Kevin Hector
email: kevin.hector@cea.fr

Pierre-Alain Moellic
email: pierre-alain.moellic@cea.fr

Mathieu Dumont
email: mathieu.dumont@cea.fr

Jean-Max Dutertre
email: dutertre@emse.fr

Pierre-Alain Moëllic

A closer

Keywords: Deep learning, Security, Fault Injection, Adversarial Attack, Robustness Evaluation

published or not. The documents may come L'archive ouverte pluridisciplinaire

I. INTRODUCTION

An important trend in deep neural networks is their deployment on hardware platforms. Such deployment raises major security concerns. It has increased attack surface, which was traditionally represented with algorithmic attack such as adversarial examples [START_REF] Szegedy | Intriguing properties of neural networks[END_REF]. Some recent works have shown that model parameters (parameter-based attacks) or inference instructions [START_REF] Liu | Fault injection attack on deep neural network[END_REF] [START_REF] Breier | Practical fault attack on deep neural networks[END_REF] are worrying attack vectors against the model integrity.

A milestone attack proposed by Rakin et al. [START_REF] Siraj Rakin | Bit-flip attack: Crushing neural network with progressive bit search[END_REF], called Bit-Flip Attack (hereafter BFA), targets the parameters (also called weights) of a neural network stored in memory and bit-flips some bits of them in order to decrease model performance.

Following [START_REF] Siraj Rakin | Bit-flip attack: Crushing neural network with progressive bit search[END_REF], several works proposed additional experiments and analysis [START_REF] Siraj Rakin | T-bfa: Targeted bit-flip adversarial weight attack[END_REF] and defenses [START_REF] He | Defending and harnessing the bit-flip based adversarial weight attack[END_REF], [START_REF] Sai Kiran Cherupally | Leveraging noise and aggressive quantization of in-memory computing for robust dnn hardware against adversarial input and weight attacks[END_REF]. Most of the works related to the BFA are based on simulations but refer to practical means to perform fault injection since there exists a rich state-of-the-art on this field, mainly in the context of cryptographic modules [START_REF] Michel Agoyan | How to flip a bit?[END_REF] and recently with a growing interest for embedded machine learning models [START_REF] Breier | Practical fault attack on deep neural networks[END_REF], [START_REF] Dumont | An overview of laser injection against embedded neural network models[END_REF]. In [START_REF] Yao | {DeepHammer}: Depleting the intelligence of deep neural networks through targeted chain of bit flips[END_REF], the BFA has been practically demonstrated using a single-sided RowHammer method against models stored in DRAM.

Even if parameter-based attacks are still in its infancy, a parallel has to be drawn with input-based attacks. An impressive number of adversarial example attacks and defenses have been proposed and a significant part raises very critical evaluation issues (pointed out in reference works [START_REF] Athalye | Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples[END_REF]- [START_REF] Zimmermann | Increasing confidence in adversarial robustness evaluations[END_REF]) that alter the confidence on the level of robustness a model can claimed. Being an essential concern, and regarding the rapid evolution of modern deep neural network models, parametersbased attacks also need further analysis and sound evaluation methodologies. In this context, our contributions are as follow:

• We question the relevance of the criteria used to measure the BFA since [START_REF] Siraj Rakin | Bit-flip attack: Crushing neural network with progressive bit search[END_REF], that consists in reaching a randomguess level, because it misrepresents the evaluation of the attack, especially in the context of fault injection.

• Previous experiments show problematic high variance.

We observe that the BFA can be dependent on training parameters, that should be taken into account for evaluation, and highlight the importance of the model architecture with the first results for fully-connected networks. • Experimentally, for models that do not have the same properties than typical convolutional models, we show that the standard BFA can be significantly non-optimal compared to a very simple variation and therefore can lead to a false sense of robustness. For reproducibility purpose, setups, codes of our experiments as well as complementary and detailed results are available on https://gitlab.emse.fr/securityml/closerlook-bfa.

II. PRELIMINARIES AND NOTATIONS

A. Models and datasets

Following works addressing parameter-based attacks, we use CIFAR-10 composed of colored images (32x32) and MNIST composed of black and white digits (28x28).

As in [START_REF] Siraj Rakin | Bit-flip attack: Crushing neural network with progressive bit search[END_REF] and [START_REF] He | Defending and harnessing the bit-flip based adversarial weight attack[END_REF], we apply the BFA on two popular convolutional neural network architectures (hereafter, CNN): ResNet-20 [START_REF] He | Deep residual learning for image recognition[END_REF] and VGG-11 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF]. We add two custom models: [START_REF] Siraj Rakin | Bit-flip attack: Crushing neural network with progressive bit search[END_REF] a variant of MLP with an additional convolutional layer as the first layer (32 filters of size 3x3) that we refer as C-CNN.

Similarly to previous works, our models are trained with 8 bits quantization aware-training since crushing a full-precision model is as easy as attacking the most significant bit of the exponent part of a single weight [START_REF] Siraj Rakin | Bit-flip attack: Crushing neural network with progressive bit search[END_REF] (value explosion). The accuracy of the models are presented in our public repository as well as the detailed training parameters for each experiment.

III. BIT-FLIPS ATTACK A. Original threat model

The BFA [START_REF] Siraj Rakin | Bit-flip attack: Crushing neural network with progressive bit search[END_REF] identifies and flips the most sensitive bits of the parameters of a model M W in order to drastically decrease its accuracy. From [START_REF] Siraj Rakin | Bit-flip attack: Crushing neural network with progressive bit search[END_REF], the associated threat model, that we discuss in section IV is as follows:

Adversary's knowledge: The BFA is a white-box attack, the attacker needs a perfect knowledge of M W to compute gradients of the loss according to the weights ∇ w L.

Adversary's goal: As presented in [START_REF] Siraj Rakin | Bit-flip attack: Crushing neural network with progressive bit search[END_REF] and widely reused in other works, the goal is to decrease the accuracy of M below the random-guess level (≈ 1/C where C is the number of label). Accuracy used in [START_REF] Siraj Rakin | Bit-flip attack: Crushing neural network with progressive bit search[END_REF] is 0.11 for CIFAR-10.

Adversary's budget: Interestingly, the maximum number of bit-flips allowed is hardly ever mentioned, i.e. the adversary is able to perform as many faults as needed to reach the randomguess objective.

B. Attack principle

The BFA starts with a Progressive Bit Search method (PBS) [START_REF] Siraj Rakin | Bit-flip attack: Crushing neural network with progressive bit search[END_REF] that identifies the most sensitive bits, followed by the flipping of the bits previously identified. The two methods are performed iteratively until reaching the adversary's goal.

The PBS alternates, for each iteration, an in-layer and crosslayer search. First, the in-layer search selects the best bit in the layer l by ranking the gradients of the bit b w.r.t. the loss: ∇ b L. After the most sensitive bit of each layer is found, each bit is flipped (and then restored) to measure the performance loss after this (and only this) bit-flip. After processing all the layers, the one with the maximum loss is selected and the corresponding bit-flip is -this time -permanently performed. The bit-flip is realized along the gradient ascendant w.r.t. the loss L as defined in [START_REF] Siraj Rakin | Bit-flip attack: Crushing neural network with progressive bit search[END_REF] with Eq. 1:

m = b ⊕ sign(∇ b L)/2 + 0.5 , b = b ⊕ m (1)
With b, the bit after bit-flip. Interestingly, BFA follows the principle of most adversarial example crafting methods by relying on the direction that may increase (for untargeted attack) or decrease (for targeted attack) the loss. Thus, Equation 1 can be seen as a variant of the Fast Gradient Sign Method (FGSM) [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF]. However, this gradient heuristic is not said to be the most efficient and, very recently, authors from [START_REF] Lee | Sparsebfa: Attacking sparse deep neural networks with the worst-case bit flips on coordinates[END_REF] show that a Taylor's expansion-based heuristic (|w.∇ w L|) is more efficient than the gradient (|∇ w L|) for sparse networks (i.e., models compressed by a high pruning rate).

For all of our experiments, the attack dataset of the BFA is a random sampling of 256 images from the train set and each architecture is trained five times (different seeds for the weight initialization) and each trained model is attacked five times (i.e., we perform a total of 25 BFA for each architecture).

IV. ADVERSARY'S GOAL AND BUDGET

We derive the setup from [START_REF] He | Defending and harnessing the bit-flip based adversarial weight attack[END_REF] and adapt the learning rate scheduler (exponential scheduler) for better convergence and keep shorter training (40 epochs) to limit over-fitting issues.

A first evaluation outcome is that the assessment of BFA efficiency only on the total number of bit-flips needed to reach a random-guess level is not an appropriate criterion. Indeed, after a fast decrease of the accuracy, the remaining efforts to reach the random-guess objective gather most of the bitflips with the highest variance. We highlight the variability of the attack against the training initialization by reporting in Table I the performance of five models. For each model, we present the average number and the standard deviation of the bit-flips necessary to decrease the accuracy below 11%, 25%, 50% and 75%. The average is computed over five attacks. When the adversary's goal is set to 25%, 50% and 75%, the standard deviation is limited, contrary to the random-guess objective (11%). This important variability of the attack makes its evaluation more complex.

From an adversary point of view, we can question the necessity to performed so many faults to simply go from 25% to 11% while the model is no longer reliable. The randomguess objective is a radical threat model in which an adversary targets the integrity as well as the availability of the model (i.e., the model is useless) without any assumption on his real capacity. Indeed, typical threat models (for example, as defined in the majority of adversarial examples works) also consider an adversary's budget that we claim to be an essential factor when dealing with fault injection attacks from RowHammer to laser beam injection. Outcome: Practically, most of the fault injection attacks rely on a limited number of faults. Fixing an adversary budget or, at least, using several gradual objectives is compulsory to properly evaluate the BFA and reduce variance issues.

V. IMPACT OF THE LEARNING RATE

Because of the very nature of BFA, the evaluation and analysis of the natural robustness of models with respect to their training is an essential step. If some training parameters influence the BFA, it becomes compulsory to take these factors into account when evaluating a defense, especially if the benefit offered is at the same level as the model's variability when trained with different parameters. Moreover, it may help to promote good practice to design and develop more secure models. Here, we focus on the impact of the learning rate.

A. Setups

Experiments are conducted with VGG-11, ResNet-20 on CIFAR-10 and MLP on MNIST with two learning rates, λ = 0.1 and 0.01. Except learning rate and epochs 1 , all training parameters are the same as in Section IV.

B. Experiments

We evaluate the impact of the learning rate λ by using two initial values: 0.1 and 0.01. The scheduler is the same as before (exponential scheduler -0.95 -and a weight decay of 3. 10 -4). The weights are initialized using a normal distribution.

Fig. 1 shows very opposite impact of λ according to the architecture. We observe no influence of λ on ResNet-20 whatever the adversary's objective. For VGG-11, the lowest λ provides more robustness when the objective is to drop the accuracy below 40% (a difference of almost 20 bit-flips is needed for 20%). The most important influence is measured for MLP with a very significant difference of the number of bit-flips to reach the random-guess level (about 45 bit-flips).

We led further experiments for the MLP by analyzing the distribution of the bit-flips and the gradients across the layers. Table II shows how much the learning rate affects the bitflips distribution. For λ = 0.01, all the bit-flips are focused on the last layer. The distribution is more balanced for λ = 0.1. These observations are confirmed by the gradients (|∇ W L|) distribution for λ = 0.1, with the highest gradients spread on the second, third and last layers (Fig. 2). 1 Setups are detailed in the public repository Outcome: Depending on the architecture of the model, the training parameters may have a strong influence on the impact of the BFA and, therefore, should be carefully set and reported when evaluating the model's robustness. Analysis of the weights and the gradients distribution are efficient tools to better understand the model's behavior and explain potential variability of the attack.

VI. A FOCUS ON MULTILAYER PERCEPTRONS

MLP and CNN do not share the same behavior when facing BFA. We go deeper in the analysis by comparing both models and experimenting with a mixing architecture.

A. Gradients distribution

VGG-11 and ResNet-20 concentrate highest gradients in the first layers. Because parameters are shared in a CNN, as mentioned in [START_REF] Siraj Rakin | Bit-flip attack: Crushing neural network with progressive bit search[END_REF] or [START_REF] He | Defending and harnessing the bit-flip based adversarial weight attack[END_REF], the error induced by bit flips performed on first convolution layers are accumulated and propagated throughout network (as for adversarial examples). This phenomenon explains the efficiency of BFA on such deep networks. As observed in Fig 2a, the gradients distribution is significantly different for MLP with most of highest gradients at the model's end.

Another important consequence is related to the gradient back-propagation: a change (consequently to a bit-flip) of the value of the parameter at a layer l directly alters the value of the gradients of the previous layers. This backpropagation phenomenon does not occur (or is limited) for bit-flips targeting the first layers which is not the case for the MLP since the highest gradients are located at the end of the network.

B. Attack limitation

The previous observations raise an open question about the way BFA selects the most appropriate bits. PBS works well when all the highest gradients are concentrated on the earliest convolutional layers. In other cases, the PBS is not able to evaluate if a combination of bit-flips (that may benefit from error propagation) is more efficient than a single bit-flip yet associated to the highest gradient at the end of the model.

To illustrate that potential limitation, we simply add a convolutional layer at the beginning of the MLP model. The resulting model, called C-CNN, has a gradient distribution that is very close to the original MLP (Fig. 2b and 2a respectively). Coherently, BFA has a relatively close performance against both models (Fig. 3, dotted lines) because the bit-flips (after PBS) will be almost exclusively concentrate on the last layer. Both models seem similar but what happen if we simply constraint the attack to target weights belonging to first layer? This attack, noted ST-BFA (Spatially-Targeted BFA), provides a surprising result (red and blue lines in Fig. 3). For C-CNN, the ST-BFA is far more efficient than the BFA: there is a difference of more than 50 bit-flips to reach a 20% goal in favor of the ST-BFA. Figure 2c shows the gradients distribution after 10 bit-flips (that target exclusively the last layer) and demonstrates how much the bit-flips alter the gradients of the previous layers: the gradients of the convolutional first layer significantly increase during the attack (see the gradient level of conv1 in Fig. 2b and Fig. 2c).

Evaluating the C-CNN model with the standard BFA leads to a false robustness level since a stronger attack can be performed by only selecting one layer rather than the whole model. On the contrary, for MLP, the ST-BFA has an opposite effect: the difference of bit-flips to reach 50% of accuracy is closed to 40 bit-flips in favour of the standard BFA.

Outcome: The results obtained on standard CNN cannot be generalized to other architectures such as MLP because of strong differences on the way gradients are distributed throughout the model. The BFA relies on a complex mixing of forward error accumulation and backward propagation on the gradients. That results in situations where the BFA is significantly non-optimal compared to a localised application of the same attack. Therefore, to avoid evaluations that lead to a false sense of robustness, standard and localised-attacks should be carefully evaluated.

VII. CONCLUSION

An important need is robust evaluation methodologies to properly assess the real impact of parameter-based attacks and the level of robustness offered by defense schemes. We show that the standard threat model suffers from the lack of an adversary's bugdet which is an important factor in a fault injection context. Moreover, BFA also suffers from high variability when trying to reach a random-guess objective. This variability is also observed with training parameters as well as regarding the model's architecture. Therefore, the analysis of the weights and the gradients distribution appear as useful tools to better understand the mechanism of the BFA or to detect special cases that could lead to a false sense of security. Finally, thanks to first experiments on pure fully-connected networks -that present very different behaviors than classical CNN -we show that the standard BFA could be significantly sub-optimal, which highlights the need of careful, complete evaluations.

Fig. 1 :

 1 Fig. 1: BFA performance with different learning rates (VGG-11 (CIFAR-10), ResNet-20 (CIFAR-10), MLP (MNIST)).

 Layer λ = 0.01 λ = 0.1 bit-flips (%) Damage (%) bit-flips (%) Damage (%)

Fig. 2 :

 2 Fig. 2: Gradients distribution for MLP (Left) with two learning rates and C-CNN before the first (middle) and after the 10 th (right) bit-flip. All the 10 bit-flips target the last fully-connected layer (dense 4).

Fig. 3 :

 3 Fig. 3: BFA results (C-CNN and MLP)

TABLE I :

 I Mean (std dev) of bit-flips over 5 attacks to reach 11, 25, 50 and 75% of accuracy, for 5 models (training seeds).

	Acc goal (%)	1	2	ResNet-20 3	4	5	1	2	VGG-11 3	4	5
	11 [1]	20.6 (5.08) 18.8 (8.28) 21.4 (4.49) 27.4 (11.22) 7.0 (2.09)	72 (36.01)	55.4 (20.92) 81.6 (25.5) 42.6 (9.02) 113.2 (51.92)
	25	8.8 (1.83)	8 (0.63)	9.6 (1.02)	12.4 (1.02)	3.6 (0.49)	14.2 (4.21)	13.8 (2.71)	16.0 (2.19) 13.2 (1.47)	19.6 (3.77)
	50	6.2 (1.72)	4.4 (0.49)	5.4 (0.8)	6.6 (0.8)	2.4 (0.49)	6.8 (0.75)	7 (1.1)	8.4 (1.36)	6.6 (0.8)	9(1.1)
	75	3.4 (0.8)	2.2 (0.4)	3 (0.63)	3.6 (0.49)	1.6 (0.49)	3 (0)	3.2 (0.4)	3.4 (0.49)	3.2 (0.4)	4 (0)

TABLE II :

 II Learning rate influence (λ): Bit-flips distribution and contribution per layer (MLP) for a random-guess goal.

ACKNOWLEDGEMENT This work benefited from the French Jean Zay supercomputer with the AI dynamic access program. This collaborative research is supported by (CEA-Leti) the European project ECSEL InSecTT (www.insectt.eu, InSecTT: ECSEL Joint Undertaking JU under grant agreement No 876038) and by the French National Research Agency (ANR) in the framework of the Investissements d'avenir program (ANR-10-AIRT-05, irtnanoelec); and (Mines Saint-Etienne) by the French program ANR PICTURE (AAPG2020).