
HAL Id: hal-03827298
https://hal.science/hal-03827298v1

Submitted on 24 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed On-Demand Routing for LEO
Mega-Constellations: A Starlink Case Study

Gregory Stock, Juan Andrés A Fraire, Holger Hermanns

To cite this version:
Gregory Stock, Juan Andrés A Fraire, Holger Hermanns. Distributed On-Demand Routing for LEO
Mega-Constellations: A Starlink Case Study. ASMS/SPSC 2022 - 11th Advanced Satellite Multimedia
Systems Conference and the 17th Signal Processing for Space Communications Workshop, Sep 2022,
Graz, Austria. pp.1-8, �10.1109/ASMS/SPSC55670.2022.9914716�. �hal-03827298�

https://hal.science/hal-03827298v1
https://hal.archives-ouvertes.fr

Distributed On-Demand Routing for LEO
Mega-Constellations: A Starlink Case Study

Gregory Stock Juan A. Fraire Holger Hermanns
Saarland University – Computer Science, Saarland Informatics Campus, 66123 Saarbrücken, Germany

{stock, juanfraire, hermanns}@depend.uni-saarland.de

Abstract—The design and launch of large-scale satellite net-
works create an imminent demand for efficient and delay-
minimising routing methods. With the rising number of satellites in
such constellations, pre-computing all shortest routes between all
satellites and for all times becomes more and more infeasible due
to space and time limitations. Even though distributed on-demand
routing methods were developed for specific LEO satellite network
configurations, they are not suited for increasingly popular mega-
constellations based on Walker Delta formations.

The contributions of this paper are twofold. First, we introduce
a formal model that mathematically captures the time-evolving
locations of satellites in a Walker Delta constellation and use it to
establish a formula to compute the minimum number of ISL hops
between two given satellites. In the second part, we present an
on-demand hop-count-based routing algorithm that approximates
the optimal path while achieving superior performance compared
to classical shortest-path algorithms like Dĳkstra.

I. Introduction
Recent technology advances have led to a rapidly increasing

number of satellite launches into low Earth orbit (LEO). Most
of these satellites are part of huge mega-constellations that
aim at providing global and fast communication, e. g. for
internet access. Since most constellations scheduled for future
deployment will rely on inter-satellite links (ISLs), packets will
usually need to take a high number of hops when travelling
from source to destination. The huge number of satellites adds
to the complexity of routing in such a network. There is thus a
need for specialised and efficient routing algorithms, especially
since space networks have to compete with existing and already
well-understood ground networks where the topology is more
stable compared to their counterparts in space. Besides offering
global coverage, satellite operators aim at providing higher
speeds and lower latencies compared to traditional broadband.
For this, it is critical that one can quickly determine routes
that minimise the delay. Part of the solution lies already in
the design phase of the constellation where a lot of room for
optimisation exists. Routing, however, remains an important
problem once the constellation is in orbit and operable. Packets
need to travel large distances in space and pass several satellites
that relay the traffic from one satellite to its neighbour. It is,
therefore, generally beneficial to select short routes. However,
since every extra ISL relay adds additional processing costs,
it is even more important to keep the number of hops as low
as possible. This raises the important challenges of how to
calculate the number of hops needed to connect two satellites
in the constellation and how to use these results when it comes
to routing.

This paper first provides a mathematical model to express
and work with satellite positions in a Walker Delta constellation,
a popular constellation type consisting of two locally separate
overlapping meshes, an ascending and a descending one
(Section II). Then, this model is used in Section III to derive
a formula for the minimum number of ISL hops required
to connect two satellites. These results are the basis for two
new on-demand routing algorithms that produce routes with
the minimum possible number of hops (Section IV). The
algorithms have almost no overhead and work in a distributed
way, as neither an exhaustive exploration nor a centralised pre-
computation of the path is needed. The first algorithm simply
selects hops probabilistically while assuring hop-minimality.
The second algorithm uses a heuristic to generate near-optimal
approximations of the best route but still comes at almost no
cost. This heuristic is based on observations on the distances
spanned by inter- and intra-plane hops that we introduce
in Section V. It is optimal, i. e. it is guaranteed to find
the overall shortest route, for the base case of constellation
parameters. Finally, we report (Section VI) on a thorough
empirical evaluation spanning simulations of artificial as well
as real-world constellations, with a focus on Starlink. The
proposed algorithms are significantly faster than the state of
the art while maintaining competitiveness regarding the quality
of the routes. We come to the conclusion that the hop-count-
based algorithms are superior to classical routing algorithms
based solely on shortest paths.

II. Background

A. Existing Routing Algorithms

Routing, in general, is a well-studied topic that is also
addressed by many research papers in the context of space
surveyed in [1], [2]. Yet, most algorithms have been developed
quite some time ago and have had the needs of those
times as motivations. For example, they only support polar
constellations (e. g. Walker Star) or are designed for small ATM-
like packets which have minimal relay time so that the hop
count is not so important [3]. This means that these algorithms
are not necessarily suitable or optimal for upcoming mega-
constellations. This paper focuses on a type of constellation
called Walker Delta that has recently found popularity in the
design of upcoming mega-constellations according to regulatory
filings. The satellites in such a constellation follow circular
orbits and are partitioned into different orbital planes. Before

https://orcid.org/0000-0001-5170-2019
https://orcid.org/0000-0001-9816-6989
https://orcid.org/0000-0002-2766-9615
mailto:stock@depend.uni-saarland.de
mailto:juanfraire@depend.uni-saarland.de
mailto:hermanns@depend.uni-saarland.de

Equator

𝑢1

𝑢2

ΔΦ

ΔΩ

Δ 𝑓

Z (𝑢2)
Z (𝑢1)

Δ𝐿0

sat1 sat2

Fig. 1: Ground plot of a section of a constellation annotated
by the various modelling parameters. All indicated parameters
are given as angles measured from the centre of Earth.

we mathematically describe these constellations in more detail,
we first consider the modelling of individual satellites.

B. Satellite Model
The current position of a satellite is typically represented

using the six Keplerian elements, also known as classical orbital
elements. Most important are the longitude of the ascending
node Ω and the true anomaly a. In the following, we will usually
refer to the initial longitude of the ascending node 𝐿0 ∈ [−𝜋, 𝜋[
at some Epoch, which is a constant and independent of the
current time 𝑡. The current longitude of the ascending node Ω
at time 𝑡 is given by Ω = 𝐿0 − 𝜔𝐸 · 𝑡, where 𝜔𝐸 is the
angular speed of Earth’s rotation. Since the orbits are circular
(i. e. eccentricity 𝑒 = 0), the true anomaly is undefined, as
the periapsis cannot be uniquely determined. Therefore, the
argument of latitude (or phase angle) 𝑢 ∈ [−𝜋, 𝜋[is used
instead, which is the angle between the ascending node and
the satellite and basically defines the position of the satellite
in its orbit. We say that a satellite is ascending, i. e. flying
in north-east direction, if 𝑢 ∈ [− 𝜋

2 ,
𝜋
2] and call it otherwise

descending, i. e. flying towards the south-east. The remaining
orbital elements, i. e. semi-major axis 𝑎 and inclination 𝛼, are
equal for all satellites and therefore considered global constants
of the constellation. Note that the semi-major axis of the orbit
is equal to its radius due to its circular shape. Further, note
that we define a satellite’s altitude ℎ relative to the surface of
the Earth, i. e. the orbit radius is equal to the sum of ℎ and
Earth’s semi-major axis 𝑟𝑎 = 6378.137 km as specified in the
WGS84 reference system [4].

While it is very descriptive and convenient to model the
position of a single satellite using these basic orbital parameters,
it is usually not very useful when comparing the positions of
different satellites, e. g. calculating their distance. Therefore, we
show in the following how the argument of latitude 𝑢 and the
(initial) longitude of the ascending node 𝐿0 can be converted
first to geodetic coordinates (latitude & longitude) and then to
a cartesian coordinate system known as ECEF (Earth-centered,
Earth-fixed).

1) Keplerian to Geodetic: Geodetic coordinates are specified
using latitude 𝜑, longitude _, and the height ℎ. The conversion

of a satellite position to geodetic coordinates is given by:

𝜑 = arcsin(sin𝛼 · sin 𝑢) ∈ [−𝛼, 𝛼]
_ = N (

𝐿0 − 𝜔𝐸 · 𝑡 + Z (𝑢)
)
= N (

Ω + Z (𝑢)) ∈ [−𝜋, 𝜋[
Here, Z (𝑢) indicates the longitude difference of a satellite to
its ascending node (see Fig. 1):

Z (𝑢) = arctan(cos𝛼 · tan 𝑢) +
{

0 asc. segment
𝜋 desc. segment

N(𝑥) = ((𝑥 + 𝜋) mod 2𝜋
) − 𝜋 is a normalisation function that

ensures that the resulting values are within the desired interval
[−𝜋, 𝜋[. An important application of geodetic coordinates is
the calculation of the sub-satellite point. It is defined as the
point where a straight line from the centre of the Earth to
the satellite intersects with the surface of the Earth. Since
the geodetic coordinate system is a spherical system, the sub-
satellite point of a satellite has the same latitude and longitude
as the satellite, i. e. only its altitude differs.

2) Geodetic to Cartesian: The Earth-centered, Earth-fixed
coordinate system (ECEF) is a geocentric system that uses
Cartesian coordinates. This representation is well suited to
compute distances between two objects in space. Converting
geodetic coordinates to Cartesian coordinates (𝑋,𝑌, 𝑍) can be
done as follows:((𝑟𝑎 + ℎ) cos 𝜑 cos_︸ ︷︷ ︸

𝑋

, (𝑟𝑎 + ℎ) cos 𝜑 sin_︸ ︷︷ ︸
𝑌

, (𝑟𝑎 + ℎ) sin 𝜑︸ ︷︷ ︸
𝑍

)
C. Walker Delta Constellation

A Walker Delta constellation consists of 𝑃 orbital planes
that are evenly spaced around the Equator. Each of these
planes contains 𝑄 evenly spaced satellites. All satellites follow
a circular orbit with the same inclination 𝛼 and altitude ℎ.
A Walker Delta constellation is often formally described by
𝛼 : 𝑃𝑄/𝑃/𝐹 where 𝐹 indicates the relative spacing between
satellites in adjacent planes (see below). Throughout this paper,
we use (𝑜, 𝑖) to denote the 𝑖-th satellite in orbital plane 𝑜.

The RAAN difference (i. e. difference in right ascension of the
ascending node) between adjacent planes ΔΩ = 2𝜋

𝑃
∈ [0, 2𝜋]

specifies how far apart neighbouring planes are from each other
and only depends on the number of orbital planes. Within
an orbital plane, the phase difference, i. e. the difference in
argument of latitude, between adjacent satellites ΔΦ = 2𝜋

𝑄
∈

[0, 2𝜋] can be computed from the number of satellites per
plane. Finally, the phase offset Δ 𝑓 = 2𝜋𝐹

𝑃𝑄
∈ [0, 2𝜋[between

satellites in adjacent planes specifies the difference in argument
of latitude between two horizontal neighbours. This value is
usually given in terms of a phasing factor 𝐹 ∈ {0, . . . , 𝑃 − 1}.
In contrast to arbitrary phase offsets, this factor ensures that the
sum of phase offsets for all 𝑃 planes, i. e. 𝑃 · Δ 𝑓 , is always a
multiple of ΔΦ. This property is required for the constellation to
be symmetric, i. e. to have the same Δ 𝑓 for every satellite. See
Fig. 1 for a visualisation of these parameters. Satellite (𝑜, 𝑖) can
now be described by

(
𝐿0 = N(𝑜 ·ΔΩ), 𝑢 = N(𝑜 ·Δ 𝑓 + 𝑖 ·ΔΦ))

for 0 ≤ 𝑜 < 𝑃 and 0 ≤ 𝑖 < 𝑄.

a) Inter-Satellite Links: Throughout this paper, we assume
that each satellite can establish four ISL links to its immediate
neighbours, i. e. an intra-plane link to the successor and
predecessor in its own orbital plane and an inter-plane link
each to the neighbour in the left and right plane. Walker Delta
constellations are typically deployed in low-inclination orbits
(e. g. 53.2◦ for Starlink’s inner shell) where the Doppler im-
pairments in cross-plane links can be coped with at the highest
latitudes. Formally, the predecessor and successor of satellite
(𝑜, 𝑖) are given by (𝑜, (𝑖 − 1) mod 𝑄) and (𝑜, (𝑖 + 1) mod 𝑄),
respectively. The left neighbour is (𝑜 − 1, 𝑖) if 𝑜 ≠ 0 and
(𝑃 − 1, (𝑖 − 𝐹) mod 𝑄) otherwise. Analogously, the right
neighbour is (𝑜 + 1, 𝑖) if 𝑜 ≠ 𝑃 − 1 and (0, (𝑖 + 𝐹) mod 𝑄)
otherwise.

III. Minimum Hop Count

In this section, we want to show how the geodetic positions
of the satellites in the constellation can be leveraged to compute
the minimum number of ISL-hops required to connect two
satellites. This section is based on previous work by Chen et
al. in which a theoretical model to estimate the ISL hop count
was presented [5]. We use these results as a foundation and
augment them by our findings. We do not consider how to
select adequate access satellites for ground users but instead
work with the assumption that the two satellites for which the
hop count or route is to be calculated are given.

A. Hop Count Model
In the following formulas, we often use ⌊·⌉ to indicate

that a number is rounded to the nearest integer according
to the rounding function known as commercial rounding that
rounds half away from zero, i. e. ⌊𝑥⌉ = sgn(𝑥) ⌊|𝑥 | + 0.5⌋. Note,
however, that in our theoretical context, rounding is not strictly
necessary as for all quotients the divisor is always a factor of
the respective dividend.

Computing the minimum number of inter-plane hops 𝐻ℎ is
fairly straightforward. It is given by the horizontal distance that
must be travelled to get from the initial orbital plane to the
destination plane. Therefore, it only depends on the difference
between the longitudes of the respective ascending nodes:

Δ𝐿0 = (𝐿0,2 − 𝐿0,1) mod 2𝜋 ∈ [0, 2𝜋[
Δ𝐿0 is the longitudal angle that must be covered when going
from the orbital plane of the source satellite to the plane of the
destination in east direction. Therefore, the RAAN difference
in west direction is 2𝜋 − 𝐿0. Since each hop from one plane to
the next covers an angle of ΔΩ, the total number of inter-plane
hops in east or west direction is given by:

𝐻←ℎ =

⌊
2𝜋 − Δ𝐿0

ΔΩ

⌉
𝐻→ℎ =

⌊
Δ𝐿0
ΔΩ

⌉
Next, we need to look at the phase angle differences between
the two satellites. An intra-plane hop (to the successor satellite)
adds ΔΦ to the phase angle, while an inter-plane hop (towards
the east) increases the phase angle by Δ 𝑓 . Formally, when

(0, 7)

(0, 8)
(1, 7) (2, 6)

(2, 7)

(3, 6)(4, 6)

Fig. 2: A Walker Delta constellation 60◦ : 50/5/2 pinpointing
the difference where the original hop count formula produces
suboptimal results.

taking only hops to the successor and right neighbour, the
following relationship holds:

𝑢2 = 𝑢1 + (𝐻→ℎ · Δ 𝑓) + (𝐻↗𝑣 · ΔΦ)︸ ︷︷ ︸
Δ
→
𝑢

Since we want to compute the number of intra-plane hops 𝐻𝑣 ,
we have to compute the fraction Δ

→
𝑢 of the phase angle

difference that will be covered by intra-plane hops. We again
need to distinguish between two directions:

Δ
→
𝑢 = (𝑢2 − 𝑢1 − 𝐻→ℎ · Δ 𝑓) mod 2𝜋

Δ
←
𝑢 = (𝑢2 − 𝑢1 + 𝐻←ℎ · Δ 𝑓) mod 2𝜋

Finally, we can do similar calculations as for 𝐻ℎ to compute
the directional intra-plane hop counts:

𝐻
↖
𝑣 =

⌊
Δ
←
𝑢

ΔΦ

⌉
𝐻
↗
𝑣 =

⌊
Δ
→
𝑢

ΔΦ

⌉
𝐻
↙
𝑣 =

⌊
2𝜋 − Δ←𝑢

ΔΦ

⌉
𝐻
↘
𝑣 =

⌊
2𝜋 − Δ→𝑢

ΔΦ

⌉
The minimum hop count is then just given by the minimum
of the possible combinations:

min{𝐻←ℎ + 𝐻↖𝑣 , 𝐻←ℎ + 𝐻↙𝑣 , 𝐻→ℎ + 𝐻↗𝑣 , 𝐻→ℎ + 𝐻↘𝑣 }
Note that this formula also contains indicators for the two
directions in which to travel to achieve the minimum number
of hops.

B. Enhancement over Existing Formula
As mentioned, the above derivations are inspired by results

established by Chen et al. [5]. The latter are based on the
assumption that “if the path on a given direction is too long (e. g.
𝐻ℎ > 𝑃/2), the packets will go through the opposite direction.”
The above results relinquish this assumption, because it may
induce unnecessarily high hop counts. As a concrete example,
Fig. 2 shows a Walker Delta constellation (60◦ : 50/5/2) that
visualises this fine point. The constellation contains 𝑃 = 5
planes which means that according to the assumption, for all
routes with more than two inter-plane hops, there should be
an alternative route with 𝐻ℎ ≤ 𝑃/2 and 𝐻𝑣 ≤ 𝑄/2 that contains

fewer or equally many hops. Now consider the two routes from
(0, 8) to (2, 6), for which the original work of Chen et al. [5],
gives a minimum hop count of four. The corresponding route
is depicted in green. It has one intra-plane hop, then two inter-
plane hops and one more intra-plane hop. The purple route
has a hop count of only three (which is the value returned by
our formula). It consists of three inter-plane hops. Notably, it
is also shorter in total distance spanned.

C. Hop Count Evaluation
We validated the correctness of our formula by empirically

comparing it to an algorithm that derives the hop count from
the satellites’ identifiers (𝑜, 𝑖). Then, we evaluated the formula
and analysed the differences on the Starlink constellation (see
Section VI-A). Across all possible combinations of satellite
pairs, the hop count using Chen’s formula was unnecessarily
high in about 2.7 % of the pairs (1.26 % one additional hop,
1.01 % three additional hops, 0.44 % five additional hops).

Furthermore, we compared the hop counts with those of the
shortest-distance routes which in turn were computed using
Dĳkstra’s algorithm. Interestingly, the latter routes sometimes
contain one more hop than the minimum (≈ 1 % of the pairs).
However, whenever this is the case, both hop count formulas
agree on the count.

IV. Routing Algorithms
The second part of this paper considers different solutions

for solving the routing problem. First, we introduce Dĳkstra’s
algorithm as the classical algorithm for solving shortest path
problems. Next, we argue why considering a metric based on
hop count can be superior to just considering the length, i. e.
the total distance spanned by a route. Finally, we suggest and
evaluate new routing algorithms that integrate the minimum
hop count.

A. Dĳkstra’s Shortest Path
Dĳkstra’s algorithm [6] is a well-known algorithm and the

de-facto standard for solving shortest path problems. It is also
commonly used in the domain of network routing and exists
in various flavours. In this paper, we are only interested in
solving the single-pair shortest path problem. We consider the
Euclidean distance between satellites as a metric and use a min-
heap to store the unvisited nodes. The pseudocode is shown in
Algorithm 1. Note that to compute the shortest paths from the
source to all other nodes, it suffices to remove the lines 12 to
14 which serve as a shortcut to terminate the algorithm once
the destination node has been reached.

Once the algorithm finishes, the total distance of the shortest
path from source to destination is dist[dst]. However, we are
usually also interested in the route itself rather than just its
length. Therefore, the code displayed in Algorithm 1 also
remembers for each visited node its predecessor node on
the shortest path to it. The reconstruction algorithm starts
at the destination node and basically follows the pointers to the
respective previous nodes until it arrives at the source node,
keeping track of all nodes that were passed.

Algorithm 1 Dĳkstra’s Shortest Path
1 procedure Dijkstra(Const., src, dst)
2 for all satellites 𝑣 ∈ Constellation do
3 dist[𝑣] ← ∞ ⊲ unknown distance to 𝑣

4 prev[𝑣] ← ⊥ ⊲ predecessor of 𝑣
5 visited[𝑣] ← false
6 end for
7 dist[src] ← 0
8 𝑄 ← Heapify({(𝑣, dist[𝑣]) | 𝑣 ∈ Const.})
9 while 𝑄 is not empty do

10 (𝑢, 𝑑) ← 𝑄.Pop() ⊲ pop sat. 𝑢 with min. distance 𝑑

11 visited[𝑢] ← true
12 if 𝑢 = dst then
13 break ⊲ shortest path found
14 end if
15 for all neighbors 𝑣 of 𝑢 do
16 if ¬visited[𝑣] then
17 alt← 𝑑 + Euclidean(𝑢, 𝑣)
18 if alt < dist[𝑣] then
19 dist[𝑣] ← alt ⊲ found shorter alternative
20 prev[𝑣] ← 𝑢

21 𝑄.DecreaseKey(𝑣, alt) ⊲ update priority
22 end if of satellite 𝑣

23 end if
24 end for
25 end while
26 return dist[], prev[]
27 end procedure

0.00 % 0.25 % 0.50 % 0.75 % 1.00 % 1.25 % 1.50 % 1.75 % 2.00 %

Fig. 3: Violin plot showing how much longer the shortest route
with minimum number of hops is compared to the overall
shortest route for Starlink.

We use Dĳkstra’s algorithm in the following as a baseline
for finding shortest routes between pairs of satellites and use
it to compare the performance of other algorithms.

B. Shortest Length vs. Minimum Hops
In this section, we describe how the routing method can

be optimised by exploiting the minimum hop count formula.
This improvement is based on the observation that the shortest
route usually also has the lowest possible number of hops.
Section III-C already showed that there are some exceptions to
this where, in some rare cases, the shortest route can contain
more hops than the minimum. Fig. 3 is a violin plot for
the Starlink constellation which shows how much longer the
shortest route with minimum number of hops is compared to
the overall shortest path. It considers only the ≈1 % of satellite
pairs where the shortest path has more hops than the minimum.
The largest difference is a ≈2 % longer route (which amounts
to around 1284 km in absolute terms). In all cases, there is
only one additional hop.

However, we argue that the number of hops is actually the
metric that should be minimised first. Mega-constellations will
need to carry large amounts of data, which is only possible with
longer data packets, e. g. jumbo Ethernet frames. As the signals
travel with the speed of light, it is clear that slightly shorter
routes do not compensate for the overhead of an additional
hop. For example, the transmission time of a packet of size
65 535 bytes (largest possible IPv4 payload) at an ISL rate
of 1 Gbps is about 500 µs. Even if faster ISL data rates are
leveraged, there is internal packetisation and queuing delay
which can easily add up to several milliseconds of on-board
processing, even when using highly efficient ATM fabrics [7].
A single hop is thus comparable with the propagation delay of
1000 km distance at the speed of light (299 792 km/s) totalling
3.3 ms.

Knowing the minimum number of hops in both dimensions
and their directions between two satellites allows the routing
algorithm to restrict the exploration: The search space can be
reduced significantly, forming a spherical rectangle where the
source and destination satellites are at opposing corners. Note
that in this rectangle, every possible route from the source
to the destination has the same number of hops (similar to a
Manhattan Street Network [8]).

The fact that the search space is now a two-dimensional grid
has the side-effect that it becomes a directed acyclic graph
(DAG). For DAGs, there is a more efficient algorithm than
Dijkstra. DAGshort is based on topological sorting and runs
in O(𝑉 + 𝐸) time [9]. A topological order is a linear ordering
of the graph’s nodes where for every directed edge in the graph,
the source is sorted before the destination in the ordering. There
exists a trivial ordering for the two-dimensional grid of ISL
links: Starting at the source node, all vertices in the grid can be
enumerated line by line, i. e. sorting them first by their vertical
distance to the source and then by their horizontal distance.

For the sake of completeness, we want to mention yet another
possible approach, namely a modification of Dijkstra, denoted
DijkstraHops, that computes the shortest route amongst the
ones with the minimum number of hops. For this, it suffices
to store tuples (hops, distance) on the heap and compare them
using a lexicographic order.

C. Probabilistic Routing
We now want to quantify the difference between the best and

worst possible route in such a spherical rectangle. The question
is whether it actually pays off to invest in compute-intensive
routing algorithms or whether it suffices to (randomly) send
the packet via any route with minimum number of hops. For
this, we analyse an algorithm CoinFlipRoute that, given a
source and destination, first computes the minimum hop count
and directions using the formula from Section III-A. Then, it
flips a coin at each satellite to randomly decide in which of the
two directions the packet should continue. The only difficulty
is to keep track of the vertical and horizontal hops to restrict
the route to the spherical rectangle. When a packet has, for
example, travelled all of its horizontal hops, the route is forced
to be completed with the remaining number of vertical hops.

Algorithm 2 DisCoRoute (Cases A2A & D2D)
1 procedure DisCoRouteA2A(Const., src, dst)
2 𝐻ℎ, 𝐻𝑣 ← MinHopCount(Const., src, dst)
3 ⊲ w. l. o. g. 𝑠0,0 = src, 𝑠𝐻ℎ ,𝐻𝑣 = dst, dst is north east of src
4 route𝑠 ← [src]
5 route𝑡 ← [dst]
6 𝑖 ← 0
7 𝑗 ← 𝐻ℎ

8 for 𝐻ℎ many times do
9 reward𝑠 ← |𝜑𝑖,0 + 𝜑𝑖+1,0 |

10 reward𝑡 ← |𝜑 𝑗 ,𝐻𝑣 + 𝜑 𝑗−1,𝐻𝑣
|

11 if reward𝑠 < reward𝑡 then
12 route𝑡 ← 𝑠 𝑗−1,𝐻𝑣

:: route𝑡
13 𝑗 ← 𝑗 − 1
14 else
15 route𝑠 ← route𝑠 :: 𝑠𝑖+1,0
16 𝑖 ← 𝑖 + 1
17 end if
18 end for
19 assert 𝑖 = 𝑗 ⊲ 𝑠𝑖,0 and 𝑡 𝑗 ,𝐻𝑣 are on same orbital plane
20 if 𝐻𝑣 = 0 then ⊲ is route𝑡 [0] also last element of route𝑠?
21 route𝑡 ← route𝑡 [1:] ⊲ remove first element
22 else
23 route𝑠 ← route𝑠 ++ [𝑠𝑖,1, . . . , 𝑠𝑖,𝐻𝑣−1]
24 end if
25 return route𝑠 ++ route𝑡
26 end procedure

Notably, the approach of locally flipping a coin is not the
same as enumerating all possible routes in the rectangle and
selecting one of them uniformly at random. This is because
some satellites are restricted in their choice, and therefore the
possible routes do not all have the same probability.

As we will see in the evaluation (Section VI), the Coin-
FlipRoute approach turns out to perform quite well in practice
and is very cheap to compute. However, we present an algorithm
in the next section that is still easy to compute but aims at
calculating more reasonable routes.

D. DisCoRoute
DisCoRoute is a distributed routing algorithm for mega-

constellations that exploits the insights found so far. The key
strength of this algorithm is that it is very cheap to compute
compared to Dijkstra. The algorithm produces near-optimal
solutions that outperform the probabilistic approach. In the
following, we first introduce the idea and requirements of
the algorithm, then describe how the algorithm works, and in
Section VI, we show that the loss of optimality is not significant
in practice. The algorithm is rooted in two insights:

1) The length of an intra-plane hop is always constant in
the constellation, independent of the satellite’s positions.

2) The length of an inter-plane hop should decrease the
further it is away from the Equator.

Therefore, the main idea is to cleverly distribute the inter-plane
hops so that they happen as close as possible to the poles.

Similar to the probabilistic algorithm, we first need to
compute the minimum hop count and the respective directions
from source to destination. Then, the algorithm distinguishes
two cases depending on the flying direction of the two satellites.

−180◦ −135◦ −90◦ −45◦ 0◦ 45◦ 90◦ 135◦ 180◦

Longitude _

−90◦

−60◦

−30◦

0◦

30◦

60◦

90◦
La

tit
ud

e
𝜑

1

2

3
4

5

6

7

81

2
3

45
6 7 8

Case 1: A2A

Case 2: A2D

src1

dst1

src2

dst2

Ascending Satellite Descending Satellite Inter-plane Hop Intra-plane Hop

Fig. 4: Ground track of a Walker 70◦ : 300/20/5 constellation showing an example route for each of the two cases of DisCoRoute.

Algorithm 3 DisCoRoute (Cases A2D & D2A)
1 procedure DisCoRouteA2D(Const., src, dst)
2 𝐻ℎ, 𝐻𝑣 ← MinHopCount(Const., src, dst)
3 ⊲ w. l. o. g. 𝑠0,0 = src, 𝑠𝐻ℎ ,𝐻𝑣 = dst, dst is north east of src
4 route𝑠 ← [src]
5 route𝑡 ← [dst]
6 𝑖 ← 0
7 𝑗 ← 𝐻𝑣

8 for 𝐻𝑣 many times do
9 reward𝑠 ← |𝜑0,𝑖 + 𝜑0,𝑖+1 |

10 reward𝑡 ← |𝜑𝐻ℎ , 𝑗 + 𝜑𝐻ℎ , 𝑗−1 |
11 if reward𝑠 < reward𝑡 then
12 route𝑠 ← route𝑠 :: 𝑠0,𝑖+1
13 𝑖 ← 𝑖 + 1
14 else
15 route𝑡 ← 𝑠𝐻ℎ , 𝑗−1 :: route𝑡
16 𝑗 ← 𝑗 − 1
17 end if
18 end for
19 assert 𝑖 = 𝑗 ⊲ 𝑠0,𝑖 and 𝑡𝐻𝑣 , 𝑗 are reachable via horiz. hops
20 if 𝐻ℎ = 0 then ⊲ is route𝑡 [0] also last element of route𝑠?
21 route𝑡 ← route𝑡 [1:] ⊲ remove first element
22 else
23 route𝑠 ← route𝑠 ++ [𝑠1,𝑖 , . . . , 𝑠𝐻ℎ−1,𝑖]
24 end if
25 return route𝑠 ++ route𝑡
26 end procedure

a) Case 1: Asc-to-Asc / Desc-to-Desc: Assume w. l. o. g.
that both satellites are ascending. The idea is to distribute all
inter-plane hops between the beginning and end of the route,
having all intra-plane hops in the middle. We chose the partition
that maximises the overall distance of all inter-plane hops from
the Equator. The pseudocode is shown in Algorithm 2. It starts
by constructing the route simultaneously from the source and
destination. Then, it looks at the absolute value of the sum of
latitudes of the inter-plane hop that starts at the source and
of the one that ends at the destination. The one with a larger
value is added to the (respective) route. This selection method
is repeated for the number of horizontal hops many times.
Afterwards, the two route segments only need to be connected
by the given number of intra-plane hops (potentially zero).

b) Case 2: Asc-to-Desc / Desc-to-Asc: This case is
roughly the inverse of the first case. Routes from ascending to
descending satellites must always go close to a pole since this
is the only location where there is a link between an ascending
and a descending satellite. This means that the general rule
should be to partition the intra-plane hops to the beginning and
end of the route and have all inter-plane hops in the middle, as
close to the pole as possible. The pseudocode in Algorithm 3
has a similar structure as the first case. The only significant
difference is the selection criterion in line 11 that chooses an
intra-plane hop on the side where the absolute value of the
latitude sum of the involved satellites is smaller.

Fig. 4 shows an example for both cases. The lower route
corresponds to the first case. It starts with an ascending satellite
in the southern hemisphere and ends with an ascending satellite
in the northern one, meaning that it must cross the Equator. As
one can see, the three inter-plane hops right at the beginning
and the two at the end are distributed to maximise their overall
distance from the Equator. Note that if both satellites were
in the northern hemisphere, the route would not start with
inter-plane hops but would perform all of them at the end. The
route for the second case connects an ascending satellite with a
descending one. We can see that the selected intra-plane hops
allow the inter-plane hops to have maximal distance from the
Equator, i. e. have the shortest length possible.

V. Hop Distances
This section covers the length calculations of inter- and

intra-plane hops. Using the following theorems, it becomes
trivial to prove that the approximative DisCoRoute algorithm
can solve the shortest path problem exactly for Walker Delta
constellations with zero phase offset Δ 𝑓 = 0.

Theorem 1 (Length of Vertical Hops): The travel distance
of an intra-plane hop is always the same, no matter where the
hop is performed in the constellation.

Theorem 2 (Length of Horizontal Hops): In a constellation
with zero phase offset Δ 𝑓 = 0, the travel distance of an inter-
plane hop is shortest closest to the poles and longest around
the Equator.

Due to space limitations, the proofs are omitted in this paper,
but they can be found in the technical report [10].

Our empirical evaluation suggests that Theorem 2 also
applies to the more general case for non-zero phase offsets.
Unfortunately, we were unable to formally prove this and to
provide a closed formula for the length of an inter-plane hop.
We nevertheless formulate our findings as two conjectures
that describe when the inter-plane hop distance between two
neighbouring satellites is maximal and minimal.

Conjecture 1 (Longest Horizontal Hop): An inter-plane hop
between two neighbouring satellites has the longest distance
when the phase angles of both satellites are equally distributed
around the Equator. This means that the phase angles of the
satellites are either 𝑢1 = −Δ 𝑓/2 and 𝑢2 = Δ 𝑓/2 or, analogously
on the backside of the Earth, 𝑢1 = 𝜋 − Δ 𝑓/2 and 𝑢2 = 𝜋 + Δ 𝑓/2.

Conjecture 2 (Shortest Horizontal Hop): A horizontal hop
is smallest when the phase angles of both satellites are equally
distributed around their points with maximal latitude. This
means that the phase angles of the satellites are either 𝑢1 =
𝜋/2 − Δ 𝑓/2 and 𝑢2 = 𝜋/2 + Δ 𝑓/2 or, analogously on the backside
of the Earth, 𝑢1 = −𝜋/2 − Δ 𝑓/2 and 𝑢2 = −𝜋/2 + Δ 𝑓/2.

It is noteworthy to mention that these two cases have a
convenient property when considering the absolute value of
the two satellites’ latitudes |𝑢1+𝑢2 | (as we do in DisCoRoute):
The longest distance of an inter-plane hop is achieved at the
location where both satellites have the same latitude and their
sum is maximal. In contrast, the distance is minimal when the
latitudes have the same magnitude but with different signs, i. e.
their sum is zero.

VI. Evaluation
In the last section of this paper, we provide the results of our

empirical performance evaluation of the algorithms through
simulations. We have implemented our model and algorithms
both in Python and Rust. The measurements presented in this
section are all produced using the Rust implementation as it is
significantly faster than Python code. However, this only affects
the run time measurements since, apart from that, the two
implementations calculate identical results. All benchmarks
were run on a Linux machine, equipped with an Intel Core™
i7-6700 CPU running at 3.40 GHz and 32 GB of main memory.

A. Setup: Starlink Constellation
Most of the following benchmarks are executed on the

(first) orbital shell of the initial deployment phase of SpaceX’s
Starlink constellation. More precisely, the Starlink constellation
that we consider is formally described as a Walker Delta
53.0◦ : 1584/72/39 at 550 km. These parameters are taken
from publicly available information [11], except for the phasing
factor 𝐹 = 39 which is not explicitly mentioned and had to be
estimated based on the available documents and by inspecting
the publicly available data of satellites launched so far.

B. Run Time
The violin plot in Fig. 5 shows the run time distribution of

the different algorithms. For each algorithm, we measure its

Dijkstra DAGshort CoinFlipRoute DisCoRoute

10−6

10−5

10−4

Ex
ec

ut
io

n
Ti

m
e

[s
]

Fig. 5: Comparison of the execution times (in seconds) for each
algorithm on all satellite pairs in the Starlink constellation.

−2.0 % −1.0 % 0.0 % 1.0 % 2.0 % 3.0 %

Dijkstra

DAGlong

CoinFlipRoute

DisCoRoute

Fig. 6: Comparison of (relative) route lengths produced by
each algorithm where the baseline is the shortest route with
minimum hops, i. e. DAGshort.

execution time for all possible combinations of two satellites in
the Starlink constellation. Note that the plot uses a logarithmic
scale and that we use the average of ten runs for each pair.
We observe that Dĳkstra’s algorithm is, as expected, the most
expensive one. This is mainly due to the fact that Dijkstra
explores neighbour satellites in all four directions while all
other algorithms first compute the minimum hop count and
then restrict the search space to the induced spherical rectangle.
Comparing classical Dijkstra and DAGshort, we achieve a
mean speedup of around 22×. Considering DisCoRoute, we
even end up with a mean speedup of 158× compared to classical
Dijkstra and still 7× compared to DAGshort. Interesting to
note is that the CoinFlipRoute algorithm has a slightly lower
mean than DisCoRoute but is slower in the worst case.

C. Exactness
Unlike Dijkstra, the hop-count-based algorithms are all

approximates and do not always find the overall optimal
solution. This section is devoted to the analysis of the magnitude
of suboptimality of these algorithms. For this, we look again at
all pairs in the Starlink constellation and compute the lengths
of all computed routes. We use the hop-count-based shortest
path algorithm DAGshort as a baseline and compare the

10−1 100 101 102

Run time [s]

500

2000

8000

32000

To
ta

ln
um

be
ro

fs
at

el
lit

es

(×1.30)

(×1.31)

(×1.39)

(×2.37)

(×2.79)

(×3.43)

(×4.35)

(×4.15)

(×4.34)

DisCoRoute
DAGshort
Dijkstra

Fig. 7: Bar chart showing the scalability of the algorithms with
increasing constellation size.

other algorithms relative to it. This has the effect that classical
Dijkstra is the only algorithm that can be better than the
baseline. For completeness, we also include an algorithm
DAGlong that computes the length of the longest possible
path inside the spherical rectangle induced by the hop counts.
The results are depicted in the violin plot in Fig. 6.

As we have already seen in Section IV-B, Dijkstra can
outperform the baseline in only a tiny fraction of cases. In
the worst case, Dijkstra would be able to produce an up
to 2 % shorter route. However, the mean of Dijkstra is just
at around −0.02 %. Further, we see that DisCoRoute and
CoinFlipRoute perform quite well in practice.

D. Scalability
As a final performance indicator, we evaluate how well

the different algorithms scale when the number of satel-
lites in the constellation increases. For this, we created
four test-constellations 60◦ : 500/25/5, 60◦ : 2000/50/10,
60◦ : 8000/100/20, and 60◦ : 32 000/200/40. For each of them,
we sampled 100 000 random satellite pairs and measured the
execution time each algorithm takes. The results are depicted
on a logarithmic scale in the bar chart in Fig. 7.

Note that the number of satellites quadruples in each step.
The number in parentheses indicates the factor by which the
run time increases compared to the previous case. It is clear
from the figure that our DisCoRoute algorithm provides better
scalability on huge mega-constellations compared to Dijkstra.

VII. Conclusion
This paper has started off with the question whether there

exist simple routing schemes that optimise the number of hops
as well as the travel distance between pairs of satellites in
mega-constellations. Apart from a straightforward probabilistic
forwarding scheme, we have introduced the DisCoRoute
algorithm and have presented profound empirical studies
discussing the pros and cons in comparison to the optimal
solution, thereby shedding light on the relative impact of travel
time and hop count minimisation. The results are overall very
encouraging. We have focussed on Walker Delta constellations

(like Starlink) but are exploring extensions to other types of
constellations. Furthermore, we are currently embarking on
extensions of this work, taking into account congestion and
background traffic, as well as further evaluations (e. g. route
length and latency).

Acknowledgments
This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 101008233
(MISSION).

References
[1] X. Qi, J. Ma, D. Wu, L. Liu, and S. Hu, “A survey of

routing techniques for satellite networks,” J. Commun.
Inf. Networks, vol. 1, no. 4, pp. 66–85, 2016. doi: 10.
1007/BF03391581.

[2] M. A. A. Madni, S. Iranmanesh, and R. Raad, “Dtn
and non-dtn routing protocols for inter-cubesat commu-
nications: A comprehensive survey,” Electronics, vol. 9,
no. 3, 2020. doi: 10.3390/electronics9030482.

[3] H. Li and X. Gu, “Adaptive ATM routing in Walker
delta satellite communication networks,” in 1st Int. Symp.
Syst. Control Aerosp. Astronautics, 2006, pp. 368–373.
doi: 10.1109/ISSCAA.2006.1627646.

[4] Defense Mapping Agency, “Department of defense world
geodetic system 1984,” DMA, TR 8350.2, 1991. [Online].
Available: https://apps.dtic.mil/sti/pdfs/ADA280358.pdf.

[5] Q. Chen, G. Giambene, L. Yang, C. Fan, and X. Chen,
“Analysis of inter-satellite link paths for LEO mega-
constellation networks,” IEEE Trans. Veh. Technol.,
vol. 70, no. 3, pp. 2743–2755, 2021. doi: 10 .1109 /
TVT.2021.3058126.

[6] E. W. Dĳkstra, “A note on two problems in connexion
with graphs,” Numerische Mathematik, vol. 1, pp. 269–
271, 1959. doi: 10.1007/BF01386390.

[7] D. Cerovic, V. D. Piccolo, A. Amamou, K. Haddadou,
and G. Pujolle, “Fast packet processing: A survey,” IEEE
Commun. Surveys Tuts., vol. 20, no. 4, pp. 3645–3676,
2018. doi: 10.1109/COMST.2018.2851072.

[8] N. F. Maxemchuk, “Routing in the manhattan street
network,” IEEE Trans. Commun., vol. 35, no. 5, pp. 503–
512, 1987. doi: 10.1109/TCOM.1987.1096802.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Intro-
duction to Algorithms. MIT Press, 1989, pp. 536–538,
Section 25.4, isbn: 0-262-03141-8.

[10] G. Stock, J. A. Fraire, and H. Hermanns, “Distributed on-
demand routing for LEO mega-constellations: A starlink
case study,” CoRR, 2022. doi: 10.48550/arXiv.2208.
02128. arXiv: 2208.02128.

[11] Space Exploration Holdings, LLC, SpaceX non-
geostationary satellite system: Attachment A, FCC IBFS
SAT-MOD-20190830-00087, Aug. 2019. [Online]. Avail-
able: https:// licensing.fcc.gov/myibfs/download.do?
attachment_key=1877671.

https://cordis.europa.eu/project/id/101008233
https://mission-project.eu
https://doi.org/10.1007/BF03391581
https://doi.org/10.1007/BF03391581
https://doi.org/10.3390/electronics9030482
https://doi.org/10.1109/ISSCAA.2006.1627646
https://apps.dtic.mil/sti/pdfs/ADA280358.pdf
https://doi.org/10.1109/TVT.2021.3058126
https://doi.org/10.1109/TVT.2021.3058126
https://doi.org/10.1007/BF01386390
https://doi.org/10.1109/COMST.2018.2851072
https://doi.org/10.1109/TCOM.1987.1096802
https://doi.org/10.48550/arXiv.2208.02128
https://doi.org/10.48550/arXiv.2208.02128
https://arxiv.org/abs/2208.02128
https://licensing.fcc.gov/myibfs/download.do?attachment_key=1877671
https://licensing.fcc.gov/myibfs/download.do?attachment_key=1877671

	Introduction
	Background
	Existing Routing Algorithms
	Satellite Model
	Keplerian to Geodetic
	Geodetic to Cartesian

	Walker Delta Constellation

	Minimum Hop Count
	Hop Count Model
	Enhancement over Existing Formula
	Hop Count Evaluation

	Routing Algorithms
	Dijkstra's Shortest Path
	Shortest Length vs. Minimum Hops
	Probabilistic Routing
	DisCoRoute

	Hop Distances
	Evaluation
	Setup: Starlink Constellation
	Run Time
	Exactness
	Scalability

	Conclusion

