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In the conceptual design phase of conventional-configuration aircraft, calibrated low-fidelity

methods provide sufficiently accurate estimates of aerodynamic coefficients. It has been observed,

however, that for blended-wing-body aircraft, important flow effects are not captured adequately

with low-fidelity aerodynamic tools. Consequently, high-fidelity methods become necessary

to study blended-wing-body aerodynamics. Since repeated function calls are needed in an

optimization loop, high-fidelity analysis is prohibitively expensive in the conceptual design

phase, where several optimization scenarios are considered. In this paper, the integration of

high-fidelity data for blended-wing-body aircraft for a mission calculation module is presented.

A surrogate model based on Gaussian processes (GPs) with acceptably low prediction error

is sought as an alternative to RANS CFD. Three adaptations are considered: sparse GPs,

mixtures of GP approximators, and need-based filtering for GP. The results provide benchmark

values for this case and show that the combination of subsonic and transonic behaviors in the

training set is problematic and that, for the considered datasets, sparse GP models suffer from

oversmoothing while mixtures of GPs models suffer from overfitting. From the error levels,

it is observed that a GP with an infinitely-differentiable squared exponential kernel based on
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reduced data pertinent to mission analysis is the most effective option.

I. Introduction

Aviation is a sector with important fuel consumption levels and greenhouse gas emissions, with a 2% share

of the global human-induced CO2 emissions in 2019 [1]. As economical and ecological goals go hand in

hand with a direct link between aircraft efficiency and fuel costs for operations, a transition geared towards aircraft

emissions reduction has been a top priority for aircraft manufacturers and airlines alike over the last decade. In

2009, the International Air Transport Association (IATA) set three key targets for 2050, one of which is a 50%

reduction in net aviation CO2 emissions relative to 2005 levels [2]. To this end, aviation experts have relentlessly been

exploring the development of new technologies or the improvement of existing ones to reduce emissions linked to air

transport. For instance, specific areas that have received more attention in recent years are the decarbonization of the

aviation industry by using alternative energy sources [3–5], unconventional aircraft configurations [6], and improved

propulsion-airframe integration [7, 8] with higher-performance or new-configuration engines such as open rotors [9]

and boundary-layer-ingesting engines [10] analyzed with exergy-based performance approaches [11].

A firm interest in the blended-wing-body (BWB), an unconventional aircraft configuration, continues to exist

because it presents an opportunity for significant fuel burn reduction compared to conventional aircraft [12] owing to its

minimal wetted area. As a commercial aircraft for passenger transport, the BWB configuration is the most promising

new concept to address the ever-increasing demand, with an estimated 40–60% increase in passenger numbers for a

limited increase in aircraft movements [13]. There are large and recently active BWB projects from the two major

aircraft manufacturers who dominate the market. On Boeing’s side, the X-48C [14] was an experimental unmanned

aerial vehicle used to conduct several flight tests in collaboration with NASA until April 2013, and is a precursor to

their next planned larger demonstrator. More recently, Airbus revealed its BWB demonstrator, the Model Aircraft for

Validation and Experimentation of Robust Innovative Controls (or MAVERIC), at the Singapore Air Show in February

2020 [15].

In recent years, advances in algorithms, computational tools, and computing capabilities have changed the

way in which aircraft design is performed. As a result, several new ways of modeling and optimizing aircraft

configurations have emerged, particularly for BWB aircraft, where the design problem is highly multidisciplinary

in nature. To solve such a complex optimization problem, the problem needs to be constructed to keep the

number of variables and computing time reasonable relative to the computing capabilities. To address the nature

and large number of variables (273 in this problem) with tight couplings among aerodynamic performance, trim,

and stability, a series of tractable aerodynamic optimization studies was presented, where aerodynamic shape

optimization studies minimized the drag coefficient under lift, trim, static margin, and center plane bending

moments constraints [16]. Another main challenge of BWB design, control architecture sizing, was tackled using
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a new coupled approach [17]. Improved decision-making techniques in early multidisciplinary design allowing

designers to combine mathematical model predictions with their confidence level in the underlying information

have been applied to the BWB [18]. Detailed studies using advanced aerodynamic tools have allowed trade-offs

between aerodynamic efficiency and wing structure weight at transonic speed to be made [19].

Over the last half-decade, more advanced mathematical models for aerodynamics including surrogate

models have proved to be efficient in surrogate-based design optimization for several applications, such as

vortex generators for a tiltrotor geometry [20], a wing fence for unmanned aerial vehicles including parametric

studies [21], and the aerodynamic shape optimization of a natural-laminar-flow wing [22]. Multiobjective

aerodynamic optimization using variable-fidelity models and response surface surrogates has been applied to

airfoil design to allow high-fidelity optimization at low computational cost using a reduced number of high-fidelity

simulations [23]. Gradient-based optimization using a surrogate model was applied to a massively multipoint

aerodynamic shape design for a conventional aircraft to leverage both efficient gradient-based optimization and

speedy evaluations of surrogate models [24]. A surrogate modeling technique was proposed with dimensionality

reduction specifically to tackle distributed fluid systems by modeling subdomains with matching interface

conditions [25]. Aerodynamic surrogate modeling has also been extended to treat uncertainty aspects for the

case of Gaussian surrogate dimension reduction for efficient reliability-based design optimization [26], and for

the surrogate-based robust optimization of low-noise open rotors using dual-level Kriging [27].

A challenging topic in BWB aircraft conceptual design is aerodynamic performance estimation, which is of particular

interest early on owing to the direct dependence of block fuel on aircraft drag. In aerodynamics, low-fidelity tools often

relying on 2D analysis are generally used in the conceptual design phase owing to the fast solution time of the order

of seconds at most on a personal computer, whereas high-fidelity tools, with which computations often require high

performance computing (HPC) clusters, tend to be better adapted to the preliminary design phase, which is a subsequent,

more detailed design phase. However, in the case of BWB aircraft, limitations were reported in establishing a tangible

link between 2D flows around airfoils and 3D flows [28], highlighting the inadequacies of 2D-based low-fidelity

methods for this unconventional aircraft. A separate study concluded that standard drag build-up methods based on flat

plate aerodynamics, which low-fidelity tools on, do not hold owing to the thick airfoils and large chord lengths of the

BWB centerbody [29]. Wind tunnel tests on a BWB model showed that, in addition to the expected potential flow lift

mechanism, a vortex flow mechanism is present [30] which is not accounted for in traditional low-fidelity models.

In view of the complexity of BWB aerodynamics, a different approach is proposed based on high-fidelity computations.

This is required because a very specific problem exists in conceptual overall aircraft design (OAD) when it comes to

BWB aerodynamics: the usual low-fidelity methods fail, while high-fidelity methods are computationally prohibitively

expensive to be integrated in a multidisciplinary framework. While many approaches have been proposed in the

literature, the use of surrogate modeling for aerodynamic data after high-fidelity optimization has not been
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dealt with previously. The objective of the work presented in this paper is to demonstrate how high-fidelity CFD data

can be used to build a model to relate the Airbus BWB planform shape to its corresponding optimized aerodynamic

performance within the design bounds. In the conceptual OAD phase, the capability of target-setting is the intended

goal: realistic and achievable targets for an aircraft design need to be determined despite the limited detailed knowledge

on the aircraft. In other words, in the design loop, the aircraft designer needs the ability to estimate the final performance

that an aircraft configuration will have by the end of detailed design phase knowing only the main parameters of that

configuration. Target-setting is normally achieved using low-fidelity tools and experience with similar prior operational

aircraft, which are lacking in the case of unconventional arrangements like the BWB. As a proposed solution, a database

of computational fluid dynamics (CFD) optimization results is used as basis to develop a surrogate model to act as an

inexpensive aerodynamic calculation method quick enough to be used directly in a multidisciplinary OAD framework.

In Section II of this paper, the BWB design philosophy is explained to support the description of the database

generation process in Section III. In Section IV, the approach to generating and evaluating potential surrogate models

is presented to highlight the important criteria in model selection. Finally, in Section V, results specific to the BWB

aerodynamic database used in this study are shown to illustrate how a well-chosen and well-tuned surrogate model can

perform to enable the use of aerodynamic data for wide-scope applications beyond strictly aerodynamic studies.

II. Design Philosophy
The attempt to model BWB aerodynamics in this paper is to provide information on one of many aspects in a

multidisciplinary design study. However, an aspect of aerodynamic design taken into consideration in this study but not

in the published literature is the consistency in maturity level across analyses. Specifically, to ensure that the aerodynamic

maturity level is universal, a design philosophy is adopted whereby, for any multidisciplinary analysis, aerodynamic

cruise-optimal performance can be sensibly assumed. This is important because failure to achieve consistent levels of

maturity in the same discipline leads to flawed comparisons and incorrect design decisions. In the BWB case, this

is even more important than in the case of conventional aircraft because the thick centerbody airfoils make the BWB

more easily susceptible to shock wave formation. This means that a BWB with well-chosen thickness distributions will

always outperform one with poorly-chosen thickness distributions, even if the reverse could be true once they are both

aerodynamically optimized.

For the OAD problem, a design philosophy has been adopted wherein different sets of parametrization are used, with

one top-level set of variables common to all the disciplines involved. Six top-level variables were chosen to uniquely

define the planform shape to allow changes in chord lengths and section spans, causing variations on a global level.

In Figure 1, dimensions for the centerbody, which comprises sections 0–3, are the centerbody sweep angle (𝜙𝑐) and

the centerbody chord length (𝐿𝑐). Smoothness of transition between section 3 of the centerbody and section 4 of the

outer wing is controlled using a kink parameter (𝑥𝑜𝑢𝑡 ), which allows movement of the leading edge of section 4 in the
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𝑥-direction. The outer wing chord (𝑐𝑜𝑢𝑡 ), outer wing span (𝑏𝑜𝑢𝑡 ), and outer wing quarter-chord sweep angle (𝜙𝑜𝑢𝑡 ) are

the parameters that complete the definition of the BWB planform. The chord lengths for sections 1–3 scale linearly

with 𝐿𝑐, and those for sections 4–7 with 𝑐𝑜𝑢𝑡 . The design vector x𝑝 is made up of the top-level variables, such that

x𝑝 = [𝜙𝑐, 𝐿𝑐, 𝑥𝑜𝑢𝑡 , 𝑐𝑜𝑢𝑡 , 𝑏𝑜𝑢𝑡 , 𝜙𝑜𝑢𝑡 ].

For CFD computations to be possible on the BWB, a three-dimensional shape is defined from the two-dimensional

planform corresponding to the design vector x𝑝. To permit this, a lower level set of variables for aerodynamic

parametrization is used to describe the sectional shape of the BWB along the span of the aircraft. Airfoil design is a field

of study in itself, and several parametrization techniques exist in the literature [31]. Here, the airfoils are parametrized to

allow changes in the local incidence (or twist), camber and thickness distributions to produce relatively local variations

in the transverse plane. In the aerodynamic parametrization employed, 66 shape variables making up the aerodynamic

design vector s are used to describe the airfoils of the BWB using non-uniform rational B-splines, more commonly

known as NURBS [32]. In this BWB application, there is a particular volumetric constraint which is worth mentioning

owing to the consideration of space allocation requirements for the aircraft interior within the centerbody, as shown in

Figure 2.
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Fig. 1 Planform parametrization. Six top-level variables drive the BWB planform shape.
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Fig. 2 Section constraints at the centerbody driven by internal volume requirements.

III. Aerodynamic Database Generation
Careful thought must be given to designing the structure of a database of aerodynamic optimization data for surrogate

model construction. If the 66 airfoil and 6 planform variables are considered at once in the multidisciplinary analysis

chain, the required size of the DoE quickly becomes intractable with all 72 design variables. A way of improving

tractability and meaningfulness is to develop a database containing aerodynamic data obtained through single-point

optimization at the airfoil level for several BWB planform shapes, thereby creating a solution space where, for each

planform shape x𝑝, optimal airfoil variables s∗ (x𝑝) at the optimal angle of attack 𝛼∗ (x𝑝) can be assumed for the

dominating flight condition, cruise. Further assuming continuity in this aerodynamic cruise-optimal design space, the

aircraft designer can interpolate to estimate the performance of any planform shape x𝑝 without knowledge of s∗ (x𝑝)

and 𝛼∗ (x𝑝), resulting in an independence from the computationally-intensive optimization process required to compute

s∗ (x𝑝) and 𝛼∗ (x𝑝). It is useful to note that the simultaneous consideration of all 72 shape variables in a DoE would

impede on the freedom to perform optimization. In effect, the aerodynamic optimization conducted for each BWB

planform shape is a means of reducing the dimensionality of the design space to a cruise-optimal design space, thus

enabling the discard of non-interesting solutions. A very similar approach has been used by the same research team to

create a cruise-optimal database to demonstrate a robust optimization methodology [33].

A. Aerodynamic optimization process

For any fixed planform x𝑝 , an aerodynamic optimization can be conducted with the pressure drag coefficient (𝐶𝐷,𝑝)

as objective function. The flow field is computed using 𝑒𝑙𝑠𝐴, a CFD solver developed by ONERA [34]. The lift force is

the component normal to the direction of far-field flow, while the drag force is the component opposing the direction of

the far-field flow. Force coefficients are obtained by normalizing the forces using the dynamic pressure and a fixed

reference area corresponding to that of a reference BWB aircraft geometry.

In the computations, the discretized Navier-Stokes equations are used in conjunction with the Spalart–Allmaras [35]

turbulence model to simulate the flow field around the three-dimensional BWB aircraft. A discrete adjoint method

is used to compute sensitivities for the gradient descent. In the optimization problem solved, a Limited-memory

Broyden-Fletcher-Goldfarb-Shanno (LBFGS) optimization algorithm is used to find the minimum 𝐶𝐷,𝑝 at target lift

(𝐶𝐿,target):
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minimize
s,𝛼

𝐶𝐷,𝑝 (s, 𝛼)

subject to 𝐶𝐿 (s, 𝛼) = 𝐶𝐿,target

(1)

where 𝛼 is the angle of attack, and where forces on the BWB are calculated using integration methods for the

pressure field acting on the aircraft surface assuming negligible viscous shear stresses [36]. The target lift constraint

is treated implicitly by adjusting 𝛼 automatically during the CFD run, and the optimization problem is treated as an

unconstrained problem. The other drag component owing to surface friction of the air, friction drag (𝐶𝐷, 𝑓 ), is neglected.

It was experimentally verified, using additional simulations, that this simplification does not impact the optimization

solution because the wetted area variations due to airfoil shape changes are not significant at fixed x𝑝. A constraint

corresponding to a constant lift coefficient for steady, level flight for all planforms at the cruise condition is enforced

specifically to ensure minimum drag at the target lift coefficient. Optimization problem 1 is a single-point aerodynamic

optimization conducted at the cruise condition, such that the sectional shape given by s∗ (x𝑝) for a planform x𝑝 can thus

be described as being cruise-optimal.

B. Design of experiments

The resolution of optimization problem 1 being computationally expensive, a DoE approach with a fixed budget is

chosen to construct a database for cruise-optimal BWB aerodynamics. A Latin hypercube sampling technique is used to

generate a stratified near-random 50-point set of planform shapes in a six-dimensional unit hypercube covering the

entire design space, wherein the top-level parameters are normalized between 0 and 1. The 50 optimization runs, each

corresponding to a planform shape x𝑝 in the DoE, are conducted at target 𝐶𝐿 , with 48 of these runs being convergent on

an optimal solution. As a result, (s∗ (x𝑝), 𝛼∗ (x𝑝)) for x(𝑖)
𝑝 , 𝑖 = 1, . . . , 48 are obtained, defining the optimal sectional

shapes and angle of attack of the BWB for cruise.

C. Polar generation

For each optimized BWB defined by (x𝑝 , s∗ (x𝑝)), the aerodynamic performance over an array of flight conditions

is required to evaluate its overall performance in the OAD chain. To this end, the flow field for each aerodynamic

cruise-optimal planform shape (x(𝑖)
𝑝 , s∗(𝑖) (x𝑝)), 𝑖 = 1, . . . , 48, is computed at six Mach numbers and ten angles of

attack to construct a set of drag polars, which consist of pairs of total drag coefficient (𝐶𝐷) and lift coefficient values

calculated using a far-field approach [37]. The resulting database contains 2880 points characterizing the aerodynamic

performance of 48 BWB planforms, first optimized at the cruise condition to determine s∗ (x𝑝), then computed for 60

flow conditions. Of the 2880 computations, 21 CFD simulations did not converge to the required tolerances owing to

the difficulty of convergence at the highest angle of attack and highest Mach number caused by phenomena such as flow

separation in the onset of stall and shock wave formation, resulting in a database size of 2869 points.
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D. Summary of database generation process

Figure 3 provides a schematic view of the process to construct the database used in the next section. For each

planform shape x𝑝 in a set of planform shapes, the DoE 𝑋 in this case,the aerodynamic cruise-optimal sectional variables

(s∗ (x𝑝), 𝛼∗ (x𝑝)) are determined using gradient-based aerodynamic shape optimization with CFD. The drag polar for

each cruise-optimal planform shape (x𝑝 , s∗ (x𝑝)) is then constructed by computing the force coefficients for 60 (𝑀, 𝛼)

combinations to construct the final database. Of the 3000 expected points in the database, 131 are unavailable owing to

the non-convergence of the aerodynamic shape optimizer or of the CFD computation.

E. Properties of the aerodynamic database

Before constructing an approximation model, it is worthwhile to inspect the structure of the underlying data.

In Figure 4, the cumulative distribution function (CDF) of the DoE variables, which are the variables in x𝑝, show

near-uniformity in agreement with the LHS sampling scheme used, with two apparent gaps corresponding to the two

planform shapes for which the CFD optimization did not converge. Note that every point in Figure 4 stands for 60

CFD computations for the different flight conditions, or fewer in cases where the computation did not converge. The

distributions for 𝑀 and 𝛼 are not plotted because they consist of a few evenly-distributed discrete values. From Figure 4,

the Latin hypercube structure with two simulations amiss is apparent, and it is demonstrated that the design space can be

considered as being uniformly represented over the six BWB planform variables.

Similarly, the cumulative distributions of the force coefficients are plotted in Figure 5. The𝐶𝐿 cumulative distribution

roughly resembles a normal one, with two waves appearing for 𝐶𝐿 ≤ 0.05. This can be explained by the fact that the 𝐶𝐿

distribution consists of 10 nearly normal distributions, each corresponding to a particular 𝛼. For the first two values of

𝛼, values for 𝐶𝐿 have smaller ranges and do not overlap with neighboring distributions as much as other 𝛼, decreasing

the homogeneity in the superposition of the 10 individual distributions. As for 𝐶𝐷 , the cumulative distribution takes

the shape of a truncated normal distribution, reflecting that 𝐶𝐷 is in fact reduced by the CFD optimization process to

as little as the physics can allow, with the truncated part of the normal distribution being physically infeasible. In the

surrogate model, 𝐶𝐿 is an independent variable; its distribution, while not approximately uniform as would be ideal,

continuously covers the 𝐶𝐿 range. The 𝐶𝐷 values are well distributed over their range, although this distribution is not a

full Gaussian distribution, as would be preferred for the dependent variable.

F. DoE enrichment

In a problem treated separately, DoE enrichment is performed, where points are added to the initial DoE to increase

model accuracy by improving knowledge in the most uncertain regions of the design space. These additional points

serve as an extra set of data to evaluate model prediction quality on data not known to the model beforehand, and to

enrich the initial LHS DoE for the construction of a final model.
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Fig. 3 Aerodynamic database generation process to find cruise-optimal sectional shapes and the corresponding
drag polars for all planforms considered.
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Fig. 4 CDF of DoE variables in aerodynamic database.

10



0.1 0.0 0.1 0.2 0.3 0.4 0.5

CL

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

100 200 300 400 500

CD

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Fig. 5 CDF of force coefficients in the aerodynamic database.

The uniform criterion, which seeks the points with the largest Euclidean distance from the other points, and

the maximum variance criterion, which seeks the points with the highest uncertainty, have a strong tendency to

choose corners of the design hypercube. In contrast, the integrated mean-square-error gain–maximum variance

criterion, selected to enrich the DoE, identifies the points which most benefit the model by reducing the integrated

mean-square-error over the design space X while considering the regions with the highest variance:

𝐼 =
�̂�2 (x|𝑋)

|X|

∫
X

(
�̂�(u|𝑋) − �̂�2 (u|𝑋 ∪ x)

)
𝑑u (2)

In total, the drag polars for 13 additional planform shapes are available. These constitute the verification dataset.

IV. Surrogate Modeling Approach for OAD
In terms of computational cost, the aerodynamic optimization process for one planform shape requires on average a

wall-clock time of 175 hours using 32 processors of an HPC5 supercomputer. It is clear that such an expensive tool

cannot viably be integrated into a multidisciplinary OAD framework which needs to execute a complete run in a few

minutes at the most on a personal computer. In this section, the modeling techniques appropriate for this type of problem

and database size are described.

A. Objective and formulation

The objective in building a surrogate model which runs in seconds on a personal computer is to replace the

resource-intensive HPC-based process of aerodynamic optimization to identify the optimal s∗ (x𝑝) for any x𝑝 followed

by computations for different flight conditions using CFD, for each x𝑝 . The model sought is of the form
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𝐶𝐷 = 𝑓 (x𝑝 , 𝑀, 𝐶𝐿) (3)

to match the format required for use in the OAD mission calculation process, where 𝐶𝐿 is a function of x𝑝 , 𝑀, 𝛼,

and s∗ (x𝑝) is assumed. It is desirable to have 𝐶𝐷 as a function of 𝐶𝐿 rather than of 𝛼 because 𝐶𝐿 can be used directly

to calculate the force needed to balance the aircraft weight or to execute the planned mission.

B. Approximation using Gaussian processes

Let the underlying data for constructing a surrogatemodel be theDoEwith sampling plan 𝑋 =
{
x(1) , x(2) , . . . , x(𝑁 )}𝑇 ,

x ∈ R𝑘 consisting of 𝑁 computations with responses Y =
{
𝑦 (1) , 𝑦 (2) , . . . , 𝑦 (𝑁 )}𝑇 . There are several ways in which to

construct the approximation function 𝑓 , as will be described in the next subsection. In this application, the construction

of 𝑓 is to be constructed using the GTApprox tool in the Datadvance pSeven (exMACROS) algorithmic library [38]. For

the size and structure of the input database, the approximation methods available are based on Gaussian processes,

described hereafter.

Let

𝑓 (x) ∼ GP
(
𝑚(x), 𝑘 (x, x′)

)
(4)

where GP denotes the prior of a GP on 𝑓 with mean function 𝑚(x) and covariance function 𝑘 (x, x′). Here, the exact

formulation assumes that the data is completely noise-free and inherently forces the model to go through the data points.

The mean and covariance functions are given by

𝑚(x) = E[ 𝑓 (x)]

𝑘 (x, x′) = E
[ (
𝑓 (x) − 𝑚(x)

) (
𝑓 (x′) − 𝑚(x′)

)𝑇 ] (5)

where the covariance function provides a measure of similarity between two points x and x′ [39] in the dataset. The

multivariate normal distribution of this GP can then be expressed as

f ∼ N(`,𝚿) (6)

where ` is a mean vector which is set to 0 in ordinary Kriging, and 𝚿 is a positive semidefinite matrix of covariance

between each pair of points in the set 𝑋 ,
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𝚿(𝑋, 𝑋) =



𝑘
(
x(1) , x(1) ) 𝑘

(
x(1) , x(2) ) . . . 𝑘

(
x(1) , x(𝑛) )

𝑘
(
x(2) , x(1) ) 𝑘

(
x(2) , x(2) ) . . . 𝑘

(
x(2) , x(𝑛) )

...
...

. . .
...

𝑘
(
x(𝑛) , x(1) ) 𝑘

(
x𝑛, x(2) ) . . . 𝑘

(
x(𝑛) , x(𝑛) )


(7)

To predict test values f∗ at a set of locations 𝑋∗ which are unknown to the model, it is reasonable to assume that test

values and known values are drawn from the same distribution [40]. Their joint normal distribution can be written as

[
f
f∗

]
∼ N

( [
`

`∗

]
,

[
𝚿(𝑋, 𝑋) 𝚿(𝑋, 𝑋∗)
𝚿(𝑋∗, 𝑋) 𝚿(𝑋∗, 𝑋∗)

] )
(8)

where `∗ = ` = 0 and 𝚿(𝑋, 𝑋∗), 𝚿(𝑋∗, 𝑋) and 𝚿(𝑋∗, 𝑋∗) are covariance matrices to augment 𝚿(𝑋, 𝑋) for the

predictions in 𝑋∗.

The prior probability distribution corresponds to the distribution before any evidence has been introduced into the

model. In contrast, the posterior probability distribution is the probability distribution obtained once the knowledge

available to train the model has been considered. In functional space, the posterior distribution is the prior distribution

restricted to contain only the functions which are in accordance with the given data. The posterior distribution is

essential in order to compute f∗ and can be obtained by conditioning the joint Gaussian prior on the observed data,

f∗ | 𝑋∗, 𝑋,f ∼ N
(
𝚿(𝑋∗, 𝑋)𝚿(𝑋, 𝑋)−1f,

𝚿(𝑋∗, 𝑋∗)−𝚿(𝑋∗, 𝑋)𝚿(𝑋, 𝑋)−1𝚿(𝑋, 𝑋∗)
) (9)

Using the matrix inversion lemma and the Schur complement with the posterior predictive density 𝑝
(
f∗ | 𝑋∗, 𝑋, f

)
=

N
(
f∗ | `∗, Σ∗

)
yields a vector of predicted means

f∗ = 𝚿(𝑋∗, 𝑋)𝚿(𝑋, 𝑋)−1f (10)

with variances

Σ∗ = 𝚿(𝑋∗, 𝑋∗) − 𝚿(𝑋∗, 𝑋)𝚿(𝑋, 𝑋)−1𝚿(𝑋, 𝑋∗) (11)

In stochastic Kriging, the training set is considered as being imperfect. The most common examples in aerospace

engineering are numerical results obtained using simulation models and experimental results from laboratory mea-

surements. They are imperfect because they are uncertain insofar as repeated runs for the same inputs will yield

different responses [41]. Instead of considering 𝑓 (x) as being deterministic, let 𝑦 be its stochastic equivalent subject to

a zero-mean uncertainty Y of variance 𝜎2𝑛 ,
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𝑦 = 𝑓 (x) + Y, Y ∼ N(0, 𝜎2𝑛) (12)

The mean function of the stochastic GP is unaffected by this change. However, the covariance is now, using the

independent and identically distributed assumption,

cov(x, x′) = 𝑘 (x, x′) + 𝜎2𝑛𝛿x,x′ (13)

where 𝛿 is the Kronecker delta which equals 1 if and only if x = x′. Interpretatively, only the correlation values of

the training points with themselves, each of value 1, which make up the diagonal of the covariance matrix, have the

variance of this noise term Y added. This operation converts the covariance matrix 𝐾 (𝑋, 𝑋) into 𝐾 (𝑋, 𝑋) + 𝜎2𝑛 𝐼. The

joint normal distribution of the stochastic GP becomes


y

f∗

 ∼ N
( 
`

`∗

 ,

𝚿(𝑋, 𝑋) + 𝜎2𝑛 𝐼 𝚿(𝑋, 𝑋∗)

𝚿(𝑋∗, 𝑋) 𝚿(𝑋∗, 𝑋∗)


)

(14)

and the posterior predictive density 𝑝
(
f∗ | 𝑋∗, 𝑋, y

)
= N

(
f∗ | `∗, Σ∗

)
yields the predicted means and variances

f∗ | 𝑋∗, 𝑋, y ∼ N
(
f∗, cov(f∗)

)
f∗ = Ψ(𝑋∗, 𝑋) [Ψ(𝑋, 𝑋)−1 + 𝜎𝑛𝐼]y

cov(f∗) = Ψ(𝑋∗, 𝑋∗)−Ψ(𝑋∗, 𝑋) [Ψ(𝑋, 𝑋)−1 + 𝜎𝑛𝐼]−1Ψ(𝑋, 𝑋∗)

(15)

C. Large datasets with Gaussian processes

Because GPs involve the inversion of covariance matrices, the computational complexity is O(𝑛3). Limitations thus

exist on the size of covariance matrices that can be reasonably handled by personal computers. Beyond roughly 1000

points, the matrix calculations start to become demanding in terms of memory and processing needs. However, more

advanced techniques exist to enable the use of GPs on large datasets. Two such techniques are considered and described

next, sparse Gaussian processes (SGP) and mixtures of approximators (MoA). An additional third approach is proposed,

wherein a select subset of points is used to construct a conventional GP model. These three approaches have different

mathematical constructions and perform differently for a given dataset, which is studied in the next section.

1. Sparse Gaussian processes

In SGP, a subset of the large training set is the basis for constructing the GP model. To avoid the inversion or

factorization of the full covariance matrix, a subset of regressors technique called the V-technique [42] is used to select
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part of the full covariance matrix while seeking good properties such as stability. The Nyström method [43] is used

conjointly to obtain a low-rank approximation of the covariance matrix, allowing predictions to be made for any point in

the design space.

2. Mixture of approximators

When a single approximator does not suffice to construct a global surrogate model, a combination of approximators

can be used. This can be particularly useful for spatially inhomogeneous functions or data, and to break up large

datasets which cannot be handled in one go. In a Gaussian mixture model, the design space is partitioned into connected

sub-domains which correspond to regular behaviors, as described in the following reference [44]. Local models are then

constructed for the clusters identified. The Bayesian information criterion [45], also known as the Schwarz information

criterion, can provide a recommendation on the number of data clusters to partition the data.

3. Need-based filtering for Gaussian processes

A large enough reduction in the training set size is a way of enabling the direct applicability of GP models. The use

of a specially tailored subset is proposed as a means of reducing the number of data points in the training set. In the

BWB aerodynamic case, a filtering scheme is defined to remove points from the original database for flight conditions

which are not relevant to the BWB mission. This restriction of points to only include flight conditions for climb, cruise,

and descent is justified in that the surrogate model is to be used to provide aerodynamic information in the mission

analysis module.

D. Metamodel quality assessment: model validation, restitution and verification

In evaluating the quality of a metamodel, three testing steps are followed. First, a validation step is conducted to test

the prediction ability at locations which are known to the training set but hidden as an exercise. Second, a restitution

step assesses how closely the metamodel can reproduce the data used to train it. Third, a verification step tests the

model on a separate dataset.

1. Validation step

Validation is an essential step in ensuring that a surrogate model can make reasonable predictions at locations where

it is unaware of the observed value. Split-sample or cross-validation [46] are two ways of partitioning the training set in

a validation process. In split-sample validation, a fraction of the training set is hidden, a surrogate model is built using

the remaining points, and the points initially set aside are predicted using the model. In 𝑘-fold cross-validation, the

training set is split into 𝑘 subsets, and surrogate models are built 𝑘 times using 𝑘 − 1 subsets to test the prediction for the

excluded 𝑘 th subset. In both validation techniques, training set points are hidden from the model and the quality of the

prediction is assessed. The choice of cross-validation method is made by compromising on bias and variance levels.
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2. Restitution step

In the restitution step, the surrogate model is interrogated to predict the values that were put into the model. This

step is valuable in the case where a stochastic or sparse GP is used, or any other type of surrogate model which does not

strictly interpolate between known data points, because it shows where the model is relative to the data points.

3. Verification step

Once satisfactory validation results are obtained, an additional verification set of data containing observations at

locations different from the training set is used to test the prediction abilities of the surrogate model. This differs from

the validation step in that the surrogate model used for the predictions is based on the full training set, which thereby

retains its underlying LHS properties over the planform shapes.

E. Model quality metrics

To describe the performance of a model at any given step, measures of error are needed. The error metrics

considered are the root-mean-square error (RMSE), and the relative root-mean-square error (RRMS). RMSE provides

an interpretation of the average of the error based on quadratic scoring, and penalizes large errors more compared to the

mean absolute error metric. It is given by the square root of the sum of the individual squared errors:

RMSE =

√√
1
𝑛

𝑛∑︁
𝑖=1

[
𝑦 (𝑖) − 𝑓 (𝑖)

]2 (16)

The RRMS is the RMSE relative to the variance of the set of individual squared errors. It provides a measure of the

average error scaled to 𝑦 by taking into account the variance on the set of prediction errors,

RRMS =

√︃
1
𝑛

∑𝑛
𝑖=1 [𝑦 (𝑖) − 𝑓 (𝑖) ]2

√
𝜎𝑦

(17)

To visualize the performance of several candidate surrogate models simultaneously, sets of errors are represented

using box-and-whiskers diagrams, which can be compared. In this descriptive statistical tool, the box is bounded by

the lower and upper quartiles, and the median which lies in between is drawn inside the box. Whiskers are drawn

according to Tukey’s original definition at 1.5 times the interquartile range above and below the upper and lower

quartiles, respectively. Flier points beyond the whiskers are plotted as individual points.

V. Results
In this section, results of the application of the tools presented in Section IV to the database described in Section III

are discussed. The starting point using the full aerodynamic database consists of 2869 points in R8. This database size

exceeds the recommended cutoff level of approximately 1000 for conventional GP models, prompting the use of SGP
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and MoA techniques. As the nature of the data is not fully known in advance, both squared exponential and exponential

covariance functions are considered, and are respectively denoted ‘Sq Exp’ and ‘Exp’ in the results. To use an MoA

model, a number of clusters, 𝐶𝑙, needs to be prescribed. According to the Bayesian information criterion, 𝐶𝑙 = 5 is

recommended and is used to construct the MoA models.

At speeds below the cruise speed, a selection of relevant data points for the phases of climb and descent is made by

keeping the data points for which 0.08 < 𝐶𝐿 < 0.33, as well as the nearest neighbors outside these bounds (where

available) to favor interpolation over extrapolation. This range of 𝐶𝐿 values has been obtained from mass variation

considerations: assuming the maximum takeoff weight, an extended range possibility, different design choices (landing

gear configuration, planform shape, and engine integration), as well as an uncertainty margin, are applied to calculate

the range of possible masses of the aircraft, which is then converted into the equivalent range of possible 𝐶𝐿 values.

Using similar reasoning, the relevant range for the cruise condition for mission analysis is 0.17 < 𝐶𝐿 < 0.32. Flight

conditions at speeds beyond the cruise speed are excluded as they are deemed irrelevant to the anticipated mission

profile. The resulting filtered new training set consists of 1355 data points, compared to the previous 2869 points. It is

adequately small to apply conventional GP techniques, despite the noteworthy construction and validation times of the

order of a few hours on a personal computer. As before, the squared exponential and exponential covariance functions

are considered.

A. Validation results

For the validation step, ten-fold cross-validation is chosen as an estimator of model error because it offers a

suitable compromise between bias and variance for the size of the considered datasets without having a prohibitively

high computational cost. In Figure 6, the box-and-whiskers plots for the percentage difference between the true and

corresponding predicted values for each of the candidate SGP, MoA and GP models are shown. In a box-and-whiskers

plot, the lower the box and whiskers, the lower the errors. The MoA models have the highest errors, followed by the

SGP models. The cross-validation errors for the GP models using need-based filtered data are the lowest, with very few

points exceeding 10%. It is observed that the MoA models perform significantly worse than the SGP and GP models.

It is also observed that the squared exponential kernel has a consistently better cross-validation performance than its

exponential counterpart.

Table 1 provides the associated values of the error metrics for this cross-validation step. The performance of MoA

models is unacceptably poor, while that of the SGP models is also relatively poor, with cross-validation maximum

errors of at best 21.5%. It is worth noting that the highest levels of error occur mainly at the highest angles of attack and

the highest Mach numbers for all the metamodels considered.
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Fig. 6 Ten-fold cross-validation results for full (SGP and MoA) and filtered (GP) database models.

Table 1 Ten-fold cross-validation percent absolute error metrics on the drag coefficient.

SGP
Sq Exp

SGP
Exp

MoA
Sq Exp

MoA
Exp

GP
Sq Exp

GP
Exp

Mean (%) 1.95 3.34 1.73 3.29 0.45 0.68
Max (%) 21.52 22.21 38.86 71.26 14.62 22.99
Median (%) 0.83 2.13 0.66 1.08 0.21 0.18

95th Percentile (%) 7.12 10.26 6.75 14.03 1.75 3.00
99th Percentile (%) 10.52 14.91 15.03 31.69 3.60 7.56
RMSE or RRMS (%) 3.18 4.81 3.38 6.87 1.08 1.69

B. Restitution results

Box-and-whiskers plots for the restitution step are shown in Figure 7 with the corresponding error metrics in Table 2.

The SGP and MoA models largely fail to pass through the supplied data, as can be seen from the extensive whiskers

with high levels of error. Their significant RRMS values demonstrate that these models consistently fail to reproduce

the input dataset. The poor performance of the SGP models is attributable to the way in which the importance of points
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is weighed, where corners are favored, which results in oversmoothing. Upon inspection of restituted drag polars, it is

observed that predicted drag polars from the MoA models do not have the expected quadratic shape owing to the use of

combined local models which results in overfitting, thus failing to preserve the characteristic quadratic shape of a drag

polar. As in the validation step, the highest levels of error occur predominantly at the highest angles of attack and the

highest Mach numbers.
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Fig. 7 Restitution results for full (SGP and MoA) and filtered (GP) database models.

Table 2 Restitution percent absolute error metrics on the drag coefficient.

SGP
Sq Exp

SGP
Exp

MoA
Sq Exp

MoA
Exp

GP
Sq Exp

GP Exp
× E-06

Mean (%) 1.65 2.93 1.24 2.29 0.28 1.43
Max (%) 16.33 20.92 27.33 55.80 8.40 54.6
Median (%) 0.72 2.07 0.32 0.21 0.15 0.46

95th Percentile (%) 6.01 8.71 5.43 12.79 0.96 5.72
99th Percentile (%) 8.77 12.32 13.48 26.56 2.49 15.3
RMSE or RRMS (%) 2.68 4.04 2.82 5.74 0.62 3.81
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C. Verification results

The results for the verification step are shown in the box-and-whiskers plot in Figure 8 with the corresponding error

metrics in Table 3. The prediction errors of all the candidate models are low on average, although they are significantly

lower for the GP models. Moreover, their spread as shown through the associated whiskers is noticeably more limited

to lower values for the GP models. The SGP and MoA model predictions at locations unknown to the training set

are poorest. The GP models show significantly better predictive abilities, with RRMS values of 1.17 for the squared

exponential kernel and 2.18 for the exponential kernel. For the best-performing model (GP with a squared exponential

kernel), the verification error, which represents the ability to predict the drag coefficient at a location completely

unknown to the surrogate model, is within 2.52% 95% of the time, and within 3.81% of the time, for this verification set.
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Fig. 8 Verification results for full (SGP and MoA) and filtered (GP) database models.

D. Overall performance

In all three testing steps, the SGP and MoA models perform poorly owing to oversmoothing and overfitting,

respectively. The SGP and MoA models considered using the provided dataset cannot adequately replace the underlying
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Table 3 Verification percent absolute error metrics on the drag coefficient for full and filtered database models.

SGP
Sq Exp

SGP
Exp

MoA
Sq Exp

MoA
Exp

GP
Sq Exp

GP
Exp

Mean (%) 3.34 4.66 4.08 6.22 0.82 1.17
Max (%) 40.57 46.33 35.60 60.51 6.68 18.11
Median (%) 1.65 2.58 2.24 3.31 0.55 0.72

95th Percentile (%) 11.34 17.09 15.33 22.64 2.52 3.86
99th Percentile (%) 28.22 28.75 23.65 41.19 3.81 7.99
RMSE or RRMS (%) 5.89 7.43 6.50 10.32 1.17 2.18

CFD-based aerodynamic optimization process. The more targeted approach of database size reduction to allow for GP

model construction provides better results by avoiding both oversmoothing and overfitting.

The particularly poor estimates for the flight conditions corresponding to high angles of attack and high Mach

numbers can be explained by the fact that wave drag suddenly becomes a significant part of the total drag in these cases.

When shock waves are formed at high flow incidence and/or Mach number, the additional associated drag is poorly

taken into account by the surrogate models. Moreover, shock wave formation is highly dependent on the optimized

airfoil shapes, since the aerodynamic optimization process only seeks to find s∗ (x𝑝) with the lowest total drag, which

translates to zero or near-zero wave drag. As a result, there can be no strict expectations as to how coherent the behavior

of the wave drag component should be beyond the cruise condition.

Between the two GPmodels, the one with a squared exponential kernel outperforms its exponential kernel counterpart,

with lower mean, maximum and RRMS values of the percent absolute error. The near-zero restitution error of the

exponential kernel model indicates that the non-smoothness associated with this covariance function allows the model to

pass through all the training points without difficulty. However, the squared exponential kernel model provides noticeably

better predictions than the exponential kernel model for the verification set, where an RRMS of 1.17 is measured for the

squared exponential kernel compared to 2.18 for the exponential kernel. It is important to note that the verification set is

made up of points obtained through an adaptive DoE technique, where additional sampling is suggested in regions

where knowledge is poorest to enrich the training database most efficiently. The superior performance of a smooth

kernel over a non-smooth kernel also matches expectations because almost all physical processes are continuously

differentiable everywhere [47] rather than nowhere.

E. Model selection

Based on the results shown, the GP model with a squared exponential kernel is selected for integration in the

mission analysis module of the OAD analysis chain for the BWB. Results from Table 3 in the verification step show that

predictions for this dataset were within 2.5% of the true value 95% of the time, and within 3.8% of the true value 99%

of the time. Scatter plots showing the similarity between true and predicted values for the validation, restitution, and
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verification steps are shown in Figures 9, 10 and 11.

For the cross-validation results, it can be seen that the two highest levels of error occur for the two highest drag

coefficient values, which correspond to the most loaded flight conditions, i.e. highest 𝑀 and 𝛼. The same effect is

found in the restitution results, where the selected surrogate model matches the supplied data closely, with only some

mild deviations occurring for drag coefficients over 200 drag counts. The verification results show that the selected

model has satisfactory predictive capabilities, with the predicted values matching the true values within 3 drag counts

95% of the time, and within 0.9 drag count on average. The good verification performance suggests that the points in

the domain provided by training set used are well-distributed all over the design space, providing good conditions for

interpolation i.e. within the bounds of available knowledge and sufficient availability of neighboring data.

Among the discarded models, the next best ten-fold cross-validation RRMS value is at best 1.56 times higher than

that of the selected model, corresponding to the GP with an exponential kernel. Similarly, for restitution RRMS value,

the next best RRMS value is 4.32 times higher, excluding the GP model with an exponential which perfectly fits but also

overfits the input data. As for the verification RRMS values, the next best model is again the GP with an exponential

kernel, with 1.86 times higher RRMS than the selected model.
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Fig. 9 Ten-fold cross-validation error on the selected surrogate model, in drag counts.

Conclusion
In this paper, the development of a surrogate model based on GPs to replace a complex high-speed aerodynamic

optimization and evaluation process for a BWB aircraft is presented. The intended use of this surrogate model is for
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Fig. 10 Restitution error on the selected surrogate model, in drag counts.
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Fig. 11 Verification error on the selected surrogate model, in drag counts.

mission analysis module in multidisciplinary OAD at the conceptual phase. A training set consisting of the drag polars

for 48 BWB planform shapes is initially available, containing 2869 data points. Models based on the full database

employing the MoA and SGP techniques do not perform well owing to the appearance of transonic effects at high 𝑀
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and/or 𝛼. To alleviate the need to use specialized GP-based techniques and use GPs directly, the size of the training set

is reduced to 1355 data points by keeping only the points that show pertinence to the mission analysis process. Of the

six models tested, the GP with a squared exponential covariance function showed the best overall performance. For the

selected model, the 95th percentile of the prediction error is 1.75% for ten-fold cross-validation, 0.96% for restitution,

and 2.52% for verification. The 95th percentile conveniently englobes the 𝐶𝐷 values corresponding to the most solicited

fundamental range of 𝐶𝐿 values in BWB mission analysis of 0.17 to 0.32, such that at most 2.52% prediction error can

be assumed on 𝐶𝐷 for the fundamental 𝐶𝐿 range. Similarly, the 99th percentile of the prediction error is 3.60% for

ten-fold validation, 2.49% for restitution, and 3.81% for verification, such that it can be assumed that the prediction

error is at most 3.81% beyond the fundamental 𝐶𝐿 range, presuming higher error occurrences are attributable to the

single-point nature of the aerodynamic optimization process, which does not expressly consider the compressibility

drag for high Mach and/or angle of attack flight conditions. As a consequence of single-point optimization, it can be

expected that a solution very close to the cruise-optimal one exists that meets the predicted 𝐶𝐷 values for high 𝐶𝐿

conditions. Finally, in terms of time savings, the selected GP model with a squared exponential kernel for the filtered

training set provides the cruise-optimal high-speed aerodynamic performance for any BWB planform shape within the

design bounds in under a minute on a personal computer. This is considerably lower than the CFD-based process, which

takes 175 hours using 32 processors on an HPC5 supercomputer.
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