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An Exponential Inequality for Symmetric Random Variables

We prove a simple exponential inequality which gives a control on the first two empirical moments of a sequence of independent identically distributed symmetric real-valued random variables.

A central question in the study of sums of independent identically distributed (or i.i.d.) random variables is to control the probabilities that they deviate from their typical values. Since these probabilities are usually hard to compute, the strategy instead is to rely on inequalities. The most fundamental inequality of this sort is the celebrated Chebyshev inequality (see for instance [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF]). Numerous refinements and extensions of this inequality have been worked out in the literature. It turns out that, for independent variables admitting an exponential moment, the speed of deviation from the typical behavior is of exponential order in the number of variables. Therefore, one seeks exponential inequalities. Two famous inequalities are the Chebyshev exponential inequality and Hoeffding's inequality [START_REF]Wikipedia contributors, Hoeffding's inequality, Wikipedia, The Free Encyclopedia[END_REF]. These inequalities help to design statistical tests and to compute intervals of confidence associated to a random estimator.

We present here a very simple exponential inequality. This inequality holds for any symmetric distribution, and does not require any integrability condition.

Theorem. Let n ≥ 1 and let X 1 , . . . , X n be n independent identically distributed symmetric real-valued random variables. For any x, y > 0, we have

P X 1 + • • • + X n ≥ x, X 2 1 + • • • + X 2 n ≤ y < exp - x 2 2y .
If we apply this inequality with nx and ny instead of x and y, we obtain an inequality controlling the first two empirical moments of the sequence X 1 , • • • , X n , with an upper bound of exponential order in n of,

P X 1 + • • • + X n n ≥ x, X 2 1 + • • • + X 2 n n ≤ y < exp - nx 2 2y .
With the classical theory of large deviations [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF], we usually obtain exponential inequalities of this type, but unfortunately they are valid for n large and it is a difficult task to quantify how large n has to be. During the last decades, probabilists and statisticians have been trying to find non asymptotic inequalities, which are valid for any n ≥ 1 and with explicit constants [START_REF] Boucheron | Concentration Inequalities: A Nonasymptotic Theory of Independence[END_REF]. Most of these inequalities are based on the phenomenon of concentration of measure and they require a strong control on the tail of the distribution of X 1 , typically the existence of an exponential moment. The inequality we present here is a deviation inequality which is valid for all n ≥ 1. We suppose that the distribution is symmetric, and no further integrability condition is required. Initially, this inequality was obtained through classical results of large deviations within Cramér's theory and an inequality on the rate function derived to study a Curie-Weiss model of self-organized criticality [START_REF] Cerf | A Curie-Weiss model of self-organized criticality[END_REF]. Since the statement of the exponential inequality is very simple, we looked for an elementary proof, and it is this proof we present here.

Let us prove the theorem. We suppose that P(X 1 = 0) < 1, otherwise the inequality of the theorem is immediate. Let n ≥ 1 and x and y > 0. We set

S n = X 1 + • • • + X n and T n = X 2 1 + • • • + X 2 n .
Let s and t > 0. We have

P S n ≥ x, T n ≤ y = P (sS n ≥ sx, -tT n ≥ -ty) ≤ P sS n -tT n ≥ sx -ty ≤ P exp sS n -tT n ≥ exp sx -ty .
We recall one of the most classical stochastic inequalities.

Markov's inequality. If X is a non-negative random variable, then

∀λ > 0 P(X ≥ λ) ≤ E(X) λ .
Using Markov's inequality and the fact that X 1 , . . . , X n are i.i.d., we get

P S n ≥ x, T n ≤ y ≤ exp -sx + ty E n i=1 exp sX i -tX 2 i = exp -sx + ty E exp sX 1 -tX 2 1 n .
The distribution of X 1 is symmetric, thus

E exp sX 1 -tX 2 1 = E exp -sX 1 -tX 2 1 = 1 2 E exp sX 1 -tX 2 1 + E exp -sX 1 -tX 2 1 = E cosh(sX 1 ) exp -tX 2 1 .
We choose now t = s 2 /2. We have the inequality ∀u ∈ R\{0} cosh(u) exp -u 2 /2 < 1 .

Since P(X 1 = 0) < 1, the above inequality implies that

E cosh(sX 1 ) exp -s 2 X 2 1 /2 < 1 ,
whence also

P S n ≥ x, T n ≤ y < exp -sx + s 2 y/2 .
We finally choose s = x/y and we obtain the desired inequality.

Link with Hoeffding's inequality. Let us suppose that the random variables X 1 , . . . , X n are bounded by a deterministic constant c > 0:

P |X i | ≤ c = 1 , for 1 ≤ i ≤ n .
Taking y = c 2 in our inequality, we obtain

∀x > 0 P X 1 + • • • + X n n ≥ x < exp - nx 2 2c 2 .
This way we recover the upper bound given by Hoeffding's inequality (specialized to the case of bounded symmetric i.i.d. random variables, and with a strict inequality). Yet the proof of our inequality is simpler than the proof of Hoeffding's inequality. In the case of Hoeffding's inequality, the key exponential estimate relies on a second order expansion, Taylor's formula, and the boundedness hypothesis. In our case, the key exponential estimate relies on the inequality cosh(u) ≤ exp(-u 2 /2) and the symmetry hypothesis. Conversely, as pointed out by the referee, Hoeffding's inequality can be used to recover our inequality via a conditioning argument as follows. Let ε 1 , . . . , ε n be n independent Bernoulli random variables which are independent of X 1 , . . . , X n and such that

P ε i = -1 = P ε i = 1 = 1 2 , for 1 ≤ i ≤ n .
We set

T n = X 2 1 + • • • + X 2 n .
Since X 1 , . . . , X n are symmetric, we have

P X 1 + • • • + X n ≥ x, T n ≤ y = P ε 1 X 1 + • • • + ε n X n ≥ x, T n ≤ y .
We condition next with respect to X 1 , . . . , X n . Denoting by 1 A the indicator function of an event A and by E the expectation, the above expression can be rewritten as

E 1 ε1X1+•••+εnXn≥x 1 Tn≤y = E P ε 1 X 1 + • • • + ε n X n ≥ x X 1 , . . . , X n 1 Tn≤y .
We apply Hoeffding's inequality to the random variables ε 1 , . . . , ε n and we get

P ε 1 X 1 + • • • + ε n X n ≥ x X 1 , . . . , X n ≤ exp - x 2 2(X 2 1 + • • • + X 2 n )
.

Plugging this inequality in the previous expectation and using the condition T n ≤ y, we obtain the exponential inequality stated in our theorem, except that the inequality is large and not strict.

Application to the non symmetric case. Let n ≥ 1 and let X 1 , . . . , X n , X 1 , . . . , X n be 2n independent identically distributed real-valued random variables. For any x and y > 0, we have

P    X 1 + • • • + X n n - X 1 + • • • + X n n ≥ x X 1 2 + • • • + X n 2 n + X 1 2 + • • • + X n 2 n ≤ y    < exp - nx 2 4y .

The nice feature of this inequality is that it does not require any hypothesis on the common distribution of the random variables. This inequality is a simple consequence of the theorem, applied to the random variables Y i = X i -X i , for 1 ≤ i ≤ n, which are again symmetric.