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Reply to Dubbert and von Biinau, “A Probiotic Friend”

Jean-Philippe Nougayréde,® ' Eric Oswald®

alRSD, INSERM, INRAE, Université de Toulouse, ENVT, Toulouse, France

e read with great interest the comment letter to the editor by Dubbert and von

Bunau (1) from Ardeypharm regarding our work, recently published in mSphere,
on the production of the genotoxin colibactin by the Nissle 1917 probiotic (2). We fully
understand and acknowledge the strong commitment made by Ardeypharm—which
markets Nissle 1917 under the trade name Mutaflor—with regard to the safety of its
customers and the improvement of patient health.

In their letter (1), the authors question our results on the in vitro and in vivo geno-
toxicity of Nissle 1917 (2) with respect to their previous publication in which they
stated that this E. coli strain did not exert such genotoxicity in standard tests (3).
These standard tests, which are recommended by the FDA and the OECD, are suita-
ble for testing the mutagenic effect of chemicals on human health. However, we
continue to believe that the tests used by the authors are not the most suitable for
testing the mutagenic effect of the Nissle 1917 bacteria. The first test they used is an
Ames mutation reversion test in Salmonella, exposed to a supernatant of Nissle 1917
(3). However, no genotoxic activity associated with colibactin could be observed in
the supernatant (4). It is also well-known that Salmonella is killed by the siderophore
microcins produced by Nissle 1917 (5). These microcins are responsible for the antag-
onistic activity of Nissle 1917 at the heart of its probiotic property, which is linked to
the production of colibactin (6, 7). Although Dubbert and von Biinau write in their
letter that all the appropriate controls were performed and that bacterial lawns were
observed on the control plates, no quantitative data pertaining to these important
controls is mentioned in the publication. The reader therefore has no way of assess-
ing whether the microcin activity of Nissle 1917 generated a false-negative result or
not. We agree with the authors that it is important to also test the contact-depend-
ent mutagenic activity of Nissle 1917. Dubbert et al. used a second modified Ames
test in which an antibiotic was added so as to inhibit the growth of Nissle 1917, but
not that of Salmonella (3). However, it is known that inhibiting growth with an antibi-
otic impairs the production of colibactin (4). Without using a purified and stable form
of colibactin, it is impossible to use the Ames test. We therefore maintain that these
Ames tests could not work to test the mutagenicity of Nissle 1917 bacteria. Similarly,
the Ames test could not demonstrate the mutagenicity of Helicobacter pylori (8),
which is a well-recognized oncomicrobe.

We agree with the authors that it is crucial to test in vivo the genotoxicity of
Nissle 1917. We observed histone H2AX phosphorylation (in response to DNA dam-
age) in 8-day-old mice or in axenic mice which had been monocolonized with Nissle
1917, but not with a mutant unable to produce colibactin (2), which is similar to the
results reported in young rats or monoxenic mice colonized with other pks* E. coli
strains (9, 10). Dubbert et al. reported a contradictory result in another Nissle 1917
genotoxicity test in rats where no detectable DNA damage was demonstrated by a
standard comet assay (3). This comet assay allows for the detection of DNA breaks
inflicted by colibactin at very high doses, as observed in cells exposed to a very high
number of pks™ E. coli (4). We now know that these lesions are derived from the gen-
eration of DNA interstand cross-links (ICLs) by colibactin, which can break by way of
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depurination and, consequently, generate DNA breaks (11, 12). However, at a more
moderate dose of colibactin, ICL lesions remain in the majority, and the comet
assay remains negative because ICLs inhibit DNA electrophoretic migration (13).
Accordingly, it is quite possible that the negative result the authors obtained arises
from the low sensitivity of the comet assay to colibactin-induced DNA damage at a
realistic dose in vivo.

We agree with the authors that murine tests are not an adequate representation of
the use of Nissle 1917 in humans, which exhibit in particular normal or, on the con-
trary, dysbiotic microbiota and altered barrier functions in inflammatory bowel disease
patients. However, the recent detection of the colibactin mutational signature in colo-
rectal tumor banks indicates that colibactin produced by pks™ E. coli is indeed produced,
and genotoxic, in humans (14, 15). We agree with Dubbert and von Blinau who stated in
their letter (1) that these pks* E. coli bacteria are frequently found in young children.
Previous work has shown that pks* E. coli induces DNA damage during the perinatal col-
onization phase in a rat model, with persistent changes to the intestinal tissue homeo-
stasis and cell turnover (10). In addition, the mutational signature of colibactin has also
been observed in the intestinal crypts of healthy young humans (16), suggesting that
colibactin can imprint damage during childhood, thus leading to potential long-term
consequences (17).

The detection of the colibactin mutational signature in colorectal tumors, the
understanding of the mechanism of DNA damage, mutagenesis, and transformation,
as well as various epidemiological studies showing more E. coli pks* in colorectal
cancer (CRC) patients and finally the experimental reproduction of colibactin-aggra-
vated CRC in mouse models all concur to implicate colibactin in this type of cancer
(18). However, we agree with Dubbert and von Biinau (1) that CRC is a multifactorial
disease and that other risk factors—in particular, diet—are very important. The
authors submit that the mutational signature of colibactin is found in only 5% of the
analyzed tissues. Indeed, this signature was identified in 5.3% of the mutations in
the adenomatous polyposis coli (APC) gene, mutated in colorectal tumors (14).
However, care should be taken not to minimize and misinterpret this figure. First,
the colibactin-specific mutation in the APC gene suggests a causal role in CRC.
Second, although a significant fraction of driver mutations is induced by other muta-
genic processes (including endogenous), a tumor typically harbors between 2 and
10 driver mutations, which can be induced by various environmental genotoxins
such as colibactin. This may be sufficient to induce full malignancy (19). The colibac-
tin mutational signature is found in genes other than APC, and another study identi-
fies it in nearly 10% of CRCs (15). In addition, colibactin has been shown to also
induce large-scale DNA damage and chromosome instability, which can result in
nonspecific mutations and cell transformation (18, 20, 21). Consequently, colibactin
may be responsible for inducing a larger fraction of cancers than the fraction of
mutations attributed to colibactin in the APC gene.

We again fully agree with Dubbert and von Biinau (1) that CRC is multifactorial, diet
and intestinal inflammation contributing in a major way. Indeed, we have shown that
food contaminants may participate in conjunction with colibactin to the mutagenesis
process (22). As observed by the authors, intestinal inflammation is a well-known factor
in CRC, and promotes colibactin expression by pks* E. coli and tumorigenesis (9, 23). It
is clear that Nissle 1917 has interesting properties with regard to reducing intestinal
inflammation, but to the best of our knowledge, no study has yet thoroughly exam-
ined whether its use was associated with a decreased or increased risk of developing
colorectal cancer. On the other hand, certain molecules with real potential—such as
mesalamine—decrease both inflammation and the production of colibactin by pks™ E.
coli, and therefore reduce the risk of CRC (24, 25).

In conclusion, the impact of colibactin in cancer can still be discussed and needs to
be further studied. However, in light of our results (2) and of the arguments presented
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above, it would seem sensible to reevaluate the use of colibactin-producing E. coli for
therapeutic use in humans.
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