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Abstract
We study an extension of the Heston stochastic volatility model that incorporates rough volatility

and jump clustering phenomena. In our model, named the rough Hawkes Heston stochastic volatility
model, the spot variance is a rough Hawkes-type process proportional to the intensity process of the
jump component appearing in the dynamics of the spot variance itself and the log returns. The model
belongs to the class of affine Volterra models. In particular, the Fourier-Laplace transform of the
log returns and the square of the volatility index can be computed explicitly in terms of solutions of
deterministic Riccati-Volterra equations, which can be efficiently approximated using a multi-factor
approximation technique. We calibrate a parsimonious specification of our model characterized by a
power kernel and an exponential law for the jumps. We show that our parsimonious setup is able to
simultaneously capture, with a high precision, the behavior of the implied volatility smile for both
S&P 500 and VIX options. In particular, we observe that in our setting the usual shift in the implied
volatility of VIX options is explained by a very low value of the power in the kernel. Our findings
demonstrate the relevance, under an affine framework, of rough volatility and self-exciting jumps in
order to capture the joint evolution of the S&P 500 and VIX.

JEL code: C63, G12, G13
Keywords: Stochastic volatility, Rough volatility, Hawkes processes, Jump clusters,

Leverage effect, affine Volterra processes, VIX, joint calibration of S&P 500 and VIX
smiles.

1 Introduction
The Black-Scholes model, where volatility is constant, and more generally classical local volatility

models, where volatility is a function of time and spot asset prices, fail to reproduce the dynamics of
implied volatility smiles of options written on the underlying asset. To overcome this limitation, multiple
stochastic, stochastic-local, and path-dependent volatility models have been developed and studied in
recent years. The complexity of volatility modeling, however, has increased with the significant growth
over time of markets on volatility indices, such as the VIX. The rise in popularity of these markets is
explained in part by their relevance to protect portfolios [69]. It has therefore become fundamental to
develop stochastic models able to capture the joint dynamics of the underlying prices and their volatility
index. The task is difficult because classical stochastic models fail to calibrate simultaneously the volatility
smiles of options on the underlying and its volatility index. This modeling challenge, known as the joint
S&P 500/VIX calibration puzzle [49, 50], has inspired the introduction of more sophisticated models, e.g.
[44, 50, 51], that incorporate new features to the joint dynamics of the underlying and the volatility in
order to solve the problem. In this paper we tackle the challenge by proposing a tractable affine model
with rough volatility and volatility jumps that cluster and that have the opposite direction but occur at
the same time as the jumps of the underlying prices. In this introduction we give a brief literature review
to explain the choice of our framework.
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The dynamics of the VIX volatility index are highly complex. In particular, they exhibit large and
systematically positive variations over very short periods, with a tendency to form clusters of spikes
during difficult periods like the 2008 financial crisis and the beginning of the COVID-19 pandemic in
2020. This is accompanied by very long periods without any large fluctuation and a less important mean
reversion speed. These observations are in line with an increasing number of studies that indicate the
presence of jumps in the volatility [35, 75], on the underlying [13], and the fact these jumps are common
to the volatility and underlying [73].

The growing interest in volatility indices has driven the standardization of contingent claims written
on the volatility indices themselves. These volatility index markets have very unique features. For VIX
futures and Exchange-Traded products these features are studied in [10]. The complexity of volatility
markets is also exemplified by the difficulty to jointly model the behavior of the volatility smiles of vanilla
options written on the underlying and its volatility index, see for instance [6, 64, 68]. This longstanding
puzzle is known as the S&P 500 (SPX)/VIX calibration puzzle. A growing body of literature explains the
difficulty arguing that “the state-of-the-art stochastic volatility models in the literature cannot capture
the S&P 500 and VIX option prices simultaneously”, see [74]. As pointed out in [49, 50], “all the attempts
at solving the joint S&P 500/VIX smile calibration problem only produced imperfect, approximate fits.”
The problem is that usual stochastic models either fail to reproduce one or both shapes of the implied
volatility for S&P 500 and VIX options or, when both the shapes are coherent, the implied volatility
levels are incorrect.

Access to high frequency data has improved our understanding of the microstructure of financial
markets and the effects on volatility. In particular, recent studies indicate that non-Markovian models
with rough volatility trajectories might be appropriate to better capture long time dependencies due to
meta orders and the large contribution of automatic orders. This is examined in [26] which provides
a general analysis of order-driven markets, the work in [24] which elucidates the memory-features of
volatility, and the studies in [38, 43] which give a micro-structural justification to the newly developed
rough volatility models.

From a modeling point of view, affine models provide a convenient framework because they are
flexible and, thanks to semi-explicit formulas for the Fourier-Laplace transform, fast computations can be
performed using Fourier-based techniques [36, 37, 41]. The most popular affine stochastic volatility model
is the Heston model [52], where the spot variance is a square-root mean-reverting CIR (Cox-Ingersoll-Ross
[28]) process. This model is able to reproduce some stylized features like the mean-reverting property of
the volatility and the leverage effect. It is, however, unable to reproduce other phenomena such as extreme
paths of volatility during crisis periods (even for large values of the volatility of volatility parameter) and
the at the money (ATM) skews of underlying options’ implied volatility simultaneously for short and long
maturities. These limitations, and the micro-structural behavior of markets described in the previous
paragraph, motivated the introduction of the rough Heston model [39, 40]. The rough Heston model
is tractable as it belongs to the class of affine Volterra models [5], and semi-explicit formulas for the
Fourier-Laplace transform are still available. Unfortunately, this model cannot reproduce the features of
options written on the volatility index and the underlying simultaneously.

In order to model the joint behavior of S&P 500 and VIX markets, consistent with empirical evidence,
we add two specific features to the usual Heston model. First, we incorporate rough volatility by adding
a power kernel proportional to tα−1, with α ∈ (1/2, 1], to the dynamics of the spot variance. Second, we
postulate common jumps for the volatility and the underlying with a negative leverage. The presence of
jumps in both underlying and variance helps to reproduce a skewed implied volatility for vanilla options
as in the Barndorff-Nielsen and Shephard model [11, 12]. Inspired by the Hawkes framework, taking
into account jump-clustering and endogeneity of financial markets, we model the spot variance to be
proportional to the intensity process of the jump component appearing in the dynamics of the spot
variance itself and the log returns. For these reasons, we name our model the rough Hawkes Heston
model.

To keep mathematical and numerical tractability, we choose an affine specification of the model.
As such, our model belongs to the class of affine Volterra processes [5], which has been recently ex-
tended to jump processes in [18, 29, 30]. In particular, the Fourier-Laplace transform of the log returns
and the square of the volatility index can be computed explicitly in terms of solutions of deterministic
Riccati-Volterra equations, see Theorems 3 and 10. We approximate the solutions of the Riccati-Volterra
equations via a multi-factor scheme as in [4], see Theorem 11. We leave for future study the implemen-
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tation and analysis in our framework of other methods such as the Adams method [33, 34], asymptotic
expansions based on Malliavin calculus in the spirit of [7], and hybrid approximation techniques for
Volterra equations similar to those in [20].

The affine property is an advantage of our modeling approach compared to other models proposed to
solve the SPX/VIX calibration problem, such as the quadratic rough Heston model [44], where pricing is
done via Monte Carlo or machine learning techniques [70]. In addition, our affine framework is convenient
because Variance Swap prices and the square VIX index have explicit affine relations to the forward curve,
see Corollary 7 and Remark 3. This is a generalization, to the affine Volterra setting, of the affine relation
already pointed out in [54] within the classical affine exponential framework and empirically confirmed
in [60].

Previous literature on jump-diffusion models focusing on the evolution of S&P 500 and the VIX
proposes either high-dimensional models [27, 63, 73], or models based on hidden Markov chains [46, 65].
These models require a large number of parameters and suffer from the lack of interpretability of the
random factors. Our approach to model the joint SPX/VIX dynamics is different. As in [17], we keep the
number of parameters low by assuming that the jump intensity is proportional to the variance process
itself, and jumps are common to the volatility and underlying with opposite signs. The main new
ingredient of our model, compared to [17], is the addition of a Brownian component and a power kernel
to the variance process. This generates by construction a jump clustering effect and takes into account
related findings in the rough volatility literature [8, 9, 14, 16, 38, 40, 42, 43, 44, 59].

The rough Hawkes Heston model is able to reconcile the shapes and level of the S&P 500 and VIX
volatility smiles. An important role is played by the parameter α characterizing the kernel. As is the
case for other rough volatility models, this parameter controls the explosion rate of the term structure
of ATM skews for SPX option smiles as maturity goes to zero. We show that when α is near to 1/2, the
rate of explosion is in the range [0.5, 0.6]. This is consistent with similar findings in the rough volatility
literature [9, 14, 16, 38, 42, 43, 44]. In addition, in our framework, the parameter α plays a crucial role
because it controls the level of the implied volatility of VIX options for short maturities. We observe,
that as α approaches 1/2 the levels of S&P 500 and VIX smiles are coherent.

To summarize, the model that we propose in this paper shares many features with other existing
models. These features are mainly: rough volatility [14, 38, 40, 42, 43, 44], jumps [11, 12, 13, 27, 63, 73],
the Hawkes/branching character of volatility [17, 19, 53], and the affine structure [5, 18, 36, 37, 41, 54, 57].
Consequently we take advantage of the low regularity and memory features of rough volatility models, the
large fluctuation of jumps, the clusters of Hawkes processes and the explicit Fourier-Laplace transform
of the affine setup. The specification that we adopt for the joint SPX/VIX calibration is parsimonious
with only five evolution-related parameters. Moreover, all the parameters have a financial interpretation.
The parameter α in the kernel controls the decay of the volatility memory, SPX ATM skews and the
level of VIX smiles. We have in addition the classical parameters controlling the volatility mean reversion
speed and the volatility of volatility, and two parameters related to the leverage effect that specify the
correlation between Brownian motions and between the jumps in the asset and its volatility. Despite its
robustness, the rough Hawkes Heston stochastic volatility model captures remarkably well the implied
volatility surfaces of S&P 500 and VIX at the same time.

The paper is organized as follows. Section 2 lays out the essential hypotheses of our study and
introduces the stochastic model under a general setup, i.e. with a general kernel and law for the jumps.
Section 3 explains the derivation of the Fourier-Laplace transform of the log returns and the application
to undelying’s options pricing. Section 4 focuses on the VIX index characterizing the Fourier-Laplace
transform of the VIX2, and describes the Fourier-based formulas to price options on the VIX. Section
5 studies the multi-factor numerical scheme used in order to approximate the solutions to the Riccati-
Volterra equations arising in Sections 3 and 4. Section 6 details the calibration of our model to S&P
500 and VIX options data. Section 7 presents a complete and detailed sensitivity analysis of implied
volatility curves with respect to the model parameters. Section 8 summarizes the conclusions of our
study. Appendix A contains the proof of the necessary existence, uniqueness and comparison results for
the Riccati-Volterra equations appearing in Section 3. Appendix B presents the proof of the Fourier-
inversion formula used to price options on the underlying. To finish, in Appendix C we prove the
main result related to the convergence of the multi-factor approximation scheme for the Riccati-Volterra
equations.
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2 The model
We study a stochastic volatility model where the spot variance σ2 = (σ2

t )t≥0 is a predictable process,
with trajectories in L2

loc(R+), defined on a stochastic basis (Ω,F ,Q,F = (Ft)t≥0). We assume that the
filtration F satisfies the usual conditions and that F0 is the trivial σ−algebra.

We consider, throughout our study, a kernel K that satisfies the next requirement, see [1, 2, 5, 18].

Hypothesis 1. The kernel K ∈ L2
loc(R+) is nonnegative, nonincreasing, not identically zero and contin-

uously differentiable on (0,∞). Furthermore, its resolvent of the first kind L exists and it is nonnegative
and nonincreasing, i.e. s 7→ L[s, s+ t] is nonincreasing for every t ≥ 0.

We recall that, given a kernel K ∈ L1
loc(R+;Rd×d), an Rd×d−valued measure L is called its (measure)

resolvent of the first kind if L ∗K = K ∗ L = I, where I ∈ Rd×d is the identity matrix. The resolvent of
the first kind does not always exist, but if it does then it is unique, see [48, Theorem 5.2, Chapter 5].

We assume that the spot variance σ2 is a Q⊗ dt−a.e. nonnegative predictable process which satisfies
the following stochastic affine Volterra equation of convolution type with jumps:

σ2 = g0 +K ∗ dZ, Q⊗ dt− a.e. (1)

Here Z = (Zt)t≥0 is a semimartingale starting at 0 with associated jumps-measure µ(dt,dz) and com-
pensated measure µ̃(dt,dz) = µ(dt,dz) − ν(dz)σ2

t dt, with ν a nonnegative measure on R+ such that
ν({0}) = 0 and

∫
R+ |z|2ν(dz) <∞. Since the intensity of the jumps of σ2 is proportional to σ2 itself, the

spot variance is a Hawkes-type process, which is coherent with other models that incorporate endogeneity
of financial markets such as [17, 21, 40, 45, 56]. More specifically, Z is given by

dZt = b σ2
t dt+

√
c σt dW2,t +

∫
R+

z µ̃ (dt, dz) , Z0 = 0,

where b ∈ R, c > 0 and W2 = (W2,t)t≥0 is an F−Brownian motion. In the sequel, we denote by
Z̃ = (Z̃t)t≥0 the process Z̃t =

√
c σt dW2,t +

∫
R+
z µ̃(dt,dz), t ≥ 0. Notice that Z̃ is a square-integrable

martingale by [18, Lemma 1]. The function g0 is the initial input spot variance curve. By analogy with
the rough Heston model introduced and studied in [39, 40], we consider it of the form

g0 (t) = σ2
0 + β

∫ t

0

K (s) ds, t ≥ 0, (2)

where σ2
0 , β ≥ 0. According to [18, Appendix A]

σ2 = g0 −R−bK ∗ g0 + Eb,K ∗ dZ̃, Q⊗ dt− a.e., (3)

where R−bK is the resolvent of the second kind of −bK and Eb,K is the canonical resolvent of K with
parameter b. We recall that the resolvent of the second kind RK for a kernel K ∈ L1

loc(R+) is the unique
solution RK ∈ L1

loc(R+) of the two equations K ∗ RK = RK ∗ K = K − RK . The canonical resolvent
Eλ,K of K with parameter λ is defined by Eλ,K = −λ−1R−λK for λ 6= 0, whereas E0,K = K, see [48,
Theorem 3.1, Chapter 2] and the subsequent definition.

Remark 1. If we assume that K and the shifted kernels K(· + 1/n), n ∈ N, satisfy Hypothesis 1, the
(weak) existence of the spot variance process σ2, satisfying (1), is ensured by [1, Theorem 2.13] and
[18, Lemma 9]. Assuming weak existence, weak uniqueness is established in [18, Corollary 12] under
Hypothesis 1. We refer to [2] and [18] for more information about stochastic Volterra equations and
stochastic convolution for processes with jumps.

A useful tool for the development of the theory is the adjusted forward process, which we now define.
For every t ≥ 0, it is denoted by (gt(s))s>t and it is a jointly measurable process on Ω× (t,∞) such that

gt (s) = g0 (s) +

∫ t

0

K (s− r) dZr, Q− a.s., s > t. (4)

Thanks to [62, Theorem 46] and the fact that F satisfies the usual conditions, we can consider gt(·) to be
Ft ⊗ B(t,∞)−measurable.
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Analogous arguments provide a version of the conditional expectation process E[σ2|Ft] = (E[σ2
s |Ft])s>t

which is Ft ⊗ B(t,∞)−measurable. In particular, from (3),

E
[
σ2
s

∣∣∣Ft] = g0 −R−bK ∗ g0 +

∫ t

0

Eb,K (s− r) dZ̃r, Q− a.s., s > t. (5)

We now prescribe the dynamics of the log returns process X = (Xt)t≥0 as follows:

dXt = −

(
1

2
+

∫
R+

(
e−Λz − 1 + Λz

)
ν (dz)

)
σ2
t dt+ σt

(√
1− ρ2 dW1,t + ρdW2,t

)
− Λ

∫
R+

z µ̃ (dt, dz) , X0 = 0, (6)

where ρ ∈ [−1, 1] is a correlation parameter, W1 = (W1,t)t≥0 is an F−Brownian motion independent
from W2 and Λ ≥ 0 is a leverage parameter forcing common jumps for volatility and underlying with
opposite signs. This is coherent with empirical findings in [75], stylized features studied in [25], and
the financial/econometric literature with jumps, e.g. [11, 12, 13, 17, 31, 67, 73]. We have assumed, for
the sake of readability and without lost of generality, that interest rates are zero. The price process of
the underlying asset will be S = (St)t≥0 = (S0e

Xt)t≥0, where S0 > 0 represents the initial price. An
application of Itô’s formula shows that S is a local martingale. Indeed,

dSt
St−

= −

(
1

2
+

∫
R+

(
e−Λz − 1 + Λz

)
ν (dz)

)
σ2
t dt+ σt

(√
1− ρ2 dW1,t + ρdW2,t

)
− Λ

∫
R+

z µ̃ (dt,dz) +
1

2
σ2
t dt+

∫
R+

(
e−Λz − 1 + Λz

)
µ (dt, dz)

= σt

(√
1− ρ2 dW1,t + ρdW2,t

)
+

∫
R+

(
e−Λz − 1

)
µ̃ (dt,dz) =: dNt,

where N = (Nt)t≥0 is a local martingale with N0 = 0. In particular, since S starts at S0, it follows that
S = S0E(N), where E denotes the Doléans-Dade exponential. In the next section, see Corollary 4, we will
improve on this result by showing that, for every T > 0, the restriction of S to [0, T ] is a true martingale.

3 The Fourier-Laplace transform of the log returns
In this section we study, for a fixed T ≥ 0, the conditional Fourier-Laplace transform of XT ,

E[ewXT | Ft], t ∈ [0, T ]. Here w ∈ C is subject to suitable conditions that will be specified in the se-
quel. In particular, we want to find a formula that allow us to compute the prices of options written
on the underlying asset using Fourier-inversion techniques [36, 37, 41, 47]. We will adopt the following
notation: for z ∈ C we denote by Rz and Imz the real and imaginary parts of z, respectively. We let C+

[resp., C−] be the set of complex real numbers with nonnegative [resp., nonpositive] real part.
Let us define the mapping F : C+ × C− → C by

F (u, v) =
1

2

(
u2 − u

)
+
(
b+ ρ

√
c u
)
v +

c

2
v2 +

∫
R+

[
e(v−Λu)z − u

(
e−Λz − 1

)
− 1− vz

]
ν (dz) , (7)

for every (u, v) ∈ C+ × C−. For the development of the theory we need the following result about
deterministic Riccati-Volterra equations, whose proof is postponed to Appendix A.

Theorem 1. Suppose that K satisfies Hypothesis 1 and w ∈ C is such that Rw ∈ [0, 1].

(i) There exists a unique continuous solution ψw : R+ → C− of the Riccati-Volterra equation

ψw (t) =

∫ t

0

K (t− s)F (w,ψw (s)) ds = (K ∗ F (w,ψw (·))) (t) , t ≥ 0. (8)

In particular, ψRw is R−−valued.
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(ii) The following inequalities hold:

Rψw (t) ≤ ψRw (t) ≤ 0, t ≥ 0. (9)

We also need the next preparatory lemma, which can be proven similarly to [1, Lemma 6.1].

Lemma 2. Let f1, f2, f3 : [0, T ]→ R be bounded measurable functions such that f3 ≤ 0 in [0, T ]. Then,
the Doléans-Dade exponential

E

(∫ t

0

f1 (s)σs dW1,s +

∫ t

0

f2 (s)σs dW2,s +

∫ t

0

∫
R+

(
ef3(s)z − 1

)
µ̃ (ds,dz)

)
, t ∈ [0, T ]

is a martingale.

We are now ready to state the main result of this section. We introduce for every ε ∈ R the shift
operator ∆ε, which, given I ⊂ R and a function f : I → C, assigns the function ∆εf : I − ε→ C defined
by ∆εf(t) = f(t+ ε), t ∈ I − ε.
Theorem 3. Suppose that K satisfies Hypothesis 1 and that the resolvent of the first kind L is the sum
of a locally integrable function and a point mass at 0. Moreover, suppose that the total variation bound

sup
ε∈(0,T ]

‖∆εK ∗ L‖TV([0,T ]) <∞

holds for all T > 0. Then, for every w ∈ C such that Rw ∈ [0, 1],

E
[
exp {wXT }

∣∣∣Ft] = exp
{
Ṽt (w, T )

}
, Q− a.s., t ∈ [0, T ] , (10)

where Ṽt(w, T ) = wXt +
∫ T
t
F (w,ψw(T − s))gt(s)ds, t ∈ [0, T ].

Proof. Let w ∈ C be such that Rw ∈ [0, 1]. Define the càdlàg, adapted, C−valued semimartingale
(Vt(w, T ))t∈[0,T ] by

Vt (w, T ) = V0 (w, T ) + wXt +

∫ t

0

ψw (T − s) dZ̃s

−
∫ t

0

(
1

2

(
w2 − w

)
+ ρ
√
cw ψw (T − s) +

c

2
ψw (T − s)2

+

∫
R+

(
e(−Λw+ψw(T−s))z − w

(
e−Λz − 1

)
− 1− ψw (T − s) z

)
ν (dz)

)
σ2
s ds,

(11)

V0 (w, T ) =

∫ T

0

F (w,ψw (T − s)) g0 (s) ds. (12)

The same arguments as in the proof of [18, Theorem 5], which essentially rely on the stochastic Fubini’s
theorem (see, e.g., [66, Theorem 65, Chapter IV]), allow us to prove that

Vt (w, T ) = Ṽt (w, T ) , Q− a.s., t ∈ [0, T ] . (13)

We now define H(w, T ) = (Ht(w, T ))t∈[0,T ] = (exp{Vt(w, T )})t∈[0,T ]. By Itô’s formula and the dynamics
in (6) and (11) we have, omitting (w, T ) for sake of readability,

dHt

Ht−
=

[
w dXt −

(
c

2
ψw (T − t)2

+

∫
R+

(
e(−Λw+ψw(T−t))z − 1− w

(
e−Λz − 1

)
− ψw (T − t) z

)
ν (dz)

+
1

2

(
w2 − w

)
+ ρ
√
cw ψw (T − t)

)
σ2
t dt+ ψw (T − t) dZ̃t

]
+

1

2

(
c ψw (T − t)2

+ w2
)
σ2
t dt

+ ρ
√
cw ψw (T − t)σ2

t dt+

∫
R+

(
e(−Λw+ψw(T−t))z − 1− (−Λw + ψw (T − t)) z

)
µ (dt,dz)

=

[
σt

(
w
√

1− ρ2 dW1,t +
(
wρ+

√
c ψw (T − t)

)
dW2,t

)
+

∫
R+

(
e(−Λw+ψw(T−t))z − 1

)
µ̃ (dt, dz)

]
,
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with H0 = exp(V0). We define N(w, T ) = (Nt(w, T ))t∈[0,T ] by N0(w, T ) = 0 and

dNt (w, T ) = σt

(
w
√

1− ρ2 dW1,t +
(
wρ+

√
c ψw (T − t)

)
dW2,t

)
+

∫
R+

(
e(−Λw+ψw(T−t))z − 1

)
µ̃ (dt,dz) .

Then N(w, T ) is a local martingale and the previous computations show that, omitting again (w, T ),
H = exp{V0}E(N) up to evanescence, where E denotes the Doléans-Dade exponential. Therefore H(w, T )
is a local martingale. If it is indeed a true martingale, then (10) directly follows from (13) noting also
that ṼT (w, T ) = wXT .

In order to argue the martingale property of H(w, T ), first we observe that by Lemma 2 the real-
valued process H(Rw, T ) = (Ht(Rw, T ))t∈[0,T ] = (exp{Vt(Rw, T )})t∈[0,T ] is a true martingale. Secondly,
we invoke [18, Corollary 8] to obtain the following alternative expression for V (w, T ) (an analogous one
holds for V (Rw, T ))

Vt (w, T ) = wXt +

∫ T−t

0

F (w,ψw (s)) g0 (T − s) ds+ ψw (T − t)L ({0})
(
σ2 − g0

)
(t)

+
(
dΠT−t ∗

(
σ2 − g0

))
(t) , for a.e. t ∈ (0, T ) , Q− a.s., (14)

where for every ε > 0, Πε(t) =
∫ ε

0
F (w,ψw(s))(∆ε−sK ∗L)(t)ds, t ≥ 0, is a locally absolutely continuous

function. The application of this result is legitimate because the procedure carried out in [18] to infer (14)
only depends on (1), (8) and the boundedness on compact intervals of R+ of F (w,ψw(·)), and does not
rely on the expression of F . A similar argument together with (9) allows us to parallel the comparison
method in the proof of [18, Theorem 11] to conclude that there is a constant C > 0 such that

|Ht (w, T )| = |exp {Vt (w, T )}| = exp {RVt (w, T )} ≤ C exp {Vt (Rw, T )} = CHt (Rw, T ) ,

for t ∈ [0, T ], Q − a.s. At this point it is sufficient to invoke [55, Lemma 1.4] to claim that H(w, T ) is a
true martingale, hence the proof is complete. �

From the previous theorem we deduce the martingale property of our price process S with a direct
approach (it can also be obtained by Lemma 2).

Corollary 4. Under the hypotheses of Theorem 3, the price process S = (St)t∈[0,T ] is a martingale.

Proof. The computations at the end of Section 2 show that the stock price S is a nonnegative local
martingale, hence it is a supermartingale. In order for it to be a martingale, it is sufficient to show that
E[ST ] = S0. By (10) in Theorem 3 with w = 1 we have

E [ST ] = S0 exp

{∫ T

0

F (1, ψ1 (t− s)) g0 (s) ds

}
.

From (7)-(8), we observe that ψ1 ≡ 0 in R+. This implies that F (1, ψ1(·)) = 0 in R+, which concludes
the proof. �

Equation (10) in Theorem 3 gives a semi-explicit expression to compute the Fourier-Laplace transform
ΨXT of XT in a suitable region of C, namely

ΨXT (w) = exp

{∫ T

0

F (w,ψw (T − s)) g0 (s) ds

}
, w ∈ C such that Rw ∈ [0, 1] . (15)

As shown in the following proposition, whose proof is in Appendix B, we can use ΨXT to price options
with maturity T on the underlying asset S via Fourier-inversion techniques.

Proposition 5. Fix a log strike k > 0. Then, under the hypotheses of Theorem 3, the price CS(k, T ) of
a call option on the underlying asset S with log strike k and maturity T is

CS (k, T ) = S0 −
1

π

√
S0ek

∫
R+

R

[
eiλ(log(S0)−k)ΨXT

(
1

2
+ iλ

)]
1

1
4 + λ2

dλ, (16)
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and the price PS(k, T ) of a put option with the same log strike, maturity and underlying is

PS (k, T ) = ek − 1

π

√
S0ek

∫
R+

R

[
eiλ(log(S0)−k)ΨXT

(
1

2
+ iλ

)]
1

1
4 + λ2

dλ. (17)

Remark 2. The expression in (16) coincides with [58, Formula (3.11)], but we have to independently
prove it (see Appendix B). Indeed, in [58] the author obtains (16) starting from the inversion of the
generalized Fourier transform of the payoff function w(x) = (ex − ek)+, x ∈ R, of a call option with log
strike k (here x represents the log price). Namely, for x ∈ R,

w (x) = − 1

2π

∫ izi+∞

izi−∞

ek(iz+1)

z2 − iz
e−izxdz, zi > 1.

If we were to follow the same approach here, then we would find a problem: we only have proved that ΨXT

is defined for complex numbers with real part in [0, 1]. Therefore, in the previous expression, we would need
zi ∈ [0, 1], which is a contradiction. This setback cannot be immediately fixed by considering put options
and then applying the put-call parity formula, because again the intersection between the complex strip
(zi < 0), where the Fourier transform for the payoff function is defined, and the strip where ΨXT (−i ·)
is available is empty. We refer to [72, Section 4] for a survey of pricing based on Fourier-inversion
techniques.

4 The Fourier-Laplace transform of VIX2

In this section the underlying asset S represents the SPX index. Then, according to the CBOE VIX
white paper and [32], the theoretical value of VIX=(VIXT )T≥0 is

VIXT =

√(
−2

δ
E
[
XT+δ −XT

∣∣FT ])+

× 100, T ≥ 0. (18)

Here δ = 1
12 and represents 30 days, the time to expiration of the log contracts involved in the computation

of the index. Note that in (18), the positive part has been inserted to guarantee the good definition of
the random variable VIXT in the whole space Ω, however the radicand is nonnegative Q−a.s., as we are
about to show.

We first derive, in the following theorem, an expression for E[XT+δ −XT |FT ], T ≥ 0, in terms of the
adjusted forward process at time T , gT (·).

Theorem 6. The log contract satisfies an infinite dimensional affine relation with respect to the adjusted
forward process. More specifically,

E
[
XT+δ −XT

∣∣FT ] = c1

∫ T+δ

T

(1 + b (Eb,K ∗ 1) (T + δ − s)) gT (s) ds ≤ 0, Q− a.s., (19)

where c1 = −( 1
2 +

∫
R+

(e−Λz − 1 + Λz)ν(dz)).

Proof. By (6) and the martingale property of the local martingale part of the expression (see [18, Lemma
1]), we have

E
[
XT+δ −XT

∣∣FT ] = c1

∫ T+δ

T

E
[
σ2
s

∣∣FT ] ds, Q− a.s.

Recalling that σ2 ≥ 0, Q⊗ dt−a.e., we infer that E[σ2
s |FT ] ≥ 0 for a.e. s > T, Q−a.s., hence the value of

a log contract at time T is nonpositive Q−a.s.
By (3), (5), the stochastic Fubini’s theorem – whose application is guaranteed by [18, Lemma 1] –
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and a suitable change of variables, we infer that, Q−a.s.

c−1
1 E

[
XT+δ −XT

∣∣FT ] =

∫ T+δ

0

f0 (s) ds−
∫ T

0

σ2
s ds+

∫ T+δ

0

(∫ T

0

1{r≤s}Eb,K (s− r) dZ̃r

)
ds

=

∫ T+δ

0

f0 (s) ds−
∫ T

0

σ2
s ds+

∫ T

0

(Eb,K ∗ 1) (T + δ − r) dZ̃r

=

∫ T+δ

0

f0 (s) ds−
∫ T

0

(1 + b (Eb,K ∗ 1)) (T + δ − s)σ2
s ds+

∫ T

0

(Eb,K ∗ 1) (T + δ − r) dZr, (20)

where f0 = g0 − R−bK ∗ g0. Notice that Eb,K ∗ 1 is the unique, continuous (nonnegative) solution of
the linear Volterra equation χ = K ∗ (1 + bχ). Then, another application of stochastic Fubini’s theorem
yields, Q−a.s.,

∫ T

0

(Eb,K ∗ 1) (T + δ − r) dZr =

∫ T

0

(∫ T+δ

r

K (s− r) (1 + b (Eb,K ∗ 1) (T + δ − s)) ds

)
dZr

=

∫ T+δ

0

(1 + b (Eb,K ∗ 1) (T + δ − s))

(∫ T

0

1{r≤s}K (s− r) dZr

)
ds.

To conclude, we observe that by [48, Theorem 2.2 (viii), Chapter 2]

− ((R−bK ∗ g0) ∗ 1) (T + δ) = b ((Eb,K ∗ 1) ∗ g0) (T + δ) ,

and plugging the previous two equalities in (20), together with (1), (4), we obtain the relation in (19). �

We deduce the following corollary showing an affine relation between the square of the VIX index and
the adjusted forward process.

Corollary 7. The square of VIX satisfies an infinite dimensional affine relation with respect to the
adjusted forward process. More specifically

VIX2
T = −104 2

δ
E
[
XT+δ −XT

∣∣FT ] , Q− a.s.

= −104 2

δ
c1

∫ T+δ

T

(1 + b (Eb,K ∗ 1) (T + δ − s)) gT (s) ds, Q− a.s.,
(21)

where c1 = −( 1
2 +

∫
R+

(e−Λz − 1 + Λz)ν(dz)).

Remark 3. Our framework also allows us to obtain an explicit infinite dimensional affine relation between
the variance swaps and the adjusted forward process. Specifically, the variance swap rate is

1

δ
E
[
[X,X]T+δ − [X,X]T

∣∣FT ] =
c2
δ

∫ T+δ

T

(1 + b (Eb,K ∗ 1) (T + δ − s)) gT (s) ds, Q− a.s., (22)

where c2 = 1 + Λ2
∫
R+
|z|2ν(dz). Note that for Λ = 0 we have c2 = −2c1, hence in this case log contracts

and variance swaps coincide up to the factor −2/δ (see (19)-(22)). Therefore, when there are no jumps
in the dynamics of the underlying, by (21) we recover the fact that VIX2 is a variance swap. Moreover,
observe that the relation in (22) is an extension of [54, Lemma 4.4] in the classical affine setting. We
refer to [27, 32, 60] for more details regarding the distinction between variance swaps and VIX2.

We are now interested in finding the conditional Fourier-Laplace transform of VIX2
T . Before addressing

this question, we need some technical intermediate steps. We first recall the following functional space
as defined in [3]

GK = {g : R+ → R continuous : g (0) ≥ 0 and ∆εg − (∆εK ∗ L) (0) g − d (∆εK ∗ L) ∗ g ≥ 0, ε ≥ 0} .
(23)
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Lemma 8. Suppose that K satisfies Hypothesis 1. Define the function h : R+ → R by

h (t) = −104 2

δ
c1 [1 + b (Eb,K ∗ 1) (δ − t)] 1{t≤δ}, t ≥ 0.

Then h is a continuous nonnegative function on [0, δ) and t 7→
∫
R+
h(s)K(s+ t)ds belongs to GK .

Proof. The first step is to show that 1 + b(Eb,K ∗ 1) ≥ 0 in R+, which implies that h is also nonnegative.
This can be deduced from the fact that this function is the unique, continuous solution in R+ of the
Volterra equation χ = 1 + bK ∗ χ, which is nonnegative by [4, Theorem C.1]. Secondly, h has compact
support, and under Hypothesis 1 for every ε ≥ 0 the function ∆εK ∗L is right-continuous nondecreasing
in R+ and (see the proof of [5, Lemma 2.6])

∆εK = (∆εK ∗ L) (0)K + d (∆εK ∗ L) ∗K, dt− a.e. in R+.

As a consequence, for every t ≥ 0

∆εK (s+ t) = (∆εK ∗ L) (0)K (s+ t) + (d (∆εK ∗ L) ∗K) (s+ t)

≥ (∆εK ∗ L) (0)K (s+ t) +

∫ t

0

K (s+ t− u) d (∆εK ∗ L) (u) , for a.e. s ∈ [0, δ] .

This implies, by Tonelli’s theorem, that t 7→
∫
R+
h(s)K(s+ t)ds belongs to GK . �

We now define, for every w ∈ C−, the function hw(t) = w·h(t), t ≥ 0, and consider the Riccati-Volterra
equation

φw =

∫ ∞
0

hw (s)K (s+ ·) ds+K ∗ (G (φw (·))) , (24)

where
G (u) = bu+

c

2
u2 +

∫
R+

(euz − 1− uz) ν (dz) , u ∈ C−. (25)

Lemma 9. Suppose that K satisfies Hypothesis 1. For every w ∈ C−, there exists a unique continuous
solution φw : R+ → C− to (24). Moreover,

Rφw (t) ≤ φRw (t) , t ≥ 0. (26)

Proof. Having in mind [4, Theorem C.1], the existence of a global solution of (24) can be deduced as in
[18, Theorem 10], whereas the uniqueness of such φw is obtained with a procedure analogous to the proof
of Theorem 1, see Step III with Λ = 0 in Appendix A. Moreover, again by analogy with [18, Theorem
10 (ii)], the comparison result (26) holds. �

Before stating the theorem that provides the conditional Fourier-Laplace transform of VIX2
T , we define

Φw (t, s) = hw (s− t) 1{s≥t} +G (φw (t− s)) 1{s<t}, t, s ≥ 0. (27)

Theorem 10. Assume the same hypotheses as in Theorem 3. Then, for every w ∈ C−,

E
[
exp

{
w ·VIX2

T

} ∣∣∣Ft] = exp
{
Ũt (w, T )

}
, Q− a.s., t ∈ [0, T ] , (28)

where Ũt(w, T ) =
∫∞
t

Φw(T, s)gt(s)ds, t ∈ [0, T ].

Proof. Fix w ∈ C−. First of all, notice that by the definition of hw and (21)

ŨT (w, T ) =

∫ ∞
T

hw (s− T ) gT (s) ds = −104 2

δ
c1w

∫ T+δ

T

(1 + b (Eb,K ∗ 1) (T + δ − s)) gT (s) ds

= w ·VIX2
T , Q− a.s. (29)
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We introduce the process

ḡT (s) =

{
σ2
s , s ∈ [0, T ] ,

gT (s) , s > T.

Note that by (1) and (4), ḡT (·) is a joint measurable modification of g0 +
∫ T

0
1{r≤·}K(·−r)dZr. For every

t ∈ [0, T ], the stochastic Fubini’s theorem, (24), (27), and suitable changes of variables, yield∫ ∞
0

Φw (T, s) (ḡt (s)− g0 (s)) ds =

∫ ∞
0

Φw (T, s)

(∫ t

0

1{u≤s}K (s− u) dZu

)
ds

=

∫ t

0

(∫ ∞
0

hw (s)K (s+ T − u) ds+

∫ T−u

0

K (s)G (φw (T − u− s)) ds

)
dZu

=

∫ t

0

φw (T − u) dZu, Q− a.s. (30)

Moreover, by (27), the following equality holds:∫ t

0

Φw (T, s)σ2
s ds =

∫ t

0

hw (s− T ) 1{s≥T}σ
2
s ds+

∫ t

0

G (φw (T − s))σ2
s ds

=

∫ t

0

G (φw (T − s))σ2
s ds. (31)

Recalling the definition of Ũt(w, T ), we combine (30) and (31) to write

Ũt (w, T ) =

∫ ∞
t

Φw (T, s) g0 (s) ds+

∫ ∞
0

Φw (T, s) (ḡt (s)− g0 (s)) ds−
∫ t

0

Φw (T, s)
(
σ2
s − g0 (s)

)
ds

=

∫ ∞
0

Φw (T, s) g0 (s) ds+

∫ t

0

φw (T − u) dZu −
∫ t

0

G (φw (T − s))σ2
s ds, Q− a.s. (32)

In the sequel we denote by U(w, T ) = (Ut(w, T ))t∈[0,T ] the càdlàg process defined by the rightmost side
of (32). An application of Itô’s formula together with (25) shows that E(w, T ) = (exp{Ut(w, T )})t∈[0,T ]

is a local martingale, namely E(w, T ) = exp{
∫∞

0
Φw(T − s)g0(s)ds}E(Ñ(w, T )), where E denotes the

Doléans-Dade exponential and Ñ(w, T ) = (Ñt(w, T ))t∈[0,T ] is defined by

dÑt (w, T ) =
√
c φw (T − t)σt dW2,t +

∫
R+

(
eφw(T−t)z − 1

)
µ̃ (dt,dz) , Ñ0 (w, T ) = 0.

If E(w, T ) is a true martingale, then (28) follows from (29) and (32). As in the proof of Theorem 3,
we search for an expression of U(w, T ) which is affine on the past trajectory of σ2. However, we cannot
directly invoke [18, Theorem 7] due to the different structure of the Riccati-Volterra equation in (24) and
of the process U(w, T ) itself. Fortunately, we can adapt the procedure in the proof of [18, Theorem 7].
Specifically, thanks to the local boundedness of Φw(T, ·) (see (27)), Q−a.s.,

Ut (T,w) =

∫ T+δ

t

Φw (T, s) g0 (s) ds+ φw (T − t)Zt +
(
πT+δ−t ∗

(
σ2 − g0

))
(t) , for a.e. t ∈ (0, T ) .

Here the functions

πT+δ−t(u) =

∫ T+δ−t

0

Φw(T, T + δ − s)((∆T+δ−t−sK)′ ∗ L)(u)ds, t ∈ (0, T ),

are well defined for almost every u ∈ R+ and belong to L1
loc(R+). At this point, for every t ∈ (0, T ) we

introduce the locally absolutely continuous function

Π̃T+δ−t (u) =

∫ u

0

πT+δ−t (s) ds+ φw (T − t)L ([0, u])

=

∫ T+δ−t

0

Φw (T, T + δ − s) ((∆T+δ−t−sK) ∗ L) (u) ds, u ≥ 0,
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where the second equality is due to (24) and a suitable change of variables. Therefore, also recalling (1),
the previous formula for U(w, T ) can be rewritten as, Q−a.s., for a.e. t ∈ (0, T ),

Ut (w, T ) =

∫ T+δ

t

Φw (T, s) g0 (s) ds+
(

dΠ̃T+δ−t ∗
(
σ2 − g0

))
(t) + φw (T − t)L ({0})

(
σ2 − g0

)
(t) ,

which is an affine expression in terms of the past trajectories of σ2. Now by Lemma 2 the real-valued
process E(Rw, T ) = (exp{Ut(Rw, T )})t∈[0,T ] is a true martingale. Thus, thanks to (26), we can parallel
the comparison argument in the proof of [18, Theorem 11] to deduce that

|exp {Ut (w, T )}| = exp {RUt (w, T )} ≤ C exp {Ut (Rw, T )} , t ∈ [0, T ] , Q− a.s.,

for some constant C > 0. An application of [55, Lemma 1.4] completes the proof. �

4.1 VIX put options and futures prices
Theorem 10 provides a semi-explicit formula for the Fourier-Laplace transform λT of VIX2

T in C−,
namely

λT (w) = E
[
exp

{
w ·VIX2

T

}]
= exp

{∫ ∞
0

Φw (T, s) g0 (s) ds

}
= exp

{∫ δ

0

hw (s) g0 (s+ T ) ds+ (g0 ∗G (φw (·))) (T )

}
, w ∈ C−. (33)

This allows us to price put options written on VIX with the Fourier-inversion technique for the bilateral
Laplace transform shown in [22]. More specifically, for a log strike k ∈ R, the payoff function of such
options defined on the whole real line is w(x) = (ek −

√
x+)+, x ∈ R, where x+ represents VIX2. Then,

denoting by P (k, T ) the price of a put option with maturity T (and log strike k) we have (cfr. [22,
Equations (7.6)-(7.8)])

P (k, T ) = E
[(
ek −VIXT

)+]
= − 1

4
√
πi

∫ zr+i∞

zr−i∞

erf
(
ek
√
z
)

z3/2
λT (z) dz

= − 1

4
√
π

∫
R
R

[
erf
(
ek
√
zr + iu

)
(zr + iu)

3/2
λT (zr + iu)

]
du

= − 1

2
√
π

∫
R+

R

[
erf
(
ek
√
zr + iu

)
(zr + iu)

3/2
λT (zr + iu)

]
du, zr < 0. (34)

Here erf represents the error function erf z = 2√
π

∫ z
0
e−t

2

dt, z ∈ C, and for z ∈ C and a ≥ 0, we consider
the power za = Λaeiaθ, where z = Λeiθ with Λ ≥ 0, θ ∈ (−π, π]. In particular, we write

√
z = z1/2. The

last equality in (34) is due to the fact that the integrand is even. Indeed, this follows from the well-known
symmetry relation erf z̄ = erf z, z ∈ C, as well as the identities (for u 6= 0)

R
(√
zr + iu

)
=

√
zr +

√
z2
r + u2

2
, Im

(√
zr + iu

)
= sgn (u)

√
−zr +

√
z2
r + u2

2
.

Moreover, we can use λT to determine E[VIXT ], i.e., the futures price of VIX at time T . In order to do
this, notice that for every x ≥ 0 the function (

√
πs)−1(e−xs−1)+

√
x erf(

√
sx), s > 0, is an antiderivative

of (2
√
π)−1(1− e−xs)s−3/2, s > 0. From this relation we deduce the following integral representation for

the square-root function
√
x+ =

1

2
√
π

∫ ∞
0

1− e−sx+

s
3
2

ds, x ∈ R.

An application of Tonelli’s theorem yields

E [VIXT ] =
1

2
√
π

∫ ∞
0

1− λT (−s)
s

3
2

ds. (35)
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5 Numerical approximation of the model
According to the formulae in (16)-(17) and (34), in order to price options on S and VIX with maturity

T , one needs to compute ΨXT (w1) and λT (w2), where w1, w2 belong to appropriate regions of C. In
addition, the values λT (−s), s ≥ 0, are also necessary to determine the futures price of VIX at time
T . Consequently, looking at the expressions of these Fourier-Laplace transforms in (15) and (33), the
solutions of the Riccati-Volterra equations (8) and (24), i.e., ψw1

, φw2
and φ−s, have to be approximated

on the interval [0, T ]. Among the available numerical methods to approximate them we choose the multi-
factor scheme suggested in [4]. Another possibility would have been the Adams scheme [33, 34] or hybrid
schemes as in [20]. The multi-factor scheme consists in approximating the kernel K with a weighted sum
of exponentials, namely with functions Kn, n ∈ N, of the form

Kn (t) =

n∑
j=1

mj,ne
−xj,nt, t ≥ 0, (36)

where mj,n, xj,n > 0, j = 1, . . . , n. In what follows, we write m = {mj,n| j = 1, . . . , n, n ∈ N} and
x = {xj,n| j = 1, . . . , n, n ∈ N}. Notice that Kn, n ∈ N, is completely monotone on (0,∞), meaning that
it is nonnegative and infinitely differentiable on this interval, with nonpositive [resp., nonnegative] odd
[resp., even] k−derivative, k ∈ N. More details about this approximation and the idea behind it can be
found in Remark 4 below and in the references therein.

Given n ∈ N and w ∈ C such that Rw ∈ [0, 1], we now introduce the Riccati-Volterra equation

ψw,n (t) =

∫ t

0

Kn (t− s)F (w,ψw,n (s)) ds = (Kn ∗ F (w,ψw,n (·))) (t) , t ≥ 0. (37)

Note that the existence and uniqueness of ψw,n is guaranteed by Theorem 1 (i), because Kn satisfies
Hypothesis 1. The advantage in considering (37) instead of (8) is that its solution ψw,n can be obtained
by numerically solving a system of integral equations with standard methods. More precisely, ψw,n(t) =∑n
j=1mj,nψ

(j)
w,n(t) for every t ≥ 0, where

ψ(j)
w,n (t) = e−xj,nt

∫ t

0

exj,nsF

(
w,

n∑
k=1

mk,nψ
(k)
w,n (s)

)
ds, j = 1, . . . , n.

Analogously, for every n ∈ N and w ∈ C−, we consider the Riccati-Volterra equation

φw,n (t) =

∫ ∞
0

hw (s)Kn (s+ t) ds+ (Kn ∗ (G (φw,n (·)))) (t) , t ≥ 0. (38)

We have that φw,n(t) =
∑n
j=1mj,nφ

(j)
w,n(t), t ≥ 0, with

φ(j)
w,n (t) = e−xj,nt

(∫ ∞
0

hw (s) e−xj,nsds+

∫ t

0

exj,nsG

(
n∑
k=1

mk,nφ
(k)
w,n (s)

)
ds

)
, j = 1, . . . , n.

The following theorem offers an estimate on the uniform distance on [0, T ] between ψw and ψw,n, as well
as between φw and φw,n. In the former case, it generalizes [4, Theorem 4.1] to our framework with jumps.
Its proof, which we postpone to Appendix C, relies on results related to Riccati-Volterra equations which
are proved in Appendix A.

Theorem 11. Assume that K satisfies Hypothesis 1. Let T > 0 and denote by Eλ,n the canonical
resolvent of Kn with parameter λ ∈ R, n ∈ N.

(i) Suppose that
∫ T

0
|Eb+ρ+√c,n(s)|ds ≤ C̃ for every n ∈ N, where C̃ = C̃(ρ, b,m,x, T ) > 0. Then there

exists a constant C = C(ρ, b, c,Λ, ν,m,x, T ) > 0 such that, for every w ∈ C with Rw ∈ [0, 1] and
n ∈ N,

sup
t∈[0,T ]

|ψw (t)− ψw,n (t)| ≤ C
(

1 + |Imw|6
)∫ T

0

EC(1+|Imw|2),K (s) ds

×
∫ T

0

|Kn (s)−K (s)|ds. (39)
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In addition, if b < 0 and ρ < 0 then the constant C does not depend on m or x, and the dependence
on T is via ‖K‖L1([0,T ]).

(ii) Suppose that
∫ T∨δ

0
|Eb+,n(s)|ds ≤ C̃ for every n ∈ N, where C̃ = C̃(b,m,x, T, δ) > 0. Then there

exists a constant C = C(b, c,Λ, ν,m,x, T, δ) > 0 such that, for every w ∈ C− and n ∈ N,

sup
t∈[0,T ]

|φw (t)− φw,n (t)| ≤ C
(

1 + |w|6
)∫ T

0

EC(1+|w|2),K (s) ds

∫ T∨δ

0

|Kn (s)−K (s)|ds. (40)

Remark 4. When the kernel K is completely monotone, a standard way to determine m and x in (36)
relies on the Bernstein-Widder theorem (see, e.g., [48, Theorem 2.5, Chapter 5]), according to which there
exists a nonnegative measure µ on R+ such that K(t) =

∫
R+
e−xtµ(dx), t > 0. Approximating µ with a

weighted sum of Dirac measures gives Kn. More specifically, for a fixed n ∈ N it is customary to take a
strictly increasing sequence of nonnegative numbers (ρj,n)j=0,...,n, and then choose for every j = 1, . . . , n,

mj,n =

∫ ρj,n

ρj−1,n

µ (dy) , xj,n = m−1
j,n

∫ ρj,n

ρj−1,n

y µ (dy) .

We mention that in some instances (most notably when K is the fractional kernel, see, e.g., [23, Example
2.6]) it is possible to show the convergence Kn → K in L2

loc(R+). Thanks to [48, Theorem 3.1, Chapter
2], this ensures the validity of the hypotheses required in both points of Theorem 11, and therefore the
convergence of the multi-factor scheme.

6 Calibration
We have shown that efficient Fourier-based methods can be applied to the rough Hawkes Heston

model in order to price options on the underlying prices and their volatility index. Based on these
techniques, in this section we calibrate a parsimonious specification of the rough Hawkes Heston model
to S&P 500 and VIX options data on May 19th, 2017. This is the same data set as in [44]. Here the
process X represents the logarithm of the ratio between the spot underlying price and the forward at
initial time. For our parametrization, we choose – as in the rough volatility models – a power kernel of
the form tα−1/Γ(α), α ∈ (1/2, 1]. For the law of the jumps, and to keep the number of parameters low,
we choose an exponential distribution with rate 1, ν(dz) = exp(−z) dz. Our parsimonious specification
of the model has therefore – other than the two parameters related to the initial variance curve (β, σ2

0) –
five evolution-related parameters (α, ρ, b, c,Λ). Like in [44], we concentrate on short maturities for which,
as pointed out in [50], “VIX derivatives are most liquid and the joint calibration is most difficult.” The
resulting calibrated parameters are reported in Table 1.

α ρ b c Λ β σ2
0

0.506 -0.737 -2.008 0.156 0.242 0.048 0.007

Table 1: Calibrated parameters

We observe that the value of α is very close to its lower bound limit 0.5. This is coherent with previous
estimates in the rough volatility literature, see for instance [9, 14, 16, 38, 42, 43, 44]. The estimation
of the correlation parameter ρ is also in line with empirical estimates, e.g. [25], and what is commonly
known as the leverage effect [31, 38, 61]. We notice that for the joint calibration we can keep the vol-of-vol
parameter c small because an important part of the volatility fluctuation is captured by the self-exciting
jumps controlled by the parameters α and Λ. This responds to the issue, raised in [50], that “very large
negative skew of short-term SPX options, which in continuous models implies a very large volatility of
volatility, seems inconsistent with the comparatively low levels of VIX implied volatilities.”

The calibrated implied volatility smiles for the S&P 500 and VIX options are plotted in Figures 1 and
3, respectively. We zoom the calibration of the S&P 500 options around the money in Figure 2. These
graphs show that the model fits remarkably well both S&P 500 and VIX implied volatilities. The shape
of the smile around the money for S&P 500 options is well-captured and the distance to the bid-ask
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corridor – across the maturities – is at most of one bid-ask spread. For the two shortest maturities most
of the model implied volatilities around the money are actually inside the bid-ask corridor. The fit is not
perfect for very negative log-moneyness. This is also seen – possibly to a less extent – in the quadratic
rough Heston model [44]. We conjecture that, at the cost of increasing the complexity of the model, even
better results could be obtained if we replace the exponential law for the jumps by a law with Pareto tails
as suggested in [25, 57] and the references therein. Regarding the VIX implied volatilities, we observe
that – even for options deep out-of the-money – the model implied volatilities stay almost systematically
within the bid-ask corridor, whether it is calculated using call or for put options.

7 Sensitivities of the implied volatilities
In this section we study the sensitivity of the implied volatilities of S&P 500 and VIX options to

the parameters of the rough Hawkes Heston model. Starting from the calibrated parameters presented
in Table 1, we analyze the impact of a change in the evolution-related parameters (α, ρ, b, c,Λ) and the
initial curve parameters (β, σ2

0) on the implied volatilities for the shortest maturity, and the shortest and
longest maturities, respectively.

We begin with the sensitivity with respect to the parameter α ∈ (0.5, 1], which as we will see plays a
crucial role in our model. We can observe in Figure 4 - as is the case for other rough volatility models –
that modifications of the parameter α change the ATM skew of the implied volatility of S&P 500 options.
The right convexity and ATM skew around the money can only be obtained for very low values of the
parameter α, confirming the findings in the rough volatility literature. To elucidate the influence of the
parameter α on the ATM skews, we plot in Figure 5 the log-log plots of ATM skews as a function of
maturity, for the calibrated parameters and different values of α. We observe that a perfect power decay
is captured by α = 0.506, but not by higher values of α. For α = 0.506, the linear fit is almost perfect
with a −0.597 power decay and an unquestionable coefficient of determination R2 = 0.99905. These
findings are coherent with the results in the rough volatility literature, e.g. [14, 43], indicating a power
law for the ATM skew as a function of maturity given approximately by T−

1
2 . For other values of α, the

linear fit is also observed for the shortest maturities. We plot in Figure 5, the estimated power decay for
the short maturities as a function of α. This plot shows that the relationship between the power decay
and α is approximately linear.

More importantly, within the joint calibration framework, the parameter α has a big impact on the
level and shape of implied volatilities of VIX options. This is confirmed by Figure 4. In particular, the
difference in level between the implied volatilities of VIX options for α = 0.506 and α = 0.6 is similar
to the one between α = 0.6 and α = 0.9. As α decreases the implied volatilities shift downwards. This
feature is fundamental to bring down the VIX implied volatilities maintaining the correct skew for SPX
implied volatilities, explaining therefore the shift mentioned in [49, 50]. We ratify therefore – within the
affine framework – the relevance of rough non-Markovian volatility to jointly calibrate SPX and VIX
smiles.

We now analyze the dependency of the implied volatilities with respect to the other parameters.
Figure 6 shows the sensitivities with respect to the evolution-related parameters (b, c, ρ,Λ). We notice
that – unless we zoom around the money – the sensitivity of the SPX smiles with respect to (b, c,Λ) is
relatively small. The main effect of an increment in the reverting speed −b is a shift slightly downwards
of the SPX implied volatility and a more pronounced upward shift and a reduction of the concavity on
the VIX implied volatility. The impact of the volatility of volatility c is similar for SPX options, with a
slight change of concavity, and a more pronounced and less symmetric effect on the level and concavity
of implied volatility of VIX options. As usual, the correlation parameter ρ plays a big role by moving
the minimum value to the left (ρ < 0) or to the right (ρ > 0). Obviously, the VIX smiles do not depend
on the correlation ρ. The effect of the (jump) leverage Λ is relatively small on SPX implied volatilities
but fundamental on the VIX implied volatilities. For SPX implied volatilities, the impact of Λ could
be reduced to a rotation with the money as pivot. The parameter Λ also controls the level of VIX
implied volatility out-of-the-money. As Λ increases this level goes down, achieving the correct shift for
the calibrated parameter. This effect is similar to the one observed for the vol-of-vol c, but the sensitivity
is larger, and it allows us to keep a low value of c for the joint calibration. This explains, the importance
in our model of self-exciting jumps in opposite directions for the underlying and volatility.

We now turn to the parameters (β, σ2
0) of the initial curve g0(t) = σ2

0 + β
∫ t

0
K(s) ds, t ≥ 0. Figure
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7 shows the SPX and VIX implied volatility sensitivities for the shortest and longest maturity. The
impact of both parameters is similar for SPX and VIX options. When σ2

0 or β increase the SPX implied
volatilities move up and to the right, while the VIX implied volatilities move down and the concavity
increases.

8 Conclusion
We develop and study a new stochastic volatility model named the rough Hawkes Heston model.

It is a tractable affine Volterra model with rough volatility and volatility jumps that cluster and that
have the opposite direction but occur at the same time as the jumps of the underlying prices. This
model shares many features with other existing models, mainly the Heston [52], Barndorff-Nielsen and
Shephard [12], and rough Heston [40] models. It takes advantage of the low regularity and memory
features of rough volatility models, the large fluctuation of jumps, the clusters of Hawkes processes and
the explicit Fourier-Laplace transform of the affine setup. By combining the modeling advantages of
these approaches, it is able to better capture the joint dynamics of underlying prices and their volatility
index in a tractable fashion. The addition of a singular kernel in the dynamics of the volatility, together
with jumps, incorporates not only the rough volatility feature but also a jump-clustering component.
The presence of common jumps in the underlying and the volatility in opposite directions is coherent
with previous studies such as [75]. Moreover, the introduction of jumps that cluster – as in [17] – is in
accordance with empirical findings, e.g. [25, 26]. Similar to [12, 40, 52], the rough Hawkes Heston model
is parsimonious with only five evolution-related parameters, and it belongs to the class of affine Volterra
models [5, 18], which allows efficient Fourier-based techniques for pricing.

The parameter α describing the power kernel in the volatility dynamics controls – as in the rough
Heston model – the underlying implied volatilities ATM skews for short maturities. Our calibration
example indicates that this value is close to 0.5 which agrees with previous estimates in the rough
volatility literature [14, 43]. This is not, however, the only role played by the parameter α in our setup
because the power kernel also introduces a jump-clustering feature to the model. As a consequence,
the parameter α plays a crucial role in controlling the level of VIX implied volatilities. Together with
the jump-leverage parameter Λ, the power kernel allows us to bring down the VIX implied volatilities
maintaining the correct skew for SPX implied volatilities, consequently capturing the shift mentioned in
[49, 50]. This confirms the relevance, in our affine framework, of rough volatility and clustering jumps to
model simultaneously the S&P 500 and VIX dynamics.

The affine relation between variance swap rates and forward variance – which generalizes the affine
relation between variance swap rates and spot variance in the classical framework [54] – is a by-product
of our affine Volterra framework. This affine relation has been confirmed empirically in [60].

To conclude, the rough Hawkes Heston model is able – in a tractable and parsimonious fashion – to
jointly calibrate S&P 500 and VIX options. The parsimonious character of our model is an advantage
compared to other models that jointly calibrate SPX/VIX options with either a large number of param-
eters [27, 51] or based on martingale transport considerations [50]. The affine character of the rough
Hawkes Heston model allows fast pricing using Fourier-techniques, instead of Monte Carlo or machine
learning methods as those used for instance in [44, 70]. Moreover, all the parameters in our model have
a financial interpretation, and a complete sensitivity analysis shows that they are not redundant since
each of them controls a different feature of the S&P 500 and VIX volatility smiles.

A Proof of Theorem 1
In this appendix we prove Theorem 1 regarding the Riccati-Volterra equation (7)-(8) used to study the

Fourier-Laplace transform of the log returns (Xt)t≥0. We use the following notation: given u, v ∈ C, let
[u, v] be the segment in C having u and v as endpoints, i.e. [u, v] = {z ∈ C : z = (1− t)u+ tv, t ∈ [0, 1]},
and denote by u ∨ v = Ru ∨Rv + i Imu ∨ Imv.

Proof. Fix w ∈ C with Rw ∈ [0, 1].
(i) The proof of this point is divided into three steps. In the first step, we show the existence of a

noncontinuable solution ψw of (8). In the second step, we prove that ψw does not explode in finite time,
i.e., that it is global solution. To conclude, in the third and last step, we prove the uniqueness of ψw.
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Step I. Let us compute from (7), for every v ∈ C−,

RF (w, v) =
1

2

(
|Rw|2 −Rw

)
+
(
b+ ρ

√
cRw

)
Rv+

c

2
|Rv|2− 1

2

(
|Imw|2 + c |Imv|2 + 2ρ

√
c ImwImv

)
+

∫
R+

[
e(Rv−ΛRw)z cos ((Imv − ΛImw) z)−Rw

(
e−Λz − 1

)
− 1−Rvz

]
ν (dz) . (41)

Since |ρ| ≤ 1 we have |ρ
√
c ImwImv| ≤

√
c|Imw||Imv|, which implies

−1

2

(
|Imw|2 + c |Imv|2 + 2ρ

√
c ImwImv

)
≤ −1

2

(
|Imw| −

√
c |Imv|

)2 ≤ 0. (42)

Recalling that Rw ∈ [0, 1], we then obtain

RF (w, v) ≤
(
b+ ρ

√
cRw

)
Rv +

c

2
|Rv|2 +

∫
R+

[
e−ΛRwz −Rw

(
e−Λz − 1

)
− 1
]
ν (dz)

+

∫
R+

[
e(Rv−ΛRw)z − e−ΛRwz −Rvz

]
ν (dz)

≤

(
b+ ρ

√
cRw +

∫
R+

z
(
e−ΛRwz − 1

)
ν (dz)

)
Rv +

c

2
|Rv|2 +

∫
R+

e−ΛRwz
(
eRvz − 1−Rvz

)
ν (dz) ,

(43)

where for the second inequality we use

e−ΛRwz −Rw
(
e−Λz − 1

)
− 1 ≤ 0, z ≥ 0. (44)

Let h : R+ × R− → R− be the continuous function defined by

h (x, y) =

{
1
y

∫
R+
e−Λxz (eyz − 1− yz) ν (dz) , y < 0

0, y = 0
, x ≥ 0,

and note that y · h(x, y) =
∫
R+
e−Λxz(eyz − 1− yz)ν(dz). At this point, we can use (43) to show that

RF (w, v) ≤
(
Cw +

c

2
Rv + h (Rw,Rv)

)
Rv, v ∈ C−, (45)

where Cw = b+ ρ
√
cRw +

∫
R+
z(e−ΛRwz − 1)ν(dz).

We now introduce the function F̃w : C→ C given by

F̃w (v) = F
(
w,−Rv− + iImv

)
+ CwRv

+, v ∈ C.

Observe that, by construction (see also (45))

RF̃w (v) ≤
(
Cw −

c

2
Rv− + h

(
Rw,−Rv−

))
Rv, v ∈ C.

Since F̃w is continuous, we can invoke [48, Therorem 1.1, Chapter 12] to assert the existence of a contin-
uous, noncontinuable solution ψw : [0, Tmax)→ C of the equation

χ = K ∗ F̃w (χ (·)) , t ∈ [0, Tmax) , (46)

for some Tmax ∈ (0,∞]. If we can show that Rψw ≤ 0 in [0, Tmax), then we conclude that ψw is indeed
a noncontinuable solution of (8), as well. To this end, consider the continuous function ζ(t) = Cw −
c
2Rψw(t)− + h(Rw,−Rψw(t)−) defined for t ∈ [0, Tmax). Taking the real part in (46), for every T ∈
(0, Tmax), we obtain

Rψw (t) = −γT (t) +

∫ t

0

K (t− s) ζ (s)Rψw (s) ds, t ∈ [0, T ] ,
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where γT (t) =
∫ t

0
K(t − s)1{s≤T}(ζ(s)Rψw(s) − RF̃w(ψw(s)))ds. By [4, Remark B.6] γT ∈ GK (recall

(23)), and we can invoke [4, Theorem C.1] to infer that Rψw ≤ 0 in [0, T ]. Given that T was arbitrary,
such an inequality holds in the whole interval [0, Tmax), completing the first step of the proof.

Step II. Our goal here is to show that Tmax = ∞. Let us fix again a generic T ∈ (0, Tmax). Taking
the imaginary part in (7) and (8) we have, on the interval [0, T ],

Imψw = K ∗

[(
Rw − 1

2

)
Imw +

(
b+ ρ

√
cRw

)
Imψw + ρ

√
c ImwRψw + cRψw Imψw

+

∫
R+

(
eR(ψw−Λw)·z sin (Im (ψw − Λw) · z)− Imw

(
e−Λz − 1

)
− Imψw · z

)
ν (dz)

]
. (47)

Consider the function d : R− × R→ R defined as follows

d (x, y) =

{
1
y

∫
R+
exz (sin (y z)− y z) ν (dz) , y 6= 0

0, y = 0
, x ≤ 0.

Note that d is continuous and nonpositive in its domain. Moreover, by construction

y · d (x, y) =

∫
R+

exz (sin (y z)− y z) ν (dz) , (x, y) ∈ R− × R.

To shorten the notation we define ψ̃w = ψw − Λw. Using the function d we rewrite (47) as

Imψw +
ρ+

√
c
Imw =

ρ+

√
c
Imw +K ∗

[(
Rw − 1

2
−
∫
R+

(
e−Λz − 1 + Λz

)
ν (dz)− ρ+

√
c

(
b+ ρ

√
cRw

))
Imw

+

(
−ρ−
√
cRψw −

(
Λ +

ρ+

√
c

)∫
R+

z
(
eRψ̃w·z − 1

)
ν (dz)−

(
Λ +

ρ+

√
c

)
d
(
Rψ̃w, Imψ̃w

))
Imw

+

((
b+ ρ

√
cRw

)
+ cRψw +

∫
R+

z
(
eRψ̃w·z − 1

)
ν (dz) + d

(
Rψ̃w, Imψ̃w

))(
Imψw +

ρ+

√
c
Imw

)]

=
ρ+

√
c
Imw

+K ∗
[(
C1 −

ρ+

√
c

(
b+ ρ

√
cRw

))
Imw + f1 (·) Imw +

(
b+ ρ

√
cRw + f2 (·)

)(
Imψw +

ρ+

√
c
Imw

)]
,

which holds on [0, T ]. In particular, note that f1 ≥ 0 and f2 ≤ 0 in [0, T ]. We want to find a continuous
function u : R+ → R+ such that |Imψw| ≤ u on [0, T ]. To do this, we argue by cases on Imw. In
the following, we denote Λ̃ = max{ρ−c−1/2, Λ}. All the claims regarding the sign of solutions to linear
Volterra equations are justified by [4, Theorem C.1].

If Imw ≥ 0, then we can consider the unique, nonnegative, continuous solution l1 : [0, T ]→ R+ of the
linear equation

l1 =
ρ+

√
c
Imw +K ∗

[∣∣∣∣C1 −
ρ+

√
c

(
b+ ρ

√
cRw

)∣∣∣∣ Imw +
((
b+ ρ

√
cRw

)
+ f2

)
l1

]
.

Since the function Imψw + ρ+√
c
Imw + l1 satisfies – in [0, T ] – the linear equation

χ = 2
ρ+

√
c
Imw +K ∗

[
2

(
C1 −

ρ+

√
c

(
b+ ρ

√
cRw

))+

Imw + f1 Imw +
((
b+ ρ

√
cRw

)
+ f2

)
χ

]
,

we deduce that Imψw ≥ −l1− ρ+√
c
Imw on [0, T ]. Next, we introduce the unique, nonnegative, continuous

solution l1 : R+ → R+ of the linear equation

l1 =
ρ+

√
c
|Imw|+K ∗

[∣∣∣∣C1 −
ρ+

√
c

(
b+ ρ

√
cRw

)∣∣∣∣ |Imw|+ (b+ ρ
√
cRw

)
l1

]
(48)
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and observe that l1 − l1 ≥ 0 on [0, T ], because l1 − l1 solves on [0, T ]

χ = K ∗
[
−f2 l1 +

(
b+ ρ

√
cRw

)
χ
]
.

Hence, Imψw ≥ −l1 − ρ+√
c
|Imw| on [0, T ]. We now focus on the upper bound. Observe that

Imψw−Λ̃ Imw = −Λ̃ Imw+K∗

[(
C1 +

(
b+ ρ

√
cRw

)
Λ̃
)
Imw+

(
b+ ρ

√
cRw + f2

) (
Imψw − Λ̃ Imw

)
+

((
Λ̃c+ ρ

√
c
)
Rψw +

(
Λ̃− Λ

)(∫
R+

z
(
eRψ̃w·z − 1

)
ν (dz) + d

(
Rψ̃w, Imψ̃w

)))
Imw

]
.

We then take the unique, nonnegative, continuous solution u1 : [0, T ]→ R+ of the linear equation

u1 = Λ̃ Imw +K ∗
[∣∣∣C1 +

(
b+ ρ

√
cRw

)
Λ̃
∣∣∣ Imw +

(
b+ ρ

√
cRw + f2

)
u1

]
.

We infer that u1 − (Imψw − Λ̃ Imw) ≥ 0 since Λ̃c+ ρ
√
c, Λ̃−Λ ≥ 0, and u1 − (Imψw − Λ̃ Imw) satisfies

(on [0, T ])

χ = 2Λ̃ Imw +K ∗

[
2
(
C1 +

(
b+ ρ

√
cRw

)
Λ̃
)−

Imw +
(
b+ ρ

√
cRw + f2

)
χ

−

((
Λ̃c+ ρ

√
c
)
Rψw +

(
Λ̃− Λ

)(∫
R+

z
(
eRψ̃w·z − 1

)
ν (dz) + d

(
Rψ̃w, Imψ̃w

)))
Imw

]
.

To end, we introduce the unique, nonnegative, continuous solution u1 : R+ → R+ of the linear equation

u1 = Λ̃ |Imw|+K ∗
[∣∣∣C1 +

(
b+ ρ

√
cRw

)
Λ̃
∣∣∣ |Imw|+ (b+ ρ

√
cRw

)
u1

]
, (49)

and since u1 − u1 satisfies the linear equation χ = K ∗ [−f2 u1 + (b + ρ
√
cRw)χ] on [0, T ], we conclude

that u1 ≥ u1 on the same interval. Therefore, Imψw ≤ u1 + Λ̃ Imw on [0, T ].
In the case Imw ≤ 0 the argument is analogous, but the upper and lower bounds are inverted.

Specifically, with the same steps as the ones just carried out, we have −u1 − Λ̃|Imw| ≤ Imψw ≤ l1 +
ρ+√
c
|Imw| on [0, T ].

Therefore, defining the continuous function u : R+ → R+ by u = l1 + u1 + (Λ̃ + ρ+√
c
)|Imw|, we have

|Imψw (t)| ≤ u (t) , 0 ≤ t ≤ T. (50)

Taking the real part in (8) and using (41) we deduce that

Rψw = K∗

[
1

2

(
|Rw|2 −Rw

)
+
(
b+ ρ

√
cRw

)
Rψw +

c

2
|Rψw|2

− 1

2

(
|Imw|2 + c |Imψw|2 + 2ρ

√
c Imw Imψw

)
−

∣∣∣∣∣
∫
R+

eRψ̃w·z
(

cos
(
Imψ̃w · z

)
− 1
)
ν (dz)

∣∣∣∣∣
+

∫
R+

(
eRψw·z

(
e−ΛRwz − 1

)
−Rw

(
e−Λz − 1

))
ν (dz) +

∫
R+

(
eRψw·z − 1−Rψw · z

)
ν (dz)

]
on [0, T ]. Since | cos(x)− 1| = 1− cos(x) ≤ x2/2, x ∈ R, by (50) we have∣∣∣∣∣
∫
R+

eRψ̃w·z
(

cos
(
Imψ̃w · z

)
− 1
)
ν (dz)

∣∣∣∣∣ ≤ 1

2

(∫
R+

|z|2 ν (dz)

)∣∣∣Imψ̃w∣∣∣2
≤

(∫
R+

|z|2 ν (dz)

)(
u2 + Λ2 |Imw|2

)
, on [0, T ] . (51)
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Moreover, notice that by (50), since |ρ| ≤ 1

1

2

∣∣∣|Imw|2 + c |Imψw|2 + 2ρ
√
c ImwImψw

∣∣∣ ≤ 1

2

(
|Imw|+

√
c |Imψw|

)2 ≤ |Imw|2 + cu2. (52)

These facts coupled with (44) suggest to consider the linear equation

l = K ∗

[
1

2

(
|Rw|2 −Rw − 2 |Imw|2

)
+

∫
R+

(
e−ΛRwz − 1−Rw

(
e−Λz − 1

))
ν (dz)− c u2

−

(∫
R+

|z|2 ν (dz)

)(
u2 + Λ2 |Imw|2

)
+
(
b+ ρ

√
cRw

)
l

]
, (53)

which has a unique, continuous, nonpositive solution l defined on the whole R+. At this point, observe
that the difference Rψw − l satisfies the linear equation

χ = K ∗

[ (
b+ ρ

√
cRw

)
χ+

c

2
|Rψw|2 +

(
|Imw|2 + cu2 − 1

2

(
|Imw|2 + c |Imψw|2 + 2ρ

√
c ImwImψw

))
+

∫
R+

(
eRψw·z − 1−Rψw · z

)
ν (dz) +

∫
R+

(
eRψw·z − 1

) (
e−ΛRwz − 1

)
ν (dz)

+

((∫
R+

|z|2 ν (dz)

)(
u2 + Λ2 |Imw|2

)
−

∣∣∣∣∣
∫
R+

eRψ̃w·z
(

cos
(
Imψ̃w · z

)
− 1
)
ν (dz)

∣∣∣∣∣
)]

.

It admits a unique, continuous solution on [0, T ] which is nonnegative by (51), (52) and the fact that
ex − 1− x ≥ 0, x ∈ R. Since T ∈ (0, Tmax) was chosen arbitrarily, we infer that

l (t) ≤ Rψw (t) ≤ 0 and |Imψw (t)| ≤ u (t) , 0 ≤ t < Tmax.

Recalling that l and u are continuous on R+, and in particular bounded on every compact interval, we
conclude that Tmax =∞, as desired.

Step III. Consider two global solutions ψw, ψ′w of (8), and let δ = ψw − ψ′w and δ̃ = ψ′w ∨ ψw. Then,
for every t ≥ 0,

δ (t) =

∫ t

0

K (t− s)

[(
b+ ρ

√
cw +

c

2
(ψw + ψ′w) (s) +

∫
R+

z
(
e(−Λw+δ̃(s))z − 1

)
ν (dz)

)
δ (s)

+

∫
R+

e(−Λw+δ̃(s))z
(
e(ψw−δ̃)(s)z − e(ψ

′
w−δ̃)(s)z − δ (s) z

)
ν (dz)

]
ds. (54)

We introduce the function kw : C− × C− → C defined for (u, v) ∈ C− × C− by

kw (u, v) =

{
1

v−u
∫
R+
e(−Λw+u∨v)z

(
e(v−u∨v)z − e(u−u∨v)z − (v − u) z

)
ν (dz) , u 6= v

0, otherwise
. (55)

We claim that kw is continuous on its domain. This is a consequence of an application of the mean value
theorem to the functions fz(u) = euz − uz, u ∈ C−, with the parameter z ∈ R+. Indeed, using the
inequality |1− cosx| ≤ x2, x ∈ R,

|fz (v)− fz (u)| ≤ z sup
ξ∈[u,v]

∣∣eξz − 1
∣∣ |v − u|

≤ z sup
ξ∈[u,v]

(∣∣eRξ·z − 1
∣∣+
√

2e
1
2Rξ·z (1− cos (Imξ · z))

1
2

)
|v − u|

≤ z
((

1− e(Ru∧Rv)z
)

+
√

2 (|Imu| ∨ |Imv|) |z|
)
|v − u| , u, v ∈ C−, z ∈ R+. (56)
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Consequently, the continuity of kw follows from

|fz (v − u ∨ v)− fz (u− u ∨ v)| ≤ |z|2
(

1 +
√

2
)
|v − u|2 , u, v ∈ C−, z ∈ R+. (57)

Coming back to (54) we have (on R+)

δ = K ∗

[(
b+ ρ

√
cw +

c

2
(ψw + ψ′w) (·) +

∫
R+

z
(
e(−Λw+δ̃(·))z − 1

)
ν (dz) + kw (ψ′w (·) , ψw (·))

)
δ

]
,

(58)
which is a linear equation admitting the zero function as its unique solution. Hence ψ′w = ψw on R+,
completing the proof of this step.

The fact that ψRw is R−−valued follows from (50), because in this case u ≡ 0. This concludes the
proof of the statement in (i).

(ii) From (41) and (42) we deduce that RF (w, v) ≤ F (Rw, Rv) for every v ∈ C−. Taking the real
part in (8) and recalling that – under Hypothesis 1 – the kernel K is nonnegative on (0,∞) we obtain

Rψw (t) ≤
∫ t

0

K (t− s)F (Rw, Rψw (s)) ds, t ≥ 0.

We can then introduce a nonnegative function γ̃ : R+ → R+ defined by the relation

Rψw (t) = −γ̃ (t) +

∫ t

0

K (t− s)F (Rw, Rψw (s)) ds, t ≥ 0. (59)

Using (8), one can rewrite γ̃ as

γ̃ (t) =

∫ t

0

K (t− s) (F (Rw,Rψw (s))−RF (w,ψw (s))) ds, t ≥ 0.

Thus γ̃ ∈ GK by [4, Remark B.6]. At this point we subtract (59) from (8) (with Rw instead of w) to
deduce that δ = ψRw −Rψw satisfies

δ (t) = γ̃ (t) +

∫ t

0

K (t− s) (F (Rw,ψRw (s))− F (Rw, Rψw (s))) ds, t ≥ 0. (60)

If we denote by δ̃ = Rψw ∨ ψRw, we then need to study (on R+)

F (Rw,ψRw)− F (Rw, Rψw) =

(
b+ ρ

√
cRw +

c

2
(Rψw + ψRw) +

∫
R+

z
(
e(−ΛRw+δ̃)z − 1

)
ν (dz)

)
δ

+

∫
R+

e(−ΛRw+δ̃)z
(
e(ψRw−δ̃)z − e(Rψw−δ̃)z − δz

)
ν (dz)

= (w1 (·) + kRw (Rψw (·) , ψRw (·))) δ,

with kRw as in (55). Going back to (60),

δ (t) = γ̃ (t) +

∫ t

0

K (t− s) (w1 (s) + kRw (Rψw (s) , ψRw (s))) δ (s) ds, t ≥ 0.

We can now apply [4, Theorem C.1] in order to conclude that δ ≥ 0 on R+. This yields (9) and concludes
the proof of (ii). �

B Proof of Proposition 5
This section is devoted to the proof of Proposition 5, a result which allows to price options on the

underlying asset S with maturity T > 0.
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Proof. Let us define the function f : R→ R by

f (m) = E
[
eXT −

(
eXT − em

)+]
e−

1
2m = E

[
eXT 1{XT≤m} + em1{m<XT }

]
e−

1
2m, m ∈ R. (61)

Denote by µT the probability distribution of XT on R and note that f ∈ L1(R), because, thanks to
Tonelli’s theorem,∫

R
e−

1
2m

[∫
R

(
ex1{x≤m} + em1{m<x}

)
µT (dx)

]
dm = 4

∫
R
e

1
2xµT (dx) = 4E

[
e

1
2XT

]
<∞. (62)

Therefore we can compute the Fourier transform of f as follows

f̂ (λ) =

∫
R
e(−

1
2 +iλ)m

[∫
R

(
ex1{x≤m} + em1{m<x}

)
µT (dx)

]
dm

=

∫
R

[
ex
∫ ∞
x

e(−
1
2 +iλ)mdm+

∫ x

−∞
e(

1
2 +iλ)mdm

]
µT (dx) =

1
1
4 + λ2

ΨXT

(
1

2
+ iλ

)
, λ ∈ R,

where in the second equality we are allowed to use Fubini’s theorem by (62).
Since |ΨXT ( 1

2 + iλ)| ≤ E[e
1
2XT ] <∞ and, by dominated convergence, f in continuous on R, we invoke

the Fourier inversion theorem, see for instance [71, Theorem 9.11], to obtain

f (m) =
1

2π

∫
R
e−imλ

1
1
4 + λ2

ΨXT

(
1

2
+ iλ

)
dλ, m ∈ R. (63)

Combining (61) and (63) and recalling Corollary 4 we deduce that

E
[(
eXT − em

)+]
= 1− 1

2π

∫
R
e(

1
2−iλ)m 1

1
4 + λ2

ΨXT

(
1

2
+ iλ

)
dλ, m ∈ R. (64)

Now, for every k ∈ R, we can determine the price CS(k, T ) of a call option written on S with log strike
k and maturity T . Indeed, taking m = k − log(S0) in (64) we have

CS (k, T ) = E
[(
ST − ek

)+]
= S0 −

1

2π

√
S0ek

∫
R
eiλ(log(S0)−k) 1

1
4 + λ2

ΨXT

(
1

2
+ iλ

)
dλ

= S0 −
1

π

√
S0ek

∫
R+

R

[
eiλ(log(S0)−k)ΨXT

(
1

2
+ iλ

)]
1

1
4 + λ2

dλ,

which coincides with (16). The expression (17) for the price PS(k, T ) of a put option with the same
underlying, log strike and maturity as before, follows from (16), Corollary 4, and the put-call parity
formula. This completes the proof. �

C Proof of Theorem 11
This section is devoted to the proof of Theorem 11, a result providing estimates for the multi-factor

approximation of the Riccati-Volterra equations appearing in the Fourier-Laplace transform of the log
returns and VIX2.

Proof. Fix T > 0. We first prove Point (i). Take w ∈ C such that Rw ∈ [0, 1] and n ∈ N, and observe
that |ψw,n| ≤ l1,n+u1,n− ln+(Λ̃+ ρ+√

c
)|Imw| on R+. Here Λ̃ = max{ρ−c−1/2, Λ} and l1,n [resp., u1,n, ln]

is the unique, continuous solution of (48) [resp., (49), (53)] in Appendix A with Kn instead of K. [4,
Corollary C.4] guarantees the existence of a positive constant C1 = C1(ρ, b, c,Λ, ν) such that

l1,n (t) + u1,n (t) +

(
Λ̃ +

ρ+

√
c

)
|Imw| ≤ C1

(
1 +

∫ T

0

∣∣Eb+ρ+√c,n (s)
∣∣ds) |Imw| , t ∈ [0, T ] .
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Then, recalling the hypothesis of boundedness for (
∫ T

0
|Eb+ρ+√c,n(s)|ds)n and using (53), another appli-

cation of [4, Corollary C.4] provides the existence of a constant C2 = C2(ρ, b, c,Λ, ν,m,x, T ) > 0 such
that |ln(t)| ≤ C2(1 + |Imw|2), t ∈ [0, T ]. This implies, given that n ∈ N is arbitrary, that

sup
n∈N

sup
t∈[0,T ]

|ψw,n (t)| ≤ C3

(
1 + |Imw|2

)
, for some C3 = C3 (ρ, b, c,Λ, ν,m,x, T ) > 0. (65)

Since the same argument works for ψw, without loss of generality, we assume that the upper bound in
(65) holds also for ψw. Now, from (8) and (37) we have (on R+)

ψw − ψw,n = (K −Kn) ∗ F (w,ψw,n (·)) +K ∗ (F (w,ψw (·))− F (w,ψw,n (·))) , n ∈ N.

For every v ∈ C−, recalling the inequality ex − 1− x ≤ x2/2, x ≤ 0, and thanks to the computations in
Appendix A (see (56))∣∣∣∣∣
∫
R+

[
e(v−Λw)z − w

(
e−Λz − 1

)
− 1− vz

]
ν (dz)

∣∣∣∣∣
≤ 4
√

2

[
Λ2

2
(1 + |Imw|) + |v|2 + Λ2

(
1 + |Imw|2

)]∫
R+

|z|2 ν (dz) .

Then by (65) and (7) we deduce that there exists a constant C4 = C4(ρ, b, c,Λ, ν,m,x, T ) > 0 such that

sup
t∈[0,T ]

|((K −Kn) ∗ (F (w,ψw,n (·)))) (t)| ≤ C4

(
1 + |Imw|4

)∫ T

0

|Kn (s)−K (s)| ds, n ∈ N. (66)

In what follows, we denote by hn = (K−Kn)∗F (w,ψw,n(·)), i.e., the function that we have just bounded.
Next, computations analogous to those carried out to obtain the Volterra equation (58) in Appendix A,
allow us to write (on R+)

F (w,ψw)− F (w,ψw,n) =

(
b+ ρ

√
cw +

c

2
(ψw + ψw,n) +

∫
R+

z
(
e(−Λw+ψw,n∨ψw)z − 1

)
ν (dz)

+ kw (ψw,n, ψw)

)
(ψw − ψw,n) ,

where kw is the continuous function in (55). Therefore, since |kw(u, v)| ≤ (1 +
√

2)(
∫
R+
|z|2ν(dz))|v − u|

for every u, v ∈ C− (see (57)) and recalling (65)-(66), an application of [4, Corollary C.4] yields

sup
t∈[0,T ]

|ψw (t)− ψw,n (t)− hn (t)| ≤ C5

(
1 + |Imw|6

) ∫ T
0
Eb++ρ+

√
c+cνC3(1+|Imw|2),K (s) ds∫ T

0

∣∣Eb++ρ+
√
c,K (s)

∣∣ ds
×
∫ T

0

|Kn (s)−K (s)|ds, n ∈ N. (67)

for some C5 = C5(ρ, b, c,Λ, ν,m,x, T ) > 0 and where cν = 2(1 +
√

2)(
∫
R+
|z|2ν(dz)). Notice that by [48,

Proposition 8.1, Chapter 9] and Hypothesis 1, Eb++ρ+
√
c+cνC3(1+|Imw|2),K ≥ 0. Consequently, thanks to

[4, Theorem C.1, Remark B.6], Eb++ρ+
√
c,K ≤ Eb++ρ+

√
c+cνC3(1+|Imw|2),K a.e. in R+. Hence the ratio in

(67) is greater or equal to 1. Combining (67) with (66) yields (39).
In order to prove the final remark about the independence of the constant C in (39) with respect

to m and x, note that in the previous argument such a dependence is only due to C̃, the positive
constant given by the hypothesis controlling the sequence (

∫ T
0
|Eb+ρ+√c,n(s)|ds)n. When b < 0, the

kernels −bKn inherit the property of complete monotonicity from Kn. If in addition ρ < 0, we can
use [48, Theorem 3.1, Chapter 5] to infer that

∫ T
0
|Eb+ρ+√c,n(s)|ds =

∫ T
0
|Eb,n(s)|ds ≤ |b|−1 for every

n ∈ N, and
∫ T

0
|Eb++ρ+

√
c,K(s)|ds = ‖K‖L1([0,T ]). In particular, in this case C depends on T only via the

L1−norm of K in [0, T ] (see (65)-(67)).
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The proof of Point (ii) follows by an analogous argument. In this case we use the estimates in [18,
Appendix B.1] and the fact that

∫ δ
0
Kn(s)ds ≤

∫ T∨δ
0

Eb+,n(s)ds ≤ C̃, n ∈ N. We also combine [4,
Corollary C.4], the comparison result for linear Volterra equations in [15, Theorem 2], and the inequality∫ δ

0

h (s)Kn (s+ t) ds ≤
∫ δ

0

h (s)Kn (s) ds, t ≥ 0,

which holds also for K by Hypothesis 1. �

24



Figure 1: Calibrated implied volatility of SPX options on 19 May 2017, see Table 1. The blue and red
crosses are respectively the bid and ask of market implied volatilities. The implied volatility smiles from
the model are in green. The abscissa is in log-moneyness and T is time to expiry in years.
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Figure 2: Zoom around the money of calibrated implied volatility of SPX options on 19 May 2017.
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Figure 3: Calibrated implied volatility of VIX options on 19 May 2017, see Table 1. The blue and
red crosses are the bid-ask corridors of market implied volatilities computed from put and call options,
respectively. The implied volatility smiles from the model are in green. The abscissa is in log-moneyness
and T is time to expiry in years.
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Figure 4: Sensitivity of implied volatility for SPX (left and center) and VIX (right) options with respect
to the kernel power α for the shortest maturity.

Figure 5: Power decay of the ATM volatility skew. On the left, the log-log plot of ATM volatility skew
for the calibrated parameters of Table 1. At the center, the log-log plot of ATM volatility skew for
different values of α; the other parameters are as in Table 1. On the right, the fitted power decay of the
ATM volatility skew as function of α; the power decay is estimated using the five shortest maturities, i.e.
log(T ) ∈ [−5.5,−3.5].
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Figure 6: Sensitivity of implied volatility for SPX (left, center) and VIX (right) options for the shortest
maturity with respect to: the volatility of volatility c (first line), the correlation ρ (second line), the
jump-leverage Λ (third line), and the mean reversion speed parameter b (fourth line).

Figure 7: Sensitivity of implied volatility for SPX (left, left-center) and VIX (right-center, right) options
for the shortest (first line) and longest maturity (second line) with respect to the initial spot variance
curve, i.e. intercept σ2

0 , and proportional coefficient β.
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