
HAL Id: hal-03827262
https://hal.science/hal-03827262v1

Submitted on 24 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparing Statistical and Analytical Routing
Approaches for Delay-Tolerant Networks

Pedro R D’argenio, Juan A Fraire, Arnd Hartmanns, Fernando Raverta

To cite this version:
Pedro R D’argenio, Juan A Fraire, Arnd Hartmanns, Fernando Raverta. Comparing Statistical
and Analytical Routing Approaches for Delay-Tolerant Networks. QEST 2022: Quantitative Eval-
uation of Systems, Sep 2022, Warsaw, Poland. pp.337-355, �10.1007/978-3-031-16336-4_17�. �hal-
03827262�

https://hal.science/hal-03827262v1
https://hal.archives-ouvertes.fr

Comparing Statistical and Analytical
Routing Approaches for Delay-Tolerant

Networks

Pedro R. D’Argenio1,2 , Juan A. Fraire1,3 ,
Arnd Hartmanns4(B) , and Fernando Raverta1,2

1 CONICET, Córdoba, Argentina
2 Universidad Nacional de Córdoba, Córdoba, Argentina

3 Inria, Lyon, France
4 University of Twente, Enschede, The Netherlands

a.hartmanns@utwente.nl

Abstract. In delay-tolerant networks (DTNs) with uncertain contact
plans, the communication episodes and their reliabilities are known a pri-
ori. To maximize the end-to-end delivery probability, a bounded network-
wide number of message copies are allowed. The resulting multi-copy
routing optimization problem is naturally modelled as a Markov decision
process with distributed information. The two state-of-the-art solution
approaches are statistical model checking with scheduler sampling, and
the analytical RUCoP algorithm based on probabilistic model checking.
In this paper, we provide an in-depth comparison of the two approaches.
We use an extensive benchmark set comprising random networks, scal-
able binomial topologies, and realistic ring-road low Earth orbit satellite
networks. We evaluate the obtained message delivery probabilities as well
as the computational effort. Our results show that both approaches are
suitable tools for obtaining reliable routes in DTN, and expose a trade-off
between scalability and solution quality.

1 Introduction

Delay-tolerant networks (DTNs) are time-evolving networks lacking continuous
and instantaneous end-to-end connectivity [11,18]. The DTN domain comprises
deep-space [9] and near-Earth communication [10], airborne networks [27], vehic-
ular ad-hoc networks [5], mobile social networks [32], Internet of things scenar-
ios [6], and underwater networks [40], among many others. A bundle layer over-
comes the delay and disruption in DTNs by means of (i) a persistent storage
on each DTN node and by (ii) assuming no immediate response from neigh-
boring nodes [41]. As a result, bundles of data (a data unit in the Bundle Pro-
tocol [47])—and status information about the rest of the network—flow in a

This work was supported by Agencia I+D+i grants PICT-2017-1335 and PICT-2017-
3894 (RAFTSys), DFG grant 389792660 as part of TRR 248, the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk"lodowska-Curie
grant agreement 101008233 (MISSION), NWO VENI grant 639.021.754, and SeCyT-
UNC grant 33620180100354CB (ARES).

c© Springer Nature Switzerland AG 2022
E. Ábrahám and M. Paolieri (Eds.): QEST 2022, LNCS 13479, pp. 1–19, 2022.
https://doi.org/10.1007/978-3-031-16336-4_17

A
ut

ho
r

Pr
oo

f

2 P. R. D’Argenio et al.

store-carry-and-forward fashion as transmission opportunities become available.
Connectivity in DTNs is represented by means of contacts: an episode of time
when a node is able to transfer data to another node.

Where contacts can be accurately predicted, the DTN is scheduled [22];
in probabilistic DTNs, the contact patterns can be dynamically inferred; no
assumptions on future contacts can be made in opportunistic DTNs [11]. Recent
work extended this classification to also consider uncertain DTNs, in which
forthcoming connectivity can be described by probabilistic schedules available
a priori [17,23,38,39,44,45]. Instead of a guaranteed contact plan, uncertain
contact plans include information on the reliability (i.e. failure probability) of
planned links. In other words, the materialization of contacts can differ from the
original plan with a probability that can be computed/estimated in advance.
Uncertain DTNs describe a plethora of practical scenarios: unreliable space
networks [23], public vehicle networks with uncertain mobility patterns [35],
interference-sensitive communication links in cognitive radio [46], or networks
based on third-party carriers with limited but well-known availability [33].

This work summarises and compares existing routing solutions for uncer-
tain DTNs. The state-of-the-art techniques are lightweight scheduler sampling
(LSS) [17] and routing under uncertain contact plans (RUCoP) [44]. Both lever-
age Markov decision processes (MDPs), allow a bounded network-wide number
of message copies to maximize the delivery probability, and properly assume that
uncertain DTN nodes can only act on limited local knowledge. However, they
are different in nature: LSS exploits simulation and statistical model checking
techniques [1] whereas RUCoP is based on an analytical solution that exhaus-
tively explores the MDP akin to probabilistic model checking [3,4]. Both are
off-line approaches, as a central node is assumed to pre-compute the routing in
advance and then distribute the required information to the DTN nodes.

We provide an extensive benchmarking framework to evaluate LSS and
RUCoP comprising random networks (random contact assignment), binomial
networks (multi-level tree contact topologies with controllable complexity), and
realistic ring-road low-Earth orbit satellite networks. In these scenarios, we com-
pare the resulting message delivery probability and computational effort in terms
of time and memory consumption. Our results highlight the performance-cost
trade-off between these two state-of-the-art routing techniques for uncertain
DTN. We also report on our enhancements to encoding DTNs for use with
LSS that significantly improve the cost/performance ratio of the approach.

Section 2 of this paper revises the background of DTNs, MDP, and modelling
the routing problem. We dive into the details of the LSS and RUCoP techniques
in Sect. 3, including a summary of our improvements to LSS for DTNs. We
present, apply and analyze the benchmark framework in Sect. 4.

2 Background

This section describes the concept and context of DTNs and explains how to
encode DTN routing with global and local information as MDP.

A
ut

ho
r

Pr
oo

f

Comparing Routing Approaches for Delay-Tolerant Networks 3

Scheduled vs. Uncertain DTNs. The term “DTN” was introduced in the context
of interplanetary communication to designate time-evolving networks lacking con-
tinuous and instantaneous end-to-end connectivity [9]. The concepts and mecha-
nisms devised to deal with the delays and disruptions of interplanetary communi-
cations can readily be applied to other domains characterized by long signal propa-
gation time, frequent node occlusion, high node mobility, and/or reduced commu-
nication range and resources [24] such as airborne, vehicular, social, IoT, underwa-
ter and space networks [5,6,10,21,27,32,40]. DTN protocols like the Bundle Pro-
tocol [13,47] address the delays and disruptions by implementing the principles of
store-carry-and-forward and minimal end-to-end messaging exchange for control
or feedback [11]. The time-evolving and partitioned nature of DTNs favors repre-
senting connectivity by contacts: episodes of time where a node can transfer data
to another node. Contacts can be classified [11] as opportunistic (no assumptions
can be made on future contacts), probabilistic (contact patterns can be inferred
from history, e.g. in social networks), and scheduled (contacts can be accurately
predicted and documented in a contact plan).

A contact plan comprises the set of forthcoming contacts, and is a central
element in scheduled DTN routing. The routing process is typically divided into
planning (future episodes of communication are estimated to form the contact
plan), routing (the plan is used to compute routes, either in a centralized (off-
line) or decentralized (on-line) fashion [20]), and forwarding (effectively enqueu-
ing the data for the correct next-hop node). Contact graph routing (CGR) [2]
is the de-facto standard decentralized routing algorithm when a contact plan is
available. It is the sole routing approach that has been flight-validated in deep-
space [48] and near-Earth networked missions [34]. CGR optimizes delivery time
by leveraging adaptations of Dijkstra’s algorithm to the time dynamics of DTNs.

The limitation of the contact plan structure and associated routing algo-
rithms like CGR is that they assume that connectivity episodes are guaran-
teed. Instead, an uncertain contact plan comprises contacts whose materializa-
tion can differ from the original plan with a given probability available a pri-
ori [45]. Reasons include well-known failure modes of the DTN nodes, or an
incomplete/inaccurate knowledge of the system status by the time the sched-
ule was computed. Uncertain contact plans gave raise to a new type of DTNs
coined uncertain DTNs [17,38,39,44,45] that exploit time-dependent probabilis-
tic information of the forthcoming communication opportunities. Instead of a
single copy sent via the fastest path like CGR, uncertain DTNs can use the
uncertainty information in the contact plan to optimally route multiple copies
of the data to increase its successful delivery probability (SDP).

Markov decision processes (MDPs) provide a mathematical framework captur-
ing the interaction between non-deterministic and probabilistic choices [19,42],
making them appropriate for modelling decision making under probabilistically
quantified uncertainty. In its simplest form, an MDP M is a tuple (S,Act ,P, s0)
where S is a finite set of states with initial state s0 ∈ S, Act is a finite set of
actions, and P : S×Act×S → [0, 1] is a transition probability function such that∑

s′∈S P(s,α, s′) ∈ {0, 1} for all s ∈ S and α ∈ Act . If
∑

s′∈S P(s,α, s′) = 1,

A
ut

ho
r

Pr
oo

f

4 P. R. D’Argenio et al.

α is enabled in s, and P(s,α, s′) gives the probability that the next state is s′

conditioned on the system being in state s and action α being chosen.
A reachability problem is characterized as follows: given a set of goal states

B ⊆ S, maximize the probability that a state in B is reached from the initial state
s0. That is, we want to calculate Prmax

s0
(reach(B)). In our application, B is the

set of states in which a bundle has been successfully delivered. Moreover, we are
also interested in determining the decisions—namely, the policy or scheduler—
that lead to such a maximizing value. A scheduler is a function π : S → Act
that defines the decision that resolves a possible non-determinism. This problem
can be solved e.g. by using value iteration on the Bellman equations [4].

A

B

C

D

t0 t1 t2 t3 t4

0.1

0.1

0.5

0.5

0.9

Fig. 1. Uncertain contact plan.

Encoding Uncertain Contact Plans. Consider
the example contact plan with nodes A, B,
C, and D in Fig. 1. It spans a window of five
time slots, t0 to t4. We also assume an ending
time t5. The possible contacts in each slot
are depicted by an arrow labelled with the
contact failure probability. In time slot t1, for
instance, node C is in reach of node B with
transmission failure probability of 0.1 (and success probability of 0.9).

Suppose we want to transmit a bundle from A to D. To increase the probabil-
ity of success, we allow two copies throughout the network. A state of the MDP
consists of the number of copies that each node holds at a given time slot. Ini-
tially, at the beginning of t0, node A has the two copies while the others have none,
represented by state [A2 B0 C0 D0 | t0] in Fig. 2. At this point, node A has three
options: (i) sending only one copy to node B, represented by action “A 1−→B” leav-
ing from state [A2 B0 C0 D0 | t0], (ii) sending two copies to B (action “A 2−→B”),
or (iii) keeping the two copies (action “A stores”). In the first case, the successful
transmission leads to state [A1 B1 C0 D0 | t1] where A has kept one copy and the
other has reached B. Since success probability is 0.9, we have

P([A2 B0 C0 D0 | t0], A 1−→B , [A1 B1 C0 D0 | t1]) = 0.9.

[A2B0C0D0 | t0]

[A1B1C0D0 | t1] [A2B0C0D0 t1]

[A1B0C1D0 | t2] [A1B1C0D0 | t2]

[A1B0C1D0 t3][A0B1C1D0 t3][A1B1C0D0 t3]

A 1−→B A 2−→B

B 1−→C

A 1−→C B 1−→C

A
0.9

0.1
0.90.1

B

0.9 0.1

A
0.5

0.5 A
0.5

0.5

Fig. 2. MDP modelling the plan of Fig. 1. (Color
figure online)

Failing to transmit moves us
to the next time slot without
altering the number of copies in
each node. Therefore

P([A2 B0 C0 D0 | t0], A 1−→B ,
[A2 B0 C0 D0 | t1]) = 0.1.

Action A 1−→B is the black tran-
sition out of [A2 B0 C0 D0 | t0] in
Fig. 2 where the solid line repre-
sents the successful transmission
while the dotted arrow represents
the failing event. The situation is

A
ut

ho
r

Pr
oo

f

Comparing Routing Approaches for Delay-Tolerant Networks 5

analogous for action A 2−→B (red transition on the right), while for storing the
two bundles there is no possibility of failure, so we have

P([A2 B0 C0 D0 | t0], A stores , [A2 B0 C0 D0 | t1]) = 1.

The construction is similar for the rest of the MDP. Figure 2 depicts it partially;
we indicate with “. . . ” where the MDP needs to continue.

We assume that the sending node can determine whether a transmission
was successful or not; in case of success, it deletes the transmitted number of
copies, while in case of failure, it keeps them. This ensures that the entire network
contains the intended number of copies at any time, and is possible and typical in
LEO constellations. We refer to this assumption as acknowledged communication
(a.k.a. custody transfer in the Bundle Protocol [24]). The alternative is fully
unreliable communication where transmitted copies are lost upon failure, which
is natural in deep-space communication.

Global and Local Information. For the MDP described above, the maximizing
scheduler for goal set B = { [Aa Bb Cc Dd | t5] | d ≥ 1 } describes the optimal
routing decisions. This scheduler, however, is based on a global view of the sys-
tem: decisions are taken based on the current state of the whole network. This
implies that distributed nodes need to know where all copies are in the network
at any moment, including remote and potentially disconnected nodes. This is
impossible to achieve in practice in highly partitioned DTNs. Nodes must there-
fore decide based on partial local knowledge. To illustrate, consider time slot
t2 in the example of Fig. 1. Here, node A has two possible decisions: storing or
forwarding to C. Consider precisely the situation in which A has one copy and
the second copy is already on its way. A’s optimal decision depends on whether
the other copy is on B or C at time t2, reflecting the optimal decisions on Fig. 2:
A stores if C already has the other copy and A forwards to C if B has the copy.
However, it is most likely that A is not able to know whether the second copy
is in B or C, in which case A’s decision should be the same regardless if it is
in state [A1 B1 C0 D0 | t2] or [A1 B0 C1 D0 | t2]. This type of problem, in which
decisions in an MDP associated to a distributed system may only be based on
local knowledge, is known as distributed scheduling [12,25,26].

3 Routing in Uncertain DTNs

The optimal global scheduler can be computed using any probabilistic model
checker such as Prism [36], Storm [16], or mcsta of the Modest Toolset [30]:
we compactly describe the MDP and the goal set in the tool’s higher-level input
language; then the tool generates and stores in memory the MDP’s entire state
space, solves the reachability problem by solving the linear program induced by
the Bellman equations or by using an iterative algorithm such as a sound variant
of value iteration [28,31,43], and writes the induced scheduler to file. Probabilis-
tic model checkers, however, are generic tools that solve arbitrarily structured
MDP without optimizations for the DTN routing application. For complex net-
works, they will quickly encounter the state space explosion problem and run

A
ut

ho
r

Pr
oo

f

6 P. R. D’Argenio et al.

out of memory (see [44]). Furthermore, none of them provides a solution for
the local-information problem. We now summarize the two existing MDP-based
approaches for optimal DTN routing under uncertain contact plans, RUCoP
and LSS. Both can also produce schedulers based on local information only, and
approach the routing process in an off-line fashion: the routing decisions are
pre-computed in a centralized node.

3.1 RUCoP

RUCoP [45] (routing under uncertain contact plans) provides an analytical solu-
tion to find the routing decisions optimising SDP for an uncertain contact plan.

The first observation exploited by RUCoP is that, due to the inclusion of
the current time slot value in the states, the MDP for an uncertain contact
plan is acyclic. RUCoP thus only constructs the “optimal” part of the MDP by
following the Bellman equations backwards. In our example from the previous
section, it starts at any state in t5 in which D contains at least one copy. It then
walks backwards in the contact plan, selecting only the maximizing transitions
according to the Bellman equations. In its general form, RUCoP (i) considers the
possibility that multiple nodes can transmit to each other in one time slot, which
may produce a cycle in the MDP. However, since cyclic transmission would only
lower the SDP, RUCoP can break all such cycles and keep the MDP acyclic. It
also in general (ii) takes a target node and builds the optimal part of the MDP for
any possible transmitting source rather than restricting to a single source node
as in our example. The full RUCoP algorithm is in 2-EXPTIME: its runtime
is exponential in the number of nodes and doubly exponential in the number
of copies. This makes RUCoP highly expensive in time and memory. However,
for memory optimization, RUCoP not only constructs the optimal part of the
MDP backwards in an on-the-fly manner, but also writes all information that
is not going to be necessary for further calculations to disk. In particular, only
the states at the current time slot are necessary for calculating the states at the
preceding time slot and the respective connecting optimal transitions.

RUCoP delivers optimal routing decisions for acknowledged communication
in general. However, it is based on a global view of the system. To find local-
information schedulers, we need to use its L-RUCoP (local RUCoP) variant. It
works as follows: Suppose that, to increase reliability, n copies of the bundle are
used. L-RUCoP builds a table T (N, c, ti) that assigns to each node N holding
c copies (1 ≤ c ≤ n) at time ti the best decision based on local knowledge.
This decision is taken from running RUCoP on c copies (instead of n), which
basically amounts to supposing that N holds c copies and no copy is on the
other nodes. Thus, for our example, the decision for states [A1 B1 C0 D0 | t2] and
[A1 B0 C1 D0 | t2] will be both taken from T (A, 1, t2) which in turn is obtained
from the decision in state [A1 B0 C0 D0 | t2] derived from running RUCoP with
one single copy. On top of this basic idea, L-RUCoP also exploits extra knowl-
edge that may be available in certain occasions. For instance, at time t1 in our
example, A knows if B holds a copy depending on whether the transmission
at time t0 was successful or not. In this case, L-RUCoP looks ahead using the

A
ut

ho
r

Pr
oo

f

Comparing Routing Approaches for Delay-Tolerant Networks 7

appropriate RUCoP instance on the state with the available knowledge where,
just like before, all information about the other (unknown) copies is assumed to
be 0. In the example, at time t1, the entry T (A, 1, t1) will be filled with the infor-
mation retrieved from RUCoP for two copies on state [A1 B1 C0 D0 | t1] since A
knows B has received the copy. The interested reader may find the details of
L-RUCoP as well as the full specification of RUCoP in [45].

3.2 LSS

Given a discrete-time Markov chain (DTMC), i.e. an MDP where every state has
at most one enabled action, Monte Carlo simulation or statistical model checking
(SMC [1]) can be used to estimate the probabilities for reachability problems:
We (pseudo-)randomly sample n paths—simulation runs—through the DTMC,
identify each success (that reaches a goal state) with 1 and every failure with 0,
and return the average as an estimate of the reachability probability. The result
is correct up to a statistical error and confidence depending on n. Compared to
probabilistic model checking, SMC needs only constant memory, assuming that
we can effectively simulate the MDP from a high-level description so that we do
not need to store its entire state space. As a simulation-based approach, SMC is
easy to parallelize and distribute on multi-core systems and compute clusters.

Lightweight scheduler sampling [37] (LSS) extends SMC to MDP: Given an
MDP M , it (i) randomly selects a set Σ of m schedulers, each identified by
a fixed-size integer (e.g. of 32 bits), (ii) employs some heuristic (that involves
simulating the DTMCs M |σ resulting from combining M with a scheduler σ ∈ Σ)
to select the σmax ∈ Σ that appears to induce the highest probability, and finally
(iii) performs a standard SMC analysis on M |σmax to provide an estimate p̂σmax

for Prmax
s0

(reach(B)). However, note that—unless we are lucky and Σ happens
to include an optimal scheduler and the heuristic identifies it as such—p̂σmax is
an underapproximation of Prmax

s0
(reach(B)) only, and subject to the statistical

error of the SMC analysis. The effectiveness of LSS depends on the probability
mass of the set of near-optimal schedulers among the set of all schedulers that
we sample Σ from: It works well if a randomly selected scheduler is somewhat
likely to be near-optimal, but usually fails in cases where many decisions need
to be made in exactly one right way in order to get a successful path at all. We
use the smart sampling [15] approach to select σmax in step (ii): We start by
performing 1 simulation run for each of the m schedulers, then discard the (m

2)
worst of them; in the next round, we perform 2 runs for each of the approx. m

2
remaining schedulers, and again discard the worst half. We continue until only
one scheduler remains, which is σmax . In this way, the number of simulation
runs, and thus the runtime, needed for LSS grows only logarithmically in m.

The key to LSS is the constant-memory representation of schedulers as (32-bit)
integers. It enables LSS’ constant memory usage in the size of the MDP, which sets
it apart from simulation-based machine learning techniques such as reinforcement
learning, which need to store learned information (e.g. Q-tables) for each visited
state. Let i ∈ Z32 identify scheduler σi. Then, upon encountering a state s with
k > 1 enabled actions while simulating M |σi , LSS selects the (H(i.s) mod k)-th

A
ut

ho
r

Pr
oo

f

8 P. R. D’Argenio et al.

action, where i.s is the concatenation of the binary representations of s and i, and
H is a (usually simple non-cryptographic) hash function that maps its inputs to
a fixed-size integer so that, ideally, the resulting values are uniformly distributed
over the output space. This selection procedure is deterministic, so we can repro-
duce the decision for state s at any time knowing i. For nontrivial H, it is also
highly unpredictable: changing i, e.g. by modifying a certain bit, may result in a
different decision for many states.

Local Information. As described above, LSS produces global-information sched-
ulers. However, it can be adapted to sample from local-information schedulers
only [17]: When having to make a decision on node N , instead of feeding i.s
into H, we use N.i.s|N instead, where s|N contains only the locally available
information: the number of locally-stored copies and the current time slot. To
avoid conflicts where two nodes need to make a decision at the same time, cer-
tain restrictions apply to the high-level modelling of the MDP as a system of
multiple independently executing nodes; we refer the interested reader to [17]
for details. We refer to LSS with local-information schedulers as L-LSS.

A scheduler found to be good via L-LSS can in principle be implemented, e.g.
on the satellites themselves, by simply replicating the L-LSS decision procedure:
each node knows its identifier N , the number of copies it stores, and can translate
the current time into a time slot in the contact plan. The only data that needs
to be transmitted to the node is the integer identifying the scheduler.

Our Improvements to LSS for DTN. For our comparison in Sect. 4, we use the
implementation of DTN routing with LSS and L-LSS of [17]. It consists of two
parts: a cp2modest Python script that converts a contact plan into a high-
level description of the MDP as described in Sect. 2 in the Modest modelling
language [29], and an implementation of LSS and L-LSS in the modes simu-
lator/statistical model checker [7] of the Modest Toolset. We use the latter
as-is, but have added preprocessing based on decisions already implemented in
RUCoP to the former in order to produce more succinct MDP models as follows:

1. Useful contacts only. A contact may be useless for transmitting a message
from the source to the target node because it leads to a dead-end, i.e. a
situation where a message copy is transmitted to node X in time slot t but
there is no sequence of contacts reaching the target from X after t. Similarly,
there may not be any sequence of contacts from the source to X before t: then
X is guaranteed not to have any copies in t. We analyse the contact graph
for such situations and drop all useless contacts. This reduces the amount
of decisions in the MDP, and thus the number of schedulers to sample from,
without excluding any scheduler with positive message delivery probability.
Consequently, (near-)optimal schedulers are more likely to be sampled.

2. Forcing to send. With the same motivation, when we are in node X’s last
useful contact, it would be useless to keep any copies. Thus, for such contacts,
the only option that we generate now is to send all available copies.

3. Forcing to receive. Like a node deciding to store all copies at a contact, i.e.
choosing not to send, the previous translation allowed the receiving node to

A
ut

ho
r

Pr
oo

f

Comparing Routing Approaches for Delay-Tolerant Networks 9

ignore the incoming transmission (which would consequently look like a failure
to the sender). While this allowed some interesting collaborations between
nodes to share non-local information [17, Sect. 5.3], we are not interested
in such special behaviours, and consequently omit the option to ignore an
incoming message. This again reduces the scheduler sampling space.

4. Skipping empty slots. The previous translation generated a “clock tick” action
to advance time from t to t+1 in all nodes for every time slot, even if that slot
had no contacts. To improve simulation runtime, we now omit these actions
for empty slots and directly skip ahead to the next slot with a contact.

All combined, these improvements eliminate many useless schedulers from the
sample space, making (L-)LSS noticeably more likely to find good ones; they also
simplify the model, improving the runtime and memory consumption of modes.
We will showcase the difference on one of our benchmarks in Sect. 4.

4 Evaluation

In order to evaluate the performance-cost trade-off of LSS and RUCoP in uncer-
tain DTNs, we created a benchmark set consisting of three use cases to compute
SDP metrics and the associated computational cost.

4.1 Benchmark Set

Random networks use a uniform distribution of contacts among a configurable
number of network nodes and contact plan duration. We use 10 random topolo-
gies with 8 nodes, each covering a duration of 100 s. Time is discretized into
episodes of 10 s. In each episode, the connectivity between nodes (i.e. the pres-
ence of contacts) is decided based on a contact density parameter of 0.2, similar
to [39]. We assume an all-to-all traffic pattern, run each of the routing algorithms
100 times on each of the 10 networks, and report the averages.

Fig. 3. Binomial tree.

Binomial Networks. To gain insights into
how increasing the topological complexity
affects the routing algorithms, we devised
a family of contact plans with a binomial
topology. They are easy to scale up in a
controlled manner that preserves the char-
acteristics of the topology. The topology
is a binomial tree. The higher the number
of levels in the tree, the more complex the
routing problem is to solve. Specifically, a
binomial topology with L levels implies: (i)
1+2L−2 nodes have contacts with two neighbors; (ii)

∑i<L−2
i=1 2i nodes have con-

tacts with three neighbors; and (iii) 1 final destination node has 2L−2 contacts.
The resulting tree is illustrated in Fig. 3. Contacts between consecutive levels

A
ut

ho
r

Pr
oo

f

10 P. R. D’Argenio et al.

Fig. 4. RRN satellite constellation topology, parameters and orbital tracks [23].

are also consecutive in the time dimension, that is, the order of the contacts
corresponds to enumerating the arrows in Fig. 3 left-to-right, top-to-bottom. A
node on the i-th level will have a total of 2L−2−i paths to the destination. There-
fore, the larger the level count, the more nodes are in the network and the more
paths per node have to be evaluated. For example, a binomial topology of 6 levels
results in 32 nodes with up to 32 simple paths. When considering the forwarding
of 3 copies, a total of 91, 000 possible actions need to be considered.

Ring Road Networks. Finally, we use a realistic satellite topology exported from
high-precision orbital propagators. Specifically, we consider a low-Earth orbit
Walker constellation of 16 satellites as proposed and described in [23]. Satellites
act as data mules by receiving data from 22 isolated ground terminals, storing
the data, and delivering it to a ground station placed in Argentina. We use an
all-to-one traffic pattern. The satellites are equipped with inter-satellite links
(ISLs), so contacts are possible in orbit. The dynamics of the topology and the
specific orbital and ground parameters are depicted in Fig. 4. Routes can involve
multiple hops between satellites and ground terminals. The scenario spans 24 h
and is sliced into 1440 time slots, each of 60 s. Within a time slot, we consider a
contact feasible if communication is possible for more than 30 s.

4.2 Analysis

Our evaluation results present compelling evidence of the trade-off between the
LSS and RUCoP approaches, both in their global (LSS and RUCoP) and local

A
ut

ho
r

Pr
oo

f

Comparing Routing Approaches for Delay-Tolerant Networks 11

Fig. 5. SDP gain over CGR in random networks.

versions (L-LSS and L-RUCoP). We evaluate them in terms of the SDP of the
computed scheduler, and the computational resources used: processing time and
memory consumption. Plain single-copy CGR is used as a baseline. We write
“(L-)RUCoP-c” and “(L-)LSS-c” for the respective method when allowing c
copies. We used an Intel Core i5-5300U (2 cores, 4 threads, 2.3–2.9 GHz) system
with 12 GB of memory running 64-bit Ubuntu 18.04.5 for all experiments.

Random Networks. The SDPs we obtained for random networks are illustrated
in Fig. 5. To facilitate the interpretation of the outcomes, we plot the curves
with respect to the SDP delivered by CGR. Indeed, CGR is the baseline of
comparison as it assumes a perfect contact plan that does not drift from real-
ity. As the contact plan becomes more uncertain, the RUCoP- and LSS-based
schemes provide increasingly better SDPs. This holds up to the point where the
failure probability is such that the partitioning of the topology dominates (i.e.
pf ≈ 0.8), a situation in which delivery of data becomes much more difficult.
Still, in these cases, RUCoP and LSS perform noticeably better than CGR.

We ran LSS and L-LSS in two configurations, one sampling m = 1000 and
one sampling m = 10000 schedulers. We indicate m as “#SS”, the number of
sampled schedulers, in our figures. From Fig. 5, we observe that increasing m
from 1000 to 10000 does not improve the SDP drastically in these random net-
works. In particular, averaged along all failure probabilities, sampling m = 10000
schedulers improves SDP by ≈1.8%, with ≈5.8% being the maximum gain reg-
istered at pf = 0.7. We explain this limited improvement with the simplicity of
the random topologies, which are easily explored with few schedulers.

When compared to L-RUCoP, L-LSS is, on average, 3% and 1% worse in
terms of SDP, for 1000 and 10000 schedulers, respectively. The larger difference
is observed at pf ≈ 0.7% and 3 copies, where L-RUCoP outperforms L-LSS by
10%. We observe that the lower the number of copies, the smaller the difference
between L-RUCoP and L-LSS, with the single-copy case almost identical in
SDP. Interestingly, the single-copy case provides limited or no gain with respect

A
ut

ho
r

Pr
oo

f

12 P. R. D’Argenio et al.

Fig. 6. SDP, solving time, and memory for binomial networks with varying complexity.

to the CGR baseline in these simple topologies. A similar effect was reported for
Opportunistic CGR in [8].

Regarding the processing and memory footprint for random networks, all
the techniques we study always complete in less than 20 s, using less than 20
MB of memory. Also, we observed that the runtime and memory values were
rather stable and independent of the failure probability. In the following, we
thus leverage the more complex binomial and ring-road topologies for a more
detailed time and memory consumption assessment.

Binomial Networks Analysis. The results obtained for binomial networks are
plotted in Fig. 6. All links in the topology were set to a failure probability of 0.1
in this case. Instead, we vary the tree level count from 4 to 8 (i.e. 8 to 128 nodes,
and 13 to 449 paths), to evaluate the performance of RUCoP and LSS with
increasing topological complexity, and thus, increasing routing decision making
difficulty. Results are expressed, from left to right in the figure, in terms of SDP,
solving time, and required memory.

In the binomial topologies, the CGR baseline is always equal to RUCoP with
one copy (RUCoP-1) since the path with the earliest delivery time is also the
one with highest SDP. On the other hand, the global view of RUCoP can be
directly implemented with a limited local view. This is because each node can
only reach two exclusive neighbors, which means that the local information is
already enough to take a globally-optimal decision (i.e. the amount of copies to

A
ut

ho
r

Pr
oo

f

Comparing Routing Approaches for Delay-Tolerant Networks 13

send to one of the two next hop nodes). As a result, L-RUCoP and RUCoP plots
in Fig. 6 are presented in a single curve (solid line).

On the one hand, the SDP plots show that LSS is rather close to RUCoP
when leveraging 10000 schedulers, especially for low level counts (with less than
0.01% difference). In the worst-case scenario with 8 levels, L-LSS is only 3%
below L-RUCoP for the single and dual copy scenarios. However, due to memory
exhaustion, RUCoP (and thus L-RUCoP) fails to deliver a valid routing schedule
for 8 levels and 3 copies (its limit highlighted by the red circle in Fig. 6). We
verify that for this case, more than 15 million actions need to be considered in
the MDP. Another observation from these plots is that the delivery probability
when using dual copies increases from ≈0.88 to ≈0.97 (i.e. by 10%) for 4 levels
and from ≈0.85 to ≈0.96 (i.e. by 13%) for 8 levels. However, due to the binomial
nature of the topology, having a third copy provides limited or no advantage.

Regarding the time and memory requirements in the binomial topologies,
RUCoP proves to be by far the most demanding approach. In the worst case
solved for 3 copies (7 levels), RUCoP needs 28 min of computation time, com-
pared to less than 10 s for LSS with 1000 schedulers, or 1 min with 10000 sched-
ulers. This is a notable difference considering the similar performance in terms
of SDP. Solving time and memory plots of the original LSS as in [17], i.e. with-
out the improvements described in Sect. 3.2, are also plotted in Fig. 6, in gray
dashed lines. These improvements reduce LSS runtime by up to ≈600% (from
117 down to 17 s). A reduction of ≈6% in memory is also achieved. Indeed, in
memory utilization, RUCoP quickly escalates up to more than 1 GB to keep
track of the MDP decision tree, while lightweight schedulers never require more
than 100 MB, even for the most complex binomial topologies.

In summary, for binomial topologies, LSS and L-LSS with 10k schedulers
closely follow RUCoP and L-RUCoP in delivery probability and solving effort for
simple trees. As the topology’s complexity rises (notably for more than 7 levels),
RUCoP exhausts the available memory. Even in these challenging cases, LSS is
able to deliver a valid solution with minimal runtime and memory footprint.

Ring Road Networks Analysis. We have evaluated all downlink source-
destination pairs in the realistic RRN network. Figure 7 present some repre-
sentative cases for the different behaviors we observed. In this figure, node 38
as the destination stands for the mission control center on ground, while node
1 and 7 are remote nodes sending data via the ring-road satellites1. For these
nodes, we present the computation of the routing schedule for varying contact
plan sizes, spanning durations from 1 to 3 h (plots from top to bottom). The #SS
parameter is again varied to 1000 and 10000 schedulers, to gain sensitivity on
the improvement of the sampling technique (plots from left to right).

The SDP plots in Fig. 7 show that the longer the contact plan, the more
noticeable the difference between the analytic and statistical approaches (i.e.
curves separate progressively). In particular, there is barely any difference for any
failure probabilities for the shorter contact plan with 1 h of scheduling horizon.

1 Nodes 1 and 7 correspond to nodes 8 and 15 in the contact plan used in [23].

A
ut

ho
r

Pr
oo

f

14 P. R. D’Argenio et al.

Fig. 7. SDP for RRN for different source-target nodes and plan durations.

However, we observe that L-RUCoP is notably superior to L-LSS for the 2 h and
3 h plans, especially for failure probabilities between 0.4 and 0.8. Specifically, we
observe that the gap between RUCoP and LSS can be as large as ≈60%, for
failure probabilities of ≈0.6, and contact plans of 3 h. Interestingly, the gap is
reduced to ≈30% if we raise the number of schedulers to 10000 in LSS, indicating
that this case is right on the boundary of what can effectively be solved via LSS.
Nevertheless, both LSS and L-LSS perform worse than the CGR baseline even
when leveraging multiple copies in schedules larger than 2 h. This is compelling
evidence that the uninformed sampling strategy of LSS may not be fully adequate
for realistic RRN topologies, even though it performed pretty well in generic

A
ut

ho
r

Pr
oo

f

Comparing Routing Approaches for Delay-Tolerant Networks 15

Fig. 8. Solving time (left) and memory (right) for RRN for different source-target
nodes, contact plan durations, and numbers of schedulers sampled (R: RUCoP, L: LSS).

binomial and random topologies, and may need to be adapted to a variant yet
more specifically tailored to the DTN routing application.

Also, we observe that LSS and L-LSS are typically close, but L-LSS frequently
presents better SDP than the global LSS. This was also observed in Fig. 5, but
in a much more subtle manner. We explain this phenomenon with the fact that
L-LSS has a reduced space of schedulers to be sampled from, which increases
the chances of finding a better routing policy.

Figure 8 presents the computational resources required to obtain the dis-
cussed SDP results for ring-road networks. This figure is computed based on
the computational effort of solving several downlinking node pairs (instead of
the two example pairs discussed in Fig. 7). The results confirms once again that
RUCoP is able to deliver network performance at the expense of significantly
higher memory and runtime. In particular, the runtimes for the analytical app-
roach can reach up to ≈20 min (for the 3-h contact plan, with 3 copies), while
LSS typically delivers a result in less than 1 min. We thus postulate that the
3 h contact plan is as challenging for RUCoP as the 7-level binomial topology,
i.e. that larger contact plans are likely intractable for RUCoP. Memory-wise, we
observe similar ratios. While RUCoP needs as much as 600 MB of memory for
the worst-case scenario, LSS consistently uses about 100 MB. Again, this is due
to the simulation nature of LSS, where no decision trees need to be stored as
in RUCoP. Interestingly, LSS also showed a limited computational cost sensi-
tivity to increasing L-LSS from 1000 to 10000. This is likely due to the possi-
bility of using multiple CPU threads concurrently to perform the exploration in

A
ut

ho
r

Pr
oo

f

16 P. R. D’Argenio et al.

LSS. Indeed, LSS can exploit parallelization intensively: each scheduler can be
evaluated independently in separate threads. However, in RUCoP, the calcula-
tions for each time slot strongly depend on the successor time slot, which limits
parallelization.

In summary, the evaluation over realistic ring-road networks showed that
there is still room for improvement on scheduler sampling techniques to cope with
more heterogeneous or application-specific topologies. In our particular satellite
constellation, L-RUCoP provided delivery probabilities up to 60% higher than
LSS, at higher computational costs. The reported runtimes and memory usages
anyway appear reasonable for this kind of satellite application. In particular,
since satellites revisit ground stations at most every ≈90 min [22], solving times
of 20 min, as measured for RUCoP, are by all means acceptable.

5 Conclusions

This paper provides the first extensive comparison of the state-of-the-art analyt-
ical and statistical routing approaches for uncertain DTNs. While both RUCoP
and LSS leverage MDP models, the former performs an exhaustive and optimal
exploration of the solution space whereas the latter exploits SMC with sam-
pling for optimization. We improved the DTN models for LSS for efficiency. We
thoroughly compared the two approaches in a new benchmarking framework
comprising random, binomial, and realistic satellite network topologies.

The outcomes provided quantitative evidence of the performance of the
global- and local-information flavors of RUCoP and LSS. On the one hand, both
schemes provide routes that deliver up to 1.8 times the data volume achievable
by the baseline CGR approach. However, we touched the tractability limits of
RUCoP in binomial networks of 8 levels. While RUCoP failed to deliver, LSS was
able to solve the problem with just 5% of the memory footprint. We attribute
part of this success to the improvements made to LSS for DTNs in this paper.
Last but not least, the analysis on realistic satellite networks showed that despite
the good performance of LSS, its applicability to case-specific topologies could
enjoy further refinement. Such work is indeed needed seeing that RUCoP already
stressed the computational resources for 3-h contact plans.

Even though LSS and RUCoP stand on the frontier of the state-of-the-art
of routing in uncertain DTNs, a few challenges remain to be tackled. On the
one hand, both approaches assume non-congested links: routing in uncertain
and congested DTNs is an open research topic. Also the integration of uncertain
and Opportunistic CGR [8] is appealing future work. Finally, the evaluation of
the routing schedules obtained from the presented use cases in realistic DTN
protocol simulations is currently being investigated by the authors.

Data Availability. A dataset with the models and tools needed to replicate our
experimental evaluation is archived and available at DOI 10.4121/20334687 [14].

A
ut

ho
r

Pr
oo

f

Comparing Routing Approaches for Delay-Tolerant Networks 17

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1-6:39 (2018). https://doi.org/10.1145/3158668

2. Araniti, G., et al.: Contact graph routing in DTN space networks: overview,
enhancements and performance. IEEE Comms. Mag. 53(3), 38–46 (2015). https://
doi.org/10.1109/MCOM.2015.7060480

3. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic
systems. In: Handbook of Model Checking, pp. 963–999. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8 28

4. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
5. Benamar, N., Singh, K.D., Benamar, M., Ouadghiri, D.E., Bonnin, J.M.: Routing

protocols in vehicular delay tolerant networks: a comprehensive survey. Comput.
Commun. 48, 141–158 (2014). https://doi.org/10.1016/j.comcom.2014.03.024

6. Benhamida, F.Z., Bouabdellah, A., Challal, Y.: Using delay tolerant network for
the Internet of Things: Opportunities and challenges. In: 2017 8th International
Conference on Information and Communication Systems (ICICS), pp. 252–257,
April 2017. https://doi.org/10.1109/IACS.2017.7921980

7. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: An efficient statistical
model checker for nondeterminism and rare events. Int. J. Softw. Tools Technol.
Transf. 22(6), 759–780 (2020). https://doi.org/10.1007/s10009-020-00563-2

8. Burleigh, S., Caini, C., Messina, J., Rodolfi, M.: Toward a unified routing frame-
work for DTN. In: 2016 IEEE International Conference on Wireless for Space and
Extreme Environments (WiSEE), pp. 82–86, Sept 2016

9. Burleigh, S., et al.: Delay-tolerant networking: an approach to interplanetary inter-
net. Comm. Mag. 41(6), 128–136 (2003). https://doi.org/10.1109/MCOM.2003.
1204759

10. Caini, C., Cruickshank, H., Farrell, S., Marchese, M.: Delay- and disruption-
tolerant networking (DTN): an alternative solution for future satellite network-
ing applications. Proc. IEEE 99(11), 1980–1997 (2011). https://doi.org/10.1109/
JPROC.2011.2158378

11. Cerf, V., et al.: Delay-tolerant networking architecture. RFC 4838, RFC Editor,
April 2007. http://www.rfc-editor.org/rfc/rfc4838.txt

12. Cheung, L., Lynch, N.A., Segala, R., Vaandrager, F.W.: Switched PIOA: parallel
composition via distributed scheduling. Theor. Comput. Sci. 365(1–2), 83–108
(2006). https://doi.org/10.1016/j.tcs.2006.07.033

13. Consultative Committee for Space Data Systems (CCSDS): CCSDS bundle proto-
col specification (blue book, recommended standard CCSDS 734.2-B-1), September
2015. https://public.ccsds.org/Pubs/734x2b1.pdf

14. D’Argenio, P.R., Fraire, J.A., Hartmanns, A., Raverta, F.: Comparing statis-
tical and analytical routing approaches for delay-tolerant networks (artifact).
4TU.ResearchData (2022). https://doi.org/10.4121/20334687

15. D’Argenio, P., Legay, A., Sedwards, S., Traonouez, L.-M.: Smart sampling for
lightweight verification of Markov decision processes. Int. J. Softw. Tools Technol.
Transf. 17(4), 469–484 (2015). https://doi.org/10.1007/s10009-015-0383-0

16. Dehnert, C., Junges, S., Katoen, JP., Volk, M.: A STORM is coming: a modern
probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

A
ut

ho
r

Pr
oo

f

