
HAL Id: hal-03827500
https://hal.science/hal-03827500

Submitted on 24 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A hyperbolic generalized Zener model for nonlinear
viscoelastic waves

Bruno Lombard, Nicolas Favrie

To cite this version:
Bruno Lombard, Nicolas Favrie. A hyperbolic generalized Zener model for nonlinear viscoelastic
waves. Wave Motion, 2023, 116, pp.103086. �hal-03827500�

https://hal.science/hal-03827500
https://hal.archives-ouvertes.fr


A hyperbolic generalized Zener model for nonlinear

viscoelastic waves

N. Favrie and B. Lombard

October 19, 2022

Abstract

A macroscopic model describing nonlinear viscoelastic waves is derived in Eulerian for-

mulation, through the introduction of relaxation tensors. It accounts for both constitutive

and geometrical nonlinearities. In the case of small deformations, the governing equations

recover those of the linear generalized Zener model (GZM) with memory variables, which is

widely used in acoustics and seismology. The structure of the relaxation terms implies that

the model is dissipative. The chosen family of specific internal energies ensures also that the

model is unconditionally hyperbolic. A Godunov-type scheme with relaxation is implemented.

A procedure for maintaining isochoric transformations at the discrete level is introduced. Nu-

merical examples are proposed to illustrate the properties of viscoelastic waves and nonlinear

wave phenomena.

Keywords: Hyperelasticity, generalized Zener model, memory variables, hyperbolic systems

1 Introduction

Wave motion in real media differs in many aspects from motion in an idealized elastic medium.

For instance, the dispersion and attenuation induced by grain-to-grain friction can greatly affect

the amplitude of the waves and their arrival times. Under the assumption of small perturbations,

linear viscoelasticity is assumed to provide reasonably accurate means of describing the dissipative

effects. Viscoelastic constitutive laws give the stress in terms of the past strain rate history. Among

the many existing models, the linear generalized Zener model (GZM, or standard viscoelastic

solid model) has proven its ability to describe the viscoelastic behaviour in small deformation of

various materials [7]. It accounts for quite general attenuation laws, such as quality factors with a

frequency power law. Introduction of memory variables yields a hyperbolic local-in-time evolution

problem, which is computationally affordable [36, 28].

However, the linear framework is insufficient to describe wave propagation in many interest-

ing configurations. In granular media, the physical source of the nonlinearities and attenuation

is related to grain-to-grain interactions [41]. In the biomedical context, both nonlinearities and

viscoelasticity are needed to model shock waves in soft solids such as the brain [13, 39, 5, 3] or the

liver [8]. At a larger scale, nonlinearities and viscous damping arising during the wave propagation

are commonly studied in the context of site effect assessment, and related resonance phenomena

[12]. In the acoustical literature, nonlinear mechanisms are generally introduced heuristically into

existing linear models. For example, a quadratic term has been added to the stress-strain relation
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of the linear single body Zener model [29], but within the framework of a linear constitutive law

and infinitesimal strains. The choice of a nonlinear viscoelastic model raises finally two funda-

mental questions: are the underlying approximations consistent? and what are the mathematical

properties of the model, particularly with respect to numerical simulations?

A rational answer to these questions can be found by turning to the literature of solid mechan-

ics. Numerous works have focused on the coupling of viscoelasticity and hyperelasticity theories

in finite strain. The reader is referred to reference works such as [22, 26, 42, 35] for an overview of

the dedicated literature, and to [24] for recent developments about elastomers. Since the seminal

works [18, 38, 10], many studies have dealt with nonlinear viscoelastic waves, including thermody-

namical analyses, traveling waves, etc. Nevertheless, these theories are often used for applications

related to quasi-static configurations (i.e., where inertial effects are neglected, see e.g. [10]), even

though wave propagation problems were considered recently [11, 3]. As a consequence, they often

do not incorporate some particularities of wave phenomena such as a finite propagation speed,

with the notable exception of [3]. This property is fundamental to get explicit-in-time numerical

schemes. Finally, the model parameters should be identifiable from acoustic measurements. An

interesting discussion on the acoustic identification of nonlinear parameters in polymers (PMMA)

can be found in [37]. Other identification methods are based on the properties of kink waves

[11, 3].

The criteria we find most important for designing a suitable model are: (i) to be thermody-

namically consistent; (ii) to yield a well-posed initial-valued problem that is local in time; (iii)

to degenerate towards the linear GZM in the limit-case of small deformations. An approach sat-

isfying (i)-(ii) has been proposed in [25], in the incompressible case. The present work can be

seen as an extension of this paper to the compressible case, with additionally the criterion (iii)

unconditionally satisfied. On the other hand, a GZM satisfying the three criteria has already

been developed by the authors, but only in the one-dimensional case [17]. The aim of this paper

is to unify existing contributions and to propose a reliable model which addresses all the impor-

tant features of nonlinear viscoelastic waves: finite strains in any space dimension, hyperbolicity,

thermodynamical consistency, and numerics.

For this purpose, our approach is based on hyperelasticity where relaxation tensors are intro-

duced. The model is built in an Eulerian framework and yields a nonlinear hyperbolic system of

first-order partial differential equations with source terms. One parameter of the model controls

the nonlinearity. On a bounded interval of values, this parameter ensures hyperbolicity of the

governing equations [31, 20]. The other parameters can be calibrated in the linear regime, based

on an optimization procedure described in [4]. The numerical solution can be estimated based

on a splitting method: the hyperbolic part is solved by a Godunov-type HLLC scheme, while the

relaxation part is solved analytically.

The paper is organised as follows. In Section 2, we present the linear GZM and the hyperelastic

model in Eulerian formulation. The nonlinear GZM is introduced in Section 3, together with the

equation of state and with a way to calibrate the parameters. A numerical scheme is proposed

in Section 4. Numerical experiments illustrate the wave phenomena in Section 5, for various

magnitudes of nonlinearity. Conclusion is drawn in Section 6.
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2 Limit cases

2.1 Linear viscoelasticity

The linear GZM is largely used in acoustics and in computational seismology. This model ade-

quately describes the usual relaxation and creep tests of solids under small deformations [7]. By

optimizing its parameters, the GZM allows to finely describe dispersion relations of the waves [4].

Let us consider N mechanisms of relaxation, with relaxation frequencies θ` and positive weights

κp,s` (` = 1, · · · , N). Then the relaxation functions of compressional (P) and shear (S) waves write

respectively

ψπ(t) = πr

(
1 +

N∑
`=1

κp` e
−θ`t

)
H(t), ψµ(t) = µr

(
1 +

N∑
`=1

κs` e
−θ`t

)
H(t), (1)

where H is the Heaviside function. Describing P and S waves with identical relaxation frequen-

cies, as well as identical numbers of relaxation mechanisms, allows to greatly reduce the memory

requirements [36]. In (1), πr = ρ0 c
2
p(0) and µr = ρ0 c

2
s(0) are relaxed moduli under compres-

sional and shear loads, where cp(0) and cs(0) denote the phase velocities of P and S waves at zero

frequency, respectively, and ρ0 is a reference density. The unrelaxed moduli are

πu = πr

(
1 +

N∑
`=1

κp`

)
= ρ0 c

2
p(∞), µu = µr

(
1 +

N∑
`=1

κs`

)
= ρ0 c

2
s(∞), (2)

where cp(∞) and cs(∞) are the phase velocities of P and S waves at infinite frequency. Additional

details may be found in [28].

A naive use of the relaxation functions (1) would involve convolution products, which is com-

putationally too expensive. Introducing the so-called memory variables ξ` provides a local-in-time

hyperbolic system with source term. The velocity-stress formulation writes [28]:

ρ0
∂v

∂t
= divσ, (3a)

∂σ

∂t
= (πu − 2µu) divv I + 2µuD +

N∑
`=1

ξ`, (3b)

∂ξ`
∂t

= −θ` ((πrκ
p
` − 2µrκ

s
`) divv I + 2µrκ

s
`D + ξ`) , ` = 1, · · · , N, (3c)

where v = (u, v, w)T is the velocity, σ is the Cauchy stress, ξ` are symmetric tensors, I is the

identity tensor, and D = sym(gradv) is the rate of deformation tensor.

2.2 Nonlinear hyperelasticity

The differential operators are applied in the Eulerian coordinates x = (x, y, z)> ∈ R3. The

deformation gradient is F = ∂x/∂X, were X are the Lagrangian coordinates. The velocity is

v = dx/dt, where d/dt is the time derivative at constant particle X. The conservation of mass,

momentum and energy in Eulerian formulation writes:

∂ρ

∂t
+ div(ρv) = 0, (4a)

∂(ρv)

∂t
+ div(ρv ⊗ v − σ) = 0, (4b)

∂(ρE)

∂t
+ div(ρvE − σ.v) = 0. (4c)

3



Time differentiation of F .F−1 and use of dF /dt = gradv.F yields the kinematic equation

d

dt
F−> = −grad>v.F−>. (5)

This writing is not usual in solid mechanics. However, it is well adapted to the Eulerian formulation

followed in this article. The density is ρ = ρ0/|F |, where ρ0 is a reference density and |•| = det(•).
The total specific energy E is

E =
v2

2
+ e(η,C−1), (6)

where e is the specific internal energy, η is the specific entropy, and C = F T .F is the right

Cauchy-Green strain tensor. The nullity of dissipation yields the Cauchy stress tensor:

σ = −2 ρF−>.
∂e

∂C−1
.F−1. (7)

Using C−1 in (6) ensures material frame-indifference, see Section 5.4 of [22]. The system (4)-(5)

yields 7 waves [21]. One of these wave is linearly degenerate, the other are nonlinear and may

have a complex structure (genuinely or non genuinely nonlinear waves). The reader is refered to

[33, 23] for a complete study in a particular case.

3 Nonlinear GZM

3.1 Objective

We aim to build a model that satisfies the following properties:

(i) recovering the linear GZM (3) in the case of infinitesimal deformation;

(ii) recovering the hyperelastic model (4) in the lossless case;

(iii) satisfying the second principle of thermodynamics;

(iv) being unconditionally hyperbolic.

This new model is built by adding relaxation terms to the system (4), as shown in Section 3.2.

The study of this model in small deformations in Section 3.3 leads, by identifying the parameters,

to the linear GZM (criterion (i)). When these terms cancel, the hyperelastic model is recovered, so

that criterion (ii) is satisfied. The general form of the relaxation terms is determined by imposing

a positive dissipation, thus satisfying criterion (iii). Finally, criterion (iv) is satisfied by choosing

particular forms of specific internal energy (Section 3.4).

3.2 Governing equations

Kinematic equations. The conservation equations (4) are unchanged. However, we introduce

new kinematic variables denoted F `. In a rheological diagram, F 0 corresponds to the true defor-

mation gradient tensor. Instead of (5), the kinematic equations are now:
d

dt
F−>0 = −grad>v.F−>0 , (8a)

d

dt
F−>` = −grad>v.F−>` +R`.F

−>
` , ` = 1, · · · , N, (8b)
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where R` are symmetric second-order tensors. These relaxation terms will be determined later.

A similar approach is used to model viscoplasticity in [14] or incompressible viscoelasticity in [25].

Equation (8a) describes the equilibrium elastic part of the behaviour. It can be merged with (8b)

by setting R0 = 0, as done from now. Based on (8b), the time derivative of C−1` = F−1` .F−>`
writes:

d

dt
C−1` = −2F−1` . (D −R`) .F

−>
` , ` = 1, · · · , N. (9)

For further calibration of the equation of state and numerical resolution of the governing equations,

the time derivative of J` = |C`| = |F `|2 is needed. This notation should not be confused with the

standard notation J` = |F `|, hence J` = J 2
` . Based on (9), it follows that:

d

dt
J` = 2J` (divv − trR`) , ` = 1, · · · , N. (10)

Using (10) and J−1` = (J
−1/2
` )2, one obtains

d

dt
J
−1/2
` + J

−1/2
` divv = J

−1/2
` trR`, ` = 1, · · · , N. (11)

Dissipation of energy. The total specific energy is

E =
v2

2
+

N∑
`=0

e`
(
η,C−1`

)
, (12)

where the internal energy e =
∑
` e` satisfies the differential equation ρ de/dt = σ : D, consistently

with the conservation laws (4). The Cauchy stress

σ =

N∑
`=0

σ` (13)

is deduced from the Gibbs identity for de/dt, and from the second principle of thermodynamics.

For this purpose, one introduces the dissipation D = ρ T dη/dt ≥ 0, where T = ∂E/∂η ≥ 0 is

the temperature, and η is the entropy. Using (9), (12), (13) and the symmetry of D and R`, the

dissipation D writes

D =

N∑
`=0

(
σ` : D − ρ ∂e`

∂C−1`
:
d

dt
C−1`

)
,

=

N∑
`=0

(
σ` : D − ρ ∂e`

∂C−1`
:
(
−2F−1` . (D −R`) .F

−>
`

))
,

=

N∑
`=0

((
σ` + 2 ρF−>` .

∂e`

∂C−1`
.F−1`

)
: D − 2 ρF−>` .

∂e`

∂C−1`
.F−1` : R`

)
,

≥ 0.

(14)

This inequality is satisfied whatever D, which implies

σ` = −2 ρF−>` .
∂e`

∂C−1`
.F−1` , ` = 0, · · · , N, (15)

and
N∑
`=0

σ` : R` =

N∑
`=0

tr (σ`.R`) ≥ 0. (16)
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Property 1 A sufficient condition to ensure (16) is to choose:

R` = α` σ` + β` trσ` I, ` = 1, · · · , N, (17)

with α` ≥ 0 and β` ≥ −α`/3.

The parameters α` and β` are scalars and they may depend on any parameters such as temperature,

invariant of the stress, pressure, etc. In the following and for the sake of simplicity, we will consider

them as constant.

Proof. The tensor σ` is split into its spheric and deviatoric parts:

σ` = −p` I + S`, with trS` = 0. (18)

Then one has:

tr (σ`.R`) = tr. ((−p` I + S`) (α`(−p` I + S`) + β`(−3 p`) I)) ,

= (α` + 3β`) p
2
` trI − (2α` + 3β`) p` trS` + α` trS2

` ,

= 3 (α` + 3β`) p
2
` + α` S` : S`,

≥ 0,

(19)

which concludes the proof.

Property 1 generalizes the analysis performed in [14] in the case of viscoplasticity. The de-

termination of α` and β` will be discussed in Section 3.3 to ensure that, in the limit of small

deformation, one recovers the linear GZM used in acoustics. From now on, we focus our study

on the isotropic case for which one knows an equation of state (EOS) that guarantees the hyper-

bolicity of the model. Nevertheless, extension to anisotropic models could be considered without

major modifications (in principle).

3.3 Small deformations

In the case of small deformations, the Lagrangian and Eulerian descriptions are identical and

C−1` ≈ I − 2 ε`, where ε` are second-order symmetric tensors. Using (9) leads to

∂ε`
∂t

= D −R`, ` = 1, · · · , N. (20)

The constitutive laws for linear isotropic solids write σ` = λ` trε` I + 2µ` ε`, where λ` and µ`

are Lamé coefficients, to be determined. Time differentiating the constitutive laws and using (20)

gives
∂σ`
∂t

= λ` divv I + 2µ`D + ξ`, ` = 1, · · · , N, (21)

where the second-order symmetric tensors ξ` write

ξ` = − (λ` trR` I + 2µ`R`) , ` = 1, · · · , N, (22)

and ξ0 = 0. Introducing the unrelaxed moduli

πu =

N∑
`=0

(λ` + 2µ`) , µu =

N∑
`=0

µ`, (23)
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and summing (21) over `, one obtains

∂σ

∂t
= (πu − 2µu) divv I + 2µuD +

N∑
`=1

ξ`, (24)

which recovers the evolution of σ in the linear GZM (3b). It remains to determine the time

evolution of ξ`. From (21), it follows

∂

∂t
trσ` = (3λ` + 2µ`) divv + trξ`, ` = 1, · · · , N. (25)

Equations (17) and (22) yield

ξ` = − (A` σ` +B` trσ` I) , ` = 1, · · · , N, (26)

with

A` = 2µ` α`, B` = λ` α` + (3λ` + 2µ`) β`, ` = 1, · · · , N. (27)

From (21), (25) and (26), one deduces

∂ξ`
∂t

= −A` (λ` divv I + 2µ`D + ξ`)−B` ((3λ` + 2µ`) divv + trξ`) I, ` = 1, · · · , N. (28)

Identification with (3c), where no term trξ` occurs, implies B` = 0, and (27) gives

β` = − λ`
3λ` + 2µ`

α`, ` = 1, · · · , N. (29)

The equation (28) then recovers the evolution of ξ` in the linear GZM (3c) if the following condi-

tions are satisfied (` = 1, · · · , N):

λ` = πrκ
p
` − 2µrκ

s
` , µ` = µrκ

s
` , α` =

θ`
2µ`

=
θ`

2µrκs`
. (30)

The positive parameters of the linear GZM κp` , κ
s
` and θ` can be obtained from the attenuation of

linear P and S waves [4]. The elastic moduli λ0 and µ0 are determined by using (23):

λ0 = πu − 2µu −
N∑
`=1

λ`, µ0 = µu −
N∑
`=1

µ`. (31)

One notices that α` in (30) and β` in (29) naturally satisfy the sign requirements of Property 1.

3.4 Equations of state

Materials with a specific internal energy (12) in separable form are considered:

e`(η,C
−1
` ) = eh`(J`) + es`

(
Ĉ
−1
`

)
, ` = 1, · · · , N, (32)

with the unimodular tensor Ĉ
−1
` = C−1` /

∣∣C−1` ∣∣1/3. One introduces the unimodular parts of the

Finger tensors Ĝ` = G`/ |G`|1/3, where G` = B−1` is the Finger tensor and B` = F `.F
T
` is the

left Cauchy-Green deformation tensor. For isotropic solids, es` can be written as a function of

only two invariants of Ĉ
−1
` :

es`(Ĉ
−1
` ) = es`(j1`, j2`), jk` = tr

(
Ĉ
−1
`

)k
≡ tr

(
Ĝ`

)k
. (33)
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Based on the usual relations of tensorial calculus

∂

∂A
tr (An) = n

(
AT
)n−1

,
∂

∂A
det(A) = det(A)A−>, (34)

the Cauchy stress in (15) writes (` = 1, · · · , N):

σ` = −2 ρF−>`

(
∂eh`
∂J`

∂J`

∂C−1`
+

2∑
k=1

∂es`
∂jk`

∂jk`

∂C−1`

)
.F−1` ,

= −2 ρF−>`

(
−∂eh`
∂J`

J`C` +

2∑
k=1

∂es`
∂jk`

k

(
J
k/3
`

(
C−1`

)k − jk`
3
I

)
C`

)
.F−1` ,

≡ −p` I + S`,

(35)

with trS` = 0. The hydrodynamic part of the stress is thus

p` = −2ρ
∂eh`
∂J`

J`, (36)

whereas the deviatoric part of the stress writes

S` = −2ρ

(
∂es`
∂j1`

(
J
1/3
` F−>` .F−1` −

j1`
3
I

)
+ 2

∂es`
∂j2`

(
J
2/3
`

(
F−>` .F−1`

)2
− j2`

3
I

))
,

= −2ρ

(
∂es`
∂j1`

(
Ĝ` −

j1`
3
I

)
+ 2

∂es`
∂j2`

((
Ĝ`

)2
− j2`

3
I

))
.

(37)

The last expression in (37) recovers the shear tensor given in [16, 20]: in the isotropic case, the

stress equations deduced from the Finger tensors and from C−1` are thus the same. Now we

determine the stresses induced by the internal energy (32).

Hydrodynamic stress. The hydrodynamic part of the energy is chosen in the form:

eh`(η, J`) =
d`
ρ0

(
J
1/2
` − 1

)2
, ` = 0, · · · , N, (38)

where ρ0 is a reference density. In the hyperelastic case (N = 0), the convexity of (38), combined

with criteria on the shear part of the energy precised further, is a sufficent condition to ensure the

hyperbolicity of the model [31]. The proof made in [31] generalizes directly to the case of N ≥ 1

relaxation mechanisms. Using (36) and ρ = ρ0/J
1/2
0 yields the pressures

p` = 2 d`
ρ

ρ0
J
1/2
`

(
1− J1/2

`

)
= 2 d`

(
J`
J0

)1/2 (
1− J1/2

`

)
, ` = 0, · · · , N. (39)

The parameter d` is determined in two steps, based on the limit-case of small deformations. First,

in the isentropic case, the differential of p`(η, ρ, J`) writes

dp`
dt

=
dp`
dρ

dρ

dt
+
dp`
dJ`

dJ`
dt
. (40)

The latter is deployed based on (36), on the conservation of mass (4a) and on the transport of J`

(10), leading to

dp`
dt

= −2ρ J`

(
∂eh`
∂J`

+ 2J`
∂2eh`
∂J2

`

)
divv + 4ρ J`

(
∂eh`
∂J`

+ 2J`
∂2eh`
∂J2

`

)
trR`. (41)
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Second, the decomposition (18) leads to p` = −1/3 trσ`, which is then time differentiated in the

case of small deformations (25):

dp`
dt
≈ ∂p`

∂t
= −

(
λ` +

2

3
µ`

)
divv − 1

3
trξ`. (42)

Identification between (41) and (42) gives

2ρ J`

(
∂eh`
∂J`

+ 2 J`
∂2eh`
∂J2

`

)
= λ` +

2

3
µ`. (43)

The left hand side of (43) is deduced from the hydrodynamic energy (38) and equals 2(ρ/ρ0)J` d`.

For small deformations, ρ ≈ ρ0 and J` ≈ 1. Using (43) yields the parameter

d` =
1

2

(
λ` +

2

3
µ`

)
, ` = 0, · · · , N. (44)

Additionally, the term before divv in (41) is a bulk modulus Kh` = ρ c2h`, where ch` is an hydro-

dynamic sound speed. It follows (` = 0, · · · , N):

c2h` = 2 J`

(
∂eh`
∂J`

+ 2J`
∂2eh`
∂J2

`

)
=

2d`
ρ0

J`,

=
1

ρ0

(
λ` +

2

3
µ`

)
J`.

(45)

Hydrodynamic sound speeds are not wave velocities deduced from a Riemann problem, which is

why they do not involve the elastic moduli λ` + 2µ` of plane compression waves. Lastly, it is

emphasized that the inequality J` > 0 must always be satisfied to yield real hydrodynamic sound

speeds.

Deviatoric stress. The shear part of the energy (33) is chosen in the form [16]:

es`(j1`, j2`) =
µ`
4ρ0

(
χ` j2` +

1− 2χ`
3

j21` + 3 (χ` − 1)

)
, ` = 0, · · · , N. (46)

Here χ` can be viewed as new nonlinear parameters. For small deformations and any χ`, the

Hooke law is recovered. Thus, these parameters are important only in the case of large shear

deformations. They can be used to fit experimental data. The deviatoric part of the stress is

finally deduced from (37) and (46), through

∂es`
∂j1`

=
µ`

6 ρ0
(1− 2χ`) j1`,

∂es`
∂j2`

=
µ`

4 ρ0
χ`, ` = 0, · · · , N. (47)

A theoretical analysis of (46) has been performed in hyperelasticity [20], where the hyperbolicity

was proven under the sufficient condition −1 ≤ χ ≤ 0.5. Following [31], one can extend this

property to the viscoelastic case.

Property 2 The viscoelastic model with stress (35), hydrodynamic energy (38) and shear energy

(46), is hyperbolic under the sufficient condition:

− 1 ≤ χ` ≤ 0.5, ` = 1, · · · , N. (48)

The limit case χ` = −1 corresponds to Neo-Hookean solids. Other choices of EOS are of course

possible, for example the Mooney-Rivlin model often used to describe elastomers, or the Mur-

naghan model widely used for non-destructive testing of geomaterials [2]. However, hyperbolicity

has not been proven for these models.
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3.5 Final system

We collect here the governing equations of the generalized nonlinear Zener model. Their numerical

discretization will be detailed in Section 4. The conservation laws are
∂ρ

∂t
+ div(ρv) = 0, (49a)

∂(ρv)

∂t
+ div(ρv ⊗ v − σ) = s, (49b)

where s is a bulk force term. The conservation of energy (4c) is not required, since the internal

energy does not depend explicitly on the entropy. The components of the Cauchy stress σ (13)-(35)

are the hydrodynamic pressure p` (39) and the shear stress S` (37)-(46).

We introduce the covectors eβ` as the columns of F−>` = (e1` , e
2
` , e

3
`), with eβ` = (aβ` , b

β
` , c

β
` )>.

Defining a` = (a1` , a
2
` , a

3
`)
>, b` = (b1` , b

2
` , b

3
`)
>, c` = (c1` , c

2
` , c

3
`)
>, then the unimodular Finger

tensors in (37) write:

Ĝ` =
1

|G`|1/3

 a`.a` a`.b` a`.c`

a`.b` b`.b` b`.c`

a`.c` b`.c` c`.c`

 , ` = 0, · · · , N. (50)

The kinematic equations write then
∂eβ`
∂t

+ grad eβ` .v + eβ` .gradv = R`. e
β
` , ` = 0, · · · , N, β = 1, 2, 3, (51a)

∂

∂t
J
−1/2
` + div

(
J
−1/2
` v

)
= φ`, ` = 0, · · · , N. (51b)

In the right hand side of (51a), the relaxation tensors are deduced from (17), (29) and (30):

R0 = 0, R` =
θ`

2µ`

(
σ` −

λ`
3λ` + 2µ`

trσ` I

)
, ` = 1, · · · , N. (52)

The equation (51b) is redundant with (51a). However, this additional equation is useful from

a numerical point of view, for two reasons: (i) it enforces isochoric transformations to remain

isochoric at the discrete level; (ii) it enforces J` > 0, as required by the hydrodynamic sound

speeds in (45). Justification of (i) is given in Appendix A. Based on (11) and on (52), the scalars

φ` = J
−1/2
` trR` in (51b) are:

φ0 = 0, φ` = J
−1/2
`

θ`
3λ` + 2µ`

trσ`, ` = 1, · · · , N. (53)

The systems (49) and (51) involve 14 + 10 × N partial differential equations. They need to be

completed by initial conditions. In the case of forcing by a source point s 6= 0, then the initial

data are ρ(•, t = 0) = ρ0, v(•, t = 0) = 0, F−>` (•, t = 0) = I and J
−1/2
` (•, t = 0) = 1.

Calibration. The parameters of the nonlinear GZM are determined as follows:

1. the attenuation of the P- and S-wave is assumed to be known, for example via the quality

factors of the compressional waves Qp and of the shear waves Qs. The reader is referred to

[7] for a precise definition of these quantities describing the attenuation. An optimization

procedure on the quality factors then provides the relaxation frequencies θ` and the weights

κp,s` ;
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2. the phase velocities of the compressional waves cp(0) and of the shear waves cs(0) provide

the relaxed moduli πr and µr, and then the unrelaxed moduli πu and µu (23);

3. the Lamé coefficients (30)-(31) are deduced, and then the parameters d` (44) involved in the

hydrodynamic pressure;

4. the only free parameters are the χ` involved in the shear stress (46), with −1 ≤ χ` ≤ 0.5 to

guarantee the hyperbolicity.

In the case of null dissipation, the weights are κp` = κs` ≡ 0 for ` = 1, · · · , N . It follows πu = πr,

µu = µr (23), λ` = µ` ≡ 0 for ` = 1, · · · , N (30), and λ0 = πr, µ0 = µr (31). One has σ` = 0 for

` = 1, · · · , N , and the system (49) recovers the hyperelastic model (4).

4 Numerical scheme

The inhomogenous system with source term (49)-(51) is solved numerically by a splitting method.

A hyperbolic step solved by a Godunov-type scheme is followed by a relaxation step.

4.1 Hyperbolic step

This Section describes the resolution of the homogeneous part of (49)-(51) without source term.

For the sake of simplicity, only 1D projections along x are described; the other projections are

treated similarly. Removing ∂y and ∂z dependencies, one writes (` = 0, · · · , N , β = 1, 2, 3):

∂ρ

∂t
+
∂(ρu)

∂x
= 0, (54a)

∂

∂t
J
−1/2
` +

∂

∂x
(J
−1/2
` u) = 0, (54b)

∂(ρu)

∂t
+

∂

∂x

(
ρu2 − σ11

)
= 0, (54c)

∂(ρv)

∂t
+

∂

∂x
(ρuv − σ12) = 0, (54d)

∂(ρw)

∂t
+

∂

∂x
(ρuw − σ13) = 0, (54e)

∂aβ`
∂t

+
∂

∂x

(
uaβ`

)
+ bβ`

∂v

∂x
+ cβ`

∂w

∂x
= 0, (54f)

∂bβ`
∂t

+ u
∂bβ`
∂x

= 0, (54g)

∂cβ`
∂t

+ u
∂cβ`
∂x

= 0. (54h)

This system is nonconservative due to the governing equations of the geometrical variables (54f)-

(54h). The resolution of (54) requires to determine the maximal sound velocities. In 3D, the

computation of waves speed is very expensive due to the third degree characteristic polynomial,

thus we will use an approximate expression of the maximum wave speed:

c2 = ζ

N∑
`=0

(
c2h` +

4

3

µ`
ρ0

)
, (55)

where ch` are the hydrodynamic sound velocities (45), and ζ ≥ 1 is a security parameter [16, 31].

In the linear case, one recovers the sound speed of longitudinal waves when ζ = 1. The choice of
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ζ depends on the studied configuration: ζ = 1 is sufficient for small amplitudes, whereas larger

values (typically ζ = 5) may be required for large Mach numbers.

We use the HLLC solver [40], because it preserves the positivity of the density and J
−1/2
` , and

is able to deal with strong shock waves. Even if the equations of hyperelasticity contain 7 waves,

we will use the solver containing only 3 waves: 2 waves having the most rapid characteristics (they

correspond to longitudinal waves), and the contact characteristics. This simple solver is able to

capture both longitudinal and transverse waves [19]. With such a solver, each wave is considered as

a discontinuity and, consequently, jump relations are needed. The system being nonconservative,

the usual Rankine-Hugoniot relation cannot be used, and each jump relation needs to be defined

across the waves, as done thereafter.

t

x




5
8




/
8

5
8/

8

/
6

GW

G[
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5
6

GW

G[
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0
6

GW

G[
=

Figure 1: HLLC approximate solver. In the star region, two constant states are separated by a

wave of speed SM .

HLLC Riemann solver. We follow the approach proposed in [15, 16, 32]. Let us consider a

cell boundary separating a left state (L) and a right state (R), as sketched in Figure 1. The left

and right facing wave speeds are obtained following Davis estimates [9]:

SL = min (uL − cL, uR − cR) , SR = max (uL + cL, uR + cR) , (56)

where cL,R are the estimated maximal sound speeds (55). The speed of the contact discontinuity

is estimated under the HLLC approximation:

SM ≡ u∗ =

(
ρu2 − σ11

)
L
−
(
ρu2 − σ11

)
R
− SL (ρu)L + SR (ρu)R

(ρu)L − (ρu)R − ρLSL + ρRSR
. (57)
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Based on [40, 16], the conservative state variables in the star region are estimated by:

ρ∗L,R = ρL,R
SL,R − uL,R
SL,R − u∗

,(
J
−1/2
`

)∗
L,R

=
(
J
−1/2
`

)
L,R

SL,R − uL,R
SL,R − u∗

, ` = 0, · · · , N,

σ∗11 =
(uR − SR) ρR σ11L − (uL − SL) ρL σ11R + (uL − SL) ρL (uR − SR) ρR (uR − uL)

(uR − SR) ρR − (uL − SL) ρL
,

σ∗12 =
(uR − SR) ρR σ12L − (uL − SL) ρL σ12R + (uL − SL) ρL (uR − SR) ρR (vR − vL)

(uR − SR) ρR − (uL − SL) ρL
,

σ∗13 =
(uR − SR) ρR σ13L − (uL − SL) ρL σ13R + (uL − SL) ρL (uR − SR) ρR (wR − wL)

(uR − SR) ρR − (uL − SL) ρL
,

v∗ =
(ρuv − σ12)L − (ρuv − σ12)R − SL (ρv)L + SR (ρv)R

(ρv)L − (ρv)R − ρLSL + ρRSR
,

w∗ =
(ρuw − σ13)L − (ρuw − σ13)R − SL (ρw)L + SR (ρw)R

(ρw)L − (ρw)R − ρLSL + ρRSR
.

(58)

In the case of a fluid-solid interface [32], the velocities v∗ and w∗ can be discontinuous in the

region star, so that one must define v∗L,R and w∗L,R. In the case of a pure solid considered here,

these fields are on the contrary constant in the whole region star. Then, the geometric variables

are (` = 0, · · · , N , β = 1, 2, 3):

(
aβ`

)∗
L,R

=

(
aβ`

)
L,R

(uL,R − SL,R) +
(
bβ`

)
L,R

(vL,R − v∗) +
(
cβ`

)
L,R

(wL,R − w∗)

u∗ − SL,R
,(

bβ`

)∗
L,R

=
(
bβ`

)
L,R

,(
cβ`

)∗
L,R

=
(
cβ`

)
L,R

.

(59)

With the jump relation presented previously, it is now possible to determine the flux at each cells

boundaries. From now on, we will denote with the star superscript ∗ the sampled flux obtained:

A? =


AL if SL ≥ 0,

AR if SR ≤ 0,

A?R if SM ≤ 0 ≤ SR,
A?L if SM ≥ 0 ≥ SL.

(60)

With these definition, we can now derive the numerical scheme.

Godunov scheme. The system (54) contains conservative and nonconservative equations, which

are solved successively. The conservative part of (54) reads as a 5 +N system

∂U

∂t
+
∂f

∂x
= 0, (61)

with the vector of conserved variables

U =
(
ρ, J

−1/2
` , ρu, ρv, ρw

)>
, ` = 0, · · · , N, (62)

and the flux

f =
(
ρu, J

−1/2
` u, ρu2 − σ11, ρuv − σ12, ρuw − σ13

)>
. (63)
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Given a time step ∆t and and a mesh size ∆x, the usual Godunov scheme is applied [27]:

Un+1
i = Un

i −
∆t

∆x

(
f∗i+1/2 − f

∗
i−1/2

)
, (64)

where Un
i ≈ U(xi = i∆x, tn = tn−1 + ∆t). The numerical flux f∗i+1/2 = f∗(Un

i ,U
n
i+1) is given

by the star variables: f∗(UL,UR) = f(U∗).

The system for the nonconservative part of (54) reads as a 9× (N + 1) system:

∂W β
`

∂t
+
∂gβ`
∂x

+ kβu,`
∂u

∂x
+ kβv,`

∂v

∂x
+ kβw,`

∂w

∂x
= 0, (65)

with the vector of nonconserved variables

W β
` =

(
aβ` , b

β
` , c

β
`

)>
, ` = 0, · · · , N, β = 1, 2, 3, (66)

and the fluxes

gβ` =
(
uaβ` , ub

β
` , uc

β
`

)>
, kβu,` =

(
0, −bβ` , −c

β
`

)>
, kβv,` =

(
bβ` , 0, 0

)>
, kβw,` =

(
cβ` , 0, 0

)>
.

(67)

The nonconservative equations (65) are solved by the scheme:(
W β

`

)n+1

i
=
(
W β

`

)n
i
− ∆t

∆x

[(
gβ`

)∗
i+1/2

−
(
gβ`

)∗
i−1/2

+
(
kβu,`

)n
i

(
u∗i+1/2 − u

∗
i−1/2

)(
kβv,`

)n
i

(
v∗i+1/2 − v

∗
i−1/2

)
+
(
kβw,`

)n
i

(
w∗i+1/2 − w

∗
i−1/2

)]
.

(68)

The numerical flux
(
gβ`

)∗
i+1/2

=
(
gβ`

)∗((
W β

`

)n
i
,
(
W β

`

)n
i+1

)
is given by the star variables:(

gβ`

)∗
(WL,WR) = gβ` (W ∗). In (68), u∗i±1/2 are the normal velocity components at the cell

boundaries, v∗i−1/2 and w∗i+1/2 are the corresponding tangential velocity components.

The conservative and nonconservative parts of the Godunov scheme are solved simultaneously.

As already pointed out, only 1D fluxes are written (64) and (68). For multidimensional problems,

these fluxes must be completed by the y and z dependencies. The CFL condition of stability of

this method is

CFL = max(c)
∆t

∆x
≤ γ (69)

where max(c) denotes the maximal value of (55) over the computational domain, and γ depends

on the space dimension [27]. In 1D, γ = 1, whereas γ = 0.5 in higher space dimensions.

4.2 Relaxation step

In the system (49)-(51), the only equations that are changing during the relaxation step are
∂eβ`
∂t

=
θ`

2µ`

(
σ` −

λ`
3λ` + 2µ`

trσ` I

)
. eβ` , ` = 1, · · · , N, β = 1, 2, 3, (70a)

∂

∂t
J
−1/2
` =

θ`
3λ` + 2µ`

trσ` J
−1/2
` , ` = 1, · · · , N. (70b)

This system of 10×N ordinary differential equations could be solved by any numerical integrator.

However, a naive resolution of (70) would not ensure |F `| > 0, which is essential when computing

the energy (37).
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An alternative approach is followed here to ensure the positivity of |F `| and J`. Assuming

that σ` is constant during the relaxation step, then (70) can be integrated exactly:
(
eβ`

)n+1

= exp

(
θ`∆t

2µ`

(
σ` −

λ`
3λ` + 2µ`

trσ` I

))
.
(
eβ`

)n
, ` = 1, · · · , N, β = 1, 2, 3,(71a)(

J
−1/2
`

)n+1

= exp

(
θ`∆t

3λ` + 2µ`
trσ`

) (
J
−1/2
`

)n
, ` = 1, · · · , N. (71b)

The computation of the matrix exponential (71a) is done by a (6, 6) Padé approximation of the

“scaling and squaring method” [30]. The equation on J
−1/2
` is used only in the hydrodynamic

pressure (39). Doing so provides an easy mean to guarantee that isochoric transformations do not

modify the hydrodynamic energy (38), as proven in Appendix A.

5 Numerical examples

5.1 Shear Riemann problem

(a) (b))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 2: Shear Riemann problem in hyperelasticity at t = 1.4× 10−4 s. Initially a discontinuous

tangential velocity is imposed (dashed line). Various values of the nonlinear parameter χ are

considered.

A domain [0, 1] of length L = 1 m is discretized on 1000 grid points. The medium is hypere-

lastic, with reference density ρ0 = 1200 kg.m−3, compressional wave velocity cp(0) = 2800 m/s,

and shear wave velocity cs(0) = 1400 m/s. These parameters are representative of media such as

Plexiglass [28]. The fields are initially zero, except the tangential velocity which is discontinuous

at t = 0 and x0 = 0.5 m: v = +1 m/s for x < x0, and v = −1 m/s for x > x0. At t > 0, the

velocity and the normal stress are continuous along x0. The maximum wave speed is computed

using ζ = 1.2 (55), and the CFL number is 0.95 (69). The computations are done with double

accuracy (8 octets per real number). This coding is sufficient to discretize small variations of ρ.

Figure 2 represents the longitudinal and tangential velocities at t = 1.4 × 10−4 s. In linear

regime, u would remain identically zero. On the contrary, one observes here that longitudinal
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waves are generated, which is the signature of a nonlinear coupling. The amplitude of these

longitudinal waves depends on the nonlinear parameter χ0 ≡ χ. The tangential component of the

velocity v has right-going and left-going shock waves, and is independent of χ for the amplitude

considered here. From now on, we will consider χ` = 0. Finally, we note that u (a) has two fronts:

the leading front corresponds to compressional waves, while the trailing front corresponds to shear

waves. For v (b), there are logically only discontinuities associated with shear waves.

5.2 Impact Riemann problem

θ` (s−1) κ` θ` (s−1) κ`

` = 1 1652 0.386 1372 0.0874

` = 2 14153 0.399 11885 0.0723

` = 3 123603 0.726 103368 0.1025

Table 1: Optimized parameters of viscoelasticity for the impact Riemann problem. The range of

optimization is [1.12× 103, 1.12× 105] Hz. Left part: Q = 5; right part: Q = 20.

Given the same parameters as before, we now consider an impact with a longitudinal velocity

discontinuity: u = +1 m/s for x < x0, and u = −1 m/s for x > x0. The dissipation is accounted for

by N = 3 relaxation mechanisms, with the same quality factor for compressional and longitudinal

waves: Qp = Qs ≡ Q. The value Q = 20 corresponds to low dissipation, while Q = 5 corresponds

to high dissipation. The parameters of the GZM are optimised over a frequency band [fmin, fmax],

with fmin = fc/10 and fmax = 10 × fc [4]. The central frequency is chosen so that fc = cp/Λ,

where Λ is a characteristic wavelength. Here Λ = L/4 = 0.25 m is chosen, so that fc = 11.2 kHz.

The optimized parameters are given in Table 1.

(a) (b)
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Figure 3: Impact Riemann problem at t = 8×10−5 s. Initially a discontinuous longitudinal velocity

is imposed (dashed line). Various values of attenuation are considered: null (hyperelasticity), weak

(Q = 20) and large (Q = 5). Left: u; right: −σ11.
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Figure 3 shows the longitudinal velocity u and the total stress component −σ11 (in MPa) at

t = 8 × 10−5 s. In the absence of dissipation (hyperelastic medium), shock waves propagate in

both directions. As the attenuation increases, the sharp fronts are smoother, and the amplitude

of −σ11 decreases.

5.3 Compressive source point in 1D

We consider a 1D problem with a source point at xs = 0.5 m, which emits a compressive sine wave

from t = 0. In (49b), the source term is then s(x, t) = A sin(ωct)H(t) δ(x− xs) (1, 0, 0)> with the

amplitude A = 4 × 109 Pa/m, the angular frequency ωc = 2π fc, and δ the Dirac delta function.

The central frequency is fc = 20 kHz. The quality factor is Q = 5; the parameters of the GZM

(N = 3 relaxation mechanisms) are optimised accordingly. The optimized parameters are given

in the left part of Table 2.

θ` (s−1) κ` θ` (s−1) κ`

` = 1 2950 0.386 1475 0.386

` = 2 25271 0.399 12637 0.399

` = 3 220716 0.726 110359 0.726

Table 2: Optimized parameters of viscoelasticity for the source point problems. The quality factor

is Q = 5. Left part: 1D case, with optimization range [2× 103, 2× 105] Hz. Right part: 2D case,

with optimization range [103, 105] Hz.

(a) u without damping (b) u with damping
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Figure 4: Compressive source point in 1D. Seismogram of u. A monochromatic source at xs = 0.5

(denoted by a vertical line) emits compressive waves with an amplitude A = 4× 109 Pa/m and a

central frequency fc = 20 kHz. (a): hyperelastic medium. (b): viscoelastic medium, with Q = 5

(N = 3 relaxation mechanisms).

Figure 4 displays seismograms of u at t = (4 + 3(i− 1)) 10−5 s, i = 1, · · · , 4. In the hyperelastic

case (a), we observe the asymmetry of u with respect to the source point. Another signature of
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nonlinearities is the sharpening of fronts. In the case of the GZM (b), u is still asymmetric.

However, the dissipation is sufficient to smooth the sharp fronts and to prevent the occurrence of

shocks.

5.4 Shear source point in 1D

We consider a 1D problem with a point source at xs = 0.5 m, which emits a shear sine wave

from t = 0. In (49b), the source term is then s(x, t) = A sin(ωct)H(t) δ(x− xs) (0, 1, 0)>. All the

parameters are the same as in the previous test with the compressive source. In particular, the

amplitude of the forcing is A = 4× 109 Pa/m, and the central frequency is fc = 20 kHz.

Figure 5 displays seismograms of u and v each 3 ms. In linear regime, no compressional

wave would be emitted, as recalled in Section 5.1. On the contrary, one observes clearly in (a-c)

a u component. The latter shear wave propagates slower. For both components, the effect of

viscoelasticity is clearly seen through the damping of waves.

5.5 Source point in 2D

As a last example, we consider a 2D domain [−0.5, 0.5]2, discretized on 300× 300 points in space.

The parameters of the viscoelastic medium are the same as before, with Qp = Qs = 5. The

optimized parameters are given in the right part of Table 2. A source is placed in the center

of the domain. The forcing (49b) is s(x, t) = Ar(x) g(t) (1, 0, 0)>. The spatial distribution r

is a truncated Gaussian distribution of truncation radius r0 = 0.08 m and standard deviation

Σ0 = 0.04 m:

r(x, y) =


1

πΣ2
0

exp

(
−x

2 + y2

Σ2
0

)
if 0 6 x2 + y2 6 r20,

0 otherwise.

(72)

By regularising the Dirac in this way, singularities in the solution (due to the 2D space dimension)

and spurious oscillations at the source are avoided. The time evolution g(t) is a Ricker wavelet of

central frequency fc = 10 kHz and of time shift tc = 2/fc = 0.2 s:

g(t) =


(

2π2 f2c

(
t− 1

fc

)2

− 1

)
exp

(
−π2 f2c

(
t− 1

fc

)2
)

if 0 6 t 6 tc,

0 otherwise.

(73)

Two forcing amplitudes are considered: A = 107 Pa/m (low amplitude) and A = 109 Pa/m (large

amplitude). A receiver in (xr = 0.05, yr = 0.05) records the field at each iteration. It is denoted

by a yellow cross on the maps of Figure 6.

The maps in Figure 6 show u and v at t = 1.9 × 10−4 s. At low amplitude (a-b), we observe

the expected properties of symmetry of u with respect to x = 0, and of central symmetry of v. We

also observe on v the separation into compressional and shear waves. At high amplitudes (c-d),

the symmetry properties are lost, which is a signature of nonlinear effects.

Sub-figure 6-(e,f) shows the time evolution of u and v measured at the receiver, up to t =

3 × 10−4 s. Each field is normalized by its maximum absolute value. The normalized signals

obtained with the linear GZM [28] and with the nonlinear model are superimposed. At low

amplitude (A = 107 Pa/m), we note the good agreement between the linear model and the

nonlinear GZM: the nonlinear effects are moderate. At large amplitude (A = 109 Pa/m), the

nonlinear effects distort the signals significantly.
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(a) u without damping (b) u with damping
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(c) v without damping (d) v with damping
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Figure 5: Shear source point in 1D. Seismogram of u (left row) and v (right row) at t =

(4 + 3(i− 1)) 10−5 s, i = 1, · · · , 4. A monochromatic source at xs = 0.5 (denoted by a verti-

cal line) emits shear waves with an amplitude A = 2× 107 Pa/m and a central frequency fc = 20

kHz. Left (a-c): hyperelastic medium. Right (b-d): viscoelastic medium, with Q = 5 (N = 3

relaxation mechanisms).

19



(a) (b)

0.4 0.2 0.0 0.2 0.4
x (m)

0.4

0.2

0.0

0.2

0.4

y 
(m

) x

2

1

0

1

2

0.4 0.2 0.0 0.2 0.4
x (m)

0.4

0.2

0.0

0.2

0.4

y 
(m

) x

2

1

0

1

2

(c) (d)

0.4 0.2 0.0 0.2 0.4
x (m)

0.4

0.2

0.0

0.2

0.4

y 
(m

) x

200

100

0

100

200

300

0.4 0.2 0.0 0.2 0.4
x (m)

0.4

0.2

0.0

0.2

0.4
y 

(m
) x

200

100

0

100

200

(e) (f)

5E−5 1E−4 1.5E−4 2E−4 2.5E−4 3E−4

−1 

−0.8 

−0.6 

−0.4 

−0.2 

0 

0.2 

0.4 

t (s)

u
 (

m
/s

)

linear

A=1E7

A=1E9

5E−5 1E−4 1.5 E−4 2E−4 2.5E−4 3E−4

−0.8 

−0.4 

0 

0.4 

0.8 

t (s)

v
 (

m
/s

)

linear

A=1E7

A=1E9

Figure 6: Two dimensional fields emitted by a source point at t = 1.9 × 10−4 s at absissa (0,0).

The yellow × symbol denotes the receiver. The maps represent u (left) and v, for low amplitudes

(a-b) and large amplitudes (c-d). The curves display the time evolution of the normalized u (e)

and v (f) computed by the linear GZM and by the nonlinear GZM, for two amplitudes of forcing

A.
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6 Conclusion

We have proposed a nonlinear viscoelastic model well adapted to the dynamic regime. This model

degenerates towards two classical limit cases: (i) hypelasticity when dissipation cancels; (ii) the lin-

ear GZM in small deformations. This model is dissipative and unconditionally hyperbolic, leading

to explicit and reliable numerical schemes. A Godunov numerical scheme has been implemented

in the PROSPERO software [1] to illustrate the phenomenology of nonlinear viscoelastic waves,

showing coupling between compressional and shear waves, effect of dissipation on the wave fronts,

and non-reciprocity of the wave fields.

This work constitutes a step towards the modelling of large amplitude waves in biological

tissues. The theoretical and numerical model developed here could thus make a contribution to

the simulation of shock waves in the brain, during a cranial trauma [13]. A similar approach can

also be followed to describe a richer phenomenology. One thinks in particular of thermo-elastic

solids, or of the study of waves in yield stresses fluids [34].

A limitation of this study concerns the constitutive assumptions. The choice of the EOS in sep-

arable form (32) with hydrodynamic energy (38) and shear energy (46) ensures hyperbolicity but is

restrictive. Other constitutive laws (such as the classical Mooney-Rivlin model of hyperelasticity)

can be used in the framework treated here, but without warranty of hyperbolicity. Conversely,

very few theoretical results are known for the EOS we use here, which raises further investigation.

One thinks in particular to the computation of the solution of the Riemann problem and to the

existence of kink waves [11].

Another direction for further works concerns the numerical scheme. The first-order numerical

scheme used is robust and works even for very large strains, but it introduces numerical diffusion.

The implementation of more sophisticated schemes should lead to significant improvements, for

example finite-volume schemes with flux limiters [27] or ADER schemes [6]. One of the difficulties

lies in the discretisation of the nonconservative terms (65).
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A Utility of an evolution equation for J`

Equation (51a) gives C−1` = F−1` .F−>` . Numerical estimation of F−>` thus allows to compute

J` = |C`| used in the hydrodynamic equations (38) and (39). However, a difficulty arises when

considering a isochoric transformation. Hydrodynamic energy (38) and pressure (39) are constant

at the continuous level, but may change at the discrete level. The goal of this Appendix is to

highlight this inconsistency through an example, and then to show that an additional evolution

equation for J` fixes the problem.

Let a hyperelastic medium undergo the 2D isochoric transformation:{
x = X exp(+ω t),

y = Y exp(−ω t),
(74)
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with ω constant (in s−1), hence u = +ω x and v = −ω y. Since divv = 0, then (10) ensures that

J is constant, and it is obviously the same for J−1/2 (in hyperelasticity no index ` is required,

and no source term occurs). Let us now turn to the discrete equations, with ∆x = ∆y. The

transformation (74) leads to

(
F−T

)n
i,j

=

 (
a1
)n
i,j

(
a2
)n
i,j(

b1
)n
i,j

(
b2
)n
i,j

 ≡
 (

a1
)n
i,j

0

0
(
b2
)n
i,j

 . (75)

The discretization of the cobasis equations (51a) writes:

(
a1
)n+1

i,j
=
(
a1
)n
i,j
−
(
a1
)n
i,j

∆t

∆x

(
uni+1/2,j − u

n
i−1/2,j

)
,(

b2
)n+1

i,j
=
(
b2
)n
i,j
−
(
b2
)n
i,j

∆t

∆x

(
vni,j+1/2 − v

n
i,j−1/2

)
.

(76)

Let us assume that the scheme satisfies divv = 0 at the discrete level. From (51b), it follows that(
J−1/2

)
i,j

is conserved:

(
J−1/2

)n+1

i,j
−
(
J−1/2

)n
i,j

= −
(
J−1/2

)n
i,j

∆t

∆x

(
uni+1/2,j − u

n
i−1/2,j + vni,j+1/2 − v

n
i,j−1/2

)
,

= 0.

(77)

On the other hand, from (75) and (76) one obtains(
J−1/2

)n+1

i,j
=

∣∣∣∣(F−T)n+1

i,j

∣∣∣∣ ,
=

(
a1
)n+1

i,j

(
b2
)n+1

i,j
,

=
(
a1
)n
i,j

(
b2
)n
i,j
×
[
1− ∆t

∆x

(
uni+1/2,j − u

+
i−1/2,jv

n
i,j+1/2 − v

n
i,j−1/2

)
+

(
∆t

∆x

)2 (
uni+1/2,j − u

n
i−1/2,j

)(
vni,j+1/2 − v

n
i,j−1/2

)]
,

=
(
J−1/2

)n
i,j

[
1−

(
∆t

∆x

)2 (
uni+1/2,j − u

n
i−1/2,j

)(
vni,j+1/2 − v

n
i,j−1/2

)]
.

(78)

The isochoric transformation thus leads to a nonphysical variation of
(
J−1/2

)n+1

i,j
of order (∆t/∆x)

2 ≈
(CFL/c)

2
. The resolution of (51b) fixes this problem in a simple and efficient way.
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