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ABSTRACT

Formation of synchronous activity patterns is an essential property of neuronal networks that has been of central interest to synchronization
theory. Chimera states, where both synchronous and asynchronous activities of neurons co-exist in a single network, are particularly poignant
examples of such patterns, whose dynamics and multistability may underlie brain function, such as cognitive tasks. However, dynamical
mechanisms of coherent state formation in spiking neuronal networks as well as ways to control these states remain unclear. In this paper,
we take a step in this direction by considering the evolution of chimera states in a network of class II excitable Morris–Lecar neurons with
asymmetrical nonlocal inhibitory connections. Using the adaptive coherence measure, we are able to partition the network parameter space
into regions of various collective behaviors (antiphase synchronous clusters, traveling waves, different types of chimera states as well as a
spiking death regime) and have shown multistability between the various regimes. We track the evolution of the chimera states as a function
of changed key network parameters and found transitions between various types of chimera states. We further find that the network can
demonstrate long transients leading to quasi-persistence of activity patterns in the border regions hinting at near-criticality behaviors.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0117845

Over the past few decades, one of the most exciting and quickly
developed areas of modern synchronization theory is the study
of chimera states. Such chimera states are characterized by the
coexistence of multiple synchronous and asynchronous domains
despite that the network topology does not predict such struc-
tures. Moreover, these states are of interest for describing, for
example, a partially synchronous activity in the brain neuronal
networks and circuits. During cognitively effortful tasks, one can
observe complex patterns of synchronous and non-synchronous
brain activities that wax, wane, and reshape themselves, either
rapidly or slowly, as the task demands. We may posit that dynam-
ics of chimeras and their multistability may be key to how brain
networks form activity patterns that allow implementation of
such complex cognitive tasks (e.g., contextual memory states,
multi-item working memory). In this work, we study the evo-
lution of chimera states in a network of Morris–Lecar neurons
whose excitability properties echo those of a major class of corti-

cal interneurons and are arranged in a network with asymmetrical
nonlocal inhibitory connections mimicking interneuronal net-
works in the cortex and hippocampus. Using a new measure of
network coherence that we have previously introduced [the adap-
tive coherence measure (ACM)], we partition the network state
space into regions with a variety of collective behaviors, antiphase
synchronous clusters, traveling waves, different types of chimera
states as well as spiking death regime, and uncover multistabil-
ity between these various regimes. We followed how the various
chimera states evolve from one to another with key network
parameters and found that these switches can be either fast or that
the network can demonstrate long transients, leading to quasi-
persistence of activity patterns in the border regions hinting at
near-criticality behaviors. Hence, our work shows that spiking
networks with even relatively simple connection topologies are
capable of complex dynamics, as they may underlie cognitively
relevant brain activities.
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I. INTRODUCTION

Multistability plays a key role in the control of activity in neu-
ronal networks. Multi-stable states, or multiple attractors, may also
appear during the performance of cognitive tasks and processes
(such as multi-item decision-making tasks), which in turn endow
multistability with a functional significance. To flexibly switch
between multiple cognitive tasks successfully, network activity pat-
terns need to be flexibly restructured, and it is here that network
multistability can be a potential mechanism. Interestingly, switching
between multiple activity patterns may need to be rapid (to change
between tasks) or with long-lasting quasi-stable dynamics, e.g., to
implement working memory functions.1–3 Multistable dynamic pat-
terns may be heterogeneous in their structure (depending on the
cognitive task) and are unlikely to be fully globally synchronous.
One can argue that such complex task-related network patterns may
consist of multiple synchronous (or coherent) neuronal populations
that are directly involved in computations necessary for the task at
hand as well as populations that are not involved in the task and
that may be asynchronous. In terms of nonlinear dynamics, such
mixed states are known as chimera states.4 Over the past few years,
the study of chimera states has been one of the main directions in
synchronization theory (see, for example, overview5 and papers cited
within). Arguably, one of the central challenges for synchroniza-
tion theory and network studies in computational neuroscience is
to identify the mechanisms that are responsible for the formation of
such dynamic activity patterns.

Initially, chimera states were found in homogeneous networks
with a symmetrical connection structure.4 However, such a sym-
metric network topology is quite unlikely to be observed in bio-
logical neuronal networks. As a rule, neurons follow Dale’s law
and interact mainly through (either excitatory or inhibitory) chem-
ical synapses. This means that such couplings are unidirectional,
where the electrochemical synaptic signals are transmitted from
the presynaptic neuron to the postsynaptic ones (see, for example,
Ref. 6). Another point is that connection topology, in general, is
not symmetric, as previously discussed in Ref. 7. Moreover, experi-
mental data show that unidirectional connections are widespread in
biological neural networks and play an essential role in the compu-
tational capabilities of the brain (see, for example, Ref. 8). Thus, it
is of importance to generalize chimera states to neuronal networks
with more realistic brain-network and neural circuit connectivity
properties.

There have been a number of studies devoted to studying
chimera states in neuronal networks, and most of them consider
nonlocal ring typologies. For example, one of the earliest seminal
works in this field is devoted to a ring consisting of Hodgkin–Huxley
neurons,9 where the strength of the connection decreases with the
distance between the neurons. For the cases of both excitatory and
inhibitory synaptic couplings, they found states resembling chimera
states. Later, static chimera and multichimera chimera states were
discovered for a ring network of the FitzHugh–Nagumo neurons10 as
well as for an excitatory coupled ring of Morris–Lecar neurons with
class I excitability.11 Chimera states were also discovered in rings of
bursting neurons12,13 as well as traveling chimera states,12,14 where
the asynchronous domains move along the ring. Once again, these
studies considered symmetric coupling patterns.

Furthermore, from a biological point of view, we could note
that the two major classes of neurons in the cortex differ in their
spike-generating dynamical properties (or excitability classes). Typ-
ically, cortical pyramidal neurons appear to be of class I excitability
and are excitatory, whereas interneurons (at least one large class of
them—the fast spiking interneurons) are of class II excitability15 and
are inhibitory. Thus, it is of interest to understand how not only the
connectivity structure, but also the intrinsic excitability dynamics
define and sculpt the collective dynamics of networks of neurons.
For example, one prominent study11 considered a ring of Mor-
ris–Lecar neuron class I excitability (pyramidal cells) with nonlocal
excitatory connectivity where static chimera states were observed. In
Ref. 10, a ring of the FitzHugh–Nagumo elements, which are typ-
ically class II excitability, of static multichimera were discovered.
However, the authors in both of these studies used the nonsynaptic
(biologically unrealistic) connections, and thus, the question of col-
lective dynamics of a ring of interneurons with biologically plausible
connections is still open. In this paper, we approach this question by
considering a ring of Morris–Lecar class II excitable neurons with
inhibitory connections. Moreover, we choose a uni-directional non-
local connectivity topology that has been earlier proposed as a model
for encoding sequences and sequential information flow (see, for
example, Ref. 16).

II. THE MODEL

We consider a ring of Morris–Lecar neurons17 coupled nonlo-
cally with inhibitory chemical synapses,
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where i ∈ 1, . . . , N, where N is the total neuron number; C is a mem-
brane capacity; Vi is a membrane potential of the ith neuron; wi and
mi are gating variables of K+ and Ca2+ channels; EK, ECa, and EL are
the reversible potentials for potassium, calcium, and leak channels,
respectively; gK, gCa, and gL are their conductances; and Iapp is an
applied current. We set the neuronal parameters in a way to provide
neurons to be class II excitability.

Inhibitory (γ -aminobutyric acid-A, GABAA) synaptic current
supplied to the ith neuron is described by the first order kinetics,6
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TABLE I. The fixed neuronal network parameters.

gK = 8 mS/cm2 EK = −80 mV V1 = −1.2 mV α = 1.1
gCa = 4.4 mS/cm2 ECa = 120 mV V2 = 18 mV β = 0.19
gL = 2 mS/cm2 EL = −60 mV V3 = 2 mV N = 500
φ = 1/25 C = 20 µF/cm2 V4 = 30 mV Kp = 5
Vsyn = 2 mV VR = −60 mV

Here, gsyn is the synaptic strength, VR is the reversal potential,
Vsyn is the threshold, Kp is the synaptic activation, xi is the fraction of
open receptors on the postsynaptic membrane of the ith neuron, and
R is the number of connections directed only in one way (clockwise
or counterclockwise) along the ring. As usual, we define the connec-
tivity parameter r = R

N
that describes the connection density of the

network.
To study the network states, we fix all parameters (Table I)

except the control parameters: external current Iapp, synaptic
strength gsyn, and connectivity parameter r.

III. METHODS

To identify the dynamical regimes of the network, we use the
adaptive coherence measure (ACM).18 The criterion is based on the
χ 2-parameter19 and involves the optimization problem,

R2 = max
1t=(1t1 ,1t2 ,...,1tN)

χ 2
(

{Vi(t − 1ti)}
N
i=1

)

, (3)

where 1t = (1t1, 1t2, . . . , 1tN) is a time delay vector that contains
L unique time lags and χ 2 is defined as follows:

χ 2 =
σ 2

V

1
N

∑N
i=1 σ 2

Vi

, (4)

where σ 2
V is the variance of the average membrane potential of the

network V(t) = 1
N

∑N
i=1 Vi(t) and σ 2

Vi
is variance of the membrane

potential of the ith neuron.
Using both criteria (the number of unique time lags L and the

value of R2), one can easily identify a dynamical regime.18 If R2 is
close to zero, an asynchronous state is observed. For a chimera state,
its value ranges from zero to one: 0 < R2 < 1. In the other cases of
global synchronization, states consisting of only synchronous clus-
ters and traveling waves, R2 is close to one, and to classify the states,
we need to use the number of unique delays L. For traveling waves,
L is equal to N/k (k is the number of waves in the ring); for a clus-
tered state, it is between 1 and N, and for global synchronization, it
is equal to 1. To find the speed of traveling chimera states, we use the
method introduced in Refs. 18 and 20.

For numerical integration, the Euler method with a fixed step
(100 µs) was used. The simulation time of Eqs. (1) and (2) was 30 s.
To set this integration length, we first looked at longer simulations
and found that 30 s is enough to have robust results. Even 2 s is more
than enough to reliably identify the coherent states of the network
(for more information, see the supplementary material). In addi-
tion, we note that 30 s allows one to integrate out any transients and
many orders of magnitude longer than any intrinsic time scale in the
network (e.g., membrane time constants, current kinetic constants,
synaptic time constants).

IV. RESULTS

We find that the network (1) and (2) demonstrates multi-
ple dynamical activity regimes: traveling waves, states with the two
antiphase clusters, chimera states, and spiking death states. The cor-
responding maps of dynamical regimes for the parameter plane
(r, gsyn) for Iapp = 95 µA/cm2 are presented in Fig. 1. The maps for
the plane (Iapp, gsyn) for r = 0.4 and r = 0.89 are available in Fig. S1
of the supplementary material. The main dynamical regimes were
discovered by searching in the space of initial conditions and param-
eters. Thereafter, each region in these diagrams was plotted by a
natural continuation algorithm21 when the simulations started from
the initial conditions obtained for the previous control parameter
value and continued under a small parameter step.

As we see in Fig. 1, there are numerous intersections between
the regions corresponding to the different states. In other words,
the network typically demonstrates multistability. As in Ref. 22, at
each set of parameters, depending on initial conditions, the net-
work shows various collective dynamics. We can note that in the
(r, gsyn) plane, there are several regions that are associated with
chimera states: “Ch1,” “Ch2,” and “Ch3” (Fig. 1). Let us focus on
the largest and most interesting region Ch1, and other regions are
discussed in the supplementary material. This region contains an
area, which has no intersection with the other regions and where we
find only a static multichimera state. Figure 2 shows an example of
such a state (corresponding to the parameter set of point A in Fig. 1:
Iapp = 95 µA/cm2, r = 0.89, and gsyn = 4.5 mS/cm2).

FIG. 1. Maps of the coherent states of the network (1) and (2): the parameter
plane (r , gsyn) for fixed applied current Iapp = 95µA/cm2. Regimes: traveling
wave (blue), cluster synchronization (yellow), chimera state (green), and spiking
death (red). Due to multistability, the regions intersect and their colors mix: for
example, the gray color in the lower left corner is the intersection of the regions
of traveling waves (blue) and cluster synchronization (yellow). The borders of the
regions keep their own colors.
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FIG. 2. A multichimera state: the raster plot (a), the frequency distribution (b), and the snapshot (c): Iapp = 95µA/cm2, gsyn = 4.5 mS/cm2, and r = 0.89.

A. Evolution of chimera states

Let us consider the evolution of this chimera state associated
with point A in Fig. 1 when varying the control parameters gsyn and r.

For increasing synaptic strength gsyn and a fixed value r = 0.89
(moving up from point A in Fig. 1), we see successive transitions to
a breathing chimera state [Fig. 3(a)], a traveling breathing chimera
state [Fig. 3(b)], and, finally, to traveling waves [Fig. 3(d)]. Due to
the abrupt change R2 and L at the moment of transition to the trav-
eling wave regime (see Fig. S14 and additional information in the
supplementary material) and analysis of Fig. 1, we can conclude that
the last transition happens through the disappearance of the trav-
eling breathing chimera state and evolution of the network to the
already existing regime of traveling waves.

When, on the other hand, we decrease the synaptic strength gsyn

for the fixed value r = 0.89 (moving down from point A in Fig. 1),
the incoherent domains of the multichimera state become smaller
[Fig. 4(b)] and with further decreases of gsyn disappear completely.

The network, in this case, evolves to a state with two antiphase
clusters [Fig. 4(c)].

Moving from point A to the right by increasing the connectiv-
ity parameter r for the fixed synaptic strength (gsyn = 5 mS/cm2), the

network also demonstrates a transition to a state with two antiphase

clusters. The difference from the previous case is that along with

the typical two cluster spiking state, there exists a state with two

antiphase clusters for which neurons of one of the clusters show sub-

threshold voltage oscillations and never generate spikes. Note that

despite the fact that mathematically, these two states are almost sim-

ilar, and from a biological point of view, the difference between them
is significant. Since spike generation is a critically important fac-
tor in the transmission, processing, and storage of information, the
lack of spike generation in one of the clusters actually removes these
neurons from information processing and also reduces the “popu-
lation” frequency of the network by two times that can be observed
experimentally.

FIG. 3. Transition from a multichimera state to a breathing chimera state and further to traveling waves (moving down from point A in Fig. 1: Iapp = 95µA/cm2 and r = 0.89).
The synaptic strength is gsyn = 6.4 mS/cm2 (a), gsyn = 7.1 mS/cm2 (b), gsyn = 7.7 mS/cm2 (c), and gsyn = 7.9 mS/cm2 (d).

Chaos 32, 101101 (2022); doi: 10.1063/5.0117845 32, 101101-4

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://www.scitation.org/doi/suppl/10.1063/5.0117845


Chaos ARTICLE scitation.org/journal/cha

FIG. 4. Transition from a multichimera state to a synchronous regime with two antiphase clusters (moving down from point A in Fig. 1: Iapp = 95µA/cm2 and r = 0.89).
The synaptic strength is gsyn = 3.5 mS/cm2 (a), gsyn = 3mS/cm2 (b), and gsyn = 2.5 mS/cm2 (c).

In the left part of region Ch1, we observe a traveling multi-
chimera state like at point B in Fig. 1 (Iapp = 95 µA/cm2, r = 0.79
and gsyn = 2 mS/cm2). The raster plot, the frequency distribution,
and the frequency diagram are presented in Fig. 5(a). With the
growth of synaptic strength gsyn, the chimera speed increases, and
in the frequency diagram [Figs. 5(b) and 5(c)], the “frequency oscil-
lating tails” appear. These tails contain neurons generating spikes
with various frequencies, and for sufficiently large synaptic strength,
there are some neurons that stop generating spikes during finite
time intervals. The number of neurons showing subthreshold oscil-
lations becomes larger with increasing synaptic strength. We call
such states complex multichimera states. The tails of complex multi-
chimera states can consist almost entirely of subthreshold domains,
such as in Fig. 6(a) (point C in Fig. 1; Iapp = 95 µA/cm2, r = 0.76,
and gsyn = 6.5 mS/cm2). With increasing synaptic strength, the sub-
threshold domains become smaller, and for large enough gsyn, there
occurs a transition to traveling waves [Figs. 6(b) and 6(c)].

B. Slow transients

As we showed above, in most parameter regions, the network
demonstrates multistability. This means that for the same parameter
set, the network can exhibit various states depending on the initial
conditions. This, in turn, allows control of the network regimes by
altering external forcing or changing the initial conditions. When
we looked into the time scales of transitions from one state to
another, we found along with rapid switching that the network can
demonstrate very long transient processes. Therefore, even if the
initial conditions have changed, the transition from one dynamic

regime to another one can take a long time, and this looks like
a metastable state. For instance, if we move up from point A in
Fig. 1 (Iapp = 95 µA/cm2, r = 0.89, and gsyn grows), the network
shows a transition from the static chimera state (Fig. 2) to the
traveling chimera and further to traveling waves (Fig. 3). In par-
ticular, for gsyn = 8.9 mS/cm2, the network is able to demonstrate
the traveling waves. However, if we start from the initial conditions
corresponding to the already non-existent static breathing chimera
state, the network keeps such activity for more than 6 s, and only
after that state, traveling waves start to form (Fig. 7). For the cellu-
lar processes in the brain, 6 s is an extremely long time, orders of
magnitude longer than any of the cellular time constants; hence,
we see an emergence of ultra-slow-time scale dynamic behaviors.
Such slow transients can also be observed for a transition between
different states and, in particular, between chimera states. For exam-
ple, a static multichimera may be suddenly replaced by a traveling
multichimera after approximately 6 s (Fig. 8). Possible dynamical
mechanisms of such transients are still unclear and require further
research.

C. Influence of the applied current

Neuronal excitability, which is controlled by the parameter Iapp

in the network [Eqs. (1) and (2)], also plays a key role in collective
activity of the network (see Fig. S1 in the supplementary material).
For small values of the parameter, we observe a spiking death regime
when only a small number of neurons in the network are active
(see the supplementary material). With the growth of Iapp, progres-
sively more neurons become active, forming two antiphase clusters.
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FIG. 5. Transition from a multichimera state to a complex multichimera state (moving up from point B in Fig. 1: Iapp = 95µA/cm2 and r = 0.79). The synaptic strength is
gsyn = 2mS/cm2 (a), gsyn = 3.5 mS/cm2 (b), and gsyn = 5.5 mS/cm2 (c).

FIG. 6. Transition from a complex multichimera state containing large subthreshold domains to traveling waves (moving up from point C in Fig. 1: Iapp = 95µA/cm2 and
r = 0.76). The synaptic strength is gsyn = 6.5 mS/cm2 (a), gsyn = 7.5 mS/cm2 (b), and right: gsyn = 8mS/cm2 (c).
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FIG. 7. Transient process from a breathing chimera to a traveling wave. Below, there are frequency diagrams and snapshots for (from left to right) t = 4000 and 11 000ms,
respectively. Parameters: Iapp = 95µA/cm2, r = 0.89, and gsyn = 8.25 mS/cm2.

For still higher values of the applied current, traveling waves become
the most probable regime. Interestingly, chimera states coexist over
a wide range of Iapp with the other coherent states (clusters and/or
traveling waves). Additional information about the impact of neu-
ronal excitability on the activity pattern formation is given in the
supplementary material.

V. DISCUSSION

In this paper, we made a step to connection asymmetry and
considered a network of identical (excitability class II) Morris–Lecar
neurons with nonlocal directed, yet homogeneous, inhibitory con-
nections. We emphasize that the article is devoted not only to the
study of the mechanism of chimeras, but also to the stability and
features of chimera-like states in conditions of an imperfection of
topology. We showed that even in the case of one-way connections,
the chimera states still exist. In our network, all neurons are iden-
tical, all of them are interacting with other neurons (the network is
not modular), and each neuron receives the same impact from the
network in the sense that all neurons are connected with the same

number of other neurons (all neurons have identical connectivity
patterns). From this point of view, in spite of network asymme-
try, there is an “interaction” symmetry, the network is homoge-
neous, and we can use the term “chimera state” when we observe
that the network breaks up into synchronous and asynchronous
domains.

To identify coherent states of the network (global synchroniza-
tion, states with two asynchronous clusters, traveling waves, and
chimera states), we used the ACM approach.18 It was found that
ACM performs very well. The advantages of ACM are that it does
not have internal parameters, is able to distinguish all basic coherent
states, and is thus applicable for continuous analysis and plotting 2D
maps. Using this approach and the natural continuation algorithm,
we partitioned the parameter space into regions of various network
states and showed that multistability occurs for most sets of param-
eters (technical aspects of using the ACM approach are available in
the supplementary material). Such multistability should allow con-
trol of the network state by external stimulation or initial condition
changes. At the same time, we have shown that certain transitions
between the network states can initiate the long transient processes
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FIG. 8. Transient process from a static multichimera to a traveling multichimera. Below, there are frequency diagrams and snapshots for (from left to right) t = 1000 and
10 000ms, respectively. Parameters: Iapp = 95µA/cm2, r = 0.77, and gsyn = 4.5 mS/cm2.

that can last far beyond any intrinsic time scales of the constituent
neurons or their connections (more than several seconds).

Such long transients make it possible to consider the metasta-
bility of chimera states as an important aspect not only of attractor
but also of transient (metastable) neuronal dynamics. For example,
heteroclinic sequential dynamics have been suggested before and
are based on robust heteroclinic cycles (or stable heteroclinic chan-
nels) implementing winnerless competition (see, for example, the
review23). In our case, we have no sequential dynamics and trajectory
without an external input after enough long interval approaches to
a stable network state. In other words, we have shown that our net-
work can have long transients whose duration (several seconds) is
compatible with time scales of cognitive tasks.

Moreover, this makes it possible to observe metastable chimera
states outside the areas of their existence, and we can form such tran-
sients by a pattern of initial conditions providing a potentially more
flexible control over network dynamics. We will continue to study
this phenomenon.

In addition, we considered the evolution of the chimera states
observed in the largest area Ch1 of the parameter space. We found

that depending on the synaptic strength and the connectivity param-
eter, the network can change the structure of the chimera states. For
instance, it can transform the chimera states from static to traveling
chimeras and from stationary to breathing chimera states.

SUPPLEMENTARY MATERIAL

In the supplementary material, we include additional infor-
mation about the activity of the studied network. In particular, we
describe properties of the chimera states in chimera regions com-
plementary to the one considered in the main results (Ch2 and
Ch3). Also, we consider the influence of neuronal excitability on the
chimera states. For clarity, we further describe the regime of spiking
death. In addition, we add technical information on how we have
used the ACM approach for the study of evolution of the chimera
states.
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