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This survey aims at proposing a contribution to the multiagent control of machine tools in order to improve their availability and the quality of the machined parts. This contribution consists in an agent that realises the monitoring of a machine tool feeddrive. This agent is designed according to the intelligent sensor concept. So, the paper firstly discusses the interests of multiagent systems and presents the intelligent sensor concept. A multiagent system organisation dedicated to NC machines is then proposed. After having presented the interests of feeddrives monitoring, it presents the treatments enabling this monitoring. This is followed by experimental results.

INTRODUCTION

The improvement of machining and machine tool mainly deals with monitoring and with adaptive control. These developments aim at making the machines more reliable and available and, of course at improving the quality of machined parts. The Numerical Controller (NC) of the machines often processes the specific treatments dedicated to monitoring and/or adaptive control. Thus, the NC unit processes more tasks and the NC code program becomes more complex. One of the consequences of these additive tasks is the risk of not satisfying anymore the real-time constraints necessary for a good control of the machining process. In this case, respecting these constraints becomes more difficult for high-speed machining operations. This drawback is among the ones of centralised control architectures like the ones of nowadays NC machine tools. This kind of architectures does not create enough freedom degrees that are necessary to obtain a high level of flexibility and integration required for a sufficient reactivity for nowadays production systems. Indeed, considering these architectures:

• the complexity of the software and the computation capacity increase with the complexity of the process and unease the respect of real-time constraints,

• changes in software and or hardware can be quite hard to implement because of its complexity. • … Distributed architectures and multiagent systems have been developed and/or implemented for many applications like in robotics (Overgaard 95) and in production scheduling (Sohier 93) in order to overcome these difficulties. Although some advantages of such organisations of systems are:

• the distribution of data, control, expertise and resource that leads to replace the huge centralised resource by several smaller ones doing specific tasks and exchanging data between each other. • the openness enabling the components of the system to change over time, that leads to a heterogeneous system (Jennings 95), only few works concern machine tools whereas the contributions of this technology could certainly bring new possibilities for machine tool manufacturers and users.

In this survey, we propose a multiagent architecture for controlling and monitoring a machine tool. Then, we focus on the need of monitoring the machine tool feeddrives. The proposed monitoring technique is based on the estimation of the feeddrive physical parameters. This estimation is obtained from a continuous time ARX model and an ordinary least square calculus. According to the intelligent sensor concept, which is also presented, the estimated parameters are validated and, so, we present these treatments. Afterward, some experimental results are discussed.

NEW CONTROL ARCHITECTURES FOR MACHINE TOOLS

The productive organisations nowadays face with new obligations because of more and more competitive markets. In this context the ability to produce at the right time various products of good quality at low costs is a major issue for their development. Flexibility is seen as the presence of freedom degrees in the management system whereas reactivity represents the ability of the system to use these freedom degrees in order to adapt to detected changes and disturbances.

Automation of production systems is a way to improve flexibility. Many studies aim at defining integrated architectures for production system supervision and control. These architectures have a hierarchical structure of decision centres, as it is consider in GRAI method (Roboam 93), where the decision centre at the top of the hierarchy has the longer horizon of decision and the smaller at the bottom. These architectures are distributed because each decision centre receives, transforms and emits information. In general, the more one goes down in the decisional hierarchy structure, the more restricted freedom degrees are. That is why the decisional system part which is close to the operational system, like a machine tool, is very sensitive to disturbances. A present tendency, induced by reactivity, is to autonomise low level decisional systems in order to make them more reactive to environment fluctuations and to develop the notion of decisional agent (Ouzrout 96).

Some studies carried out at the operational system level essentially aim at improving the automation of production devices. In order to achieve this objective, several studies have shown the interest of sensors and actuators able to process information (calibration, fault detection, diagnosis, and so on). The concept of intelligent or smart sensor/actuator (Isermann 93, Sente 95) takes into account this processing capability in addition to the 'traditional' sensor/actuator. Among the abilities of intelligent sensor/actuator, let us point out:

• data processing,

• data storage,

• selfdiagnosis,

• measurement validation,

• digital bi-directional communication. These features allow such instruments to be considered as agents. The studies carried out in the context of intelligent sensor/actuator are led, in most cases, in order to develop a specific sensor/actuator dedicated to a complex function of a given system.

Only few works deals with the applications to machine tools of such technologies. Among them, let us point out the research presented in (Isermann 93) where the different treatments processed by a smart linear electromechanical drive are described. Concerning the application of new control architectures of NC machine tools, let us note two research works. The first one, presented in (Pfeifer 95), propose a control architecture of flexible production cell organised around several kinds of local networks that link the NC unit and the different sensors and actuators according to the abilities of the networks. In this architecture, even if the sensors and actuators are distributed, the control of the production is entirely realised by the NC controller. The second work, presented in (Altintas 96), proposes an architecture enabling the integration of new functionalities in NC machine tools but the dedicated units where these functions are implemented communicate with the NC controller by the means of a fieldbus. In this integration technique, the machine tool control architecture is not modified. In (Schofield 98), a hierarchised architecture involving different agents is proposed.

Even if these previous architectures enable to implement more easily new functionalities for machine tool control or monitoring, they do not consider the opportunities offered by intelligent instruments. A new control architecture, involving such instruments, for machine tool could be the one shown in figure 1. Although all the instruments seem to be at the same level, there is a hierarchy between them. For example the Numerical Controller belongs to an upper level than the Intelligent feeddrives. The proposed architecture is also distributed and the different agents can exchange their elaborated data. Thus, the fieldbus have to be able to transfer different type of information (binary, digital, periodic, non-periodic,…) and to respect the real-time constraints of the transfer of each data. This architecture also contributes to the integration of the lowest level equipment like sensors and actuators. In such an architecture, the activities of each unit and the different data flows have to be specified in order to enable the implementation of future activities and/or units.

In the following sections, we focus on the treatments processed by the intelligent sensors for feeddrive monitoring.

MACHINE TOOLS MONITORING

Generally, the monitoring of NC machine tools is limited to the one of some of their auxiliary systems but do not involved their main devices: the spindle and the feeddrives whereas they drive the tools and, so, are a main source of scattering. The monitoring of such devices can improve the accuracy, reliability and availability of the machine tools and can provide information to different activities like scheduling, maintenance, control. The ability of intelligent sensor to validate the information they provide contributes to increase the trust accorded to them. This can help these activities to reduce the risk of wrong decision making. We will here focus on the monitoring of the feeddrives that contribute to the machine availability. This monitoring is based on the identification of the electromechanical part of the feeddrives. An other interest in knowing models of the feeddrives is the possibility to predict tool trajectory errors due to drifts of the model parameters and so to correct them with appropriate programs implemented in the numerical controller or in other units. The simulations of the nominal feeddrive models and the identified ones can evaluate the trajectory errors. It is obvious that the correction of these errors improves the quality of the work-pieces.

Field of monitoring

The monitoring field we consider in this study is shown in figure 2. It concerns the electromechanical part of a feeddrive that is generally affected by faults appearing progressively due to wear, heating, ageing... This kind of is quite never implemented in the NC units. If the monitoring of the feeddrive is running during the machining process, changes into some parameter values could be due to changes in the cutting process. So, the monitoring of the feeddrive is only considered when there is no machining process involved. To keep the machine tool productivity, the treatments of this monitoring will be processed only for high-speed motions that are generated by the numerical controller and that occur for changing tools at least.

Model for the monitoring

For the identification of a feeddrive, we need to determine a model structure in which the physical parameters that can be linked to faults are expressed. Indeed, some electrical motor faults are associated to their electrical physical parameters. Some experimental results (Desforges 99) obtained on a NC lathe feeddrive for different lubrication conditions and for different zones of displacement with different slide-ways roughness allow to assign some faults, due to friction and wear, to mechanical physical parameters.

The physical laws that describe the behaviour of the feeddrive involved in the field of monitoring are:

• for the electrical part:
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where u(t) is the tension applied to the DC motor, i(t)

is the induced current in the DC motor, ω(t) is the revolution speed of the DC motor and where the physical parameters are: L the inductance, R the resistance, K the torque constant, J t the inertia moment, f t the viscous friction coefficient, and C d the dry friction torque. The mechanical parameters are considered on the motor shaft.

PHYSICAL PARAMETER ESTIMATION

Several methods enable the estimation of the physical parameters from the estimated structural ones of a continuous time model. A linear regression parametric model has been chosen in order to estimate physical parameters of a feeddrive. We have selected a continuous time ARX model based on the derivative approximation of the current and of the motor shaft speed. This method is described in (Soderström 97) and it has been applied in the works presented in (Habbadi 99). Tests lead us to choose the zero forcing#1 operator among the derivative approximation operators proposed in (Soderström 97). For this operator, if "x" is a continuous variable, its derivative approximation operator is:
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where h is the sampling period for the discrete measurements of "x".

The derivative approximation of the current and speed of relationships ( 1) and (2) allows to write the corresponding linear regression parametric models:
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Because the phenomena that affect the machine drift very slowly, recursive techniques of estimation of the parameters are not necessary in this case.

Few non-recursive methods can be used to estimate the parameters of the chosen model. Here we have considered the ordinary least square calculus. Indeed one estimation of the parameters per high-speed displacement (ordered by G0 in ISO code) is quite enough for the monitoring of such phenomena.

DATA ANALYSIS AND VALIDATION

The validation activity is a major functionality of intelligent instruments. It generates credible, reliable and representative information of the measured physical variables. The validation of the estimated physical parameters depends on the trust according to the measurements, the continuous time model estimation and the estimation method (Jayasimha 96,Lee 96). The architecture of the parameter validation is described in figure 3. Different kinds of errors can affect the measurements: offset errors, gain errors, noises,... The use of the same low pass filtering on the variables reduces the effect of noises on the parameter estimation accuracy.
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Measurements validation

For the other errors, we propose the use of redundant measurements. An example is presented in figure 4 for current validation. These redundancies allow to detect and to locate the faulty sensors. The tension can be measured at the DC motor terminals but also by acquiring the tension reference delivered by the regulator to the electrical converter.

Both the motor tachometer and the derived signal delivered by the incremental position sensor (both signals are proportional if there is no backlash) can be used for measuring the motor shaft angular speed.

There is no redundancy for the current measurements; but as current sensors are easy to implement a second sensor is used in order to obtain a material redundancy.

If redundant measurements are too different it means that, at least, one of the two sensors is faulty. Then, and thanks to the slow variation of the parameters, an analytical redundancy by estimating the current from (1) can be processed using the parameters that have been estimated and validated after the previous highspeed motion. The following example shows how the validation is done and concerns the current measurements.

Both current sensors used for redundant measurements can be modelled as follow:

i i r i i m n b I a I + + = . (6) 
with: i=1 to 2, I mi the measured current, a i the measurement gain (should be 1), b i the measurement offset (should be 0), n i the measurement white noise and I r the real current. The residue analysis between the two measured currents on different sliding windows allows detecting if there are offset errors and/or measurement gain errors. This residue is:
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If the mean value of r is constant and not equal to zero, during the all high-speed cycle, it means that there is an offset error on the measurements. If the mean value of r is not constant and depends on the current level, during the all high-speed cycle, it means that there is a measurement gain error and, perhaps, a measurement offset error. In this second case, we can evaluate the magnitude of the measurement gain difference by calculating the following r gain error ratio:
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, where:

I m1f and I m2f are the filtered current of I m1 and I m2 .

To isolate current faulty sensors the analytical redundancy of for the current measurements is obtained by the estimator presented on figure 5. (see figure 3). Indeed the presence of one numerical sensor among the speed measurement apparatuses makes easier the speed validation. The fact that the tension corresponds to the DC motor control input and that there are two ways to measure it also make easier its validation. So, the ordinary least squares calculus allows to estimate 1 â and 2 â gains and the 1 b and 2 b offsets from these two relationships:
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Using these estimated gains and offsets, the sensor faults are isolated and evaluated by comparing the gain values to one and the offset values to zero. This method contributes to the intelligent sensor selfdiagnosis.

Validation of the estimated model

If the system and the model do not behave the same way, this can be due to a sudden appearance of a fault in the system during the sampling horizon or of a fault due to the appearance of phenomena not taken into account in the model like backlashes. In this case, parameters are not validated but their values can help for diagnosing the fault. Several methods can be applied like the whiteness test or threshold techniques…

EXPERIMENTAL RESULTS

The experimental platform is composed of a DC motor (CEM T7F3B-1, 5.6 kW), a power converter, a numerical speed controller and a mechanical drive chain. This experimental feeddrive is equipped with redundant sensors (speed, current and tension). It allows to generate mechanical, electrical and sensor faults by the means of mechanical and electrical devices (brake, variable resistance…).

The physical parameters of the feeddrive are estimated from the experimental data shown in figure 6 and the method that is presented in section 3. To validate the measured current, the analysis presented in section 4 is applied to both current sensors I m1 and I m2 . The residues between the two current measurements presented in figure 7 are not constant and depend on the current level. It means there is at least a gain error. To evaluate the gain error, the gain ratio is calculated from (9) (it is equal to 0.9959 and is considered constant see Figure 8) so the relative gain error defined by ( 9) is equal to 0.41%.

The estimated gains and the estimated offsets are: . The results of the estimated gains and errors allow to accord more trust to the second sensor. Figure 9 presents the measured and estimated speed of the motor shaft with the validated current I m2 . From figure 9, one can consider that the model is validated and so the estimated parameters too. 

CONCLUSION

In this paper, we have shown the interest of a multiagent control of machine tools and proposed a distributed architecture for it. Then, we have presented the treatments that should be realised by one components of this architecture. It is dedicated to the monitoring of a machine tool feeddrive and is designed according to the intelligent sensor concept. The experimental results show that such a monitoring provide reliable information.

Among the perspectives of this work, there are the implementation of this monitoring in a distributed architecture, the prediction of tool trajectory shortcomings and their correction.
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