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Abstract

We prove a simple exponential inequality which gives a control on
the first two empirical moments of a sequence of independent identically
distributed symmetric real-valued random variables.

A central question in the study of sums of independent identically distributed
(or i.i.d.) random variables is to control the probabilities that they deviate from
their typical values. Since these probabilities are usually hard to compute, the
strategy instead is to rely on inequalities. The most fundamental inequality of
this sort is the celebrated Chebyshev inequality (see for instance [4]). Numer-
ous refinements and extensions of this inequality have been worked out in the
literature. It turns out that, for independent variables admitting an exponential
moment, the speed of deviation from the typical behavior is of exponential order
in the number of variables. Therefore, one seeks exponential inequalities. Two
famous inequalities are the Chebyshev exponential inequality and Hoeffding’s
inequality [5]. These inequalities help to design statistical tests and to compute
intervals of confidence associated to a random estimator.

We present here a very simple exponential inequality. This inequality holds
for any symmetric distribution, and does not require any integrability condition.

Theorem. Let n ≥ 1 and let X1, . . . , Xn be n independent identically distributed
symmetric real-valued random variables. For any x, y > 0, we have

P
(
X1 + · · ·+Xn ≥ x, X2

1 + · · ·+X2
n ≤ y

)
< exp

(
−x

2

2y

)
.

If we apply this inequality with nx and ny instead of x and y, we obtain an in-
equality controlling the first two empirical moments of the sequence X1, · · · , Xn,
with an upper bound of exponential order in n of,

P
(
X1 + · · ·+Xn

n
≥ x, X

2
1 + · · ·+X2

n

n
≤ y
)
< exp

(
−nx

2

2y

)
.

With the classical theory of large deviations [3], we usually obtain exponential
inequalities of this type, but unfortunately they are valid for n large and it is
a difficult task to quantify how large n has to be. During the last decades,
probabilists and statisticians have been trying to find non asymptotic inequal-
ities, which are valid for any n ≥ 1 and with explicit constants [1]. Most of

1



these inequalities are based on the phenomenon of concentration of measure
and they require a strong control on the tail of the distribution of X1, typi-
cally the existence of an exponential moment. The inequality we present here
is a deviation inequality which is valid for all n ≥ 1. We suppose that the
distribution is symmetric, and no further integrability condition is required.
Initially, this inequality was obtained through classical results of large devia-
tions within Cramér’s theory and an inequality on the rate function derived to
study a Curie–Weiss model of self–organized criticality [2]. Since the statement
of the exponential inequality is very simple, we looked for an elementary proof,
and it is this proof we present here.

Let us prove the theorem. We suppose that P(X1 = 0) < 1, otherwise the
inequality of the theorem is immediate. Let n ≥ 1 and x and y > 0. We set

Sn = X1 + · · ·+Xn and Tn = X2
1 + · · ·+X2

n .

Let s and t > 0. We have

P
(
Sn ≥ x, Tn ≤ y

)
= P (sSn ≥ sx, −tTn ≥ −ty)

≤ P
(
sSn − tTn ≥ sx− ty

)
≤ P

(
exp

(
sSn − tTn

)
≥ exp

(
sx− ty

))
.

We recall one of the most classical stochastic inequalities.

Markov’s inequality. If X is a non–negative random variable, then

∀λ > 0 P(X ≥ λ) ≤ E(X)

λ
.

Using Markov’s inequality and the fact that X1, . . . , Xn are i.i.d., we get

P
(
Sn ≥ x, Tn ≤ y

)
≤ exp

(
− sx+ ty

)
E

(
n∏

i=1

exp
(
sXi − tX2

i

))

= exp
(
− sx+ ty

)(
E
(

exp
(
sX1 − tX2

1

)))n

.

The distribution of X1 is symmetric, thus

E
(

exp
(
sX1 − tX2

1

))
= E

(
exp

(
− sX1 − tX2

1

))
=

1

2

(
E
(

exp
(
sX1 − tX2

1

))
+ E

(
exp

(
− sX1 − tX2

1

)))
= E

(
cosh(sX1) exp

(
−tX2

1

) )
.

We choose now t = s2/2. We have the inequality

∀u ∈ R\{0} cosh(u) exp
(
−u2/2

)
< 1 .

Since P(X1 = 0) < 1, the above inequality implies that

E
(

cosh(sX1) exp
(
−s2X2

1/2
) )

< 1 ,
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whence also

P
(
Sn ≥ x, Tn ≤ y

)
< exp

(
− sx+ s2y/2

)
.

We finally choose s = x/y and we obtain the desired inequality.

Link with Hoeffding’s inequality. Let us suppose that the random variables
X1, . . . , Xn are bounded by a deterministic constant c > 0:

P
(
|Xi| ≤ c

)
= 1 , for 1 ≤ i ≤ n .

Taking y = c2 in our inequality, we obtain

∀x > 0 P
(
X1 + · · ·+Xn

n
≥ x

)
< exp

(
−nx

2

2c2

)
.

This way we recover the upper bound given by Hoeffding’s inequality (spe-
cialized to the case of bounded symmetric i.i.d. random variables, and with
a strict inequality). Yet the proof of our inequality is simpler than the proof
of Hoeffding’s inequality. In the case of Hoeffding’s inequality, the key expo-
nential estimate relies on a second order expansion, Taylor’s formula, and the
boundedness hypothesis. In our case, the key exponential estimate relies on the
inequality cosh(u) ≤ exp(−u2/2) and the symmetry hypothesis. Conversely, as
pointed out by the referee, Hoeffding’s inequality can be used to recover our
inequality via a conditioning argument as follows. Let ε1, . . . , εn be n indepen-
dent Bernoulli random variables which are independent of X1, . . . , Xn and such
that

P
(
εi = −1

)
= P

(
εi = 1

)
=

1

2
, for 1 ≤ i ≤ n .

We set Tn = X2
1 + · · ·+X2

n. Since X1, . . . , Xn are symmetric, we have

P
(
X1 + · · ·+Xn ≥ x, Tn ≤ y

)
= P

(
ε1X1 + · · ·+ εnXn ≥ x, Tn ≤ y

)
.

We condition next with respect to X1, . . . , Xn. Denoting by 1A the indicator
function of an event A and by E the expectation, the above expression can be
rewritten as

E
(
1ε1X1+···+εnXn≥x 1Tn≤y

)
=

E
(
P
(
ε1X1 + · · ·+ εnXn ≥ x

∣∣X1, . . . , Xn

)
1Tn≤y

)
.

We apply Hoeffding’s inequality to the random variables ε1, . . . , εn and we get

P
(
ε1X1 + · · ·+ εnXn ≥ x

∣∣X1, . . . , Xn

)
≤ exp

(
− x2

2(X2
1 + · · ·+X2

n)

)
.

Plugging this inequality in the previous expectation and using the condition
Tn ≤ y, we obtain the exponential inequality stated in our theorem, except that
the inequality is large and not strict.

Application to the non symmetric case. Let n ≥ 1 and let X1, . . . , Xn,
X ′1, . . . , X

′
n be 2n independent identically distributed real-valued random vari-

ables. For any x and y > 0, we have

P

 X1 + · · ·+Xn

n
− X ′1 + · · ·+X ′n

n
≥ x

X1
2 + · · ·+Xn

2

n
+
X ′1

2
+ · · ·+X ′n

2

n
≤ y

 < exp

(
−nx

2

4y

)
.
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The nice feature of this inequality is that it does not require any hypothesis on
the common distribution of the random variables. This inequality is a simple
consequence of the theorem, applied to the random variables Yi = Xi −X ′i, for
1 ≤ i ≤ n, which are again symmetric.
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