|}
\hline D-H. \({ }^{\text {A }}\) & D-H (A) & H \(\cdots\) ( \((\AA)\) & D \(\cdots\) A ( \({ }^{\text {A }}\) ) & D - H \(\cdots\) A \(\left(^{\circ}\right.\) ) \\
\hline OW1 - H1B \(\cdots\) Cl2 & 0.89(2) & 2.43(3) & 3.231(3) & 151(3) \\
\hline OW1 - H1B \(\cdots\) Cl1 & 0.90 & 2.36(3) & \(3.179(3)\) & 151(3) \\
\hline C14-H14 \(\cdots\) Cl4 & 0.93 & 2.59 & 3.460(4) & 156.6 \\
\hline N15-H15 \(\cdots\) Cl2 & 0.82(3) & 2.34(4) & 3.093(3) & 153(4) \\
\hline C19-H19B \(\cdots\) Cl3 & 0.97 & 2.83 & 3.533(4) & 129.7 \\
\hline N20-H20A \(\cdots\) Cl1 & 0.82(3) & 2.44(4) & 3.212(3) & 157(3) \\
\hline N20-H20B \(\cdots\) Cl2 & 0.89(3) & 2.71(4) & 3.386(3) & 133(3) \\
\hline N20-H20B \(\cdots\) C14 & 0.89(3) & 2.57(4) & 3.254(3) & 134(3) \\
\hline C21-H21A \(\cdots\) Cl4 & 0.97 & 2.80 & 3.480(3) & 129.3 \\
\hline
\end{tabular}

Table 3
\(\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}\)
\begin{tabular}{lllcrr} 
Band & Experimental & theoretical & Band & Experimental & theoretica \\
\hline Distances & & & & & \\
\hline \(\mathrm{Cu} 1-\mathrm{OW} 1\) & \(1.996(2)\) & 1.989 & \(\mathrm{Cu} 1-\mathrm{Cl} 3\) & \(2.2650(8)\) & 2.645 \\
\(\mathrm{Cu} 1-\mathrm{Cl} 1\) & \(2.3193(9)\) & 2.460 & \(\mathrm{Cu} 1-\mathrm{Cl} 4\) & \(2.2875(9)\) & 2.453
\end{tabular}
\(\mathrm{Cu} 1-\mathrm{Cl} 2.5494(9) \quad 2.336\)
Angles
\begin{tabular}{lllllc}
\hline \(\mathrm{Cl} 3-\mathrm{Cu} 1-\mathrm{Cl} 4\) & \(93.51(3)\) & 96.11 & \(\mathrm{OW} 1-\mathrm{Cu} 1-\mathrm{Cl} 4\) & \(87.36(8)\) & 82.82 \\
\(\mathrm{OW} 1-\mathrm{Cu} 1-\mathrm{Cl} 1\) & \(84.22(8)\) & 81.31 & \(\mathrm{Cl} 3-\mathrm{Cu} 1-\mathrm{Cl} 1\) & \(91.32(3)\) & 114.01 \\
\(\mathrm{Cl} 4-\mathrm{Cu} 1-\mathrm{Cl} 1\) & \(160.49(4)\) & 146.86 & \(\mathrm{OW} 1-\mathrm{Cu} 1-\mathrm{Cl} 2\) & \(92.95(9)\) & 172.11 \\
\(\mathrm{Cl3}-\mathrm{Cu} 1-\mathrm{Cl} 2\) & \(98.44(3)\) & 93.17 & \(\mathrm{Cl} 4-\mathrm{Cu}-\mathrm{Cl} 2\) & \(96.23(3)\) & 96.80 \\
\(\mathrm{Cl1-Cu1-Cl2}\) & \(101.75(3)\) & 95.05 & \(\mathrm{OW} 1-\mathrm{Cu} 1-\mathrm{Cl} 3\) & \(168.40(9)\) & 94.70 \\
\hline
\end{tabular}

\section*{Table 4}
\begin{tabular}{llllll}
\hline & & \multicolumn{6}{c}{\(\left[\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right]^{2+}\)} \\
Angles & Experimental & theoretical & Angles & Experimental & theoretical \\
\hline Distances & & & & & \\
\hline C11-C12 & \(1.355(5)\) & 1.4 & & \(\mathrm{~N} 15-\mathrm{C} 16\) & \(1.351(4)\) \\
C11-C16 & \(1.420(4)\) & 1.416 & & \(\mathrm{C} 16-\mathrm{N} 17\) & \(1.338(4)\) \\
C12-C13 & \(1.388(5)\) & 1.415 & & \(\mathrm{~N} 17-\mathrm{C} 22\) & \(1.463(4)\) \\
N17-C18 & \(1.464(4)\) & 1.484 & & \(\mathrm{~N} 20-\mathrm{C} 21\) & \(1.497(4)\) \\
C13-C14 & \(1.344(5)\) & 1.389 & & \(\mathrm{C} 19-\mathrm{N} 20\) & \(1.485(4)\) \\
C18-C19 & \(1.502(4)\) & 1.531 & & \(\mathrm{C} 21-\mathrm{C} 22\) & \(1.501(4)\) \\
& & & & & 1.544 \\
Angles & & & & & \\
C12-C11-C16 & \(120.4(3)\) & 119.72 & \(\mathrm{~N} 17-\mathrm{C} 16-\mathrm{N} 15\) & \(119.3(3)\) & 118.09 \\
C11-C12-C13 & \(121.2(3)\) & 120.63 & \(\mathrm{~N} 15-\mathrm{C} 16-\mathrm{C} 11\) & \(115.7(3)\) & 117.62 \\
C14-C13-C12 & \(118.2(3)\) & 118.35 & \(\mathrm{~N} 17-\mathrm{C} 16-\mathrm{C} 11\) & \(125.0(3)\) & 124.29 \\
C13-C14-N15 & \(120.7(3)\) & 119.98 & \(\mathrm{C} 16-\mathrm{N} 17-\mathrm{C} 22\) & \(123.9(3)\) & 121.42 \\
C16-N15-C14 & \(123.8(3)\) & 123.62 & \(\mathrm{C} 16-\mathrm{N} 17-\mathrm{C} 18\) & \(124.5(3)\) & 122.75 \\
C22- N17-C18 & \(111.4(2)\) & 113.89 & \(\mathrm{~N} 17-\mathrm{C} 18-\mathrm{C} 19\) & \(110.9(3)\) & 111.56 \\
N20-C19-C18 & \(108.9(3)\) & 109.67 & \(\mathrm{C} 19-\mathrm{N} 20-\mathrm{C} 21\) & \(112.6(2)\) & 111.39 \\
N20-C21-C22 & \(110.5(3)\) & 110.16 & & & \\
\hline
\end{tabular}

Table 5
\begin{tabular}{|lllllll|}
\hline Atome & H & Cl & C & N & O & Cu \\
\hline Surface (S, \%) & 63.15 & 27.3 & 5.75 & 1.55 & 0.95 & 0.8 \\
\hline Contactes (C, \%) & H & Cl & C & N & O & Cu \\
\hline \(\mathbf{C l}\) & \(\mathbf{5 4 . 1}\) & - & 0.4 & - & 0.1 & - \\
\(\mathbf{H}\) & \(\mathbf{3 1 . 5}\) & - & \(\mathbf{4 . 2}\) & 1.6 & 1.8 & 1.6 \\
\(\mathbf{C}\) & - & - & \(\mathbf{2 . 7}\) & 1.5 & - & - \\
\hline Contactes imaginaires (R, \%) & H & Cl & C & N & O & Cu \\
\hline \(\mathbf{H}\) & 39.88 & - & - & 1.96 & 1.2 & 1.01 \\
\(\mathbf{C l}\) & 34.48 & - & 0.18 & - & 0.52 & - \\
\(\mathbf{C}\) & 7.26 & - & 0.073 & 0.18 & - & - \\
\hline Enrichissement (E) & H & Cl & C & N & O & Cu \\
\hline Eh... & 0.79 & 1.57 & 0.58 & 0.82 & 1.5 & 1.58 \\
Ec... & - & 2.22 & \(\mathbf{3 6 . 9 9}\) & \(\mathbf{8 . 3 3}\) & - & - \\
Ecl... & - & - & - & - & 0.19 & - \\
\hline
\end{tabular}

Table 6
\begin{tabular}{|c|c|c|c|c|}
\hline Experimental & \multicolumn{4}{|c|}{Theoretical} \\
\hline Wavelength (nm) & Wavelength ( nm ) & \[
\begin{gathered}
\hline \text { Transition } \\
(\mathbf{n m})
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Oscillator } \\
\text { strength }
\end{gathered}
\] & Nature (\%) \\
\hline - & 472.32 & TCML & 0.0005 & \(\mathrm{H} \rightarrow \mathrm{L}(100 \%)\) \\
\hline 350 & 433.51 & \(\pi \rightarrow \pi^{*}, \mathrm{n} \rightarrow \pi^{*}\) & 0.0 & \(\mathrm{H} \rightarrow \mathrm{L}+1\) (100\%) \\
\hline 300 & 414.01 & TCML & 0.0014 & \(\mathrm{H}-1 \rightarrow \mathrm{~L}(100 \%)\) \\
\hline 270 & 386.59 & TCanion-cation & 0.0 & \(\mathrm{H}-1 \rightarrow \mathrm{~L}+1\) (97\%) \\
\hline
\end{tabular}

Table 7
\begin{tabular}{|c|c|}
\hline Parameters & Values (eV) \\
\hline Еномо & -10.909 \\
\hline Elumo & -8.27 \\
\hline Energy band gap |E номо-ELumo| & 2.64 \\
\hline Chemical hardness \(\eta=\frac{(\mathrm{I}-\mathrm{A})}{2}\) & 1.3195 \\
\hline Chemical potential for the molecule \(\mu=\frac{-(\mathrm{I}+\mathrm{A})}{2}\) & -9.5895 \\
\hline The softness \(S=\frac{1}{2 \eta}\) & 0.3789 \\
\hline Electrophilicity index of the molecule \(W=\frac{\mu^{2}}{2 \eta}\) Electonegativity \(\chi=\frac{(\mathrm{I}+\mathrm{A})}{2}\) & \[
\begin{aligned}
& 34.8459 \\
& 9.5895
\end{aligned}
\] \\
\hline
\end{tabular}

Table 8
\begin{tabular}{|l|c|l|l|l|l|l|l|}
\hline & \(\mathbf{D}(\AA \mathbf{\AA})\) & \(\boldsymbol{\rho}(\mathbf{r})(\mathbf{a . u})\) & \(\boldsymbol{\nabla}^{\mathbf{2}} \boldsymbol{\rho}(\mathbf{r})(\mathbf{a . u})\) & \(\mathbf{V}(\mathbf{r})(\mathbf{a . u})\) & \begin{tabular}{l} 
Eint \\
\(\left(\mathbf{k c a l . m o l}{ }^{\mathbf{1}}\right)\)
\end{tabular} & \((\boldsymbol{\varepsilon})\) & \((\boldsymbol{\zeta})\) \\
\hline \(\mathrm{H} 26 \cdots \mathrm{Cl} 3\) & 2.449570 & 0.2061250 & -0.2943204 & -0.282949140 & -69.5697 & 0.0542 & 0.9691 \\
\hline H18 \(\cdots \mathrm{Cl} 3\) & 2.163903 & 0.2641818 & -0.8473619 & -0.293499740 & -88.8643 & 0.0445 & 1.3802 \\
\hline H22 \(\cdots \mathrm{Cl} 3\) & 3.076449 & 0.3208060 & \(-0.14810^{+1}\) & -0.48409656 & -107.6828 & 0.0216 & 1.0237 \\
\hline H22 \(\cdots \mathrm{Cl} 4\) & 2.732576 & 0.2724941 & -0.9377254 & -0.30991442 & -91.6268 & 0.0355 & 1.4309 \\
\hline H25 \(\cdots \mathrm{Cl} 4\) & 3.078938 & 0.2295457 & -0.4688915 & -0.23258382 & -77.3533 & 0.0565 & 1.2361 \\
\hline H16 \(\cdots \mathrm{Cl} 2\) & 2.644145 & 0.2691843 & -0.9100786 & -0.30486604 & -90.5268 & 0.0092 & 1.4288 \\
\hline RCP1 & -- & \(0.533610^{-2}\) & \(0.173110^{-1}\) & \(-0.258310^{-2}\) & -- & -1.6473 & 0.2206 \\
\hline RCP2 & -- & 0.2892867 & -0.772659 & -0.3859261 & -- & 0.1379 & 2.2095 \\
\hline NRCP1 & -- & 0.2701671 & -0.1133972 & -0.372581408 & -- & 0.0004 & 1.1912 \\
\hline NRCP2 & -- & 0.3203314 & \(-0.14810^{+1}\) & -0.4833705 & -- & 0.0216 & 1.0236 \\
\hline NRCP3 & -- & \(0.219110^{-1}\) & 0.16504729 & \(-0.3042810^{-1}\) & -- & -1.2207 & 0.1921 \\
\hline
\end{tabular}

D (Å): Distance; \(\rho(\mathrm{r})\) (a.u.): Density of electrons; \(\nabla^{2} \rho(\mathrm{r})(\mathrm{a} . \mathrm{u})\) : Laplacian of electron density; \(\mathrm{V}(\mathrm{r})\) (a.u): Potential energy density; (Eint) (kJ.mol \({ }^{-1}\) ): Interaction energy; ( \(\varepsilon\) ): Ellipticity; ( \(\zeta\) ):
Eta index, NRCP: new ring critical point.

Table 9
\begin{tabular}{|c|l|l|l|l|l|l|}
\hline \multirow{2}{*}{ Ligand } & receptor & \begin{tabular}{l} 
Total \\
energy
\end{tabular} & VDW & H-Bond & Electronic & \begin{tabular}{l} 
AverConP \\
air
\end{tabular} \\
\hline \multirow{6}{*}{\(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)} & 4MQQ & -96.5416 & -96.7778 & 0 & 0.236219 & 24.5357 \\
\cline { 2 - 7 } & 6GQO & -96.4865 & -88.6652 & -8.3075 & 0.486269 & 23.2143 \\
\cline { 2 - 7 } & 6GQP & -88.4408 & -85.4328 & -3.5 & 0.492034 & 20.4286 \\
\cline { 2 - 7 } & 3TFT & -86.5265 & -82.6401 & -3.5 & -0.38639 & 22.5714 \\
\cline { 2 - 7 } & 3G60 & -83.792 & -81.292 & -2.5 & 0 & 19.6786 \\
\cline { 2 - 6 } & 3PWH & -82.0833 & -78.7185 & -3.6376 & 0.2727 & 19.9643 \\
\cline { 2 - 7 } & 3W37 & -81.627 & -77.6727 & -3.3812 & -0.57313 & 19.7857 \\
\cline { 2 - 6 } & 1Y6B & -74.0556 & -74.0556 & 0 & 0 & 17.3929 \\
\hline
\end{tabular}

\section*{Supporting Material to}

\title{
X-Ray diffraction, IR spectrum, optical properties, AIM, NBO, RDG, HS, Fukui function, biological and molecular docking analysis of a novel hybrid compound \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)
}

\author{
Afef Gannouni \({ }^{[a]}\), Wiem Tahri \({ }^{[b]}\), Thierry Roisnel \({ }^{[\mathrm{cc}]}\), Kefi Riadh \({ }^{[a]}\) \\ \({ }^{[a]}\) Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisie. \\ \({ }^{[b]}\) Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), University of Carthage, Te Ministry of Higher Education and Scientifc Research, Zarzouna, 7003 Bizerte, Tunisia. \\ \({ }^{[c]}\) Université Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F35000 Rennes, France.
}


Figure S-1: The cristal photo of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)


Figure \(S\) - 2 : The two-dimensional fingerprint plots for the title compound delineated into: (b) Cl...H, (b) H...H, (c) C...H, (d) C...C, (e) O...H, (f) N...H, (g) Cu...H, (h) C...N, (i) \(\mathrm{Cl} . . . \mathrm{H}\), (j) \(\mathrm{Cl} . . . \mathrm{C}\) and (k) Cl...O


Figure S-3: Correlation graph between the experimental and calculated wave numbers \(\left(\mathrm{cm}^{-1}\right)\) of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)


Figure S-4: Correlation graph between the experimental and calculated wavelength ( nm ) of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)


Figure S-5 : (a): The diffuse reflectance spectra and (b): the Kubelka-Munk absorption spectra of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)


Figure S-6: Optical transmittance spectrum of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)


Figure S-7:The emission spectra of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)


Figure S-8: Molecular electrostatic potential surface (between -4.191 and 0.290) of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)


Figure S-9: Representation of different types of interactions in the monomer (a). Graph of the reduced density gradient vs. sign ( \(\lambda 2\) ) \(\rho\) of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\) (b). Color code for different regions of interactions (c).


Figure S-10: Simultaneous curves of thermogravemetric analysis and differential thermal analysis of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\).


Figure \(S\) - 11 : Scavenging activity of \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\) in both (a) \(\mathrm{DPPH}^{++}\)and (b) \(\mathrm{ABTS}^{+}\)test. The data are reported as mean \(\pm\)standard deviation


Figure S-12: The best docked poses of 2PPCU compound with eight protein: (a) 4MQQ, (b) 6GQO, (c) 6GQP, (d) 3TFT, (e) 3G60, (f) 3PWH, (g) 3W37, (h) 1Y6B


Figure S-13: Different types of interactions between \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\) and 6GQP, 3TFT, 3G60, 3PWH, 3W37, 1Y6B

Table \(S\) - 1: Assignments of IR vibrational modes in \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{Frequenccv ( \(\mathrm{cm}^{-1}\) )} & \multirow[t]{2}{*}{Attribution} \\
\hline IR Experimental & IR Theoretical & \\
\hline 3642-3000 & 3695, 3863 & \(\mathrm{v}_{\mathrm{s}}(\mathrm{OH})\) \\
\hline 3288-3268 & 3481, 3406 & \(\nu_{s}(-\mathrm{NH} 2)\) \\
\hline 3200-3150 & \[
\begin{aligned}
& 3260,3235,3247 \\
& 3235.3274
\end{aligned}
\] & \(v_{s}(\mathrm{CH})\) \\
\hline 2987 & 3164 & \(\nu_{s}(-\mathrm{NH})\) \\
\hline \multirow[t]{3}{*}{2832-2800} & 3172, 3164, 3193, 3190 & \(v_{s}\) (CH2) \\
\hline & 3193, 3190, 3158, 3112 & \\
\hline & 3013, 3007 & \\
\hline 1627 & 1701, 1454, 1338, 1270 & \(\boldsymbol{\delta}_{\text {s }}\left(-\mathrm{NH}_{2}\right)\) \\
\hline 1607 & 1674, 1659, 1128 & \(\nu_{s}(\mathrm{C}=\mathrm{C})\) \\
\hline 1531 & 1674, 1659, 1499 & \(\delta_{\text {s }}(-\mathrm{NH})\) \\
\hline 1450 & 1674, 787, 386, 320 & \(\delta_{\text {s }}(\mathrm{CNC})\) \\
\hline \multirow[t]{2}{*}{1414-900} & 1583, 1128, 1082, 899 & \(\nu_{s}(\mathrm{C}-\mathrm{C})\) \\
\hline & 1068, 1019, 1062, 941 & \\
\hline \multirow[t]{4}{*}{1515-1220} & 1583, 1428, 1421, 1223 & \(\delta_{s}(\mathbf{C - C})\) \\
\hline & 1499, 1128, 1331, 1297 & \\
\hline & 1499, 1439, 13311318 & \\
\hline & 1338, 1207, 1207 & \\
\hline 1547 & 1566 & \(\delta_{\mathrm{s}}\left(\mathrm{H}_{2} \mathrm{O}\right)\) \\
\hline 1520-1510 & 1533, 1516, 1522 & \(\delta_{\text {s }}(\mathrm{CH})\) \\
\hline 1500 & 1508 & \(\delta_{\text {as }}(\mathrm{CH})\) \\
\hline \multirow[t]{2}{*}{1450} & 1467, 1270, 738, 899 & \(\nu_{s}(\mathrm{C}-\mathrm{N})\) \\
\hline & 1190, 1062, 1082, 738 & \\
\hline 1445-1200 & 1467, 1297, 1207 & \(\delta_{s}(\mathbf{C N})\) \\
\hline \multirow[t]{2}{*}{1438} & 1454, 1421, 1418 & \(\tau_{s}(\mathbf{H N C C})\) \\
\hline & 949, 898 & \\
\hline 1430-750 & 1439, 1032, 1032, 386 & \(\tau_{s}(\mathbf{H C N C})\) \\
\hline 1340 & 1399 & \(\tau_{\text {as }}(\mathrm{HCCN})\) \\
\hline 1320 & 1338 & \(\tau_{s}(\mathbf{H C C N})\) \\
\hline 1220 & 1223 & \(\delta_{\text {as }}(\mathrm{CC})\) \\
\hline 1180 & 1190, 751 & \(\tau_{s}(\mathrm{CCNC})\) \\
\hline \multirow[t]{3}{*}{1100-500} & 1177, 899, 505, 469 & \(\delta_{\text {s }}(\mathbf{N C C})\) \\
\hline & 787, 613, 642, 642 & \\
\hline & 286, 218, 162 & \\
\hline \multirow[t]{2}{*}{1090-805} & 1056, 1053, 751, 811 & \(\tau_{s}(\mathbf{H C C C})\) \\
\hline & 1044, 1019, 949, 898 & \\
\hline \multirow[t]{2}{*}{1048-723} & 1044, 1019, 642 & \(\delta_{s}(\mathbf{C C C})\) \\
\hline & 1019, 738 & \\
\hline 890 & 891 & \(\tau_{s}(\mathbf{C N C C})\) \\
\hline 650 & 891, 218 & \(\gamma_{s}(\mathbf{C C C N})\) \\
\hline -- & 616, 611 & \(\delta_{s}(\mathbf{C u O})\) \\
\hline -- & 542, 414 & \(\tau_{s}(\mathrm{CCCC})\) \\
\hline -- & 451 & \(\delta_{\text {as }}(\mathrm{NCC})\) \\
\hline -- & 426 & \(\mathrm{v}_{\mathrm{s}}(\mathrm{Cu}-\mathrm{O})\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline -- & 386 & \(\tau_{s}(\mathbf{N C C N})\) \\
\hline -- & 368, 341 & \(\mathrm{t}_{s}(\mathrm{HOCuCl})\) \\
\hline -- & 320, 218 & \(\tau_{s}(\mathbf{C C C N})\) \\
\hline -- & 263, 257, 250, 174 & \(\mathrm{v}_{\mathrm{s}}(\mathbf{C u}-\mathrm{Cl})\) \\
\hline -- & 194, 162, 128 & \\
\hline -- & 174, 153, 103 & \(\boldsymbol{\gamma}_{s}(\mathrm{OClClCu})\) \\
\hline -- & 153, 146, 140, 95 & \\
\hline -- & 143, 129, 113, 90 & \(\delta_{s}(\mathbf{O C u C l})\) \\
\hline -- & 143, 129, 113, 103 & \(\delta_{s}(\mathbf{C l C u C l})\) \\
\hline -- & 83, 32 & \(\tau_{s}(\mathbf{C N C N})\) \\
\hline -- & 77, 72, 40 & \(\tau_{s}(\mathbf{C u C l H N})\) \\
\hline -- & 77, 69, 43 & \(\tau_{s}(\mathbf{C N H C l})\) \\
\hline -- & 43, 17, 5 & \(\mathrm{ts}_{s}(\mathrm{HClCuCl})\) \\
\hline -- & 32 & \(\delta_{\text {as }}(\mathbf{C u}-\mathrm{Cl})\) \\
\hline
\end{tabular}

Table \(S-2\) : NBO results showing the formation of Lewis and non-Lewis orbitals in \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Bonde A-B & Occupancy & EDA(\%) & EDB(\%) & NBO & Orbital atomique (\%) \\
\hline \multirow[t]{2}{*}{\(\sigma\) 06-H7} & \multirow[t]{2}{*}{0.99759} & \multirow[t]{2}{*}{77.80} & \multirow[t]{2}{*}{22.20} & 0.8820(sp2.43) O6 & \(\mathrm{s}(29.17 \%) \mathrm{p}(70.83)\) \\
\hline & & & & 0.4712 s H 7 & s(100\%) \\
\hline \multirow[t]{2}{*}{\(\sigma\) 06-H8} & \multirow[t]{2}{*}{0.99755} & \multirow[t]{2}{*}{77.77} & \multirow[t]{2}{*}{22.23} & 0.819(sp2.44) O6 & \(\mathrm{s}(29.08 \%) \mathrm{p}(70.92)\) \\
\hline & & & & 0.4715 s H8 & s(100\%) \\
\hline \multirow[t]{2}{*}{\(\sigma\) C9-H10} & \multirow[t]{2}{*}{0.98708} & \multirow[t]{2}{*}{62.17} & \multirow[t]{2}{*}{37.83} & 0.7885(sp2.30) C9 & \(\mathrm{s}(30.34 \%) \mathrm{p}(69.66 \%)\) \\
\hline & & & & 0.6151 s H10 & \(\mathrm{s}(100 \%)\) \\
\hline \multirow[t]{2}{*}{\(\pi\) C9-C11} & \multirow[t]{2}{*}{0.82653} & \multirow[t]{2}{*}{56.24} & \multirow[t]{2}{*}{43.76} & 0.7499 (sp99.99) C9 & \(\mathrm{s}(0.02 \%) \mathrm{p}(99.98 \%)\) \\
\hline & & & & 0.6615(sp1) C11 & \(\mathrm{s}(0.01 \%) \mathrm{p}(99.99 \%)\) \\
\hline \multirow[t]{2}{*}{б C9-C19} & \multirow[t]{2}{*}{0.98594} & \multirow[t]{2}{*}{48.89} & \multirow[t]{2}{*}{51.11} & 0.6992(sp1.97)C9 & \(\mathrm{s}(33.63 \%) \mathrm{p}(66.37 \%)\) \\
\hline & & & & 0.7149(sp1.59)C19 & s(38.65\%)p(61.35\%) \\
\hline \multirow[t]{2}{*}{\(\sigma\) C11-H12} & \multirow[t]{2}{*}{0.98800} & \multirow[t]{2}{*}{62.82} & \multirow[t]{2}{*}{37.18} & 0.7926 (sp2.35) C11 & \(\mathrm{s}(29.84 \%) \mathrm{p}(70.16 \%)\) \\
\hline & & & & 0.6097 s H12 & s(100\%) \\
\hline \multirow[t]{2}{*}{- C11-C13} & \multirow[t]{2}{*}{0.99059} & \multirow[t]{2}{*}{50.25} & \multirow[t]{2}{*}{49.75} & 0.7089(sp1.86) C11 & s(34.91\%)p(65.09\%) \\
\hline & & & & 0.7053(sp1.89) C13 & s(34.59\%)p(65.41\%) \\
\hline \multirow[t]{2}{*}{\(\sigma\) C13-H14} & \multirow[t]{2}{*}{0.98770} & \multirow[t]{2}{*}{62.98} & \multirow[t]{2}{*}{37.02} & \(0.7936(\mathrm{sp} 2.2) \mathrm{C} 13\) & s(31.29\%)p(68.71\%) \\
\hline & & & & 0.6085 s H14 & \(\mathrm{s}(100 \%)\) \\
\hline \multirow[t]{2}{*}{\(\pi\) C13-C15} & \multirow[t]{2}{*}{0.82257} & \multirow[t]{2}{*}{54.80} & \multirow[t]{2}{*}{45.20} & 0.7403(sp1)C13 & \(\mathrm{s}(0 \%) \mathrm{p}(100 \%)\) \\
\hline & & & & 0.6723(sp99.99) C15 & \(\mathrm{s}(0.02 \%) \mathrm{p}(99.98 \%)\) \\
\hline \multirow[t]{2}{*}{\% C15-H16} & \multirow[t]{2}{*}{0.98726} & \multirow[t]{2}{*}{63.72} & \multirow[t]{2}{*}{36.28} & 0.7983(sp2.02) C15 & \(\mathrm{s}(33.15 \%) \mathrm{p}(66.85 \%)\) \\
\hline & & & & \(0.6023 \mathrm{~s} \mathrm{H16}\) & s(100\%) \\
\hline \multirow[t]{2}{*}{\% C15-N17} & \multirow[t]{2}{*}{0.99247} & \multirow[t]{2}{*}{35.99} & \multirow[t]{2}{*}{64.01} & 0.5999(sp2.53) C15 & s(28.33\%) \(\mathrm{p}(71.67 \%)\) \\
\hline & & & & 0.8001(sp1.82) N17 & s(35.46\%)p(64.54\%) \\
\hline \multirow[t]{2}{*}{\(\sigma\) N17-H18} & \multirow[t]{2}{*}{0.99003} & \multirow[t]{2}{*}{76.09} & \multirow[t]{2}{*}{23.91} & 0.8723(sp2.43) N17 & \(\mathrm{s}(29.11 \%) \mathrm{p}(70.89 \%)\) \\
\hline & & & & 0.4890 s H18 & s(100\%) \\
\hline \multirow[t]{2}{*}{\(\pi\) N17-C19} & \multirow[t]{2}{*}{0.90737} & \multirow[t]{2}{*}{72.54} & \multirow[t]{2}{*}{27.46} & 0.8517(sp99.99) N17 & \(\mathrm{s}(0.10 \%) \mathrm{p}(99.90 \%)\) \\
\hline & & & & \(0.5240(\mathrm{sp} 1) \mathrm{C} 19\) & \(\mathrm{s}(0.01 \%) \mathrm{p}(99.99 \%)\) \\
\hline \multirow[t]{2}{*}{\(\sigma\) C19-N20} & \multirow[t]{2}{*}{0.99069} & \multirow[t]{2}{*}{38.07} & \multirow[t]{2}{*}{61.93} & 0.6170(sp2.16) C19 & \(\mathrm{s}(31.63 \%) \mathrm{p}(68.37 \%)\) \\
\hline & & & & 0.7869(sp1.76) N20 & s(36.28\%)p(63.72\%) \\
\hline \(\sigma\) N20-C21 & 0.98888 & 63.55 & 36.45 & 0.7972(sp2.19) N20 & s(31.34\%)p(68.66\%) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\(\sigma\) N20-C33} & \multirow{3}{*}{0.99051} & \multirow{3}{*}{62.50} & \multirow{3}{*}{37.50} & 0.6037(sp3.38) C21 & \(\mathrm{s}(22.85 \%) \mathrm{p}(77.15 \%)\) \\
\hline & & & & 0.7906(sp2.22) N20 & \(\mathrm{s}(31.10 \%) \mathrm{p}(68.90 \%)\) \\
\hline & & & & 0.6124(sp3.22) C33 & \(\mathrm{s}(23.69 \%) \mathrm{p}(97.31 \%)\) \\
\hline \multirow[t]{2}{*}{\(\sigma\) C21-H22} & \multirow[t]{2}{*}{0.98389} & \multirow[t]{2}{*}{64.22} & \multirow[t]{2}{*}{35.78} & 0.8014(sp2.87) C21 & s(25.84\%)p(74.16\%) \\
\hline & & & & 0.5981 s H 22 & s(100\%) \\
\hline \multirow[t]{2}{*}{\(\sigma\) C21-H23} & \multirow[t]{2}{*}{0.98935} & \multirow[t]{2}{*}{61.48} & \multirow[t]{2}{*}{38.52} & 0.7841(sp3.16) C21 & \(\mathrm{s}(24.05 \%) \mathrm{p}(75.95 \%)\) \\
\hline & & & & 0.6207 s H23 & s(100\%) \\
\hline \multirow[t]{2}{*}{\% C21-C24} & \multirow[t]{2}{*}{0.99076} & \multirow[t]{2}{*}{49.58} & \multirow[t]{2}{*}{50.42} & 0.7041(sp2.67) C21 & \(\mathrm{s}(27.27 \%) \mathrm{p}(72.73 \%)\) \\
\hline & & & & 0.7101 (sp2.46 C24 & \(\mathrm{s}(28.92 \%) \mathrm{p}(71.08 \%)\) \\
\hline \multirow[t]{2}{*}{\(\sigma\) C24-H25} & \multirow[t]{2}{*}{0.98731} & \multirow[t]{2}{*}{63.15} & \multirow[t]{2}{*}{36.85} & 0.7947(sp2.88) C24 & \(\mathrm{s}(25.75 \%) \mathrm{p}(74.25 \%)\) \\
\hline & & & & 0.6071 s H25 & s(100\%) \\
\hline \multirow[t]{2}{*}{\(\sigma\) C24-H26} & \multirow[t]{2}{*}{0.98836} & \multirow[t]{2}{*}{63.98} & \multirow[t]{2}{*}{36.02} & 0.7999 (sp2.74) C24 & s(26.74\%) \(\mathrm{p}(73.26 \%)\) \\
\hline & & & & 0.6002 s H 260 & s(100\%) \\
\hline \multirow[t]{2}{*}{\(\sigma\) C24-N27} & \multirow[t]{2}{*}{0.99501} & \multirow[t]{2}{*}{32.04} & \multirow[t]{2}{*}{67.96} & \(0.5660(\mathrm{sp} 4.38) \mathrm{C} 24\) & \(\mathrm{s}(18.58 \%) \mathrm{p}(81.42 \%)\) \\
\hline & & & & \(0.8244(\mathrm{sp} 2.57) \mathrm{N} 27\) & s(28.03\%)p(71.97\%) \\
\hline \multirow[t]{2}{*}{\(\sigma\) N \(27-\mathrm{H} 28\)} & \multirow[t]{2}{*}{0.99328} & \multirow[t]{2}{*}{74.21} & \multirow[t]{2}{*}{25.79} & \(0.8614(\mathrm{sp} 3.47) \mathrm{N} 27\) & \(\mathrm{s}(22.36 \%) \mathrm{p}(77.64 \%)\) \\
\hline & & & & 0.5152 s H 28 & s(100\%) \\
\hline \multirow[t]{2}{*}{\(\sigma\) N \(27-\mathrm{H} 29\)} & \multirow[t]{2}{*}{0.99475} & \multirow[t]{2}{*}{73.46} & \multirow[t]{2}{*}{26.54} & 0.8571(sp3.52) N27 & \(\mathrm{s}(22.13 \%) \mathrm{p}(77.87 \%)\) \\
\hline & & & & 0.5152 s H 29 & s(100\%) \\
\hline \multirow[t]{2}{*}{\(\sigma\) N \(27-\mathrm{C} 30\)} & \multirow[t]{2}{*}{0.99505} & \multirow[t]{2}{*}{66.48} & \multirow[t]{2}{*}{33.52} & 0.8153(sp2.65) N27 & s(27.40\%) \(\mathrm{p}(72.60 \%)\) \\
\hline & & & & 0.5790 (sp4.13) C30 & \(\mathrm{s}(19.50 \%) \mathrm{p}(80.50 \%)\) \\
\hline \multirow[t]{2}{*}{\(\sigma\) C30-H31} & \multirow[t]{2}{*}{0.98959} & \multirow[t]{2}{*}{62.86} & \multirow[t]{2}{*}{37.14} & \(0.7928(\mathrm{sp2} 2.9) \mathrm{C} 30\) & \(\mathrm{s}(25.67 \%) \mathrm{p}(74.33 \%)\) \\
\hline & & & & 0.6094 s H31 & s(100\%) \\
\hline \multirow[t]{2}{*}{\(\sigma\) C30-H32} & \multirow[t]{2}{*}{0.98874} & \multirow[t]{2}{*}{62.63} & \multirow[t]{2}{*}{37.37} & 0.7914(sp2.93) C30 & \(\mathrm{s}(25.46 \%) \mathrm{p}(74.54 \%)\) \\
\hline & & & & 0.6113 s H 32 & s(100\%) \\
\hline \multirow[t]{2}{*}{б C30-C33} & \multirow[t]{2}{*}{0.99013} & \multirow[t]{2}{*}{50.66} & \multirow[t]{2}{*}{49.34} & 0.7118(sp2.41) C30 & s(29.34\%)p(70.66\%) \\
\hline & & & & 0.7024(sp2.74) C33 & \(\mathrm{s}(26.77 \%) \mathrm{p}(73.23 \%)\) \\
\hline \multirow[t]{2}{*}{б C33-H34} & \multirow[t]{2}{*}{0.99021} & \multirow[t]{2}{*}{61.66} & \multirow[t]{2}{*}{38.34} & 0.7852(sp3.04) C33 & \(\mathrm{s}(24.74 \%) \mathrm{p}(75.26 \%)\) \\
\hline & & & & 0.6192 s H 34 & s(100\%) \\
\hline \multirow[t]{2}{*}{б C33-H35} & \multirow[t]{2}{*}{0.98519} & \multirow[t]{2}{*}{62.90} & \multirow[t]{2}{*}{37.10} & 0.79321 (sp3.03) C33 & \(\mathrm{s}(24.80 \%) \mathrm{p}(75.20 \%)\) \\
\hline & & & & 0.6091 s H 35 & \(\mathrm{s}(100 \%)\) \\
\hline LP(1)-Cu1 & 0.99987 & - & - & spd1.00 & \(\mathrm{s}(0 \%) \mathrm{p}(0 \%) \mathrm{d}(100 \%)\) \\
\hline LP(2)-Cu1 & 0.99980 & - & - & \(\mathrm{sp}(0.66) \mathrm{d}(99.99)\) & \(\mathrm{s}(0.13) \mathrm{p}(0.08) \mathrm{d}(99.7\) \\
\hline LP(3)-Cu1 & 0.99974 & - & - & \(\operatorname{sp1d}(99.99)\) & \(\mathrm{s}(0) \mathrm{p}(0.05) \mathrm{d}(99.95)\) \\
\hline LP(4)-Cu1 & 0.99931 & - & - & sp1d(99.99) & \(\mathrm{s}(0) \mathrm{p}(0.01) \mathrm{d}(99.99)\) \\
\hline LP(5)-Cu1 & 0.99854 & - & - & \(\mathrm{sp}(0.03) \mathrm{d}(99.99)\) & \(\mathrm{s}(0.20) \mathrm{p}(0.01) \mathrm{d}(99.7\) \\
\hline LP*(6)Cu1 & 0.18108 & - & - & sp0.07d0 & \(\mathrm{s}(93.02) \mathrm{p}(6.66) \mathrm{d} 0.32\) \\
\hline LP* \({ }^{(7)} \mathbf{C u} 1\) & 0.11518 & - & - & \(\mathrm{sp}(99.99) \mathrm{d}(0.72)\) & \(\mathrm{s}(0.08) \mathrm{p}(99.86) \mathrm{d}(0)\) \\
\hline LP*(8)Cu1 & 0.09805 & - & - & \(\mathrm{sp}(21.28) \mathrm{d}(0.03)\) & \(\mathrm{s}(4.48) \mathrm{p}(95.38) \mathrm{d}(0.1\) \\
\hline LP*(9)Cu1 & 0.09176 & - & - & \(\mathrm{sp}(47.83) \mathrm{d}(0.08)\) & \(\mathrm{s}(2.04) \mathrm{p}(97.8) \mathrm{d}(0.15\) \\
\hline LP(1)-Cl2 & 0.99260 & - & - & \(\mathrm{sp}(0.97)\) & \(\mathrm{s}(50.86 \%) \mathrm{p}(49.14 \%)\) \\
\hline LP(2)-Cl2 & 0.98804 & - & - & \(\mathrm{sp}(12.51)\) & \(\mathrm{s}(7.4 \%) \mathrm{p}(92.60 \%)\) \\
\hline LP(3)-Cl2 & 0.93387 & - & - & \(\mathrm{sp}(3.75)\) & s(21.07\%)p(78.93\%) \\
\hline LP(4)-Cl2 & 0.91972 & - & - & \(\mathrm{sp}(3.84)\) & \(\mathrm{s}(20.67 \%) \mathrm{p}(79.33 \%)\) \\
\hline LP(1)-Cl3 & 0.99546 & - & - & \(\mathrm{sp}(0.83)\) & s(54.69\%)p(45.31\%) \\
\hline LP(2)-Cl3 & 0.97946 & - & - & sp(52.32) & \(\mathrm{s}(1.88 \%) \mathrm{p}(98.12 \%)\) \\
\hline LP(3)-Cl3 & 0.95554 & - & - & sp(45.21) & \(\mathrm{s}(2.16 \%) \mathrm{p}(97.84 \%)\) \\
\hline LP(4)-Cl3 & 0.91127 & - & - & \(\mathrm{sp}(1.42)\) & \(\mathrm{s}(41.27 \%) \mathrm{p}(58.73 \%)\) \\
\hline LP(1)-Cl4 & 0.99482 & - & - & \(\mathrm{sp}(0.75)\) & s(57.12\%)p(42.88\%) \\
\hline LP(2)-Cl4 & 0.98230 & - & - & sp(68.68) & \(\mathrm{s}(1.44 \%) \mathrm{p}(98.56 \%)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline LP(3)-Cl4 & 0.97852 & - & - & \(\mathrm{sp}(1.00)\) & \(\mathrm{s}(0.01 \%) \mathrm{p}(99.99 \%)\) \\
\hline LP(4)-Cl4 & 0.89802 & - & - & sp(1.41) & \(\mathrm{s}(41.43 \%) \mathrm{p}(58.57 \%)\) \\
\hline LP(1)-Cl5 & 0.99390 & - & - & sp(1.07) & \(\mathrm{s}(48.29 \%) \mathrm{p}(51.71 \%)\) \\
\hline LP(2)-Cl5 & 0.98171 & - & - & sp(99.99) & \(\mathrm{s}(0.62 \%) \mathrm{p}(99.38 \%)\) \\
\hline LP(3)-Cl5 & 0.94940 & - & - & \(\mathrm{sp}(4.73)\) & \(\mathrm{s}(17.46 \%) \mathrm{p}(82.54 \%)\) \\
\hline LP(4)-Cl5 & 0.91088 & - & - & sp(1.97) & s(33.63\%)p(66.37\%) \\
\hline LP(1)-06 & 0.99357 & - & - & sp(69.45) & \(\mathrm{s}(1.42) \mathrm{p}(98.58 \%)\) \\
\hline LP(2)-06 & 0.95274 & - & - & sp(1.48) & \(\mathrm{s}(40.29 \%) \mathrm{p}(59.71 \%)\) \\
\hline LP(1)N20 & 0.87108 & - & - & \(\operatorname{sp}(76.08)\) & s(1.3\%)p(98.70\%) \\
\hline RY*(1)Cu1 & 0.00168 & - & - & \(\mathrm{sp}(83.43) \mathrm{d}(6.15)\) & \(\mathrm{s}(1.10) \mathrm{p}(92.10) \mathrm{d}(6.7\) \\
\hline RY*(1)-06 & 0.00091 & - & - & \(\mathrm{sp}(5.65)\) & s(15.04\%)p(84.96\%) \\
\hline RY*(1)-H7 & 0.00063 & - & - & s & s(100\%) \\
\hline RY*(2)-C9 & 0.00282 & - & - & sp(99.99) & \(\mathrm{s}(0.06 \%) \mathrm{p}(99.94 \%)\) \\
\hline RY*(1)C11 & 0.00338 & - & - & \(\operatorname{sp}(72.81)\) & s(1.35\%)p(98.65\%) \\
\hline RY*(1)N17 & 0.00204 & - & - & sp(99.99) & \(\mathrm{s}(0.13 \%) \mathrm{p}(99.87 \%)\) \\
\hline RY*(1)N20 & 0.00593 & - & - & \(\mathrm{sp}(42.90)\) & \(\mathrm{s}(2.28 \%) \mathrm{p}(97.72 \%)\) \\
\hline RY*(1)N27 & 0.00106 & - & - & sp(28.87) & \(\mathrm{s}(3.35 \%) \mathrm{p}(96.65 \%)\) \\
\hline
\end{tabular}

Table \(S-3\) : Second order perturbation theory analysis of Fock matrix basis in NBO basis corresponding to the intra molecular bonds in \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)\) [CuCl \(\left.\mathrm{C}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\)
\begin{tabular}{|c|c|c|c|c|}
\hline Donor & Acceptor & \(\mathbf{E}^{(2)} \mathrm{Kcal} / \mathrm{mol}\) & E(j)-E(i) (a.u) & F(i,j) (a.u) \\
\hline LP(3)-Cl2 & LP*(9)-Cu(1) & 4.07 & 0.47 & 0.056 \\
\hline LP(4)-Cl2 & \(\mathbf{L P *}\) (6)-Cu(1) & 15.54 & 0.36 & 0.100 \\
\hline LP(4)-Cl2 & LP*(9)-Cu(1) & 13.99 & 0.45 & 0.101 \\
\hline LP(3)-Cl3 & N17-H18 & 8.53 & 0.64 & 0.093 \\
\hline O6-H8 & \(\mathrm{LP} *(8)-\mathrm{Cu}(1)\) & 5.88 & 1.02 & 0.103 \\
\hline LP(2)-06 & \(\mathbf{L P *}\) (6)-Cu(1) & 6.23 & 0.63 & 0.085 \\
\hline LP(2)-06 & LP*(8)-Cu(1) & 26.15 & 0.82 & 0.190 \\
\hline C9-C11 & C13-C15 & 6.97 & 0.29 & 0.059 \\
\hline C9-C11 & N17-C19 & 21.48 & 0.20 & 0.089 \\
\hline C13-C15 & N17-C19 & 6.71 & 0.20 & 0.049 \\
\hline C15-H16 & N17-C19 & 3.93 & 0.93 & 0.077 \\
\hline N17-C19 & C9-C11 & 3.25 & 0.38 & 0.046 \\
\hline N17-C19 & C13-C15 & 10.84 & 0.39 & 0.083 \\
\hline LP(1)-N20 & N17-C19 & 22.94 & 0.21 & 0.096 \\
\hline N17-C19 & C9-C11 & 23.72 & 0.09 & 0.087 \\
\hline N17-C19 & C13-C15 & 11.66 & 0.09 & 0.064 \\
\hline LP(4)-Cl4 & \(\mathbf{L P *}\) (6)-Cu(1) & 37.61 & 0.48 & 0.176 \\
\hline LP(4)-Cl4 & LP*(8)-Cu(1) & 23.92 & 0.67 & 0.160 \\
\hline LP(1)-Cl4 & \(\mathbf{L P *}\) * 8 )-Cu(1) & 4.21 & 6.75 & 0.074 \\
\hline LP(4)-Cl3 & \(\mathbf{L P *}\) (6)-Cu(1) & 13.50 & 0.48 & 0.106 \\
\hline LP(4)-Cl3 & \(\mathbf{L P *}\) (7)-Cu(1) & 26.26 & 0.68 & 0.171 \\
\hline LP(4)-C15 & \(\mathbf{L P *}\) (6)-Cu(1) & 10.79 & 0.44 & 0.092 \\
\hline LP(4)-C15 & \(\mathbf{L P *}\) (7)-Cu(1) & 28.63 & 0.65 & 0.175 \\
\hline
\end{tabular}

Table \(S\) - 4: Condensed Fukui function fr for \(\left(\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{3}\right)^{+}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Mulliken atomic charges} & \multicolumn{5}{|c|}{Fukui functions} \\
\hline Atoms & N & ( \(\mathrm{N}+1\) ) & ( \(\mathrm{N}-1\) ) & \(\mathrm{f}^{+}\) & \(\mathrm{f}^{-}\) & \(\mathrm{f}^{0}\) & \(\Delta \mathrm{f}\) \\
\hline 1 C & 0.407793 & -1.661840 & 0.538042 & -2.069633 & -0.130249 & -1.0998 & -1.939 \\
\hline 2 C & -0.482102 & 1.155124 & -0.489425 & 1.637226 & 0.007323 & 0.815 & 1.629 \\
\hline 3 C & -0.112434 & 0.988692 & 0.025185 & 1.101126 & -0.137919 & 0.4815 & 1.239 \\
\hline 4 C & -0.000424 & -0.285987 & 0.002690 & -0.285563 & -0.002693 & -0.1445 & -0.283 \\
\hline 5 C & -0.171389 & 1.130583 & -0.259396 & 1.301972 & 0.088007 & 0.695 & 1.214 \\
\hline 6 H & 0.118978 & -0.232473 & 0.152132 & -0.3514253 & -0.033154 & -0.192 & -0.318 \\
\hline 7 H & 0.142146 & -1.032656 & 0.178080 & -1.174802 & -0.035934 & -0.6055 & -1.138 \\
\hline 8 H & 0.124726 & -0.365836 & 0.176657 & -0.507982 & -0.051931 & -0.279 & -0.456 \\
\hline 9 H & 0.158463 & -0.145898 & 0.197601 & -0.304361 & -0.039438 & -0.1715 & -0.265 \\
\hline 10 N & -0.322383 & -0.437578 & -0.260069 & -0.115195 & -0.062314 & -0..0875 & -0.053 \\
\hline 11 N & 0.058895 & 0.106185 & 0.189098 & 0.04729 & -0.130203 & -0.0415 & 0.177 \\
\hline 12 C & -0.313728 & 0.066287 & -0.289230 & 0.380015 & -0.024498 & 0.178 & 0.405 \\
\hline 13 H & 0.134630 & 0.127443 & 0.177358 & -0.007187 & -0.042728 & 0.025 & 0.036 \\
\hline 14 H & 0.101434 & -0.042534 & 0.166661 & -0.143968 & -0.065227 & -0.1045 & -0.079 \\
\hline 15 C & -0.103640 & 0.582586 & -0.077874 & 0.686226 & -0.025766 & 0.33 & -0.660 \\
\hline 16 H & 0.108685 & -0.017936 & 0.165159 & -0.126621 & -0.065474 & -0.096 & -0.061 \\
\hline 17 H & 0.100275 & -0.132121 & 0.128167 & -0.232396 & -0.027892 & -0.130 & -0.205 \\
\hline 18 C & -0.213840 & 1.533695 & -0.148191 & 1.747535 & -0.362031 & 0.693 & 2.109 \\
\hline 19 H & 0.097077 & -0.093046 & 0.120993 & -0.190123 & -0.023916 & -0.107 & 0.166 \\
\hline 20 H & 0.117045 & -0.637908 & 0.168833 & -0.754953 & -0.051788 & -0.403 & -0.703 \\
\hline 21 C & -0.084033 & -0.288872 & -0.136093 & -0.204839 & 0.05206 & -0.076 & -0.257 \\
\hline 2 H & 0.133818 & -0.036706 & 0.187320 & -0.170524 & -0.053502 & -0.879 & -0.117 \\
\hline 23 H & 0.091079 & -0.519828 & 0.122008 & -0.610907 & -0.030929 & -0.821 & -0.579 \\
\hline 24 N & -0.264193 & -0.499932 & -0.238865 & -0.235739 & -0.025328 & -0.131 & -0.210 \\
\hline 25 H & 0.173122 & -0.259446 & 0.203161 & -0.432568 & -0.030039 & -0.231 & -0.403 \\
\hline
\end{tabular}

Afef Gannouni - She wrote the whole article
Wiem Tahri - She did the biological study
Thierry Roisnel - Single crystal diffraction
Riadh Kefi - He is the Research Supervisor and he gave the plan for this Paper.

I declare that I have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF
submission.
PLATON version of 18/05/2022; check.def file version of 17/05/2022
Datablock AG21_02 - ellipsoid plot
```

