
HAL Id: hal-03827398
https://hal.science/hal-03827398

Submitted on 24 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OTrecod: An R Package for Data Fusion using Optimal
Transportation Theory

Grégory Guernec, Valérie Garès, Jérémy Omer, Nicolas Savy, Philippe
Saint-Pierre

To cite this version:
Grégory Guernec, Valérie Garès, Jérémy Omer, Nicolas Savy, Philippe Saint-Pierre. OTrecod: An R
Package for Data Fusion using Optimal Transportation Theory. R Journal, 2022, 14 (4), pp.195 - 222.
�10.32614/RJ-2023-006�. �hal-03827398�

https://hal.science/hal-03827398
https://hal.archives-ouvertes.fr

OTrecod: An R Package for Data Fusion using Optimal
Transportation Theory

by Gregory Guernec∗, Valerie Gares†, Jeremy Omer‡,
Philippe Saint-Pierre§and Nicolas Savy¶

October 24, 2022

Abstract

The advances of information technologies often confront users with a large amount of data which
is essential to integrate easily. In this context, creating a single database from multiple separate data
sources can appear as an attractive but complex issue when same information of interest is stored
in at least two distinct encodings. In this situation, merging the data sources consists in finding
a common recoding scale to fill the incomplete information in a synthetic database. The OTrecod
package provides R-users two functions dedicated to solve this recoding problem using optimal
transportation theory. Specific arguments of these functions enrich the algorithms by relaxing
distributional constraints or adding a regularization term to make the data fusion more flexible. The
OTrecod package also provides a set of support functions dedicated to the harmonization of separate
data sources, the handling of incomplete information and the selection of matching variables. This
paper gives all the keys to quickly understand and master the original algorithms implemented in
the OTrecod package, assisting step by step the user in its data fusion project.

1 Introduction
The large amount of data produced by information technology requires flexible tools to facilitate
its handling. Among them, the field of data fusion (Hall and Llinas, 1997; Klein, 2004; Castanedo,
2013) also known as statistical matching (Adamek, 1994; D’Orazio et al., 2006; Vantaggi, 2008)
aims to integrate the overall information from multiple data sources for a better understanding of
the phenomena that interact in the population. Assuming that two heterogeneous databases A and
B share a set of common variables X while an information of interest is encoded in two distinct
scales respectively: Y in A and Z in B. If Y and Z are never jointly observed, a basic data fusion
objective consists in the recoding of Y in the same scale of Z (or conversely), to allow the fusion
between the databases as illustrated in Table 1.

Providing a solution to this recoding problem is often very attractive because it aims at giving
access to more accurate and consistent information with no additional costs in a unique and bigger
database. Despite this, if we exclude all R data integration packages applied in the context of genetic
area like the MultitDataset package (Hernandez-Ferrer et al., 2017), the OMICsPCA package (Das
and Tripathy, 2020), or the MixOmics package (Rohart et al., 2017) which are often only effective for
quantitative data integration. To our knowledge, the StatMatch package (D’Orazio and D’Orazio,
2019) is actually the only one that provide a concrete solution to the problem using hot deck

∗Center for Epidemiology and Research in POPulation health (CERPOP), Université de Toulouse, INSERM,
UPS, France. gregory.guernec@inserm.fr

†CNRS, IRMAR, UMR 6625, INSA, Université de Rennes, France.
‡CNRS, IRMAR, UMR 6625, INSA, Université de Rennes, France.
§CNRS UMR 5219, IMT, Université Paul Sabatier, Toulouse, France.
¶CNRS UMR 5219, IMT, Université Paul Sabatier, Toulouse, France.

1

https://cran.r-project.org//web//packages//OTrecod//index.html
https://cran.r-project.org//web//packages//OTrecod//index.html
https://cran.r-project.org//web//packages//OTrecod//index.html
https://www.bioconductor.org/packages/release/bioc/html/MultiDataSet.html
https://www.bioconductor.org/packages/release/bioc/html/MultitDataset.html
https://www.bioconductor.org/packages/release/bioc/html/OMICsPCA.html
https://www.bioconductor.org/packages/release/bioc/html/OMICsPCA.html
https://www.bioconductor.org//packages//release//bioc//html//mixOmics.html
https://www.bioconductor.org/packages/release/bioc/html/MixOmics.html
https://cran.r-project.org//web//packages//StatMatch//index.html
mailto:gregory.guernec@inserm.fr

Initial Final

DB ID Y Z X
A 1

ob
se

rv
ed

??
?

ob
se

rv
ed

DB ID Y Z X
A 2 A 1

ob
se

rv
ed

pr
ed

ic
te

d

ob
se

rv
ed

. ⇒ A 2
A nA

A nA

DB ID Y Z X B nA+1

pr
ed

ic
te

d

ob
se

rv
ed

ob
se

rv
ed

B nA+1

??
?

ob
se

rv
ed

ob
se

rv
ed

⇒ B nA+2
B nA+2
. B nA+nB

B nA+nB

Table 1: Formulation of a recoding problem for 2 distinct databases A and B

imputation procedures. The main reason for this relative deficiency is that this problem is, in fact,
often assimilated and solved like a missing data imputation problem. According to this idea, a
very large amount of works and reference books now exist about the handling of missing data (Zhu
et al., 2019; Little and Rubin, 2019). Moreover, we can enumerate several R packages that we
can sort by types of imputation methods (Mayer et al., 2019): mice (Van Buuren and Groothuis-
Oudshoorn, 2011) and missforest (Stekhoven and Bühlmann, 2012) which use conditional models,
softImpute (Hastie et al., 2015) and missMDA (Josse and Husson, 2016) which apply low-rank based
models. For all these packages, imputation performances can sometimes fluctuate a lot according
to the structure and the proportion of non-response encountered. Regressions and non parametric
imputation approaches (like hot-deck methods from donor based family) seem to use partially, or not
at all, the available information of the two databases to provide the individual predictions. Contrary
to our approach, all these methods only use the set of shared variables X for the prediction of Z in
A (or conversely Y in B) without really taking into account Y and its interrelations with X in their
process of predictions.

The purpose of this paper is to present a new package to the R community (R Core Team,
2016) called OTrecod which provides a simple and intuitive access to two original algorithms (Gares
et al., 2019; Gares and Omer, 2020) dedicated to solve these recoding problems in the data fusion
context by considering them as applications of Optimal Transportation theory (OT). In fact, this
theory was already applied in many areas: for example, the transport package (Schuhmacher et al.,
2020) solves optimal transport problems in the field of image processing. A specific package called
POT: Python Optimal Transport also exists in the Python software (https:/pythonot.github.io)
to solve optimization problems using optimal transportation theory in the fields of signal theory,
image processing and domain adaptation. Nevertheless, all these available tools were still not really
adapted to our recoding problem and the performances established by OT-based approaches to
predict missing information compared to more standard processes (Gares et al., 2019; Gares and
Omer, 2020; Muzellec et al., 2020) have finished to confirm our decision.

In OTrecod the first provided algorithm, called outcome and integrated in the OT_outcome
function consists in finding a map that pushes the distribution of Y forward to the distribution of
Z (Gares et al., 2019) while the second one, called joint and integrated in the OT_joint function,
pushes the distribution of (Y,X) forward to the distribution of (Z,X). Consequently, by building,
these two algorithms take advantage of all the potential relationships between Y , Z, and X for the
prediction of the incomplete information of Y and/or Z in A and B. Enrichments related to these
algorithms and described in (Gares et al., 2019; Cuturi, 2013) are also available via the optional
arguments of these two functions. In its current version, these algorithms are accompanied by
original preparation (merge_dbs, select_pred) and validation (verif_OT) functions which are key
steps of any standard statistical matching project and can be used independently of the outcome

2

https://cran.r-project.org//web//packages//mice//index.html
https://cran.r-project.org//web//packages//missForest//index.html
https://cran.r-project.org//web//packages//softImpute//index.html
https://cran.r-project.org//web//packages//missMDA//index.html
https://cran.r-project.org//web/packages//OTrecod//index.html
https://cran.r-project.org//web/packages//transport//index.html
https:/pythonot.github.io
https://cran.r-project.org//web/packages//OTrecod//index.html

and joint algorithms.

2 Solving recoding problems using optimal transporta-
tion theory

2.1 The optimal transportation problem
The optimal transportation (OT) problem was originally stated by Monge (1781) and consists in
finding the cheapest way to transport a pile of sand to fill a hole. Formally the problem writes
as follows: Consider two (Radon) spaces X and Y, µX a probability measure on X, and µY a
probability measure on Y and c a Borel-measurable function from X×Y to [0,∞]. The Kantorovich’s
formulation of the optimal transportation problem (Kantorovich, 1942) consists in finding a measure
γ ∈ Γ(µX , µY) that realizes the infimum:

inf

{∫
X×Y

c(x, y) dγ(x, y)

∣∣∣∣ γ ∈ Γ(µX , µY)

}
, (1)

where Γ(µX , µY) is the set of measures on X× Y with marginals µX on X and µY on Y.
This theory is applied here to solve a recoding problem of missing distributions in a data fusion

area. To do so, we make use of Kantovorich’s formulation adapted to the discrete case, known
as Hitchcock’s problem (Hitchcock, 1941). Therefore, by construction, the proposed algorithms
are usable for specific target variables only: categorical variables, ordinal or nominal, and discrete
variables with finite number of values.

2.2 Optimal transportation of outcomes applied to data recoding
Let A and B be two databases corresponding to two independent sets of subjects. We assume
without loss of generality that the two databases have equal sizes, so that they can be written as
A = {i1, . . . , in} and B = {j1, . . . , jn}.

Let
(
(Xi, Yi, Zi)

)
i∈A

and
(
(Xj , Yj , Zj)

)
j∈B

be two sequences of i.i.d. discrete random variables
with values in X × Y × Z, where X is a finite subset of RP , and Y and Z are finite subsets of R.
Variables (Xi, Yi, Zi), i ∈ A, are i.i.d copies of (XA, Y A, ZA) and (Xj , Yj , Zj), j ∈ B, are i.i.d copies
of (XB , Y B , ZB). Moreover assume that

{
(Xi, Yi, Zi), i ∈ A

}
are independent of

{
(Xj , Yj , Zj), j ∈

B
}
. The first version using the optimal transportation algorithm approach, described in (Gares

et al., 2019), assumes that:

Assumption 1. Y A and ZA respectively follow the same distribution as Y B and ZB.

Assumption 2. For all x ∈ X the probability distributions of Y A and ZA given that XA = x are
respectively equal to those of Y B and ZB given that XB = x.

In this setting, the aim is to solve the recoding problem given by equation (1) that pushes
µY A

forward to µZA

. The variable γ of (1) is a discrete measure with marginals µY A

and µZA

,
represented by a |Y|×|Z| matrix. The cost function denoted as c is a |Y|×|Z| matrix, (cy,z)y∈Y,z∈Z .
The goal is in the identification of:

γ∗ ∈ argmin
γ∈R|Y|×|Z|

+

{
⟨γ|c⟩ : γ1|Z| = µY A

, γT1|Y| = µZA
}
, (2)

where ⟨·|·⟩ is the dot product, 1 is a vector of ones with appropriate dimension and MT is the
transpose of matrix M . The cost function considered by Gares et al. (2019), cy,z, measures the
average distance between the profiles of shared variables of A satisfying Y = y and subjects of B
satisfying Z = z, that is:

cy,z = E
[
d(XA, XB) | Y A = y, ZB = z

]
, (3)

where d is a given distance function to choose on X × X .

3

In fact, the above situation cannot be solved in reality, since the distributions of XA, XB , Y A

and ZA are never jointly observed. As a consequence, the following unbiased empirical estimators
are used: µ̂XA

n of µXA

and µ̂XB

n of µXB

. Because Y and Z are only available in A and B respectively,
two distinct empirical estimators have to be defined:

µ̂Y A

n,y =
1

n

∑
i∈A

1{Yi=y}, ∀y ∈ Y

µ̂ZA

n,z =
1

n

∑
j∈B

1{Zj=z}, ∀z ∈ Z,
(4)

where 1{Y =y} = 1 if Y = y and 0 otherwise. The assumption 1 gives: µZA

= µZB

from which we
can conclude that µ̂ZB

n,z = µ̂ZA

n,z . Finally, denoting:

κn,y,z ≡
∑
i∈A

∑
j∈B

1{Yi=y,Zj=z}

the number of pairs (i, j) ∈ A×B such that Yi = y and Zj = z, the cost matrix c is estimated by:

ĉn,y,z =

{
1

κn,y,z

∑
i∈A

∑
j∈B 1{Yi=y,Zj=z} × d(Xi, Xj), ∀y ∈ Y, z ∈ Z : κn,y,z ̸= 0,

0, ∀y ∈ Y, z ∈ Z : κn,y,z = 0.
(5)

Plugging the values observed for these estimators in (2) yields to a linear programming model
denoted:

P̂0
n :

min < ĉn, γ >

s.t.
∑
z∈Z

γy,z = µY A

n,y , ∀y ∈ Y

∑
y∈Y

γy,z = µZA

n,z , ∀z ∈ Z

γy,z ≥ 0, ∀y ∈ Y, ∀z ∈ Z

(6)

The solution γ̂n can then be interpreted as an estimator µ̂
(Y A,ZA)
n of the joint distribution of

Y A and ZA, µ(Y A,ZA). If this estimate is necessary, it is nevertheless insufficient here to provide
the individual predictions on Z in A. These predictions are done in a second step using a nearest
neighbor algorithm from which we deduce an estimation of µZA|XA=x,Y A=y (see Gares and Omer
(2020) for details). In the remainder, the overall algorithm described in this section is referred to
as outcome. To improve the few drawbacks of this algorithm described in Gares et al. (2019),
derived algorithms from outcome have been developed (Gares and Omer, 2020) and described in
the following part.

2.3 Optimal transportation of outcomes and covariates
Using the same notations, Gares et al. (2019) propose to search for an optimal transportation
map between the two joint distributions of (XA, Y A) and (XA, ZA) with marginals µ(XA,Y A) and
µ(XA,ZA) respectively. Under Kantorovich’s formulation in a discrete setting, they search for:

γ∗ ∈ argminγ∈D < c, γ >,

where c is a given cost matrix and D is the set of joint distributions with marginals µ(XA,Y A) and
µ(XA,ZA). It is natural to see any element γ ∈ D as the vector of joint probabilities P((XA =
x, Y A = y), (XA = x′, ZA = z)) for any x, x′ ∈ X 2, y ∈ Y and z ∈ Z. Since this probability nullifies
for all x ̸= x′, γ ∈ D is defined as a vector of R|X|×|Y|×|Z|, where γx,y,z stands for an estimation of
the joint probability P(XA = x, Y A = y, ZA = z). These notations lead to the more detailed model:

4

P :

min < c, γ >

s.t.
∑
z∈Z

γx,y,z = µ(XA,Y A)
x,y , ∀x ∈ X , ∀y ∈ Y

∑
y∈Y

γx,y,z = µ(XA,ZA)
x,z , ∀x ∈ X , ∀z ∈ Z

γx,y,z ≥ 0, ∀x ∈ X , ∀y ∈ Y,∀z ∈ Z

(7)

The above algorithm can be solved only if the marginals µ(XA,Y A) and µ(XA,ZA) are known,
but, based on assumption 2, unbiased estimators µ̂XA,Y A

n and µ̂XA,ZA

n can be built according to the
previous subsection. For the first one it gives:

µ̂XA,Y A

n =
1

n

∑
i∈A

1{Yi=y,Xi=x}, ∀x ∈ X , ∀y ∈ Y, (8)

The cost matrix introduced in the outcome algorithm is used (3) and estimated by (5). Formally
we can write:

cx,y,z = cy,z, ∀x ∈ X , ∀y ∈ Y, ∀z ∈ Z. (9)

which does not depend on the value of x.
Plugging the values observed for these estimators in (7) yield a linear programming model de-

noted as P̂n. In contrast to outcome, the algorithm that consists in solving P̂n to solve the recoding
problem is referred to as joint in what follows.

An estimation of the distribution of ZA given the values of XA and Y A is then given by:

µ̃ZA|XA=x,Y A=y
n,z =

γ̂n,x,y,z

µ̂
(XA,Y A)
n,x,y

, ∀x ∈ X , y ∈ Y, z ∈ Z : µ̂(XA,Y A)
n,x,y ̸= 0,

0, ∀x ∈ X , y ∈ Y, z ∈ Z : µ̂(XA,Y A)
n,x,y = 0.

(10)

and an individual prediction of ZA is then deduced using the maximum a posterior rule:

ẑAi = argmaxz∈Z µ̃ZA|XA=xi,Y
A=yi

n,z

Due to potential errors in the estimations of P, the constraints of P̂n may derive from the true values
of the marginals of µ(XA,Y A,ZA). To deal with this situation, small violations of the constraints of
P̂n are allowed by enriching the initial algorithm as described in Gares and Omer (2020).

The equality constraints of P̂n are then relaxed as follows:

∑
z∈Z

γx,y,z = µ̂(XA,Y A)
n,x,y + eX,Y

x,y , ∀x ∈ X , ∀y ∈ Y (11)

∑
y∈Y

γx,y,z = µ̃(XA,ZA)
n,x,z + eX,Z

x,z , ∀x ∈ X , ∀z ∈ Z (12)

∑
x∈X ,y∈Y

eX,Y
x,y = 0,

∑
x∈X ,z∈Z

eX,Z
x,z = 0 (13)

− eX,Y,+
x,y ≤ eX,Y

x,y ≤ eX,Y,+
x,y , ∀x ∈ X , ∀y ∈ Y (14)

− eX,Z,+
x,z ≤ eX,Z

x,z ≤ eX,Z,+
x,z , ∀x ∈ X ,∀z ∈ Z (15)∑

x∈X ,y∈Y

eX,Y,+
x,y ≤ αn,

∑
x∈X ,z∈Z

eX,Z,+
x,z ≤ αn (16)

This relaxation is possible by introducing extra-variables eX,Y,+ and eX,Z,+ as additional con-
straints (14)–(15). Gares and Omer (2020) suggests to consider αn := α√

n
from (16), with a

parameter α to calibrate numerically but proposes also a default value fixed to 0.4.

5

A regularization term λ given by (
πx,y,z

µ̂XA
n,x

)x∈X ,y∈Y,z∈Z can also be added to improve regularity

in the variations of the conditional distribution µY A,ZA|XA=x with respect to x. The corresponding
regularized algorithm is:

P̂R
n :

min < ĉn, γ > +λ
∑

(xi,xj)∈EX

wi,j

∑
y∈Y,z∈Z

r+i,j,y,z

s.t. constraints (11)–(16)
γxi,y,z

µ̂XA
n,xi

−
γxj ,y,z

µ̂XA
n,xj

≤ r+i,j,y,z, ∀{xi, xj} ∈ EX , y ∈ Y, z ∈ Z

γxi,y,z

µ̂XA
n,xi

−
γxj ,y,z

µ̂XA
n,xj

≥ −r+i,j,y,z, ∀{xi, xj} ∈ EX , y ∈ Y, z ∈ Z

γx,y,z ≥ 0, ∀x ∈ X , ∀y ∈ Y, ∀z ∈ Z

(17)

The constant λ ∈ R+ is a regularization parameter to be calibrated numerically (0.1 can be con-
sidered as default value) and EX ⊂ X 2 includes the pairs of elements of X defined as neighbors:
{xi, xj} ∈ EX if xj is among the k nearest neighbors of xi for some parameter k ≥ 1. The method
that computes a solution to the recoding problem with regularization and relaxation is called r-
joint.

In a same way, a relaxation of the assumption 1 is also proposed and added to the outcome
algorithm: This resulting method is denoted r-outcome and is related to the following program:

P̂0−R
n :

min < ĉn, γ >∑
z∈Z

γy,z = µ̂Y A

n,y + eYy , ∀y ∈ Y

∑
y∈Y

γy,z = µ̃ZA

n,z + eZz , ∀z ∈ Z

∑
y∈Y

eYy = 0,
∑
z∈Z

eZz = 0

− eY,+
y ≤ eYy ≤ eY,+

y , ∀y ∈ Y

− eZ,+
z ≤ eZz ≤ eZ,+

z , ∀z ∈ Z∑
y∈Y

eY,+
y ≤ αn,

∑
z∈Z

eZ,+
z ≤ αn

γy,z ≥ 0, ∀y ∈ Y,∀z ∈ Z

(18)

Note that algorithms joint and r-joint do not require assumption 1. The relaxation in r-
outcome alleviates its dependence to the satisfaction of this assumption. However, algorithms
joint and r-joint require that X is a set of discrete variables (factors ordered or not are obviously
allowed) while the absence of X in the linear algorithms outcome and r-outcome allow X to be
a set of discrete and/or continuous variables. In this case, the nature of the variables X need to be
considered when choosing the distance d.

3 Package installation and description

3.1 Installation
The OTrecod package can be installed from the Comprehensive R Archive Network (CRAN) by run-
ning the install.packages("OTrecod") command. The development version of OTrecod (https:
//github.com/otrecoding/OTrecod) is also available and can be directly installed from GitHub by
loading the devtools package and following the command:

R> devtools::install_github("otrecoding/OTrecod")

6

https://cran.r-project.org//web/packages//OTrecod//index.html
https://github.com/otrecoding/OTrecod
https://github.com/otrecoding/OTrecod
https://cran.r-project.org//web/packages//devtools//index.html

3.2 Main functions
The two types of optimal transportation (OT) algorithms previously introduced (outcome and
joint) and their respective enrichments (r-outcome and r-joint) are available in the OTrecod
package via two core functions denoted OT_outcome and OT_joint. Details about their implemen-
tations in R are described in the following section. In this package, these algorithms of recoding are
seen as fundamental steps of data fusion projects that also require often adapted preparation and
validation functions. In this way, the table 2 introduces the main functions proposed by OTrecod
to handle a data fusion project.

R Function Description
Pre-process functions
merge_dbs Harmonization of the data sources
select_pred Selection of matching variables
Functions of data fusion
OT_outcome Data fusion with OT theory using the outcome or

r-outcome algorithms.
OT_joint Data fusion with OT theory using the joint or r-

joint algorithms.
Post-process function
verif_OT Quality assessment of the data fusion

Table 2: A brief description of the main functions of OTrecod

All the intermediate functions integrated in the OT_outcome and OT_joint functions (proxim_dist,
avg_dist_closest, indiv_grp_closest, indiv_grp_optimal), and their related documentations,
are all included and usable separately in the package. They have been kept available for users to
ensure a great flexibility as other interesting functions like power_set that returns the power set of
a set. This function did not exist on R until now and could be of interest for specialists of algebra.
These functions are not described here but detailed in the related pdf manual of the package.

4 Functionalities overview

4.1 Expected structure of the input databases as arguments
The functions of recoding OT_outcome and OT_joint require a specific structure of data.frame as
input arguments. Described in Table 3, it must be the result of two overlayed databases made of at
least four variables:

• A first variable, discrete or categorical, corresponding to the database identifier, stored in
factor or not, but with only two classes or levels (for example: A and B, 1 and 2 or otherwise).

• The target variable of the first database (or top database) denoted Y for example, whose values
related to the second database are missing. This variable can be discrete or categorical stored
in factor, ordered factor or not.

• In the same way, the target variable of the second database (or below database) denoted Z for
example, whose values related to the first database are missing.

• At least one shared variable (defined as a variable with the same label and the same encoding
in the two distinct data sources). The type of shared variables can be continuous, categorical
stored in factor or not, complete or not. Nevertheless, few constraints must be noticed related
to this question. First, in a critical situation where only one shared variable exists, this
latter cannot be incomplete. Second, continuous shared variables are actually not allowed in
the current version of the function OT_joint, therefore, these variables must be transformed
beforehand.

7

https://cran.r-project.org//web//packages//OTrecod//OTrecod.pdf

DB Y Z X1 X2 X3

1 (600-800] <NA> M Yes 50
1 (600-800] <NA> M No 32
1 [200-600] <NA> W No 31
2 <NA> G1 M No 47
2 <NA> G3 W Yes 43
2 <NA> G2 W No 23
2 <NA> G4 M Yes 22
2 <NA> G2 W Yes 47

Table 3: Example of expected structure for two databases 1 and 2 with three shared variables X1,
X2, X3

As additional examples, users can also refer to the databases simu_data and tab_test provided
in the package with expected structures. Note that class objects are not expected here as input
arguments of these functions to allow users to freely work with or without the use of the pre-process
functions provided in the package.

4.2 Choice of solver
The package OTrecod uses the ROI optimization infrastructure (Theußl et al., 2017) to solve the
optimization problems related to the outcome and joint algorithms. The solver GLPK (The
GNU Linear Programming Kit Makhorin (2011)) is the default solver actually integrated in the
OT_outcome and OT_joint functions for handling linear problems with linear constraints. The ROI
infrastructure makes easy for users to switch solvers for comparisons. In many situations, some of
them can noticeably reduce the running time of the functions.

For example, the solver Clp (Forrest et al., 2004) for COINT-OR Linear Programming, known
to be particularly convenient in linear and quadratic situations, can be easily installed by users via
the related plug-in available in ROI (searchable with the instruction ROI_available_solvers()) and
following the few instructions detailed in Theußl et al. (2020) or via the dedicated website.

4.3 An illustrative example
In California (United States), from 1999 to 2018, the Public Schools Accountability Act (PSAA)
imposed on its California Department of Education (CDE) to provide annually the results of an
Academic Performance Index (API) which established a ranking of the best public schools of the
state.

This numeric score, indicator of school’s performance levels, could vary from 200 to 1000 and
the performance objective to reach for each school was 800. Information related to the 418 schools
(identified by cds) of Nevada (County 29) and to the 362 schools of San Benito (County 35), was
respectively collected in two databases, api29 and api35, available in the package. The distributions
of all the variables in the two databases are provided by following the R commands:

R> library(OTrecod)
R> data(api29); data(api35)
R> summary(api29) #--
cds apicl_2000 stype awards acs.core
Length:418 [200-600] : 93 E:300 No : 98 Min. :16.00
Class :character (600-800] :180 M: 68 Yes :303 1st Qu.:26.00
Mode :character (800-1000]:145 H: 50 NA’s: 17 Median :30.00

Mean :31.97
3rd Qu.:39.00
Max. :50.00

8

https://roi.r-forge.r-project.org/installation.html

api.stu acs.k3.20 grad.sch ell mobility
Min. : 108.0 <=20 :190 0 : 86 [0-10] :153 [0-20] :362
1st Qu.: 336.2 >20 :108 1-10:180 (10-30] : 83 (20-100]: 56
Median : 447.5 unknown:120 >10 :152 (30-50] : 60
Mean : 577.8 (50-100]: 93
3rd Qu.: 641.5 NA’s : 29
Max. :2352.0
meals full
[0-25] :200 1: 85
(25-50] : 56 2:333
(50-75] :100
(75-100]: 62

R> summary(api35) #--
cds apicl_1999 stype awards acs.core
Length:362 G1:91 E:257 No :111 Min. :16.00
Class :character G2:90 M: 67 Yes :237 1st Qu.:25.00
Mode :character G3:90 H: 38 NA’s: 14 Median :30.00

G4:91 Mean :31.81
3rd Qu.:39.00
Max. :50.00

api.stu acs.k3.20 grad.sch ell mobility
Min. : 102.0 <=20 :227 0 : 50 [0-10] :164 1:213
1st Qu.: 363.2 >20 : 30 1-10:241 (10-30] : 99 2:149
Median : 460.0 unknown:105 >10 : 71 (30-50] : 64
Mean : 577.2 (50-100]: 10
3rd Qu.: 624.0 NA’s : 25
Max. :2460.0
meals full
[0-25] : 77 1:244
(25-50] : 92 2:118
(50-75] :122
(75-100]: 71

The two databases seem to share a majority of variables (same labels, same encodings) of different
types, therefore inferential statistics could be ideally considered by combining all the information of
the two databases to study the effects of social factors on the results of the API score in 2000.

Nevertheless, while this target variable called apicl_2000 is correctly stored in the database
api29 and encoded as a three levels ordered factors clearly defined: [200-600], (600-800] and
(800-1000]1, the only information related to the API score in the database api35 is the variable
apicl_1999 for the API score collected in 1999, encoded in four unknown balanced classes (G1, G2,
G3 and G4). As no school is common to the two counties, we easily deduce that these two variables
have never been jointly observed.

By choosing these two variables as outcomes (called also target variables), the objective of the
following examples consists in creating a synthetic database where the missing information related
to the API score in 2000 is fully completed in api35 by illustrating the use of the main functions
of the package.

4.4 Harmonization of two datasources using merge_dbs
The function merge_dbs is an optional pre-process function dedicated to data fusion projects that
merges two raw databases by detecting possible discrepancies among the respective sets of variables
from one database to another. The current discrepancy situations detected by the function follow
specific rules described below:

1a parenthesis removed

9

• any variable (other than a target one) whose label (or name) is not common to the two data
sources is automatically excluded. By default, the remaining variables are denoted shared
variables.

• among the subset of shared variables, any variable stored in a different format (or type) from
one data source to another will be automatically discarded from the subset previously generated
and its label saved in an output object called REMOVE1.

• among the remaining subset of shared variables, a factor variable (ordered or not) stored with
different levels or number of levels from one data source to another will be automatically
discarded from the subset and its label saved in an output object called REMOVE2.

These situations sometimes require reconciliation actions which are not supported by the actual
version of the merge_dbs function. Therefore, when reconciliation actions are required by the user,
they will have to be treated a posteriori and outside the function.

Applied to our example and according to the introduced rules, the first step of our data fusion
project consists in studying the coherence between the variables of the databases api29 and api35
via the following R code:

R> step1 = merge_dbs(DB1 = api29, DB2 = api35,
NAME_Y = "apicl_2000", NAME_Z = "apicl_1999",
row_ID1 = 1, row_ID2 = 1,
ordinal_DB1 = c(2:3, 8:12),
ordinal_DB2 = c(2:3, 8:12))

DBS MERGING in progress. Please wait ...
DBS MERGING OK

SUMMARY OF DBS MERGING:
Nb of removed subjects due to NA on targets: 0(0%)
Nb of removed covariates due to differences between the 2 bases: 1
Nb of remained covariates: 9
Imputation on incomplete covariates: NO

As entry, the raw databases must be declared separately in the DB1 and DB2 arguments and
the name of the related target variables of each database must be specified via the NAME_Y and
NAME_Z for DB1 and DB2 respectively. In presence of row identifiers, the respective column indexes
of each database must be set in the argument row_ID1 and row_ID2. The arguments ordinal_DB1
and ordinal_DB2 list the related column indexes of all the variables defined as ordinal in the two
databases (including also the indexes of the target variables if necessary). Here, apicl_2000 is clearly
an ordinal variable, and, by default, we suppose that the unknown encoding related to apicl_1999
is also ordinal: the corresponding indexes (2 and 3) are so added in these two arguments.

After running, the function informs users that no row was dropped from the databases during
the merging because each target variable is fully completed in the two databases. Nine potential pre-
dictors are kept while only one variable is discarded because of discrepancies between the databases:
its identity is consequently stored in output and informs user about the nature of the problem: the
mobility factor has different levels from one database to the other.

R> summary(step1)
R> step1$REMOVE1 # List of removed variables because of type’s problem
NULL
R> step1$REMOVE2 # List of removed factors because of levels’ problem
"mobility"
R> levels(api29$mobility) # Verification
"[0-20]" "(20-100]"
R> levels(api29$mobility); levels(api35$mobility)
"[0-20]" "(20-100]" # levels in api29
"1" "2" # levels in api35
R> step1$REMAINING_VAR

10

"acs.core" "acs.k3.20" "api.stu" "awards" "ell" "full"
"grad.sch" "meals" "stype"

The function returns a list object and notably DB_READY, a data.frame whose structure corre-
sponds to the expected structure introduced in the previous subsection: a unique database, here
result of the superimposition of api29 on api35 where the first column (DB) corresponds to the
database identifier (1 for api29 and 2 for api35), the second and third columns (Y, Z respectively)
corresponds to the target variables of the two databases. Missing values are automatically assigned
by the function to the unknown part of each target variable: in Y when the identifier equals to 2, in
Z when the identifier equals to 1. The subset of shared variables whose information is homogeneous
between the databases are now stored from the fourth column to the last one. Their identities are
available in the output object called REMAINING_VAR.

The merge_dbs function can handle incomplete shared variables by using the impute argument.
This option allows to keep the missing information unchanged (the choice by default, and also the
case in this example), to work with complete cases only, to do fast multivariate imputations by
chained equations approach (the function integrates the main functionalities of the mice function of
the mice package), or to impute data using the dimensionality reduction method introduced in the
missMDA package (see the pdf manual for details).

4.5 Selection of matching variables using select_pred
In data fusion projects, a selection of shared variables (also called matching variables) appears
as an essential step for two main reasons. First, the proportion of shared variables X between
the two databases can be important (much higher than three variables) and keeping a pointless
part of variability between variables could strongly reduce the quality of the fusion. Second, this
selection greatly influences the quality of the predictions regardless of the matching technique which
is chosen a posteriori (Adamek, 1994). The specific context of data fusion is subject to the following
constraints:

1. Y , Z and X are never jointly observed in database A or B, so the relationships between Y
and X, and between Z and X must be investigated separately.

2. matching variables need to be good predictors of both target variables (outcomes) Y and Z
(Cohen, 1991), in the sense that they explain relevant parts of variability of the targets.

These particularities suppose that the investigations have to be done separately but in the same
manner in both databases. In this way, a predictor which appears at the same time as highly
correlated to Y and Z will be automatically selected for the fusion. On the contrary, predictors
whose effects on Y and Z seem not obvious will be discarded. Additional recommended rules also
emerge from literature:

• concerning the subset of variables that would predict only one of the two targets Y or Z,
D’Orazio et al. (2006) suggests a moderate parsimonious selection remaining too many predic-
tors could complicate the fusion procedure.

• Cibella (2010) and Scanu (2010) suggests to select quality predictors with no error and just a
small amount of missing data.

The function of the package dedicated to this task is select_pred. From the DB_READY database
generated in the previous subsection, studying the outputs related to each database and produced
by the following R commands assist users in selecting the best predictors:

For the dataset api29 --------------
R> step2a = select_pred(step1$DB_READY,

Y = "Y", Z = "Z", ID = 1, OUT = "Y",
quanti = c(4,6), nominal = c(1,5,7),
ordinal = c(2,3,8:12), thresh_cat = 0.50,
thresh_num = 0.70, RF_SEED = 3011)

For the dataset api35 --------------

11

https://cran.r-project.org//web//packages//mice//index.html
https://cran.r-project.org//web//packages//missMDA//index.html
https://cran.r-project.org//web//packages//OTrecod//OTrecod.pdf

R> step2b = select_pred(step1$DB_READY,
Y = "Y", Z = "Z", ID = 1, OUT = "Z",
quanti = c(4,6), nominal = c(1,5,7),
ordinal = c(2,3,8:12), thresh_cat = 0.50,
thresh_num = 0.70, RF_SEED = 3011)

The quanti, nominal, and ordinal arguments requires vectors of column indexes related to the
type of each variable of the input database. The ID argument specifies the column index of the
database identifier. Y and Z expected the respective names of the target variables while OUT provides
the target variable to predict (Y or Z).

To detect the subset of best predictors, select_pred studies the standard pairwise associations
between each shared variable and the outcomes Y and Z, taken separately (by only varying the
argument OUT), according to its type: for numeric and/or ordered factor variables, select_pred
calculates the associations using rank correlation coefficients (Spearman) while the Cramer’s V
criterion (Bergsma, 2013) is used for categorical variables and not ordered factors. The related
ranking tables of top scoring predictors are available in two distinct output objects: cor_OUTC_num
and cor_OUTC_cat. In our example, the corresponding results, for each database, are:

ASSOCATIONS BETWEEN TARGET VARIABLES AND SHARED VARIABLES

Results for the api29 dataset -----

R> step2a$cor_OUTC_num # Y versus numeric or ordinal predictors

name1 name2 RANK_COR pv_COR_test N
Y meals -0.8030 0.0000 418
Y ell -0.7514 0.0000 389
Y full 0.3919 0.0000 418
Y grad.sch 0.3346 0.0000 418
Y api.stu -0.1520 0.0018 418
Y stype -0.1520 0.0018 418
Y acs.core -0.0556 0.2566 418

R> step2a$vcrm_OUTC_cat # Y versus nominal or ordinal predictors

name1 name2 V_Cramer CorrV_Cramer N
Y meals 0.6871 0.6835 418
Y ell 0.6015 0.5966 389
Y full 0.4508 0.4459 418
Y grad.sch 0.3869 0.3816 418
Y awards 0.2188 0.2073 401
Y acs.k3.20 0.1514 0.1349 418
Y stype 0.1370 0.1185 418

Results for the api35 dataset -----

R> step2b$cor_OUTC_num # Z versus numeric or ordinal predictors

name1 name2 RANK_COR pv_COR_test N
Z ell -0.7511 0.0000 337
Z meals -0.7291 0.0000 362
Z grad.sch 0.6229 0.0000 362
Z full 0.3997 0.0000 362
Z api.stu -0.0563 0.2851 362
Z stype 0.0359 0.4959 362

12

Z acs.core 0.0119 0.8219 362

R> step2b$vcrm_OUTC_cat # Z versus nominal or ordinal predictors

name1 name2 V_Cramer CorrV_Cramer N
Z meals 0.5181 0.5121 362
Z grad.sch 0.5131 0.5063 362
Z ell 0.4775 0.4701 337
Z full 0.4033 0.3934 362
Z awards 0.2040 0.1818 348
Z stype 0.1320 0.0957 362
Z acs.k3.20 0.1223 0.0817 362

The two first tables related to api29 highlights the strong associations between Y and the
variables meals, ell, full and grad.sch in this order of importance, while the summary tables
related to api35 highlights the strong associations between Z and the variables meals, grad.sch,
ell and full.

It is often not unusual to observe that one or more predictors are in fact linear combinations of
others. In supervised learning areas, these risks of collinearity increase with the number of predictors,
and must be detected beforehand to keep only the most parsimonious subset of predictors for fusion.
To avoid collinearity situations, the result of a Farrar and Glauber (FG) test is provided (Farrar
and Glauber, 1967). This test is based on the determinant of the rank correlation matrix of the
shared variables D (Spearman) and the corresponding test statistic is given by:

SFG = −
(
n− 1− 1

6
(2k + 5)× ln(det(D))

)
where n is the number of rows and k is the number of covariates. Th null hypothesis supposes
that SFG follows a chi square distribution with k(k − 1)/2 dof, and its acceptation indicates an
absence of collinearity. In presence of a large number of numeric covariates and/or ordered factors,
the approximate Farrar-Glauber test, based on the normal approximation of the null distribution
(Kotz et al., 2004) can be more adapted and the statistic test becomes:

√
2SFG −

√
2k − 1

Users will note that these two tests can often appear highly sensitive in the sense that they tend
to easily conclude in favor of multicollinearity. Thus, it is suggested to consider these results as
indicators of collinearity between predictors rather than an essential condition of acceptability. The
results related to this test are stored in the FG_test object of the select_pred output.

In presence of collinearity, select_pred tests the pairwise associations between all the potential
predictors according to their types (Spearman or Cramér’s V). The thres_num argument fixed the
threshold beyond which two ranked predictors are considered as redundant while thres_cat fixed
the threshold of acceptability for the Cramér’s V criterion in the subgroup of factors. In output,
the results stored in the collinear_PB object permit to identify the corresponding variables. In our
example, we observe:

DETECTION OF REDUNDANT PREDICTORS

Results for the api29 dataset -----

Results of the Farrar-Glauber test
R> step2a$FG_test

DET_X pv_FG_test pv_FG_test_appr
0.04913067 0.00000000 0.00000000

13

Identity of the redundant predictors

R> step2a$collinear_PB
$VCRAM

name1 name2 V_Cramer CorrV_Cramer N
acs.k3.20 stype 0.6988 0.6971 418

ell meals 0.6696 0.6664 389
full meals 0.5215 0.5152 418

$SPEARM
name1 name2 RANK_COR pv_COR_test N

ell meals 0.9047 0 389
api.stu stype 0.7069 0 418

Results for the api35 dataset -----

R> step2b$FG_test # Significant result
R> step2b$collinear_PB

$VCRAM
name1 name2 V_Cramer CorrV_Cramer N

acs.k3.20 stype 0.6977 0.6957 362

$SPEARM
name1 name2 RANK_COR pv_COR_test N

<0 rows> (or 0-length row.names)

The FG test warns the user against the risks of collinearity between predictors, and the function
notably detects strong collinearities between the variables meals, ell, full in the api29 (less strong
trends in api35): an information that have to be taken into account during the selection. The part
of predictors finally kept for the data fusion must be small to improve its quality. When the initial
number of shared variables is not too important as in this example, choosing the best candidates
between groups of redundant predictors can be made manually by selecting highest ranked predictors
in the summary tables previously described. In this way, the variable meals could be preferred to
ell, and full, while the variable stype could be dropped. Consequently, a possible final list of
predictors could be only composed of the variables meals and grad.sch.

When the number of predictors is important, or when users prefer that an automatic process
performs the variable selection, a random forest procedure can also be used via the select_pred
function. Random forest approaches (Breiman, 2001) are here particularly convenient (Grajski
et al., 1986) for multiple reasons: it works fine when the number of variables exceeds the number
of rows, whatever the types of covariates, it allows to deal with non linearity, to consider correlated
predictors, ordered or not ordered outcomes and to rank good candidate predictors through an
inbuilt criterion: the variable importance measure.

In few words, random forest processes aggregates many CART models (Breiman et al., 1984)
with RF_ntree bootstrap samples from the raw data source and averaging accuracies from each
model permits to reduce the related variances and also the errors of prediction. A standard random
forest process provides two distinct measures of importance of each variable for the prediction of the
outcome, the Gini importance criterion and the permutation importance criterion, which depends
on the appearance frequency of the predictor but also on its place taken up in each tree. For more
details about random forest theory, user can consult Breiman (2001) and/or the pdf manual of the
randomForest package.

Strobl et al. (2009) suggests that the permutation importance criterion, which works with per-
muted samples (subsampling without replacements) instead of bootstrap ones, is particularly conve-

14

https://cran.r-project.org//web//packages//randomForest//index.html

nient with uncorrelated predictors, but must be replaced by a conditional permutation measurement
in presence of strong correlations. select_pred provides these assessments by integrating the main
functionalities of the cforest and varimp functions of the package party (Hothorn et al., 2006b;
Zeileis et al., 2008; Hothorn et al., 2006a; Strobl et al., 2007, 2008). However, these measurements
must be used with caution, by accounting the following constraints:

• the Gini importance criterion can produce bias in favor of continuous variables and variables
with many categories. This criterion is thus not available in the function.

• the permutation importance criterion can overestimate the importance of highly correlated
predictors and therefore redundant predictors will be discarded beforehand using the first
steps of the process integrated in the function.

The select_pred function allows to proceed with different scenarios according to the type of
predictors (Table 4 can help users to choose). The first one consists in boiling down to a set of cat-
egorical variables (ordered or not) by categorizing all the continuous predictors using the dedicated
argument (convert_num and convert_clss) and to work with the conditional importance assess-
ments that directly provide unbiased estimations (by setting the RF_condi argument to TRUE).
Users can consult (Hothorn et al., 2006b) for more details about the approach and consult the pdf
manual of the package for details about the related arguments of the select_pred function. This
approach does not take into account incomplete information, so that the method will be applied to
complete data only (incomplete rows will be temporarily removed from the study). It is neverthe-
less possible to impute missing data beforehand by using dedicated pre-existing R packages like mice
(Van Buuren et al., 1999) or by using the imput_cov function provided in this package.

The second possible scenario (always usable in presence of mixed type predictors), consists
in the execution of a standard random forest procedure after taking care to rule out collinearity
issues by first selecting unique candidates between potential redundant predictors (in this case,
the discarded predictors are stored in the drop_var output object). This is the default approach
used by select_pred as soon as the RF_condi argument is set to FALSE while RF is set to TRUE.
This scenario can work in presence of incomplete predictors. By constructing, note that results
from random forest procedures stay dependent on successive random draws carried out for the
constitution of trees, and it is so suggested to check this stability by testing different random seeds
(RF_SEED argument) before concluding.

The R command previously written provides automatically the results related to the second
approach as additional results. The results from the two datasets show here the permutation impor-
tance estimates of each variable ranked in order of importance and expressed as percentage, after
resolving collinearity problems:

R> step2a$RF_PRED # For the api29 dataset

meals stype grad.sch awards acs.core
71.5529 11.6282 11.1181 5.4674 0.2334

R> step2b$RF_PRED # For the api35 dataset

Possible scenarios Correlation
between

predictors

State of the
RF_condi
argument

Incomplete
information

Same type predictors NO FALSE Allowed
Same type predictors YES TRUE Not allowed

Different type predictors NO FALSE Allowed
Different type predictors YES TRUE Not Allowed

Table 4: Completing the RF_condi argument according to predictors

15

https://cran.r-project.org//web//packages//party//index.html
https://cran.r-project.org//web//packages//OTrecod//OTrecod.pdf
https://cran.r-project.org//web//packages//OTrecod//OTrecod.pdf
https://cran.r-project.org//web//packages//mice//index.html

meals ell grad.sch full stype api.stu acs.core awards
35.9974 28.3051 22.2094 5.2143 4.0192 1.8965 1.5643 0.7937

The results confirm that the variable meals appeared as the best predictor of the target variables
in api29 and api35 respectively. The variable ell is not present in the first list (see RF_PRED from
step2a) because the variables meals and ell has been detected as strongly collinear (according to
the initial chosen threshold) and so select_pred keep the best choice between the two predictors:
meals (the reasoning is the same for full which disappeared from the list).

The ell variable has been kept in the second list (not found as collinear enough to be removed
here) and appears moreover as a good predictor of apicl_1999 in api35. Nevertheless its potential
collinearity problem with meals encourages us not to keep it for the rest of the study. According to
this discussion, we finally keep meals, stype and grad.sch which combines the advantages of being
good predictors for the two target variables while not presenting major problems of collinearity
between them.

The following synthetic database (called here bdd_ex) is now ready for the prediction of the
missing API scores in api29, api35 or both, using the function OT_outcome or OT_joint:

R> bdd_ex = step1$DB_READY[, c(1:3,10:12)]; head(bdd_ex,3)

DB Y Z grad.sch meals stype
1 (600-800] <NA> >10 [0-25] H
1 (600-800] <NA> >10 [0-25] H
1 [200-600] <NA> 1-10 (75-100] H

4.6 Data fusion using OT_outcome
The OT_outcome function provides individual predictions of Z in A (and/or Y in B) by considering
the recoding problem involving optimal transportation of outcomes. In a first step, the aim of
the function is so to determine γ from (2) while this estimate is used in a second step to provide
the predictions. The main input arguments of the function and the output values are respectively
described in Tables 5 and 6.

The arguments datab, index_DB_Y_Z, quanti, nominal, ordinal, and logic are not optional
and must be carefully completed before each execution. A unique synthetic data.frame made of
two overlayed databases (called A and B for example) (see Table 3) is expected as datab argument.
If this data.frame corresponds to the output objects DB_USED or DB_READY of the select_pred or
merge_dbs functions respectively, then the expected object has the required structure. Otherwise
users must be sure that their data.frames are made up of two overlayed databases with at least 4
variables as described in the subsection Optimal transportation of outcomes applied to data recoding.
The order of the variables have no importance in the raw database but will have to be specified a
posteriori in the index_DB_Y_Z argument if necessary.

The subset of remaining predictors used for fusion may requires prior transformations according
to the distance function chosen in input by the user. This process is fixed by setting the dist.choice
argument. The distances actually implemented in the function are: the standard Euclidean ("E")
and Manhattan ("M") distances, the Hamming distance ("H", for binary covariates), and the Gower
distance ("G" sometimes preferred with mixed variables). Automatic transformations prior to the
use of each distance function are summarized in Table 7.

The first version of the OT algorithm described in Gares et al. (2019) was tested on numeric
coordinates extracted from a factor analysis of mixed data (FAMD) fitted on mixed raw covariates
(Pages, 2002). This transformation is here available by setting the FAMD.coord argument to "YES".
The minimal percentage of information explained by the FAMD is also fixable using the FAMD.perc
argument. The OT_outcome functions proposes four types of models for the prediction of Y in B
(and/or) Z in A, according to the values of the method and maxrelax arguments:

• When maxrelax = 0 and indiv.method = "sequential" (default options), the fitted model
corresponds to the outcome algorithm described by P̂0

n in equation (6). Assuming that Y
and Z in A follow the same distribution as Y and Z in B respectively (assumption 1, page
2), this related algorithm derives the joint distribution of Y and Z in A (respectively in B) in

16

Argument OT_outcome OT_joint Description (default value)
datab ✓ ✓ Data.frame in the expected structure
index_DB_Y_Z ✓ ✓ Indexes of the ID,Y, and Z columns

(1,2,3)
nominal ✓ ✓ Column indexes of nominal variables

(*)
ordinal ✓ ✓ Col. indexes of ordinal variables (*)
logic ✓ ✓ Col. indexes of boolean variables (*)
quanti ✓ Col. indexes of quantitative variables

(*)
convert.num ✓ ✓ Col. indexes of the quantitative vari-

ables to convert (* or =quanti in
OT_joint)

convert.clss ✓ ✓ Corresponding numbers of desired
classes for conversion (*)

which.DB ✓ ✓ Specify the target variables to com-
plete: Both or only one (BOTH)

solvR ✓ ✓ Choice of the solver to solve the opti-
mization problem (glpk)

dist.choice ✓ ✓ Distance function (Euclidean). See Ta-
ble 7

percent.knn ✓ ✓ Ratio of closest neighbors involved int
the computations (1)

indiv.method ✓ Type of individual predictions (sequen-
tial) for outcome and r-outcome al-
gorithms

maxrelax ✓ ✓ Adding of a relaxation parameter (0)
lambda.reg ✓ Adding of regularization parameter (0)

Table 5: Main arguments of the OT_outcome and OT_joint functions. (*: NULL as default value)

a first step, and uses in a second step, a nearest neighbor procedure to predict missing values
of Z in A (resp. Y in B). This algorithm calculates averaged distances between each subject
from A (resp. B) and subgroups of subjects from B (resp. A) having same levels of Z in
B (resp. Y in A). These calculations can be done using all subjects of each subgroups (by
default, percent.knn = 1) or only restricted parts of them (percent.knn< 1).

• When maxrelax > 0 and indiv.method = "sequential", assumption 1 is alleviated by relax-
ing the constraints on marginal distributions and an r-outcome algorithm (with relaxation)
is fitted. In this case, the maxrelax argument corresponds to the αn parameter in (18).

• When maxrelax = 0 and indiv.method = "optimal", the second step of the original algorithm
(nearest neighbor procedure) is replaced by a linear optimization problem: searching for the
individual predictions of Z in A (resp. Y in B) by minimizing the total of the distances
between each individual of A and individuals of each levels of Z in B.

• When maxrelax > 0 and indiv.method = "optimal", the constraints on marginal distribu-
tions of the previous model are also relaxed and the function fits an r-outcome algorithm
with relaxation. For these three last situations, the corresponding r-outcome algorithm is so
described by P̂0−R

n (18).

When maxrelax > 0, it is recommended to calibrate the maxrelax parameter by testing different
values according to the stability of individual predictions. In output, the gamma_A and gamma_B
matrices correspond to the estimates of the joint distributions γ of (Y A, ZA) and (Y B , ZB) re-

17

Value OT_outcome OT_joint Description
time_exe ✓ ✓ Running time of the algorithm
gamma_A ✓ ✓ Estimation of the joint distribution of

(Y,Z) for the prediction of Z in A (*)
gamma_B ✓ ✓ Estimation of the joint distribution of

(Y,Z) for the prediction of Y in B (*)
profile ✓ ✓ The list of detected profiles of covari-

ates
res.prox ✓ ✓ A list that provides all the information

related to the estimated proximities be-
tween profiles and groups of profiles

estimator_ZA ✓ ✓ Estimates of the probability distribu-
tion of Z conditional to X and Y in
database A (*)

estimator_YB ✓ ✓ Estimates of the probability distribu-
tion of Y conditional to X and Z in
database B (*)

DATA1_OT ✓ ✓ The database A fully completed (if re-
quired in input by the which.DB argu-
ment)

DATA2_OT ✓ ✓ The database B fully completed (if re-
quired in input by the which.DB argu-
ment)

Table 6: Values of the OT_outcome and OT_joint functions. (*: NULL if not required)

spectively (equation (2)). Moreover, a posteriori estimates of conditional distributions probabilities
(ZA|Y A, XA) and (Y B |ZB , XB) (see equation 10) are also provided in two lists called estimatorZA,
and estimatorYB respectively and the completed databases A and B are stored in the DATA1_OT
and DATA2_OT objects. In particular, the individual predictions are stored in the OTpred column of
these data.frames. Moreover, the profile object is a data.frame that stores the profile of covariates
encountered in the two data sources while the res_prox object stored all the distance computations
that will be used in the validation step (users can consult details of the proxim_dist function of the
pdf manual).

The computation of conditional probabilities implies to define the part of individuals considered
as neighbors of each encountered profile of covariates. The argument prox.dist fixes this threshold
for each profile, following the decision rule for A (and respectively for B): A subject i of A (or
a statistical unit corresponding to a row of A) will be considered as neighbor of a given profile of
shared variables C as soon as:

dist(subjecti, C) < prox.dist × maxk=1,...,nAdist(subjectk, C)

When the number of shared variables is small and all of them are categorical (optimal situation),
it is suggested to set the prox.dist argument to 0. Finally, using the which.DB argument, users
can choose to estimate the individual predictions of Y and Z in the two databases (which.DB =
"BOTH") or only one of the both (which.DB = "A" for the predictions of Z in A or which.DB = "B"
for the predictions Y in B).

From the data.frame bdd_ex built previously, we use the OT_outcome function to illustrate the
prediction of the target variable apicl_2000 in the api35 dataset via an outcome algorithm and
using an Euclidean distance function:

R> outc1 = OT_outcome(bdd_ex, quanti = 1, ordinal = 2:6,
dist.choice = "E", indiv.method = "sequential",

18

https://cran.r-project.org//web//packages//OTrecod//OTrecod.pdf

which.DB = "B")

OT PROCEDURE in progress ...

Type = OUTCOME
Distance = Euclidean
Percent closest knn = 100%
Relaxation parameter = NO
Relaxation value = 0
Individual pred process = Sequential
DB imputed = B

In bdd_ex, all variables except the first one (DB: the database identifier) are or can be considered
as ordinal factors, and the quanti and ordinal arguments are filled in accordingly. For the prediction
of apicl_2000 in the api35 dataset (the steps would be the same for the prediction of apicl_1999
in api29 by setting which.DB = "A" or "BOTH"), the optimal transportation theory determines a
map γ that pushes, in the distribution of apicl_1999 forward to the distribution of apicl_2000 in
the database api35. In this case, γB is an estimator of the joint distribution of apicl_2000 and
apicl_1999 in api35. The estimation of γB is available in the gamma_B output object while all the
profiles of predictors met in the two databases are listed in the profile object:

R> outc1$gamma_B
G1 G2 G3 G4
#[200-600] 0.22248804 0.0000000 0.00000000 0.0000000
#(600-800] 0.02889318 0.2486188 0.15311005 0.0000000
#(800-1000] 0.00000000 0.0000000 0.09550874 0.2513812

R> outc1$profile[1,] # the first profile

ID grad.sch meals stype
P_1 3 1 3

The output object estimatorYB is a list that corresponds to the estimations of the conditional
probabilities of apicl_2000 in the api35 dataset for a given profile of predictors. For example, the
conditional probabilities related to the first profile of predictors are:

R> outc1$estimatorYB[1,,] # conditional probabilities (1st profile)
[,1] [,2] [,3]

G1 0.3333333 0.3333333 0.3333333
G2 0.3333333 0.3333333 0.3333333
G3 0.0000000 0.0000000 1.0000000
G4 0.0000000 0.0000000 1.0000000

According to these results, we can conclude that: for a subject from api35 with a related profile
of predictors P_1 and whose levels of apicl_1999 is ‘G1’, the probability for apicl_2000 to be
predicted ‘[200,600]’ is about 0.63. Finally, the individual predictions of apicl_2000 in api35 are
available in the DATA2_OT object corresponding to the OTpred column:

R> head(outc1$DATA2_OT,3) # The 1st 3 rows only

DB Y Z grad.sch meals stype OTpred
2 <NA> G1 2 4 1 [200-600]
2 <NA> G3 2 3 1 (600-800]
2 <NA> G2 2 3 2 (600-800]

The outcome algorithm uses here a nearest neighbor procedure to assign the individual predic-
tions from the estimation of γ which can be a drawback as described in Gares et al. (2019). The

19

r-outcome algorithm proposes an enrichment that directly assigns the individual predictions of
apicl_2000 from the estimation of γ, without using the nearest neighbor approach. In this case,
a linear optimization problem is solved to determine the individual predictions that minimize the
sum of the individual distances in api35 having the modalities of the target apicl_2000 in api29.
The corresponding R command is:

R> R_outc3 = OT_outcome(bdd_ex, quanti = 1, ordinal = 2:6,
dist.choice = "E" , indiv.method = "optimal",
which.DB = "B")

Moreover, the outcome algorithm assumes that the distribution of apicl_2000 is identically
distributed in api29 and api35 (assumption 1 from the subsection 2.2) which can appear as a strong
hypothesis to hold in many situations. To overcome this constraint, the R_OUTCOME algorithm also
allows to relax the assumption 1 by adding a relaxation parameter (18) in the optimization system.
This relaxation can be done by varying the maxrelax arguments of the function:

R-OUTCOME algorithm: optimal assignments + relaxation parameter = 0.4
R> R_outc4 = OT_outcome(bdd_ex, quanti = 1, ordinal = 2:6,

dist.choice = "E",
indiv.method = "optimal",
maxrelax = 0.4, which.DB = "B")

The running times of these two models can take few minutes. The quality of these models will
be compared in Tables 8, 9 and 10 (subsection Validation of the data fusion using verif_OT).

4.7 Data fusion using OT_joint
The OT_joint function provides individual predictions of Z in A (and/or Y in B) by considering
the recoding problem as an optimal transportation problem of covariates and outcomes, that pushes
the conditional distribution of (Y A|XA) forward to the conditional distribution of (ZA|XA) (and
conversely (ZB |XB) forward to the conditional distribution of (Y |X)). The aim is to determine γ
from (7). Because joint distributions of outcomes and covariates are now mapped together (it was
not the case with the outcome family of algorithms), it is not required for target variables to be
equally distributed (assumption 1).

The call of OT_joint was thought to propose globally the same structure as those of the function
OT_outcome as described in Tables 5 and 6 with few differences described below. joint and r-joint
algorithms are usable via OT_joint for solving the recoding problem depending on the values related
to the maxrelax and lambda_reg arguments:

• When maxrelax = 0 and lambda.reg = 0 (default values), the fitted model corresponds to
the joint algorithm described by P̂n in equation (7).

• When at least one of these two arguments differs from 0, the r-joint algorithm is called.
Using r-joint, it is so possible to relax constraints on marginal distributions (maxrelax > 0)
and/or add an eventual more or less strong L1 regularisation term among the constraints of the
algorithm by filling the lambda_reg argument. maxrelax parameter correspond to parameter
αn in (16) and lambda.reg parameter correspond to parameter λ in (17).

When maxrelax > 0 and/or lambda.reg > 0, it is recommended to calibrate these two parameters
by testing many different values and so studying the stability of the related individual predictions.
Nevertheless, by default or as a starting point, Gares et al. (2019) suggests the use of default values
determined from simulated databases: 0.1 for the regularization parameter (lambda.reg) and 0.4 for
the relaxation one (maxrelax). Finally, the output objects are similar to those previously described
in the OT_outcome function.

The implementation of the function is very similar to that of OT_outcome, and applied to our
example, the R code related to a joint algorithm is:

R> outj1 = OT_joint(bdd_ex, nominal = 1, ordinal = c(2:6),
dist.choice = "E" , which.DB = "B")

20

Distance function Euclidean Manhattan Gower Hamming
Variable transformations
Continuous Standardized Standardized No Not allowed
Boolean Binary Binary No Binary
Nominal Disjunctive T Disjunctive T No Disjunctive T
Ordinal Discrete Discrete No Disjunctive T
Incomplete information Allowed* Allowed* Allowed* Allowed*
dist.choice argument “E” “M” “G” “H”

Table 7: Internal variable transformations related to the choice of each distance function in
OT_outcome and OT_joint . (*) If the number of covariates exceeds 1. T for table

OT JOINT PROCEDURE in progress ...

Type = JOINT
Distance = Euclidean
Percent closest = 100%
Relaxation term = 0
Regularization term = 0
Aggregation tol cov = 0.3
DB imputed = B

Extract individual predictions from the OTpred column
R> head(outj1$DATA2_OT,3) # The 1st 3 rows only

DB Y Z grad.sch meals stype OTpred
2 <NA> G1 2 4 1 [200-600]
2 <NA> G3 2 3 1 (600-800]
2 <NA> G2 2 3 2 (600-800]

For relaxing the constraints stated on marginal distributions, we use the maxrelax argument
that corresponds to varying the α parameter of a r-joint algorithm (see 17) and a parameter of
regularization λ can be simply added to the previous model as follows:

R-JOINT algorithm (relaxation parameter = 0.4)
R> R_outj1 = OT_joint(bdd_ex, nominal = 1, ordinal = c(2:6),

dist.choice = "E", maxrelax = 0.4,
which.DB = "B")

R-JOINT algorithm (relaxation parameter = 0.4,
& regularization parameter = 0.1)
R> R_outj4 = OT_joint(bdd_ex, nominal = 1, ordinal = c(2:6),

dist.choice = "E", maxrelax = 0.4,
lambda.reg = 0.1,
which.DB = "B")

As previously, these models will be compared in the next subsection.

4.8 Validation of the data fusion using verif_OT
Assessing the quality of individual predictions obtained through statistical matching techniques can
be a complex task notably because it is legitimate to wonder about the true reliability of a joint

21

distribution estimated from two variables which are never jointly observed (Kadane, 1978; Rodgers,
1984). When the study aims to identify estimators of interests that improve the understanding of
the relationships between variables in the different databases (called macro approach in D’Orazio
et al. (2006)) without going until the creation of a complete and unique dataset, uncertainty analyses
are usually proposed to estimate the sensitivity of the assessments (Rässler, 2012). On the contrary,
if the objective is to create a synthetic dataset where the information is available for every unit, the
use of auxiliary information or proxy variables must be privileged to assess the quality of the results
(Paass, 1986). In the absence of complementary information, Rubin (1986) suggests to study the
preservation of the relationships at best between the distributions of the target variables. In this
way, the verif_OT function proposes tools to assess quality of the individual predictions provided
by the algorithms previously introduced.

The first expected input argument of verif_OT is an ‘otres’ object from the OT_outcome or
OT_joint functions. In our example, this function is firstly applied to the out_c1 model by following
the R command:

Quality criteria for outc1 (OUTCOME model)
R> verif_outc1 = verif_OT(outc1, group.class = TRUE, ordinal = FALSE,

stab.prob = TRUE, min.neigb = 5)
First results related to outc1:
R> verif_outc1$nb.profil

27

R> verif_outc1$res.prox

N V_cram rank_cor
362.000 0.860 0.892

In output, the nb.profil value gives the number of profiles of predictors globally detected in
the two databases (27). In the example, a profile will be characterized by a combination of values
related to the three predictors kept: grad.sch, meals and stype.

The first step of the function is dedicated to the study of the proximity between the two target
variables. Therefore, standard criteria (Cramer’s V and Spearman’s rank correlation coefficient) are
used to evaluate the pairwise association between Y and Z, globally or in one of the two databases
only, according to the predictions provided by the output of OT_outcome or OT_joint. Only the
database api35 was completed in the example (because which.DB = "B" as argument of OT_outcome)
and stored in the DATA2_OT object, therefore, the criteria compare here the proximity distribution
between the predicted values of apicl_2000 (Y) and the observed value of apicl_1999 (Z) in the
database api35 (B). Regarding independence or a small correlation between Y A and ZA (or Y B and
ZB) must question about the reliability of the predictions especially when Y and Z are supposed
to summarize a same information. In the example, whatever the criteria used, we notice via the
res.prox object, a strong association between the two target variables in api35 which reassures
about the consistency of the predictions. The related confusion matrix between the predicted values
of apicl_2000 (Y) and the observed value of apicl_1999 (Z) is stored in the conf.mat object.

Second, the function proposes an optional tool (by setting group.clss= TRUE) which evaluates
the impact of grouping levels of one factor on the association of Y and Z. When users have initially
no information about one of the two encodings of interest, this approach can be particularly useful
to detect ordinal from nominal ones and its principle is as follow. Assuming that Y ∈ Y, and Z ∈ Z
(Y and Z are the respective levels) and that |Y| ≥ |Z|. From Y , successive new variables Y ′ ∈ Y ′

are built, as soon as Y ′ is a partition of Y such as |Y ′| = |Z| (and inversely for Z if the levels of Z
is the greatest). The related associations between Z and Y ′ (with now equal number of levels) are
then studied using: Cramer’s V, rank correlation, Kappa coefficient and confusion matrix and the
results are stored in a table called res.grp. The corresponding outputs of the example are:

R> verif_outc1$conf.mat

Z

22

predY G1 G2 G3 G4 Sum
[200-600] 81 1 1 1 84
(600-800] 10 89 55 1 155
(800-1000] 0 0 34 89 123
Sum 91 90 90 91 362

R> verif_outc1$res.grp

grp levels Z to Y error_rate Kappa Vcramer RankCor
G1/G2 G3/G4 13.3 0.794 0.83 0.877
G1/G2/G3 G4 19.1 0.714 0.78 0.839
G1 G3/G2/G4 28.2 0.593 0.68 0.624
G1 G2/G3/G4 37.6 0.457 0.64 0.813
G1 G4/G2/G3 43.4 0.374 0.59 0.115
G1/G2 G4/G3 43.4 0.326 0.64 0.574

It appears from these results that grouping the levels G2 and G3 of apicl_1999 (Z) strongly
improves the association of this variable with apicl_2000 (Y) (the error rate of the confusion ma-
trix varies from 43.4 to 13.3). Moreover the structure of conf.mat confirms that the encoding of
apicl_1999 seems to be ordinal.

The third step of the quality process integrated in the function corresponds to the study of the
Hellinger distance (Liese and Miescke (2007)). This distance function is used as a measure of the
discrepancies between the observed and predicted distributions of Y (L(Y A) versus L(Ŷ B)) and/or
(L(ẐA) versus L(ZB)). For Y and Z, the definition of the distance is respectively:

disthell(Y
A, Ŷ B) =

√√√√1

2

∑
y∈Y

(√
µY A
n,y −

√
µŶ B
n,y

)2

)

and

disthell(Z
B , ẐA) =

√√√√1

2

∑
z∈Z

(√
µZB
n,z −

√
µẐA
n,z

)2

)

where µŶ B

n,y and µẐA

n,z corresponds to the empirical estimators of µŶ B

and µẐA

respectively.
The Hellinger distance varies between 0 (identical) and 1 (strong dissimilarities) while 0.05 can be

used as an acceptable threshold below which two distributions can be considered as similar. When
outcome models are applied on datasets, this criterion shows that predictions respect assumption
1. It can also be used to determine the best relaxation parameter of an r-outcome model. On the
contrary, there is no need to interpret this criterion when an r-joint model is applied, because in
this case, the assumption 1 is not required. Results related to this criterion are stored in the hell
object:

R> verif_outc1$hell
YA_YB ZA_ZB

Hellinger dist. 0.008 NA

With a p-value equals to 0.08, the assumption 1 is difficult to hold here and must challenge the
user on the need to switch the algorithm or to improve the current one by adding relaxation and/or
regularization parameters.

Finally, the verif_OT function uses the mean and standard deviance of the conditional prob-
abilities P(Z = ẑi|Y = yi, X = xi) estimated by each model, as indicators of the stability of the
individual predictions (provided that stab.prob = TRUE). It is nevertheless possible that conditional
probabilities are computed from too few individuals (according to the frequency of each profile of
shared variables met), to be considered as a reliable estimate of the reality. To avoid this problem,
trimmed means and standard deviances are suggested by removing these specific probabilities from

23

the computation, using the min.neigb parameter. In output, the results related to this last study
are stored in the res.stab object:

R> verif_outc1$eff.neig
Nb.neighbor Nb.Prob

1 14
2 18
3 18
4 28
5 20
6 6
7 14
8 16
9 27

10 20

R> verif_outc1$res.stab
N min.N mean sd

2nd DB 284 5 0.968 0.122

The first result shows that 14 individual predictions among 362 (the total number of rows in
api35) have been assigned to subjects that exhibits a unique combination of predictors and outcome.
From these subjects, it would be obviously overkill to draw conclusions about the reliability of the
predictions provided by the model. We therefore decide to fix here a threshold of 5 below which
it is difficult to extract any information related to the prediction. From the remaining ones, we
simply perform the average (0.968) which could be interpreted as follows: When the fitted model is
confronted with a same profile of predictors and a same level of apicl_1999, more than 96 times of
a hundred, it will return the same individual prediction.

We run a total of 11 models to determine the optimal one for the prediction of apicl_2000 in
api35. Every arguments from the syntax of the OT_outcome and OT_joint functions described on
pages 15, 16 and 17, stay unchanged with the exception of indiv.method, maxrelax, and lambda.reg
which vary. The values linked to each criterion of the verif_OT function are summarized in Tables 8,
9 and 10. The syntax related to verif_OT stay unchanged for each model (notably same min.neigb
arguments). Note that comparisons of stability predictions between outcome and joint models
impose that the prox.dist argument of the OT_outcome function is fixed to 0.

Model Type Method Relax Regul N V_cram rank_cor
outc1 outcome SEQUENTIAL 0.0 - 362 0.86 0.892
R_outc1 r-outcome SEQUENTIAL 0.4 - 362 0.94 0.923
R_outc2 r-outcome SEQUENTIAL 0.6 - 362 0.91 0.917
R_outc3 r-outcome OPTIMAL 0.0 - 362 0.87 0.911
R_outc4 r-outcome OPTIMAL 0.4 - 362 0.95 0.939
R_outc5 r-outcome OPTIMAL 0.6 - 362 0.92 0.932
outj1 joint - 0.0 0.0 362 0.74 0.834
R_outj1 r-joint - 0.4 0.0 362 0.95 0.935
R_outj2 r-joint - 0.6 0.0 362 0.91 0.927
R_outj3 r-joint - 0.8 0.0 362 0.91 0.927
R_outj4 r-joint - 0.4 0.1 362 0.95 0.931

Table 8: Proximity between apicl_2000 (Y predicted) and apicl_1999 (Z observed) in api35:
Summary table

From these results, we can conclude that:

24

• whatever the algorithm used (outcome or joint), adding a relaxation parameter improves
here the association between the target variables (see Table 8).

• according to the results of Table 9, the outc1 and R_outc3 models are not optimal because
the observed values from the Hellinger criterion reflects a violation of assumption 1 (see Table
9). Therefore, for these two models, a relaxation parameter must be added or increased
respectively.

• conversely, adding a relaxation parameter that is too high seems to affect the quality of the
association. In this example, 0.4 seems to be a good value for this parameter whatever the
algorithm used. Among the remaining models (R_outc1, R_outc4, R_outj1, and R_outj4),
R_outj1 and R_outj4 seem to be those with the most stable predictive potential (Table 10).
Moreover, R_outc4 appears here as the best model from the tested outcome algorithms.

• adding a regularization parameter to the R_outj1 model caused a decrease in the stability of
the predictions (see the value of R_outj4) and we thus conclude in favor of R_outj1 as best
model among those tested in the joint family of algorithms.

• Table 11 shows that the three remaining models counted between 86 an 91% of common
predictions and these last result also reassures the user about the quality of the provided
predictions.

Model Type Method Relax Hell(YA_YB)
outc1 outcome SEQUENTIAL 0.0 0.008
R_outc1 r-outcome SEQUENTIAL 0.4 0.085
R_outc2 r-outcome SEQUENTIAL 0.6 0.107
R_outc3 r-outcome OPTIMAL 0.0 0.002
R_outc4 r-outcome OPTIMAL 0.4 0.080
R_outc5 r-outcome OPTIMAL 0.6 0.102

Table 9: Hellinger distance: Summary table

Model Type Method Relax Regul N mean sd
outc1 outcome SEQUENTIAL 0.0 - 284 0.968 0.122
R_outc1 r-outcome SEQUENTIAL 0.4 - 284 0.950 0.151
R_outc2 r-outcome SEQUENTIAL 0.6 - 284 0.954 0.145
R_outc3 r-outcome OPTIMAL 0.0 - 284 0.979 0.100
R_outc4 r-outcome OPTIMAL 0.4 - 284 0.987 0.080
R_outc5 r-outcome OPTIMAL 0.6 - 284 0.983 0.091
outj1 joint - 0.0 0.0 284 0.911 0.116
R_outj1 r-joint - 0.4 0.0 284 0.942 0.128
R_outj2 r-joint - 0.6 0.0 284 0.953 0.171
R_outj3 r-joint - 0.8 0.0 284 0.934 0.199
R_outj4 r-joint - 0.4 0.1 284 0.926 0.097

Table 10: Stability of the predictions: Summary table (min.neigb = 5)

The confusion matrices related to R_outc4 and R_outj1 are described in Table 12 and seems to
confirm that the encoding of apicl_2000 in three groups, could simply correspond to the grouping
of levels G2 and G3 of the api_cl1999 variable.

Finally, note that the running time of each model took less than 15 seconds with R version 4.0.3
for Windows (10 Pro-64bits/ Process Intel 2.66 GHz).

25

Model outc1 R_outc1 R_outc4 outj1 R_outj1
R_outc1 0.84 - - - -
R_outc4 0.83 0.95 - - -
outj1 0.72 0.81 0.83 - -
R_outj1 0.83 0.91 0.94 0.84 -
R_outj4 0.84 0.96 0.97 0.84 0.92

Table 11: Ratio of common predictions between two models

(a) apicl_1999 (b) apicl_1999
apicl_2000 G1 G2 G3 G4 apicl_2000 G1 G2 G3 G4

[200− 600] 91 15 0 0 [200− 600] 91 14 1 0
(600− 800] 0 75 90 0 (600− 800] 0 76 89 0
(800− 1000] 0 0 0 91 (800− 1000] 0 0 0 91

Table 12: Confusion matrices in the api35 dataset for the models (a) R_outc4 and (b) R_outj1

5 Conclusion and perspectives
To our knowledge, OTrecod is the first R package that takes advantage of the optimal transportation
theory (Monge (1781)) in the context of data fusion and the comparative study of methods described
in Gares and Omer (2020) underlines the promising performances of these approaches.

For more details and examples about the functions, users are invited to consult the "ARTICLES"
section of the related website https://otrecoding.github.io/OTrecod/.

5.1 Drawbacks
The functions of OTrecod only apply to a specific data fusion context where there is no overlapping
part between the two raw data sources. This package does not deal with record linkage which is
already the focus of extensive works (Sariyar and Borg, 2010). This package is not adapted when the
target variables (outcomes) of the two databases are continuous with an infinite number of values
(like weights in grams with decimals for example). Moreover, if the data fusion requires only one
shared variable to work, the quality of the fusion depends on the presence of a subset of good shared
predictors in the raw databases. Finally, if the function OT_outcome allows all types of predictors,
the current version of the function OT_joint imposes categorical matching variables only (scale
variables are allowed): this restriction should be relaxed in a next version.

5.2 Perspectives
A number of more advanced research still need further investigation:

1. the possibility of extending the OT algorithm for recoding variables to multidimensional frame-
works.

2. the stability of the algorithm when the matching variables are incomplete and the non-response
processes are missing at random or not.

3. the contribution of calibration techniques in the quality process assessment (Deming and
Stephan, 1940)

4. the creation of a tuning function which defines a grid search to find the optimal combination of
parameters related to the OT algorithms, could be added in the future versions of the package.

26

https://cran.r-project.org//web/packages//OTrecod//index.html
https://otrecoding.github.io/OTrecod/

6 Acknowledgments
The authors would especially thank Pierre Navaro (CNRS UMR 6625) for their advices during the
implementation of the OTrecod package. This research has received the help from Region Occitanie
Grant RBIO-2015-14054319 and Mastodons-CNRS Grant.

References
J. C. Adamek. Fusion: combining data from separate sources. Marketing Research, 6(3):48, 1994.

W. Bergsma. A bias-correction for cramér’s v and tschuprow’s t. Journal of the Korean Statistical
Society, 42(3):323–328, 2013.

L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and regression trees. CRC
press, 1984.

F. Castanedo. A review of data fusion techniques. The Scientific World Journal, 2013:704504, 2013.

N. Cibella. How to choose the matching variables, report wp2, ess-net. Statistical Methodology
Project on Integration of Surveys and Administrative Data, EUROSTAT, 2010.

M. Cohen. Statistical matching and microsimulation models, improving information for social policy
decisions, the use of microsimulation modeling, technical papers, ii. Washington, DC: National
Academy, 1991.

M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In C. Burges, L. Bot-
tou, M. Welling, Z. Ghahramani, and K. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 26. Curran Associates, Inc., 2013. URL https://proceedings.
neurips.cc/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf.

S. Das and D. S. Tripathy. OMICsPCA: An R package for quantitative integration and analysis of
multiple omics assays from heterogeneous samples, 2020. R package version 1.8.0.

W. E. Deming and F. F. Stephan. On a least squares adjustment of a sampled frequency table when
the expected marginal totals are known. The Annals of Mathematical Statistics, 11(4):427–444,
1940.

M. D’Orazio and M. M. D’Orazio. Package ‘statmatch’. Statistical matching or data fusion, version,
1(0), 2019.

M. D’Orazio, M. Di Zio, and M. Scanu. Statistical matching: Theory and practice. John Wiley &
Sons, 2006.

D. E. Farrar and R. R. Glauber. Multicollinearity in regression analysis: the problem revisited. The
Review of Economic and Statistics, pages 92–107, 1967.

J. Forrest, D. de la Nuez, and R. Lougee-Heimer. Clp user guide. IBM Research, 2004.

V. Gares and J. Omer. Regularized optimal transport of covariates and outcomes in data recoding.
Journal of American Statistical Association, 2020.

V. Gares, C. Dimeglio, G. Guernec, R. Fantin, B. Lepage, M. R. Kosorok, and N. Savy. On the use
of optimal transportation theory to recode variables and application to database merging. The
International Journal of Biostatistics, 1(ahead-of-print), 2019.

K. A. Grajski, L. Breiman, G. V. Di Prisco, and W. J. Freeman. Classification of eeg spatial patterns
with a tree-structured methodology: Cart. IEEE transactions on biomedical engineering, 33(12):
1076–1086, 1986.

27

https://proceedings.neurips.cc/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf

D. Hall and J. Llinas. An introduction to multisensor data fusion. Proceedings of the IEEE,
International Conference on Intelligent Robots and Systems, 85:6–23, 1997.

T. Hastie, R. Mazumder, J. D. Lee, and R. Zadeh. Matrix completion and low-rank svd via fast
alternating least squares. Journal of Machine Learning Research, 16(104):3367–3402, 2015. URL
http://jmlr.org/papers/v16/hastie15a.html.

C. Hernandez-Ferrer, C. Ruiz-Arenas, A. Beltran-Gomila, and J. R. González. Multidataset: an
r package for encapsulating multiple data sets with application to omic data integration. BMC
bioinformatics, 18(1):36, 2017.

F. Hitchcock. The distribution of a product from several sources to numerous localities. Journal of
mathematics and physics / Massachusetts Institute of Technology., 20:224–230, 1941.

T. Hothorn, P. Buehlmann, S. Dudoit, A. Molinaro, and M. Van Der Laan. Survival ensembles.
Biostatistics, 7(3):355–373, 2006a.

T. Hothorn, K. Hornik, and A. Zeileis. Unbiased recursive partitioning: A conditional inference
framework. Journal of Computational and Graphical Statistics, 15(3):651–674, 2006b.

J. Josse and F. Husson. missmda: A package for handling missing values in multivariate data
analysis. Journal of Statistical Software, 70(1):1–31, 2016. doi: 10.18637/jss.v070.i01. URL
https://www.jstatsoft.org/index.php/jss/article/view/v070i01.

J. B. Kadane. Some statistical problems in merging data files. 1978 Compendium of Tax Research,
pages 159–171, 1978.

L. Kantorovich. On the transfer of masses. Doklady Akademii Nauk SSSR, 37:7–8, 1942.

L. A. Klein. Sensor and data fusion: a tool for information assessment and decision making, volume
138. SPIE press, 2004.

S. Kotz, N. Balakrishnan, and N. L. Johnson. Continuous multivariate distributions, Volume 1:
Models and applications. John Wiley & Sons, 2004.

F. Liese and K.-J. Miescke. Statistical decision theory. In Statistical Decision Theory, pages 1–52.
Springer, 2007.

R. Little and D. Rubin. Statistical analysis with missing data, third edition. Wiley series in
probability and mathematical statistics. Probability and mathematical statistics. Wiley, 2019.

A. Makhorin. Gnu linear programming kit, reference manual. Free software foundation, 4, 2011.

I. Mayer, A. Sportisse, J. Josse, N. Tierney, and N. Vialaneix. R-miss-tastic: a unified platform for
missing values methods and workflows, 2019. URL https://arxiv.org/abs/1908.04822.

G. Monge. Mémoire sur la Théorie des Déblais et des Remblais. Histoire de l’Académie royale des
sciences de Paris, pages 666–704, 1781.

B. Muzellec, J. Josse, C. Boyer, and M. Cuturi. Missing data imputation using optimal transport.
In ICML, 2020.

G. Paass. Statistical match: evaluation of existing procedures and improvements by using additional
information. Microanalytic Simulation Models to Support Social and Financial Policy, pages 401–
420, 1986.

J. Pages. Analyse factorielle multiple appliquée aux variables qualitatives et aux données mixtes.
Revue de statistique appliquée, 4:5–37, 2002.

28

http://jmlr.org/papers/v16/hastie15a.html
https://www.jstatsoft.org/index.php/jss/article/view/v070i01
https://arxiv.org/abs/1908.04822

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2016. URL https://www.R-project.org/. ISBN 3-
900051-07-0.

S. Rässler. Statistical matching: A frequentist theory, practical applications, and alternative
Bayesian approaches, volume 168. Springer Science & Business Media, 2012.

W. L. Rodgers. An evaluation of statistical matching. Journal of Business & Economic Statistics,
2(1):91–102, 1984.

F. Rohart, B. Gautier, A. Singh, and K.-A. Lê Cao. mixomics: An r package for ‘omics feature
selection and multiple data integration. PLoS computational biology, 13(11):e1005752, 2017.

D. B. Rubin. Statistical matching using file concatenation with adjusted weights and multiple
imputations. Journal of Business & Economic Statistics, 4(1):87–94, 1986.

M. Sariyar and A. Borg. The recordlinkage package: Detecting errors in data. The R Journal, 2(2):
61–67, 2010.

M. Scanu. Recommendations on statistical matching, report wp2, ess-net. Statistical Methodology
Project on Integration of Surveys and Administrative Data, 2010.

D. Schuhmacher, B. Bähre, C. Gottschlich, V. Hartmann, F. Heinemann, and B. Schmitzer.
transport: Computation of Optimal Transport Plans and Wasserstein Distances, 2020. URL
https://cran.r-project.org/package=transport. R package version 0.12-2.

D. J. Stekhoven and P. Bühlmann. Missforest–non-parametric missing value imputation for mixed-
type data. Bioinformatics (Oxford, England), 28:112–8, Jan 2012.

C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn. Bias in random forest variable importance
measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(25), 2007. URL http:
//www.biomedcentral.com/1471-2105/8/25.

C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis. Conditional variable importance
for random forests. BMC Bioinformatics, 9(307), 2008. URL http://www.biomedcentral.com/
1471-2105/9/307.

C. Strobl, T. Hothorn, and A. Zeileis. Party on! The R Journal, 1(2):14–17, Dec. 2009. URL
http://journal.r-project.org/archive/2009/RJ-2009-013/index.html.

S. Theußl, F. Schwendinger, and K. Hornik. Roi: The r optimization infrastructure package. Re-
search Report Series / Department of Statistics and Mathematics 133, WU Vienna University of
Economics and Business, Vienna, October 2017. URL http://epub.wu.ac.at/5858/.

S. Theußl, F. Schwendinger, and K. Hornik. Roi: An extensible r optimization infrastructure.
Journal of Statistical Software, 2020.

S. Van Buuren and K. Groothuis-Oudshoorn. mice: Multivariate imputation by chained equations
in r. Journal of Statistical Software, Articles, 45(3):1–67, 2011.

S. Van Buuren, H. C. Boshuizen, and D. L. Knook. Multiple imputation of missing blood pressure
covariates in survival analysis. Statistics in medicine, 18(6):681–694, 1999.

B. Vantaggi. Statistical matching of multiple sources: A look through coherence. Int. J. Approx.
Reasoning, 49:701–711, 11 2008. doi: 10.1016/j.ijar.2008.07.005.

A. Zeileis, T. Hothorn, and K. Hornik. Model-based recursive partitioning. Journal of Computational
and Graphical Statistics, 17(2):492–514, 2008. doi: 10.1198/106186008X319331. URL https:
//doi.org/10.1198/106186008X319331.

Z. Zhu, T. Wang, and R. J. Samworth. High-dimensional principal component analysis with het-
erogeneous missingness, 2019. URL https://arxiv.org/abs/1906.12125.

29

https://www.R-project.org/
https://cran.r-project.org/package=transport
http://www.biomedcentral.com/1471-2105/8/25
http://www.biomedcentral.com/1471-2105/8/25
http://www.biomedcentral.com/1471-2105/9/307
http://www.biomedcentral.com/1471-2105/9/307
http://journal.r-project.org/archive/2009/RJ-2009-013/index.html
http://epub.wu.ac.at/5858/
https://doi.org/10.1198/106186008X319331
https://doi.org/10.1198/106186008X319331
https://arxiv.org/abs/1906.12125

7 SUPPLEMENTS
BASIC R CODE FOR SUMMARY TABLES 8, 9, 10, and 11 ---------

Validation of each model: Repeat the following R command for each model by
changing outc1:
R> verif_outc1 = verif_OT(outc1, group.class = TRUE, ordinal = FALSE,

stab.prob = TRUE, min.neigb = 5)

Association between Y and Z: Summary Table 8
R> res.prx = rbind(

outc1 = verif_outc1$res.prox , R_outc1 = verif_R_outc1$res.prox,
R_outc2 = verif_R_outc2$res.prox , R_outc3 = verif_R_outc3$res.prox,
R_outc4 = verif_R_outc4$res.prox , R_outc5 = verif_R_outc5$res.prox,
outj1 = verif_outj1$res.prox , R_outj1 = verif_R_outj1$res.prox,
R_outj2 = verif_R_outj2$res.prox , R_outj3 = verif_R_outj3$res.prox,
R_outj4 = verif_R_outj4$res.prox)

R> res.prx = data.frame(Model = c("outc1","R_outc2","R_outc3","R_outc4",
"R_outc5","R_outc6","outj1", "R_outj1",
"R_outj2","R_outj3","R_outj4"),

Type = c("OUTCOME",rep("R-OUTCOME",5),"JOINT",
rep("R-JOINT",4)),

Relax = c(0,0.4,0.6,0,0.4,0.6,0,0.4,0.6,0.8,0.4),
Regul = c(rep(0,10),0.1), res.prx)

R> row.names(res.prx) = NULL; head(res.prx,3)

Name Type Relax Regul N V_cram rank_cor
outc1 OUTCOME 0.0 0.0 362 0.86 0.892

R_outc1 R-OUTCOME 0.0 0.0 362 0.87 0.911
R_outc2 R_OUTCOME 0.4 0.0 362 0.93 0.933
#-----

Hellinger distance: Summary Table 9
R> res.helld = rbind(

outc1 = verif_outc1$hell , R_outc1 = verif_R_outc1$hell,
R_outc2 = verif_R_outc2$hell, R_outc3 = verif_R_outc3$hell,
R_outc4 = verif_R_outc4$hell, R_outc5 = verif_R_outc5$hell,
outj1 = verif_outj1$hell , R_outj1 = verif_R_outj1$hell,
R_outj2 = verif_R_outj2$hell, R_outj3 = verif_R_outj3$hell,
R_outj4 = verif_R_outj4$hell)

res.helld = data.frame(res.prx[,1:4], res.helld)
row.names(res.helld) = NULL; res.helld
#-----

Stability of the prediction: Summary Table 10
same R code as for Summary Table 8, changing res.prox by res.stab
#----

Ratio of common predictions: Table 11

R> stoc = list(outc1$DATA2_OT$OTpred , R_outc1$DATA2_OT$OTpred,
R_outc4$DATA2_OT$OTpred, outj1$DATA2_OT$OTpred ,

30

R_outj1$DATA2_OT$OTpred, R_outj4$DATA2_OT$OTpred)

R> corpred = matrix(ncol = 6, nrow = 6)
R> for (i in 1:6){

for (j in 1:6){
corpred[i,j] = round(sum(diag(table(stoc[[i]],stoc[[j]])))/362,2)

}
}; corpred

#-----

31

	Introduction
	Solving recoding problems using optimal transportation theory
	The optimal transportation problem
	Optimal transportation of outcomes applied to data recoding
	Optimal transportation of outcomes and covariates

	Package installation and description
	Installation
	Main functions

	Functionalities overview
	Expected structure of the input databases as arguments
	Choice of solver
	An illustrative example
	Harmonization of two datasources using merge_dbs
	Selection of matching variables using select_pred
	Data fusion using OT_outcome
	Data fusion using OT_joint
	Validation of the data fusion using verif_OT

	Conclusion and perspectives
	Drawbacks
	Perspectives

	Acknowledgments
	SUPPLEMENTS

