Electrochemically Induced Deformation Determines the Rate of Lithium Intercalation in Bulk TiS<sub>2</sub> - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue ACS Energy Letters Année : 2021

Electrochemically Induced Deformation Determines the Rate of Lithium Intercalation in Bulk TiS2

Résumé

Understanding the kinetic limitations of intercalation reactions is essential to create high-power intercalation host materials. In this Letter, we show the existence of both diffusionlimited and non-diffusion-limited lithiation regimes in the model material bulk TiS 2. The regions can be clearly identified by electrochemical impedance spectroscopy. A decreasing chargetransfer resistance is observed with increasing electrode polarization in the diffusion-limited region, whereas it remains constant when the electrochemical process is non-diffusionlimited. We highlight how TiS 2 interlayer deformation is closely tied to the intercalation kinetics. While regions of TiS 2 interlayer expansion/contraction are correlated with diffusion limitations, lithiation occurring under constant interlayer spacing is nondiffusion-limited: the material exhibits pseudocapacitive behavior. Larger TiS 2 interlayer spacing results in faster ionic transport. The study sheds light on the close ties between deformation, interlayer distance, and intercalation kinetics in a model layered host material.

Domaines

Matériaux
Fichier principal
Vignette du fichier
Fleischmann et al. - 2021 - Electrochemically Induced Deformation Determines t.pdf (2.05 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03827211 , version 1 (24-10-2022)

Identifiants

Citer

Simon Fleischmann, Hui Shao, Pierre-Louis Taberna, Patrick Rozier, Patrice Simon. Electrochemically Induced Deformation Determines the Rate of Lithium Intercalation in Bulk TiS2. ACS Energy Letters, 2021, 6, pp.4173 - 4178. ⟨10.1021/acsenergylett.1c01934⟩. ⟨hal-03827211⟩
69 Consultations
24 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More