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Fosca Errante7, Mahamadou Diakité 1, Myriam Arevalo-Herrera8,9, Socrates Herrera9,8,
Giampietro Corradin10 and Saidou Balam1,11*

1 Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB),
Bamako, Mali, 2 Department of Ministry of Health and Social Development, Hopital de Dermatologie de Bamako (HDB),
Bamako, Mali, 3 Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California
Santa Barbara, Santa Barbara, CA, United States, 4 Montpellier Cell Biology Research Center (CRBM), University of
Montpellier, CNRS, Montpellier, France, 5 Immuno-Allergology Unit, Department of Clinical and Experimental Medicine,
University of Pisa, Pisa, Italy, 6 Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of
Chemistry “Ugo Schiff”, University of Florence, Florence, Italy, 7 Interdepartmental Research Unit of Peptide and Protein
Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health, Section of
Pharmaceutical Sciences and Nutraceutics, University of Florence, Florence, Italy, 8 Department of Immunology, Malaria
Vaccine and Drug Development Center, Cali, Colombia, 9 Department of Immunology, Caucaseco Scientific Research
Center, Cali, Colombia, 10 Biochemistry Department , University of Lausanne, Lausanne, Switzerland, 11 Department of
Nephrology, University Hospital Regensburg, Regensburg, Germany

Despite the global interest and the unprecedented number of scientific studies triggered
by the COVID-19 pandemic, few data are available from developing and low-income
countries. In these regions, communities live under the threat of various transmissible
diseases aside from COVID-19, including malaria. This study aims to determine the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroreactivity of antibodies from
COVID-19 and pre-COVID-19 samples of individuals in Mali (West Africa). Blood samples
from COVID-19 patients (n = 266) at Bamako Dermatology Hospital (HDB) and pre-
COVID-19 donors (n = 283) from a previous malaria survey conducted in Dangassa village
were tested by ELISA to assess IgG antibodies specific to the full-length spike (S) protein,
the receptor-binding domain (RBD), and the receptor-binding motif (RBM436–507). Study
participants were categorized by age, gender, treatment duration for COVID-19, and
org April 2022 | Volume 13 | Article 8560331
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comorbidities. In addition, the cross-seroreactivity of samples from pre-COVID-19,
malaria-positive patients against the three antigens was assessed. Recognition of the
SARS-CoV-2 proteins by sera from COVID-19 patients was 80.5% for S, 71.1% for RBD,
and 31.9% for RBM (p < 0.001). While antibody responses to S and RBD tended to be
age-dependent, responses to RBM were not. Responses were not gender-dependent for
any of the antigens. Higher antibody levels to S, RBD, and RBM at hospital entry were
associated with shorter treatment durations, particularly for RBD (p < 0.01). In contrast,
higher body weights negatively influenced the anti-S antibody response, and asthma and
diabetes weakened the anti-RBM antibody responses. Although lower, a significant
cross-reactive antibody response to S (21.9%), RBD (6.7%), and RBM (8.8%) was
detected in the pre-COVID-19 and malaria samples. Cross-reactive antibody responses
to RBM were mostly associated (p < 0.01) with the absence of current Plasmodium
falciparum infection, warranting further study.
Keywords: SARS-CoV-2 S protein, seroreactivity, COVID-19 samples, cross-reactivity, Pre-COVID-19 samples,
malaria endemic-area
INTRODUCTION

Coronaviruses are a group of enveloped viruses containing a
single-stranded RNA genome with positive polarity (1). They
include severe acute respiratory syndrome coronavirus (SARS-
CoV), Middle East respiratory syndrome (MERS-CoV) (1–3),
and severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) or COVID-19 (4, 5). COVID-19 affects people of all ages,
but morbidity and mortality are more significant in the elderly
and those with chronic diseases (6–9). Emerging in China in
2019 (10), COVID-19 rapidly spread worldwide and was
declared a pandemic by the WHO in March 20201,2. More
than 200 million cases and over 4 million deaths have been
reported worldwide, affecting 220 countries and territories3,
generating massive economic and social consequences. The
first COVID-19 case diagnosed in Mali was reported on March
25, 2020, and Malian health authorities quickly established a
strategy to control the disease4. In addition, the authorities have
promoted the harmonization of research activities by leveraging
research laboratory capacities and strengthening relationships
among local and international stakeholders (11–13).

Despite considerable global efforts to study the immune
responses elicited by SARS-CoV-2 and their role in clinical
protection and pathogenesis (14–17), the host factors leading
, 2020|COVID-19: Surveillance, case
ls. https://www.who.int/publications/i/
-of-cases-and-clusters-of-covid-19:

020| COVID-19: Infection prevention
int/publications/i/item/10665-331495.

emiological update—February 9, 2021.
/weekly-epidemiological-update—9-
, 2021].
pport de situation COVID-19 au Mali,
36. https://covid19-ml.org/: [Accessed

org 2
to low or moderate clinical manifestations, as well as completely
asymptomatic infections, are not well understood. Initial analysis
indicates that certain populations have been exposed to other
microorganisms, either pathogenic or non-pathogenic, which
appear to induce immune responses against COVID-19 (i.e.,
antibodies or potentially other immune effectors that contribute
to reducing or preventing COVID-19 clinical manifestations
(18–25)).

Specific antibody responses to COVID-19 have been reported
in moderately and severely symptomatic SARS-CoV-2-positive
individuals (26–32). However, there are few data available linking
symptomatic disease and duration of hospitalization or treatment
with specific antibodies to SARS-CoV-2 antigens. Such antibodies
may be detected as early as the end of the first week of illness;
however, they may also take weeks to appear, giving rise to
different clinical outcomes (29, 33). In addition, the presence or
absence of protective immunity due to infection or vaccination
may affect future transmission and disease severity (29).

Of notable importance, it has been observed that there are
significantly lower COVID-19 clinical cases and fatalities
in malaria-endemic regions than in non-endemic areas
(19, 22, 34). Several host factors, including sociodemographic
conditions, genetic background, and immune status, could be
influencing the COVID-19 clinical evolution. Moreover, other
SARS cases, induced by viruses potentially sharing common
immunodominant antigens, might affect the outcome of the
disease (18, 20, 35, 36).

Considering the burden of malaria in Mali (37) and the
potential for clinical overlap with COVID-19, efforts to both
study diseases and understand the potential immunological
interplay are ongoing (19, 22). This potential relationship has
tremendous epidemiological relevance not only for understanding
clinical outcomes in malaria-endemic and non-endemic regions
but also for COVID-19 vaccination efforts. In the absence of a
specific anti-SARS-CoV-2 treatment, research into this area is of
considerable importance.
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The spike (S) protein is encoded by a systematic interplay
between the SARS-CoV-2 genome, the nucleocapsid (N), the
membrane (M), the envelope (E), and various additional
structural proteins. It plays a crucial role in viral infection and
pathogenesis of COVID-19 (38, 39), as it is essential for the viral
invasion of the host cell, mainly through its RBD domain (5, 9,
37). Both RBD and its ligand, the human angiotensin-converting
enzyme-2 (ACE2), are crucial research targets for developing
COVID-19 therapeutic antibodies, vaccines, and serological tests
(2, 40–45). Currently, most COVID-19 vaccines in use or
development are based on the S protein; however, the different
vaccine platforms have demonstrated a variety of strengths and
weaknesses5. In addition to the commonly used S protein and its
RBD, we designed (manuscript submitted) and studied the S
protein’s receptor binding motif (RBM436–507) that interacts
with ACE2.

Vaccine success is likely associated with the specificity and
strength of the immune response it triggers against the S protein,
specifically against its RBD. However, this immune response may
also correlate with factors like age, gender, ethnicity, disease
experience (i.e., disease evolution), treatment duration, and
comorbidities, among others (6–8).

In light of all these issues, this study aimed to assess the
natural antibody response specific to the full-length S protein, its
functional domains RBD (protein), and RBM (peptide) using
plasma collected from COVID-19-positive patients and pre-
COVID-19 participants from a malaria-endemic region. The
epidemiological paradox observed in COVID-19 and malaria
patients in the initial phase, and in the dynamics of infection in
malaria-endemic countries (19, 22), promotes the need for
further studies in this area to produce a better understanding
of the genetic and immunological factors involved.
METHODS

Study Type, Periods, and Sites
A cross-sectional study was conducted to assess the seroreactivity
of COVID-19 patients and pre-COVID-19 donors against the
SARS-CoV-2 full-length recombinant S protein and its binding
domains RBD and RBM. Samples were collected from the
Dermatology Hospital of Bamako (HDB) in Mali (West
Africa); sociodemographic and epidemiological surveys were
also carried out. While all COVID-19 blood samples were
collected from patients confirmed to harbor SARS-CoV-2 by
RT-PCR test, pre-COVID-19 plasma samples were gathered in
2019—before the onset of the COVID-19 pandemic—and
therefore were not tested by COVID-19 RT-PCR. The latter
were collected from donors living in the Village of Dangassa in
Mali, a malaria-endemic zone, and were stored frozen at −20°C.
All laboratory tests were performed at the Laboratory of
Immunogenetic and Parasitology, at the International Centre
of Excellence in Research (ICER-Mali) of the University of
5World Health Organization: COVID-19 vaccines. https://www.who.int/
emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines: [Accessed on
September 11, 2021].
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Sciences, Techniques and Technologies of Bamako (Mali). The
data management and sample processing were carried out from
May 2021 to September 2021.

Study Population
The study population included COVID-19-infected patients (n =
266; sex ratio = 1.2 in favor of men) with SARS-CoV-2 confirmed
by RT-PCR and admitted to the HDB for inpatient care. The pre-
COVID-19 population consisted of volunteers (n = 283; sex ratio
= 1.1 in favor of women) who had participated in a previous
malaria survey study in 2019, before the onset of COVID-19 in
Mali. The study population (COVID-19 and pre-COVID-19
participants) were stratified by age groups 1–4, 5–9, 10–14, 15–
19, 20–29, 30–39, 40–49, 50–59, 60–69, and 70+ years. This
adjusted for the age structure of the population as recommended
by the WHO guidelines on population-based sero-surveys of
SARS-CoV-2 infection6. COVID-19 participants provided
sociodemographic and epidemiological data, including
comorbidities and length of treatment duration. Pre-COVID-
19 participants had records of sociodemographic and
epidemiological data, and current Plasmodium falciparum
infection (parasitemia) was confirmed by microscopic
examination after Giemsa staining of blood smear (BS) slides.
None of the participants had a history of COVID-19 vaccination.

Ethical Considerations
This study was approved by the Institutional Review Board
(Ethics Committee, EC) of the Faculties of Medicine and
Odontostomatology and of the Pharmacy of Bamako (with
reference N°2021/25/CE/USTTB). Written informed consent
(IC) was obtained from each COVID-19 patient for the
collection of blood samples, sociodemographic information,
and clinical data for future investigative purposes. The
authorization of the use of pre-COVID-19 samples and data
was also obtained from the same EC and under the reference
cited above. The current study was based on available data from
participants whose plasma samples and related data were
available and accessible. The confidentiality of the participants’
data was preserved throughout this study.

Variables, Data, and Sample Collections
Data analysis was carried out using medical records from the HDB
data register. Data were collected at the time of hospital admission
(on week 1) and during hospitalization at HDB in 2020. Data were
collected using a paper questionnaire developed for this purpose,
including 1) sociodemographic information; 2) symptoms and
severity of disease; 3) comorbidities or factors such as diabetes,
hypertension, asthma, and body weight; 4) clinical evolution of the
disease’s form; and 5) duration of hospital stay or treatment. The
pre-COVID-19 participant samples were collected from the village
of Dangassa in 2019 before the onset of COVID-19 in Mali. The
variables in the pre-COVID-19 group included sociodemographic
(age and gender) and epidemiological data such as the presence
6Population-based age-stratified seroepidemiological investigation protocol for
coronavirus 2019 (COVID-19) infection, May 26, 2020, version 2.0. https://apps.
who.int/iris/handle/10665/332188: [Accessed on September 29, 2021].
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and density of current P. falciparum infection. A BS slide was
performed and examined by microscopy for the presence and
density of P. falciparum [positive (BS+) or negative (BS−) for each
pre-COVID-19 sample].

Whole blood (5–10 ml) was collected from each COVID-19
patient by venipuncture upon admission to HDB, and the sample
transportation to the laboratory was carried out following the
WHO guidelines for Infectious Substances 2019–2020 (46).
Trained biologists were responsible for ensuring compliance
with these guidelines.

Protein Sequence Analysis, Design, and
Antigen Production
Sequences of the S protein were downloaded from the National
Center for Biotechnology Information (NCBI) SARS-CoV-2
Resources7. Recombinant proteins from the full-length S and
RBD were provided by ExcellGene SA (Monthey, Switzerland)
and Protein Production and Structure Core Facility, EPFL
(Lausanne, Switzerland)8. Proteins were produced according to
the manufacturer’s recommendations9. A peptide covering the
receptor-binding interface (receptor binding motif, RBM436–507) of
the S protein was synthesized at the Chemistry Department,
Florence University, Florence, Italy. RBM is known to undergo
some post-translational modifications (PTMs) such as
glycosylation, but this does not directly contribute to the binding
affinity between SARS-CoV-2 S and ACE-2 (47). In addition, as it
is a synthetic product used in ELISA, RBM is not expected to
undergo any further modification. The 3D images were generated
using PyMol software, an open-source molecular graphics tool
(48) using the atomic coordinates from PDB entry 6ZOY (49). The
illustrative diagram of domains, amino acid sequences, and the 3D
structure of the S protein displaying both the RBD and RBM
sequences are all shown in Supplementary Figure 1.

Enzyme-Linked Immunosorbent Assay
Sample seroreactivity was studied using an ELISA with 96-well
plates (type of plate, Ref 442404). Plates were coated with 1 mg/
ml of S, RBD, or RBM (antigen coating) or not coated with an
antigen (non-antigen coating) and then incubated overnight (O/
N) at 4°C. The plates were then blocked for 1 h at room
temperature (RT) with phosphate-buffered saline (PBS) 1× (3%
milk) before being incubated for 2 h at RT with COVID-19 and
pre-COVID-19 plasma samples at a dilution of 1:100. Goat anti-
human IgGs, conjugated to horseradish peroxidase (HRP), were
used as secondary antibodies, diluted to 1:5,000 (Life
Technologies, Carlsbad, CA, USA; Ref H10307), and incubated
for 1 h at RT. Signals were revealed using TMB substrate reagent
(BD OptEIA, cat 555214; BD Biosciences, San Jose, CA, USA) for
20 min in the dark at RT, and the reaction was stopped using 1 M
of sulfuric acid (Merck, Darmstadt, Germany; 1.00731.1000).
Optical density (OD) was measured at 450/630 nm in a
microplate ELISA-Reader (SoftMax®Pro Software). Samples
were considered positive when their mean OD was ≥mean OD
7https://www.ncbi.nlm.nih.gov/sars-cov-2/: [Accessed on September 30, 2021].
8https://www.epfl.ch/research/facilities/ptpsp/: [Accessed on September 29, 2021].
9https://www.excellgene.com: [Accessed on September 29, 2021].

Frontiers in Immunology | www.frontiersin.org 4
+ 3SD of the negative control samples (indicated as the cutoff).
The cross-reactivity of pre-COVID-19 samples was considered
significant for the samples with a mean OD ≥mean OD + 3SD of
the negative controls with a dilution of 1:100 (indicated as the
cutoff). Non-specific binding samples (i.e., samples with
antibody responses in non-antigen-coated plates), were
determined to be samples with an OD against non-coated
plates greater or equal to the same sample’s response against
antigen-coated plates (i.e., responder sample).

Data Management and Statistical Analysis
Data from the coded questionnaires were directly entered into
the electronic data entry system during data and sample
collection. Each participant was assigned a number that was
known only to the investigators. The information was entered in
Excel 2013, and ELISA data were imported directly into Excel
and associated with the participants’ sociodemographic and
epidemiological data. The analysis and generation of figures
were done with Stata and Prism 5 software. The unpaired t-
test, chi-squared test, and Fisher’s exact test were used to
compare groups with a significance threshold of 5%.
RESULTS

Sequences and 3D Structures of S Protein,
and the Receptor-Binding Domain and
Receptor-Binding Motif Domains
Three antigens, namely, the full-length S protein (1250 aa), its
RBD (211 aa), and a synthetic peptide covering the binding
interface (RBM; 72 aa) of RBD, were used in this study
(Supplementary Figure 1). The S protein plays a crucial role in
viral infection and pathogenesis, as it mediates the SARS-CoV-2
binding to human ACE2. It comprises two functional subunits: S1,
which harbors the N-terminal domain (NTD) and the receptor-
binding domain (RBD), responsible for binding to the host cell
receptor; and the S2, which harbors the heptad repeat 1 (HR1) and
2 (HR2), responsible for the fusion of viral and cell membranes
(39) (Supplementary Figure 1A). The full-length sequence of the
S protein of SARS-CoV-2 was obtained using the BLASTP search
program (50, 51). The SARS‐CoV‐2 RBD shows significant
sequence homology (~73%) with seasonal phylogenetically
related coronaviruses (25, 52–54) (Supplementary Figure 1B).
The RBM is a segment representing approximately 6% of the S
protein’s length, located within the RBD domain. It is recognized
by the ACE2 protein and not only represents the most variable
region of the protein but is also highly specific to SARS-CoV-2
(Supplementary Figure 1C). The 3D image of the SARS-CoV-2 S
protein structure was made while displaying the RBD and RBM
locations (48, 49) (Supplementary Figure 1D).

Seroprevalence of Antibodies Against S,
Receptor-Binding Domain, and Receptor-
Binding Motif in COVID-19 Patients
Overall, all three antigens were well recognized by the COVID-
19 samples but with significant variation among the S, RBD, and
RBM antigens (p < 0.0001; Figure 1A). In terms of antibody
April 2022 | Volume 13 | Article 856033
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prevalence, of the 266 samples studied, 214 samples (80.5%)
recognized S, 189 (71.1%) recognized RBD, and 85 (31.9%)
recognized RBM (Table 1). In terms of antibody level, the S
protein showed a two-fold higher antibody OD than RBD, which
in turn showed a two-fold higher antibody OD than RBM; the
median OD and interquartile 1 and 3 (Q1; Q3) were 0.685 (0.335;
1,217), 0.378 (0.225; 0.880), and 0.177 (0.126; 0.277),
respectively (Figure 1A).

When only the reactive samples (responders) were assayed, the
S protein showed a higher median OD for Q1 and Q3 [0.834
(0.509; 1.324)] than did RBD [0.5268 (0.340; 1.194)] or RBM
[0.436 (0.283; 0.773)] (Figure 1B). While reactivity with S and
RBD was observed in 65.5% (174/266), only 27.1% (72/266) of
COVID-19 donors recognized all three antigens (Figures 2A–C).
Frontiers in Immunology | www.frontiersin.org 5
This reactivity would be relevant in selecting antibody donors and
antigens for further analysis. The recognition of S correlated with
recognition of RBD (r = 0.63, p = 0.001; Figure 2A), and
recognition of RBD correlated with recognition of RBM (r =
0.45, p = 0.001; Figure 2B). In contrast, there was little correlation
between the recognition of S and the recognition of RBM (r =
0.003, p = 0.9; Figure 2C). Although samples from pre-COVID-19
volunteers (n = 283) presented lower reactivity frequencies and
ODs than the COVID-19 samples (p < 0.05; Figures 1, 2; Table 1),
they still displayed a significant level of cross-reactivity against the
three antigens (see Figure 3 and Supplementary Figure 4).

The analysis of IgG antibody levels by gender (male (M) and
female (F)) in the COVID-19 patient group indicated
comparable results between the two genders for each antigen
TABLE 1 | Frequency of responders against S, RBD, and RBM in COVID-19 and pre-COVID-19 donors.

Samples S responder n (%) RBD responder n (%) RBM responder n (%)

COVID-19 (N = 266) 214 (80.5) 189 (71.1) 85 (31.9)
Pre-COVID-19 (N = 283) 62 (21.9) 19 (6.7) 25 (8.8)
p ** ** **
April 2022 | Volu
The proportion of responder samples against S, RBD, and RBMwas calculated using the samples showing an antibody mean OD ≥mean OD + 3SD of the negative controls at the dilution
1:100 (indicated as the ELISA cutoff). Fisher’s exact test was used to compare the proportion of responders between the COVID-19 and pre-COVID-19 groups. N, total number of
samples; n, number of responder samples; %, percent of responder samples; RBD, receptor-binding domain; RBM, receptor-binding motif; OD, optical density.
**p ≤ 0.01.
A B

FIGURE 1 | Distribution of antibody responses against S, receptor-binding domain (RBD), and receptor-binding motif (RBM) antigens in COVID-19 and pre-COVID-
19 samples. (A) Global analysis of samples (positive and negative in ELISA) shows that antibody (Ab) levels (mean OD shown as a horizontal black line in the dot
plots) for S, RBD, and RBM were significantly higher in COVID-19 patient samples as compared to pre-COVID-19 donor samples (p < 0.0001). Also, the Ab levels
varied significantly (p < 0.0001) among S, RBD, and RBM in COVID-19 samples. The table shows the median OD, Q1, and Q3 values of antibodies for S, RBD, and
RBM in COVID-19 and pre-COVID-19 samples. (B) Levels of Ab responses in responder-only COVID-19 samples were significantly higher than in responder-only
pre-COVID-19 samples (cross-reactive responders) for S (p < 0.0001), RBD (p < 0.01), and RBM (p < 0.05). The table shows the median OD, Q1, and Q3 of
antibodies for S, RBD, and RBM of responder-only samples in COVID-19 and pre-COVID-19 participants. The unpaired t-test and ANOVA were performed to
compare the mean ODs of antibodies between the two groups and within the groups themselves, respectively. *p < 0.05; ** p < 0.01; ****p < 0.0001; OD, optical
density; Q1, quartile 1; Q3, quartile 3.
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(Supplementary Figures 2A–C). In the COVID-19 patient
group, the median OD (Q1; Q3) for M vs. F was 0.609 (0.333;
1.260) vs. 0.712 (0.339; 1.193), 0.371 (0.229; 0.873) vs. 0.390
(0.213; 0.887), and 0.174 (0.130; 0.251) vs. 0.186 (0.123; 0.300)
for S, RBD, and RBM, respectively (Supplementary Figures 2A–
C). The frequency of responders and antibody OD were both
similar between M and F (p > 0.05) in both COVID-19 and pre-
COVID-19 groups, except for the cross-reactive response to
RBM (Supplementary Figure 2C) in the pre-COVID-19 group
(Table 2). Furthermore, the non-specific binding of antibody
samples in COVID-19 patients accounted for 8.9% (17 out of
189), and 14.1% (12 out of 85) of the seroreactive samples for S,
RBD, and RBM, respectively (Table 3).

Overall, antibody levels increased as a function of age—
particularly for S and RBD—but not for the RBM fragment
(Figure 4). Furthermore, antibody levels to S and RBD were
comparable at the earlier ages under 19 and above 59 years and
were significantly greater than those against RBM.

Levels of Anti-S, Receptor-Binding
Domain, and Receptor-Binding Motif
Antibodies at Hospital Admission and
Duration of Remission From the
Symptomatic COVID-19
Here, we analyze the association between antibody levels toward
S, RBD, and RBM at the time of hospital admission and duration
Frontiers in Immunology | www.frontiersin.org 6
of treatment (i.e., the remission of symptomatic forms). Duration
of remission was thus defined as the estimated time in days (≤30
or >30 days) from hospital admission to recovery from
symptomatic SARS-CoV-2 infections, as confirmed by at least
two negative RT-PCRs. Overall, the duration of treatment was
shorter for participants who had higher antibody levels at
admission for all three antigens, especially for RBD (p < 0.01)
(Figure 5). In addition, for the patient group with treatment
periods ≤30 days, Ab levels for S, RBD, and RBM varied more
significantly from each other (p < 0.0001) than among those
hospitalized for longer periods (p = 0.037) (Figure 5). However,
the proportion of responder samples for S, RBD, or RBM was
comparable between the ≤30- and >30-day treatment
groups (Figure 5).
Preexisting Comorbid Conditions and
Elicitation of Anti-S, Receptor-Binding
Domain, and Receptor-Binding Motif
Antibodies Among COVID-19 Patients
Comorbidities such as diabetes, hypertension and asthma, and
high body weight were evaluated as factors that may impact the
effective development of antibodies against S, RBD, and RBM in
COVID-19 patients. The antibody levels (mean OD) for S, RBD,
and RBM were similar between the patient groups with and
without arterial hypertension (AHT) and were slightly higher in
the patient groups not suffering from diabetes or asthma
A

C

B

FIGURE 2 | Positive responder samples from COVID-19 patients simultaneously recognizing two or all three antigens. There was a significant positive correlation
between antibody responses (antibody optical density (OD)) against S and receptor-binding domain (RBD) (R = 0.63, p = 0.001 (A)), and between antibody
responses against RBD and receptor-binding motif (RBM) ((R = 0.45, p = 0.001 (B)), but not for antibody responses against S and RBM (R = 0.003, p = 0.9 (C)).
The two-sided Spearman’s rank correlation test was used to determine p- and R-values. The gray lines are the lines of best fit for each scatter diagram. The table
shows the number (n) and prevalence (%) of responder samples recognizing only S, or only S and RBD, or recognizing all three antigens simultaneously.
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(Figures 6A–C). Similarly, the prevalence of antibody responders
for S and RBD remained similar between patient groups with or
without comorbidity (p > 0.05; Table 4), whereas COVID-19
patient groups suffering from asthma and diabetes showed no
positive antibody responses against RBM (Table 4). In addition,
increasing body weight was associated with a significant decrease
in antibody responses to S and a slight decline in antibody
response to RBD (Figure 6D). The occurrence of two or more
simultaneous comorbidities in a COVID-19 patient did not
significantly impact the level of anti-S- and RBD-specific
antibodies; however, there was no correlation between two
Frontiers in Immunology | www.frontiersin.org 7
comorbidities in COVID-19 patients and the response against
RBM (Supplementary Figures 3A–C).

Level of Anti-S, Receptor-Binding Domain,
and Receptor-Binding Motif Cross-
Reacting Antibodies and Active Malaria
Infection in the Pre-COVID-19 Malaria
Infection Samples
The cross-reactivity of S, RBD, and RBM among the pre-
COVID-19 samples from donors living in malaria-endemic
areas (Dangassa village) was studied. The antibody OD
FIGURE 3 | Cross-reactivity and non-specific binding against S, receptor-binding domain (RBD), and receptor-binding motif (RBM) in pre-COVID-19 and endemic
malaria samples. The cross-reactive antibody levels (mean optical density (OD) shown as a horizontal black line in the dot plots) for S, RBD, and RBM were
demonstrably higher than in non-specific binding antibody levels; this was significant for S (p < 0.01). The table shows the number and proportion (frequency) of
samples showing cross-reactions or non-specific binding for S, RBD, and RBM. N, total number of pre-COVID-19 samples; n, number of cross-reactive or non-
specific binding samples; %, percent of cross-reactive or non-specific binding samples; Q1, quartile 1; Q3, quartile 3. The unpaired t-test and ANOVA were used to
compare mean antibody ODs between different groups and within the groups themselves, respectively. **p ≤ 0.01; ns, not significant.
TABLE 2 | Prevalence of antibody responders against S, RBD, and RBM according to gender in COVID-19 and pre-COVID-19 sample groups.

S responders RBD responders RBM responders

Samples Male n (%) Female n (%) p Male n (%) Female n (%) p Male n (%) Female n (%) p

COVID-19 (N = 266) 116 (79.5) 98 (81.7) ns 105
(71.9)

84 (70.0) ns 44 (30.1) 41 (34.2) ns

Pre-COVID-19 (N = 283) 32 (23.7) 30 (20.3) ns 7
(5.2)

12
(8.1)

ns 7
(5.2)

18 (12.1) *
April 2022 | Volu
me 13 | Article 8560
The proportions of S, RBD, and RBM responders in COVID-19 samples as compared to pre-COVID-19 samples were determined. Fisher’s exact test was used to compare the proportion
of responders between COVID-19 and pre-COVID-19 samples.
N, total number of samples; n, number of responders; %, percentage of responders; RBD, receptor-binding domain; RBM, receptor-binding motif; ns, not significant.
*p ≤ 0.05.
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Traoré et al. SARS-CoV-2 Seroreactivity in Malaria-Endemic Samples
distribution was similar among the S, RBD, and RBM (p > 0.05;
Figure 3) with respective median antibody ODs (Q1; Q3) of
0.347 (0.269; 0.521), 0.324 (0.308; 0.351), and 0.391 (0.315;
0.467). There was a higher frequency of cross-reactive samples
for S (21.9%) than for RBD (6.7%) or RBM (8.8%) (Figure 3).
In addition, cross-reactive antibodies against all three antigens
were present in all age groups; however, they were higher for
S and RBM in most age ranges than they were for RBD
(Supplementary Figure 4). No significant correlation was
found between the density of malarial parasitemia and the level
of antibodies cross-reacting with S (r = 0.10 p = 0.09; Figure 7A),
RBD (r = 0.06, p = 0.35; Figure 7B), or RBM (r = −0.07 p = 0.27;
Figure 7C). In contrast, cross-reacting antibodies appeared to be
more common in samples without parasitemia (i.e., without
active P. falciparum infection, or BS− samples), representing
77.4% (42 out of 62), 100% (19 out of 19), and 88% (22 out
of 25) of the cross-reactive samples against S, RBD, and
RBM, respectively (Figure 7D). This correlation is made
evident by the fact that BS− samples demonstrated significantly
Frontiers in Immunology | www.frontiersin.org 8
higher mean antibody ODs against RBM than BS+
samples (Figure 7D).
DISCUSSION

Despite the extraordinary breadth of scientific studies on
COVID-19, limited data are available from regions where
populations are being exposed to additional severe and lethal
diseases, such as malaria. This study has demonstrated a high
level of seroreactivity for both COVID-19 samples and pre-
COVID-19 samples from a malaria-endemic area (Mali) against
the SARS-CoV-2 S protein. For the COVID-19 patients (n =
266), most samples reacted with the full-length protein and its
internal domain RBD, although responses to the RBM were
notably lower. Higher antibody levels at the time of hospital
admission were associated with shorter treatment durations for
COVID-19. Furthermore, certain comorbidities and the presence
of high body weights appeared to be associated with a weaker
FIGURE 4 | Differing antibody responses against S, receptor-binding domain (RBD), and receptor-binding motif (RBM) according to different age groups of COVID-
19 patients. Antibody responses against S, RBD, and RBM were studied for each age group of COVID-19 patients. A correlation was observed between increasing
antibody levels and increasing age. The average Ab response (mean optical density (OD)) against each antigen was calculated for each age group. Comparisons
were made using an unpaired t-test to study the difference in responses against each antigen within each age group. NA, not applicable; *p < 0.05; **p < 0. 01;
***p < 0.001; ****p < 0.0001. ns, not significant; Age (year), age ranges in years.
TABLE 3 | Proportion of non-specific binding antibodies against S, RBD, and RBM responders in COVID-19 patients.

COVID-19 samples (N = 266)

Antigens Responders Non-specific Ab binding from responders

n (%) Median OD (Q1; Q3) n (%) Median OD (Q1; Q3)

S 214 (80.5) 0.834 (0.509; 1.324) 19 (8.9) 0.664 (0.504; 0.781)
RBD 189 (71.1) 0.527 (0.340; 1.194) 17 (8.9) 0.728 (0.626; 0.884)
RBM 85 (31.9) 0.436 (0.283;0.773) 12 (14.1) 0.737 (0.642; 0.866)
April 2022 |
The proportion of samples showing non-specific binding antibodies for S, RBD, and RBM was determined in COVID-19 patient samples. The non-specific binding antibody samples are
those showing in no antigen-coating, i.e., in plates coated with no antigen, a mean OD of antibody ≥ mean OD in antigen coating. The median OD and interquartile (Q1 and Q3) are
illustrated.
N, number of COVID-19 samples; n, number of responders or non-specific binding samples, %, the proportion of responders or non-specific binding samples; RBD, receptor-binding
domain; RBM, receptor-binding motif.
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antibody response to S, RBD, and RBM. The positive response of
COVID-19 plasma against different sequence domains (RBD and
RBM) of S protein highlights peptide synthesis as an effective
vaccine approach, which could ultimately contribute to the mass
production of crucial COVID-19 good manufacturing practice
(GMP) products (55–57).

Overall, our data demonstrate the importance of RBD—
which showed comparable antibody responses (71.9%) to the
full-length S protein (80.5%)—as an alternative target for
vaccinations and antiviral therapies (58, 59). However it should
be noted that we observed a relatively low prevalence of S
antibodies (the most prevalent antigen); various other studies
observed an antibody response of 95% from their COVID-19
patients (31, 60–64), indicating that our value of 80.5% is lower
than expected. This may have been caused by a lack of
seroconversion in some patients, as plasma was collected
Frontiers in Immunology | www.frontiersin.org 9
within the first week after hospital admission. According to the
literature, at least 11–14 days after the onset of the disease is
reported to be necessary to observe an average seroconversion
rate of approximately 90%–100% for antibodies (IgM or IgG)
against the SARS-CoV-2 S and N proteins (31, 60–69). Future
investigations of the antibody dynamics, including in the early
(acute) and late (convalescent) phases of COVID-19 infection,
may provide more insight into this issue.

Antibody responses to SARS-CoV-2 antigens increased with
age but were not associated with gender. Indeed, the S antigen
showed a higher antibody level than RBD or RBM across all age
groups. The same was observed for RBD as compared to RBM.
Some studies have indicated that immunity and COVID-19
infection correlate positively with age (27, 70, 71), while others
have suggested that aged patients are more prone to developing an
uncontrolled and ineffective immune response, thus increasing
disease severity (27, 70, 71). Our data strengthen the argument for
inadequate antibody immunity as the cause of higher incidence of
hospitalization in elderly patients despite high antibody levels in
such groups. Regarding gender, it has been suggested that an
immune response to COVID-19 may differ between men and
women, thus influencing their ability to recover from a severe
infection (72–77). Indeed, in women, higher IgG levels in the early
phase and during COVID-19 (72–77) appear to play an essential
role in reducing severe disease and mortality (78). However, this
study analyzed samples only once, enabling the comparison of
antibody levels in mild, severe, and convalescent cases. Still,
studies on the dynamics of antibody responses to S, RBD, and
RBM—controlling for variables like age and gender—are now
necessary. Moreover, it was not possible to determine whether
the SARS-CoV-2 antibody levels at hospital admission were
correlated with recent exposure to COVID-19, which might
explain the benign outcome of the disease in this group
of patients.

Concerning treatment duration, patients with stronger
responses to S, RBD, or RBM experienced remission in a shorter
time period (≤30 days), supporting the idea that S- and RBD-
specific antibodies play a crucial role in controlling the severity
of SARS-CoV-2 infections. These findings are consistent with
other studies that showed that the failure to develop antibodies
against SARS-CoV-2 was an essential factor in worsening the
disease (79) and was problematic for serodiagnosis tests (30).

This study shows that an accurate assessment of the
interactions between preexisting comorbidities and antibody
elicitation in the onset of SARS-CoV-2 is essential for existing
vaccination strategies and especially to protect those at higher risk
from severe forms of COVID-19. Preexisting comorbidities such
as diabetes, hypertension, and asthma did not appear to influence
antibody response against S and RBD. However, it is interesting
that asthma and diabetes seemed to impede the elicitation of
antibodies against RBM (the more specific domain for SARS-
CoV-2) and that higher body weights appeared to weaken the
antibody responses against S in COVID-19 patients. Altogether,
these data suggest that preexisting comorbidities—which are
associated with disease severity—may be directly impacting the
immune responses to SARS-CoV-2 (80–83).
FIGURE 5 | Association of anti-S, receptor-binding domain (RBD), and
receptor-binding motif (RBM) antibodies at the time of hospital admission with
the duration of treatment for symptomatic COVID-19. The lowest antibody
levels for S, RBD, and RBM at the time of hospital admission were associated
with increased patient treatment time for symptomatic forms of COVID-19
(i.e., >30 days) as shown in the graph. The correlation was strongest with
RBD recognition. The table shows the proportions of S, RBD, and RBM
responders as a function of their treatment duration, but no significant
difference was observed between the three antigens and the treatment
duration time. The unpaired t-test and ANOVA were used to compare the
mean Ab optical density (OD) between the two treatment duration groups
and between antigens, respectively, and Fisher’s exact test was used to
determine the proportion of responders with a treatment duration of ≤30 or
>30 days. *p < 0.05; **p < 0.01; ****p < 0.0001. ns, not significant.
April 2022 | Volume 13 | Article 856033

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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Additionally, our findings imply that even with a lack
of specific binding, there is still a high degree of cross-
recognition for the SARS-CoV-2 antigens among populations
not infected with SARS-CoV-2 living in malaria-endemic areas.
Cross-reactive as high as 21.9% against S (highest) is consistent
with previous studies, where it reached 17% or even upwards of
20% in malaria-endemic areas (23, 24). This cross-reactivity
between malaria and SARS-CoV-2 raises the question of
whether other SARS or malaria infections can produce
similarly cross-reactive antibodies, playing a role in SARS-
CoV-2 infection. In this regard, there is evidence for a cross-
neutralization reaction between SARS-CoV and SARS-CoV-2,
albeit controversial (25, 84). Malarial infections may also elicit a
wide range of immune responses that could also be cross-reactive
for COVID-19 antigens (18–22). In addition, antigen cross-
reactivity (85, 86) may be due to a non-specific, antigen-
independent antibody binding. In pre-COVID-19 volunteers,
we observed false positivity against the three antigens in 9.6% to
20.0% of the cross-reactive samples, potentially indicating a non-
specific antibody binding. These findings further confirm that
anti-SARS-CoV-2 antibody tests may exhibit some false
positives, as revealed by ELISA after removing the antigen
coating (87, 88). Also, several proteins, present in human
plasma at high concentrations—such as albumin (89)—can
Frontiers in Immunology | www.frontiersin.org 10
interfere with the detection of low abundance analytes (90) by
increasing background signals and non-specific antibody
binding (91).

Moreover, no correlation was found between the cross-
recognition of SARS-CoV-2 antigens and current malaria
infection. In contrast, the most cross-reactive antibodies were
mainly associated with the absence of acute malarial infections,
indirectly indicating a protective antibody response to malaria
that cross-reacts with SARS-CoV-2. The cross-reactivity is more
than likely to occur, since non-specific or poly-specific activation
of B cells may occur during or before the process of induction of
etiologic antibodies (92–95). Therefore, the coinfection of
malaria and COVID-19, their impact on each other (in terms
of clinical issues), and the cross-reactivity of COVID-19 antigens
with malaria-endemic samples may help to explain the paradox
in the incidence of COVID-19 in malaria-endemic areas (20–22,
96–98). Further study is necessary to assess how the coinfection
of malaria and SARS-CoV-2 can impact the clinical outcomes of
each disease.

In conclusion, the characterization of the individual antibody
target domains/epitopes (like RBD and RBM) present in the
SARS-CoV-2 S—in both naturally COVID-19 exposed patients
and malaria exposed donors without COVID-19 infection—not
only would contribute to our understanding of the fine specificity
A B

C D 

FIGURE 6 | Correlation between antibodies against S, receptor-binding domain (RBD), and receptor-binding motif (RBM) and comorbid conditions in COVID-19
patients. No significant variation was observed in antibody responses against S, RBD, or RBM between COVID-19 patients with the presence (Yes) vs. absence (No)
of comorbid conditions, such as AHT (hypertension) (A), diabetes (B), and asthma (C). However, a trend toward increased antibody levels for all three antigens was
observed in the COVID-19 patient groups with no diabetes (B) or asthma (C). (D) Spearman’s rank analysis shows a significant negative correlation between
antibody levels for S and body weight but showed no significant impact on antibodies against RBD and RBM in COVID-19 patients. ns, not significant.
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of SARS-CoV-2 antigens and their cross-reactivity observed in
these populations but also may offer strategies for designing
a second-generation of vaccines. The cross-reactivity of the
SARS-CoV-2 antigens was evident in pre-COVID-19 infected
samples, as was the impact of protective malarial infection on
said cross-reactivity. It can be noted that the early development
of high antibody levels against RBD was essential in shortening
treatment durations for SARS-CoV-2 infections. Furthermore,
Frontiers in Immunology | www.frontiersin.org 11
factors such as asthma, diabetes, and weight may adversely affect
antibody responses to SARS-CoV-2.
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FIGURE 7 | Relationship between cross-reactivity against S, receptor-binding domain (RBD), and receptor-binding motif (RBM) and active malaria infection among
pre-COVID-19 donors. (A–C) Non-significant correlations of cross-reactive antibodies to S, RBD, or RBM with present malarial infection (i.e., Plasmodium falciparum
parasitemia in the pre-COVID-19 donor groups). Red lines indicate the best-fit relationship between data points. p- and R-values were calculated using the two-tailed
Spearman’s rank correlation tests. (D) The graph shows no significant variation in cross-reacting antibodies against S and RBD in pre-COVID-19 samples with
(blood smear positive (BS+)) or without (blood smear negative (BS−)) present malarial infections; on the other hand, the high level of cross-reactive antibody against
RBM was strongly associated (p < 0.01) with the absence of malarial infection (BS−). The table shows the proportions of BS+ or BS− cross-reactive samples against
S, RBD, and RBM. N, total number of cross-reactive samples; n, number of BS+ or BS− cross-reactive samples. Comparisons of the mean optical density (OD) for
BS+ and BS− sample groups were made using the unpaired t-test. **p < 0.01; ns, not significant.
TABLE 4 | Proportion of antibody responders for S, RBD, and RBM in conjunction with the presence or absence of comorbid conditions among COVID-19 patients.

S responders RBD responders RBM responders

n (%) p n (%) p n (%) p

AHT
Yes 18 (81.8) ns 15 (68.2) ns 5 (22.7) ns
No 148 (79.6) 135 (72.6) 65 (34.9)
Diabetes
Yes 6 (75) ns 5 (62.5) ns 0 (0.0) NA
No 160 (80) 145 (72.5) 70 (35)
Asthma
Yes 2 (66.7) ns 2 (66.7) ns 0 (0.0) NA
No 164 (80) 148 (72.2) 70 (34.2)
April
 2022 | Volume 13 | Article 85
The proportions of responders against S, RBD, and RBM in COVID-19 samples were determined according to the presence (Yes) or the absence (No) of comorbidities (arterial
hypertension (AHT), diabetes, and asthma). Fisher’s exact test was used to compare the proportion of S, RBD, or RBM responders in groups with or without comorbidities.
N, total number of samples; n, number of responders; %, percentage of responders; ns, not significant; NA, not applicable; RBD, receptor-binding domain; RBM, receptor-binding motif.
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Traoré et al. SARS-CoV-2 Seroreactivity in Malaria-Endemic Samples
and accession number(s) can be found in the article/
supplementary material.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee, EC of the Faculties of
Medicine and Odontostomatology, and the Pharmacy of
Bamako at the University of Science Technical and
Technologies of Bamako, Mali. Written informed consent to
participate in this study was provided by the participant’s legal
guardian/next of kin.
AUTHOR CONTRIBUTIONS

GC and SB designed the experiment. AT, MG, DK, BT, SD, SK,
AD, AC, and SB performed most experiments, tests, and
analyses. AK, MH, SH, GC, and SB wrote the manuscript. NI,
FP, PM, AP, LP, PR, and FE contributed to antigen processing
and manuscript revisions. MK, YC, OF, and MD contributed to
sample processing and manuscript revisions. All authors read
and approved the submitted version.
FUNDING

Funding support was received from the University of Sciences,
Techniques and Technologies of Bamako (USTTB), Mali.
ACKNOWLEDGMENTS

We are grateful to the volunteers who agreed to participate in
this study and would like to acknowledge the Dermatology
Hospital of Bamako (HDB) for the participants’ recruitment,
data col lect ion, and sample procurement, and the
Immunogenetics Laboratory and Parasitology and the Clinical
Laboratory of ICER-Mali at USTTB, Mali, for sample processing
and technical support. We thank Prof. Florian Wurn and
Dr Maria Wurm at ExcellGene SA, Monthey, Switzerland,
and Dr Florence Pojer at Protein Production and Structure
Frontiers in Immunology | www.frontiersin.org 12
Core Facility, EPFL, Lausanne, Switzerland, for providing S
and RBD antigens.
SUPPLEMENTARY MATERIALS

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2022.
856033/full#supplementary-material

Supplementary Figure 1 | Structure and amino acid sequences of the S and
RBD proteins, and RBM peptide of SARS-CoV-2. (A) Structural features diagram of
the SARS-CoV-2 spike (S) protein showing the subunit ectodomains S1 and S2;
NTD, the N-terminal domain; RBD, the receptor-binding domain; FP, the fusion
peptide; HR1 and HR2, the heptad regions 1 and 2; TM, the transmembrane
domain; IC, the intracellular tail, (Yang et al., 2021) [39]. The sequence of ~1250
amino acid (aa) covering the full-length Spike protein is below. The sequence of
residues in RBD is shown in green. The full-length sequence of the Spike (S) protein
of SARS-CoV-2 is obtained using the BLASTP search program (50, 51). (B) The
sequence of the SARS-CoV-2 RBD (aa319-529; ~211aa, in green) and several
other RBD sequences from different SARS and viruses are provided in parallel for
comparison. The portion in magenta, which is more variable than other parts of the
RBD domain, is illustrated. * Indicates identical residues; similar residues are green
while different ones are red. (C) Shows a synthetic peptide sequence (aa436-507;
~72aa) covering the binding segment (RBM, receptor biding motif) of the SARS-
CoV-2 RBD. (D) Illustrates the 3D structure of SARS-CoV-2 spike (S) protein trimer
with an S monomer outlined by blue color, and RBD and RBM in green and
magenta, respectively. The other two monomers of S are in grey.

Supplementary Figure 2 | Antibody responses against S, RBD and RBM
according to gender in COVID-19 and pre-COVID-19 donors. (A–C) Show
respectively not significant antibody responses (OD) against S (A), RBD (B) and
RBM (C) between male and frmale in COVID-19 samples. Whereas, in pre-COVID-
19 samples, the antibody level (cross-reactive antibody) for RBM was significantly
higher in female group (p<0.01). The table shows median OD;s and interquartiles
(Q1 and Q3) for antibody responses against S, RBD and RBM in COVID-19 and
pre-COVID-19 groups. **p≤ 0.01; ns, not significant.

Supplementary Figure 3 | Analysis of antibody responses to S, RBD, and
RBM according to the presence of multiple comorbid conditions in COVID-19
patients. (A–C) Show not significant variation of antibody responses against S,
RBD and RBM according to the presence or absense of various comorbidities in
COVID-19 patients, respectively. Unlike S and RBD, no association was found
between two comorbidities and response to MBR (C). CMB, comorbidity;
ns, not significant.

Supplementary Figure 4 | Cross-reactivity of S, RBD and RBM according to age
group in pre-COVID-19 samples. Cross-reactive antibody levels (in pre-COVID-19
samples) for spike (S) and MBR were comparable, but significantly higher than for
MBR in most of the different age groups. Comparison of antibody levels between
different antigens in the same age group was determined in unpaired t-test. *p <
0.05; **p < 0.01; ***p < 0.001; NA, not applicable; n, not significant; Age (year),
age ranges.
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