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Abstract. This paper deals with a projection least squares estimator of the drift function of a jump
diffusion process X computed from multiple independent copies of X observed on [0, T ]. Risk bounds
are established on this estimator and on an associated adaptive estimator. Finally, some numerical
experiments are provided.
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1. Introduction

Let Z = (Zt)t∈[0,T ] be the compound Poisson process defined by

Zt :=

νt∑
n=1

ζn =

∫ t

0

∫ ∞
−∞

zµ(ds, dz)

for every t ∈ [0, T ], where ν = (νt)t∈[0,T ] is a (usual) Poisson process of intensity λ > 0, independent
of the ζn’s which are i.i.d. random variables of probability distribution π, and µ is the Poisson random
measure of intensity m(ds, dz) := λπ(dz)ds defined by

µ([0, t]× dz) := |{s ∈ [0, t] : Zs − Zs− ∈ dz}| ; ∀t ∈ [0, T ].

Key words and phrases. Projection least squares estimator ; Model selection ; Jump diffusion processes.
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In the sequel, Z is replaced by the centered martingale Z = (Zt)t∈[0,T ] defined by

Zt := Zt −
∫ t

0

∫ ∞
−∞

zm(ds, dz) = Zt − cζλt

for every t ∈ [0, T ], where cζ is the (common) expectation of the ζn’s. Now, let us consider the stochastic
differential equation

(1) Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs +

∫ t

0

γ(Xs)dZs ; t ∈ [0, T ],

where x0 ∈ R, B = (Bt)t∈[0,T ] is a Brownian motion independent of Z, b ∈ C1(R) and its derivative is
bounded, and σ, γ : R→ R are bounded Lipschitz continuous functions such that infx∈R σ(x)2∧γ(x)2 > 0.
Under these conditions on b, σ and γ, Equation (1) has a unique (strong) solution X = (Xt)t∈[0,T ].

As for continuous diffusion processes, the major part of the estimators of the drift function in stochastic
differential equations driven by jump processes are computed from one path of the solution to Equation
(1) and converges when T →∞ (see Schmisser (2014), Gloter et al. (2018), Amorino et al. (2022), etc.).
The existence and the uniqueness of the ergodic stationary solution to Equation (1) is then required,
and obtained thanks to a restrictive dissipativity condition on b. For stochastic differential equations
driven by a pure-jump Lévy process, some authors have also studied estimation methods based on high
frequency observations, on a fixed time interval, of one path of the solution (see Clément and Gloter
(2019,2020)).

Now, consider Xi := I(x0, B
i,Zi) for every i ∈ {1, . . . , N}, where I(.) is the Itô map associated to

Equation (1) and (B1,Z1), . . . , (BN ,ZN ) are N ∈ N∗ independent copies of (B,Z). The estimation of
the drift function b from a continuous-time or a discrete-time observation of (X1, . . . , XN ) is a functional
data analysis problem already investigated in the parametric and in the nonparametric frameworks for
continuous diffusion processes (see Ditlevsen and De Gaetano (2005), Picchini and Ditlevsen (2011),
Delattre et al. (2013), Comte and Genon-Catalot (2020b), Denis et al. (2021), Marie and Rosier (2023),
etc.). Up to our knowledge, no such estimator of the drift function has been already proposed for jump
diffusion processes. So, our paper deals with a projection least squares estimator b̂m of b computed from
X1, . . . , XN , which means that b̂m is minimizing the objective function

τ 7−→ γN (τ) :=
1

NT

N∑
i=1

(∫ T

0

τ(Xi
s)

2ds− 2

∫ T

0

τ(Xi
s)dX

i
s

)

on a m-dimensional function space Sm. Precisely, risk bounds are established on b̂m and on the adaptive
estimator b̂m̂, where

m̂ = arg min
m∈M̂N

{−‖b̂m‖2N + pen(m)}

with M̂N ⊂ {1, . . . , N},

pen(m) := ccal
m

N
; ∀m ∈ N∗

and ccal > 0 is a constant to calibrate in practice.
In Section 2, a detailed definition of the projection least squares estimator of b is provided. Section 3

deals with a risk bound on b̂m and Section 4 with a risk bound on the adaptive estimator b̂m̂. Finally,
some numerical experiments are provided in Section 5. The proofs (resp. tables and figures) are post-
poned to Appendix A (resp. Appendix B).

Notations and basic definitions:

• cζn := E(ζn1 ) for every n ∈ N∗.
• Consider d ∈ N∗. The j-th component of any x ∈ Rd is denoted by xj or [x]j .
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• For every k ∈ N∗, ‖.‖k,d is the norm on Rd defined by

‖x‖k,d :=

 d∑
j=1

|xj |k
1/k

; ∀x ∈ Rd.

• The spectral norm on the spaceMd(R) of the d× d real matrices is denoted by ‖.‖op:

‖A‖op := sup
x∈Rd:‖x‖2,d=1

‖Ax‖2,d ; ∀A ∈Md(R).

2. A projection least squares estimator of the drift function

2.1. The objective function. Assume that the probability distribution of Xs has a density ps(x0, .)
with respect to Lebesgue’s measure for every s ∈ (0, T ], that s 7→ ps(x0, x) belongs to L1([0, T ], dt) for
every x ∈ R which legitimates to consider the density function fT defined by

fT (x) :=
1

T

∫ T

0

ps(x0, x)ds ; ∀x ∈ R,

and that ∫ ∞
−∞

b(x)4fT (x)dx <∞.

Remark 1. Assume that b and π satisfy the following additional conditions:
(1) The function b belongs to the Kato class

K2 :=

{
ϕ : R→ R : lim

δ→0
sup
x∈R

∫ δ

0

∫ ∞
−∞
|ϕ(x+ y) + ϕ(x− y)|s1/2(|y|+ s1/2)−3dyds = 0

}
.

(2) The Lévy measure πλ(.) := λπ(.) has a density θ with respect to Lebesgue’s measure. Moreover,
there exists α ∈ (0, 2) such that z ∈ R 7→ θ(z)|z|1+α is bounded, and if α = 1, then∫

r<|z|<R
zθ(z)dz = 0 ; ∀R > r > 0.

By Chen et al. (2017), Theorem 1.1 and the remark p. 126, l. 5-7, in Amorino and Gloter (2021), for
every s ∈ (0, T ], the probability distribution of Xs has a density ps(x0, .) with respect to Lebesgue’s
measure, and there exist two constants cp,mp > 0, not depending on s, such that

(2) ps(x0, x) 6 cp

[
s−1/2 exp

(
−mp

(x− x0)2

s

)
+

s

(s1/2 + |x− x0|)1+α

]
; ∀x ∈ R.

So,
• fT is well-defined and even bounded, which is crucial in Section 4. Indeed, since −1/2 < 1− (1 +
α)/2 < 1/2, for every x ∈ R,

0 6 fT (x) 6
cp
T

(∫ T

0

s−1/2ds+

∫ T

0

s1−(1+α)/2ds

)
=

cp
T

[
2T 1/2 +

T 2−(1+α)/2

2− (1 + α)/2

]
<∞.

• If there exists a constant cb > 0 and ε ∈ (0, α) as close as possible to 0 such that |b(x)| 6
cb(1 + |x|)(α−ε)/4 for every x ∈ R, then

b(x)4ps(x0, x) =
x→±∞,s→0+

O

(
s−1/2

|x− x0|1+ε

)
,

which leads to ∫ ∞
−∞

b(x)4fT (x)dx <∞.
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Now, let us consider the objective function γN (.) defined by

γN (τ) :=
1

NT

N∑
i=1

(∫ T

0

τ(Xi
s)

2ds− 2

∫ T

0

τ(Xi
s)dX

i
s

)
for every τ ∈ Sm, where m ∈ {1, . . . , NT }, NT := [NT ] + 1, Sm := span{ϕ1, . . . , ϕm}, ϕ1, . . . , ϕNT

are
continuous functions from I into R such that (ϕ1, . . . , ϕNT

) is an orthonormal family in L2(I, dx), and
I ⊂ R is a non-empty interval. For any τ ∈ Sm,

E(γN (τ)) =
1

T

∫ T

0

E(|τ(Xs)− b(Xs)|2)ds− 1

T

∫ T

0

E(b(Xs)
2)ds

=

∫ ∞
−∞

(τ(x)− b(x))2fT (x)dx−
∫ ∞
−∞

b(x)2fT (x)dx.

Then, the closer τ is to b, the smaller E(γN (τ)). For this reason, the estimator of b minimizing γN (.) is
studied in this paper.

2.2. The projection least squares estimator and some related matrices. Consider

J :=
m∑
j=1

θjϕj with θ1, . . . , θm ∈ R.

Then,

∇γN (J) =

(
1

NT

N∑
i=1

(
2

m∑
`=1

θ`

∫ T

0

ϕj(X
i
s)ϕ`(X

i
s)ds− 2

∫ T

0

ϕj(X
i
s)dX

i
s

))
j∈{1,...,m}

= 2(Ψ̂m(θ1, . . . , θm)∗ − X̂m)

where

Ψ̂m :=

(
1

NT

N∑
i=1

∫ T

0

ϕj(X
i
s)ϕ`(X

i
s)ds

)
j,`∈{1,...,m}

and

X̂m :=

(
1

NT

N∑
i=1

∫ T

0

ϕj(X
i
s)dX

i
s

)
j∈{1,...,m}

.

The symmetric matrix Ψ̂m is positive semidefinite because

u∗Ψ̂mu =
1

NT

N∑
i=1

∫ T

0

 m∑
j=1

ujϕj(X
i
s)

2

ds > 0

for every u ∈ Rm. If in addition Ψ̂m is invertible, it is positive definite, and then

(3) b̂m =

m∑
j=1

θ̂jϕj with θ̂m := (θ̂1, . . . , θ̂m)∗ = Ψ̂−1
m X̂m

is the only minimizer of γN (.) on Sm, called the projection least squares estimator of b.

Remarks:
(1) Ψ̂m = (〈ϕj , ϕ`〉N )j,`, where

〈ϕ,ψ〉N :=
1

NT

N∑
i=1

∫ T

0

ϕ(Xi
s)ψ(Xi

s)ds

for every continuous functions ϕ,ψ : R→ R.
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(2) X̂m = (〈b, ϕj〉N )∗j + Êm, where

Êm :=

(
1

NT

N∑
i=1

∫ T

0

ϕj(X
i
s)(σ(Xi

s)dB
i
s + γ(Xi

s)dZ
i
s)

)∗
j∈{1,...,m}

.

Let us introduce the two following deterministic matrices related to the previous random ones:

Ψm,σ := NTE(ÊmÊ∗m) and Ψm := E(Ψ̂m) = (〈ϕj , ϕ`〉fT )j,`,

where 〈., .〉fT is the usual scalar product in L2(I, fT (x)dx). The following lemma will be crucial in Section
3 to evaluate the order of the variance term in the risk bound on our projection least squares estimator
of b.

Lemma 1. trace(Ψ
−1/2
m Ψm,σΨ

−1/2
m ) 6 (‖σ‖2∞ + λcζ2‖γ‖2∞)m.

Let us conclude this section with few words about the extension of the projection least squares esti-
mation for multidimensional diffusion processes, and on the reason why the probability distribution of
Xs, s ∈ (0, T ], needs to have a density with respect to Lebesgue’s measure with a sharp bound as (2).

Remarks:
(1) Assume that X is a d-dimensional diffusion process with d ∈ N∗. A natural extension of the

objective function γN would be defined by

γd,N (τ) :=
1

NT

N∑
i=1

(∫ T

0

‖τ(Xi
s)‖22,dds− 2

∫ T

0

〈τ(Xi
s), dX

i
s〉2,d

)
; τ ∈ Sd,m,

where Sd,m := span({ϕj1 ⊗ · · · ⊗ ϕjd ; j1, . . . , jd ∈ {1, . . . ,m}})d. This is out of the scope of our
paper, but note that one could get an expression of the solution of the minimization problem
minSd,m γd,N similar to (3) but involving hypermatrices in the spirit of Dussap (2021). So, except
in the very special case where the components of X are independent, to extend our estimation
method to the multidimensional framework is not straightforward.

(2) By the Fubini-Tonelli theorem, for every continuous functions ϕ,ψ : R→ R,

E(〈ϕ,ψ〉N ) =

∫ ∞
−∞

ϕ(x)ψ(x)PT (dx) with PT (dx) :=
1

T

∫ T

0

PXs
(dx)ds,

and then one could think that there is no need to assume that PXs(dx) = ps(x0, x)dx for any
s ∈ (0, T ]. However, since the drift function b may be unbounded, a sharp bound on PXs

(dx) as
(2) is required to show that ∫ ∞

−∞
b(x)4PT (dx) <∞

as assumed in the beginning of Section 2.1. Note also that if the Malliavin covariance (matrix)
of Xs, s ∈ (0, T ], is almost surely invertible (Bouleau-Hirsch’s condition), then the probability
distribution of Xs has a density with respect to Lebesgue’s measure, but not necessarily with a
sharp bound as (2). For instance, Xs satisfies the Bouleau-Hirsch condition under Assumption
2.4 on b, σ and γ in Bichteler and Jacod (1983).

3. Risk bound on the projection least squares estimator

This section deals with a risk bound on the truncated estimator

b̃m := b̂m1Λm
,

where

Λm :=

{
L(m)(‖Ψ̂−1

m ‖op ∨ 1) 6 cT
NT

log(NT )

}
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with

L(m) = 1 ∨

sup
x∈I

m∑
j=1

ϕj(x)2

 and cT =
3 log(3/2)− 1

8T
.

On the event Λm, Ψ̂m is invertible because

inf{sp(Ψ̂m)} > L(m)

cT
· log(NT )

NT
,

and then b̃m is well-defined. In the sequel, m fulfills the following assumption.

Assumption 1. L(m)(‖Ψ−1
m ‖op ∨ 1) 6

cT
2
· NT

log(NT )
.

The above condition is a generalization of the so-called stability condition introduced in the nonpara-
metric regression framework in Cohen et al. (2013), and already extended to the independent copies of
continuous diffusion processes framework in Comte and Genon-Catalot (2020b).

Theorem 1. Under Assumption 1, there exists a constant c1 > 0, not depending on m and N , such that

(4) E(‖b̃m − bI‖2N ) 6 min
τ∈Sm

‖τ − bI‖2fT + c1

(
m

NT
+

1

N

)
.

Remarks:

• Note that Theorem 1 says first that the bound on the variance of b̃m is of order m/N as in
the nonparametric regression framework, in which it is optimal (see Comte and Genon-Catalot
(2020a), Theorem 1). For this reason, (4) should be near to optimality, but it’s a difficult
challenge, out of the scope of this paper, to establish a lower bound on b̂m. Note that even
for continuous diffusion processes, no lower bound has been established (see Comte and Genon-
Catalot (2020b)).

• The order of the bias term

min
τ∈Sm

‖τ − bI‖2fT ,

as well as L(m) and ‖Ψ−1
m ‖op, depend on the ϕj ’s. Let us evaluate them for the trigonometric

basis, which is compactly supported, and for the Hermite basis, which is R-supported:
(1) Assume that I = [`, r] with `, r ∈ R satisfying ` < r, and that

ϕ1(x) :=

√
1

r− `
1[`,r](x),

ϕ2j+1(x) :=

√
2

r− `
sin

(
2πj

x− `
r− `

)
1[`,r](x) and

ϕ2j(x) :=

√
2

r− `
cos

(
2πj

x− `
r− `

)
1[`,r](x)

for every x ∈ [`, r] and j ∈ N∗. On the one hand, since cos(.)2 + sin(.)2 = 1, there exists a
constant cϕ > 0, not depending on m, N and T , such that

L(m) = 1 ∨

sup
x∈I

m∑
j=1

ϕj(x)2

 6 cϕm.



ON A PROJECTION LEAST SQUARES ESTIMATOR FOR JUMP DIFFUSION PROCESSES 7

Moreover, since under the same conditions than in Remark 1, there exists m > 0 such that
fT (.) > m on I by Chen et al. (2017), Theorem 1.3,

‖Ψ−1
m ‖op =

1

λmin(Ψm)
=

 inf
θ:‖θ‖2,m=1

m∑
j,`=1

θjθ`[Ψm]j,`

−1

=

 inf
θ:‖θ‖2,m=1

∫ r

`

 m∑
j=1

θjϕj(x)

2

fT (x)dx


−1

6
1

m
.

Then,

m 6
1

cϕ(m−1 ∨ 1)
· cT

2
· NT

log(NT )

satisfies Assumption 1. On the other hand, consider the Fourier-Sobolev space

Wβ
2 ([`, r]) :=

{
ϕ ∈ Cβ([`, r];R) :

∫ r

`

ϕ(β)(x)2dx <∞
}

with β ∈ N∗, and assume that b|I ∈ Wβ
0 ([`, r]). By DeVore and Lorentz (1993), Corollary

2.4 p. 205, there exists a constant cβ,`,r > 0, not depending on m and N , such that

‖Πm(bI)− bI‖2 6 cβ,`,rm
−2β ,

where Πm is the orthogonal projection from L2(I, dx) onto Sm. Since under appropriate
conditions on b and π, as explained in Remark 1, fT is upper bounded on I by a constant
m > 0,

min
τ∈Sm

‖τ − bI‖2fT 6 m‖Πm(bI)− bI‖2

6 cβ,`,rm
−2β with cβ,`,r = cβ,`,rm.

In conclusion, by Theorem 1, there exists a constant c1,1 > 0, not depending m and N , such
that

E(‖b̃m − bI‖2N ) 6 c1,1

(
m−2β +

m

N

)
,

and then the bias-variance tradeoff is reached by (the risk bound on) b̃m for m of order
N1/(1+2β).

(2) Assume that ϕj = hj−1 for any j ∈ {1, . . . ,m}, where (hn)n∈N is the Hermite basis: for
every x ∈ R and n ∈ N,

hn(x) := (2nn!
√
π)−1/2Hn(x)e−x

2/2 with Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

On the one hand, by Abramowitz and Stegun (1964), ‖ϕj‖∞ 6 π−1/4 and then L(m) 6 m.
Moreover, assume that the conditions (1) and (2) in Remark 1 are satisfied by b and π with
α ∈ [1, 2). By Chen et al. (2017), Theorem 1.3, for every s ∈ (0, T ], there exist two constants
cp,mp > 0, not depending on s, such that for any x ∈ R,

ps(x0, x) > cp

[
s−1/2 exp

(
−mp

(x− x0)2

s

)
+

s

(s1/2 + |x− x0|)1+α

]
>

cps

(2T + 4x2
0 + 4x2)(1+α)/2

>
cps

[4 ∨ (2T + 4x2
0)](1+α)/2

· 1

(1 + x2)(1+α)/2
.

So,

fT (x) >
cfT

(1 + x2)(1+α)/2
with cfT =

cpT

2[4 ∨ (2T + 4x2
0)](1+α)/2

.
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Since α ∈ [1, 2), by Comte and Genon-Catalot (2020a), Proposition 9, there exists a constant
cΨ > 0, not depending on m, such that

‖Ψ−1
m ‖op 6 cΨm

(1+α)/2.

Then,

m 6

[
1

cΨ ∨ 1
· cT

2
· NT

log(NT )

]2/(3+α)

satisfies Assumption 1. On the other hand, assume that b ∈ Wβ
H (D), where Wβ

H (D) is the
Hermite-Sobolev ball defined by

Wβ
H (D) :=

{
ϕ ∈ L2(R) :

∞∑
n=0

nβ〈ϕ, hn〉2 6 D

}
with β > (3 + α)/2 − 1 and D > 0. Then, ‖Πm(b) − b‖2 6 Dm−β (see Belomestny et al.
(2019), Section 4.2), and since fT is upper bounded on R by a constant m > 0 (see Remark
1),

min
τ∈Sm

‖τ − b‖2fT 6 m‖Πm(b)− b‖2

6 cHm
−β with cH = Dm.

In conclusion, by Theorem 1, there exists a constant c1,2 > 0, not depending m and N , such
that

E(‖b̃m − b‖2N ) 6 c1,2

(
m−β +

m

N

)
,

and then the bias-variance tradeoff is reached by (the risk bound on) b̃m for m of order
N1/(1+β).

4. Model selection

First of all, let us state some additional assumptions on the ϕj ’s, on the Lévy measure πλ and on the
density function fT .

Assumption 2. The spaces Sm, m ∈ {1, . . . , NT }, satisfy the following conditions:
(1) There exists a constant cϕ > 1, not depending on N , such that for every m ∈ {1, . . . , NT }, the

basis (ϕ1, . . . , ϕm) of Sm satisfies

L(m) = 1 ∨

sup
x∈I

m∑
j=1

ϕj(x)2

 6 c2ϕm.

(2) (Nested spaces) For every m,m′ ∈ {1, . . . , NT }, if m > m′, then Sm′ ⊂ Sm.

The proof of the oracle inequality satisfied by the adaptive estimator relies on a Bernstein type in-
equality (see Lemma 5). In order to control the big jumps of X in the proof of Lemma 5, the Lévy
measure πλ needs to fulfill the following assumption.

Assumption 3. The Lévy measure πλ is sub-exponential: there exist positive constants a, b > 0 such
that, for every x > 1,

πλ((−x, x)c) 6 ae−b|x|.

Assumption 4. The density function fT is bounded.

Note that Remark 1 provides a sufficient condition for Assumption 4 to be satisfied by fT . Now, let
us introduce the set

M̂N :=

{
m ∈ {1, . . . , NT } : c2ϕm(‖Ψ̂−1

m ‖2op ∨ 1) 6 dT
NT

log(NT )

}
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with

dT = min

{
cT
2
,

1

64c2ϕT (‖fT ‖∞ +
√
cT /2/(3cϕ))

}
,

as well as its theoretical counterpart

MN :=

{
m ∈ {1, . . . , NT } : c2ϕm(‖Ψ−1

m ‖2op ∨ 1) 6
dT
4
· NT

log(NT )

}
.

Let us also consider
m̂ := arg min

m∈M̂N

{−‖b̂m‖2N + pen(m)},

where
pen(m) := ccal

m

NT
; ∀m ∈ {1, . . . , NT }

and ccal > 0 is a deterministic constant to calibrate.

Theorem 2. Under Assumptions 1, 2, 3 and 4, there exists a constant c2 > 0, not depending on N , such
that

E(‖b̂m̂ − bI‖2N ) 6 c2

[
min

m∈MN

{
min
τ∈Sm

‖τ − bI‖2fT +
m

NT

}
+

1

N

]
.

Note that Theorem 2 provides a risk bound on the adaptive estimator b̂m̂ of same order than the
minimal risk bound on b̃m (see Theorem 1) for m taken inMN .

5. Numerical experiments

First of all, let us recall that all figures and tables related to this section are postponed to Appendix
B.

Some numerical experiments on our estimation method of b in Equation (1) are presented in this
subsection when the common distribution π of the ζn’s is standard normal, which implies that Z = Z,
and the intensity of the (usual) Poisson process ν is λ = 0.5. The estimation method investigated on the
theoretical side in Sections 3 and 4 is implemented here for the three following models:

(1) Xt = 0.5−
∫ t

0

Xsds+ 0.5Bt + Zt (linear/additive noise).

(2) Xt = 0.5 + 0.5

∫ t

0

√
1 +X2

sds+ 0.5Bt + Zt (nonlinear/additive noise).

(3) Xt = 0.5 + 0.5

∫ t

0

√
1 +X2

sds+ 0.5

∫ t

0

(1 + cos(Xs)
2)dBs + Zt (nonlinear/multiplicative noise).

For each of the three previous models, our adaptive estimator of b is computed on I = [−3, 3] from
N = 400 paths of the process X observed along the dissection {lT/n ; l = 1, . . . , n} of [0, T ] with n = 200
and T = 5, when (ϕ1, . . . , ϕm) is the m-dimensional trigonometric basis for every m ∈ {1, . . . , 6}. This
experiment is repeated 100 times, and the means and the standard deviations of the MISE of b̂m̂ are
stored in Table 1. Moreover, for each model, 10 estimations (dashed black curves) of b (red curve) are
plotted on Figures 1, 2 and 3.

On the one hand, on average, the MISE of our adaptive estimator is slightly increasing with the
complexity of the model: 0.1251 (Model 1) < 0.1469 (Model 2) < 0.1825 (Model 3). The same remark
holds for its standard deviation: 0.0950 (Model 1) < 0.1688 (Model 2) < 0.1928 (Model 3). This means
that the more the model is complex, the more the quality of the estimation degrades, and it’s visible on
Figures 1, 2 and 3. However, for all the three previous models, the MISE of b̂m̂ remains good and of
same order than for models without jump component (see Comte and Genon-Catalot (2020b), Section
4). On the other hand, the model selection procedure works well because it doesn’t systematically select
the lowest or the highest possible value of m (see m̂ on Figures 1, 2 and 3). For Model 1, the procedure
is stable because m̂ has a low estimated standard deviation (0.4830). The procedure remains satisfactory
for Models 2 and 3, with StD(m̂) = 1.1353 and StD(m̂) = 1.2867 respectively, but not as much as for
Model 1.
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Appendix A. Proofs

A.1. Proof of Lemma 1. First, let us show that the symmetric matrix Ψm,σ is positive semidefinite.
Indeed, for any y ∈ Rm,

y∗Ψm,σy =
1

NT

m∑
j,`=1

yjy`

N∑
i,k=1

E

((∫ T

0

ϕj(X
i
s)(σ(Xi

s)dB
i
s + γ(Xi

s)dZ
i
s)

)

×

(∫ T

0

ϕ`(X
k
s )(σ(Xk

s )dBks + γ(Xk
s )dZks)

))

=
1

NT
E

( N∑
i=1

∫ T

0

τy(Xi
s)(σ(Xi

s)dB
i
s + γ(Xi

s)dZ
i
s)

)2
 > 0 with τy(.) :=

m∑
j=1

yjϕj(.).

Moreover, by the isometry property of Itô’s integral (with respect to B), by the isometry type property
of the stochastic integral with respect to Z, and since σ and γ are bounded, for every j ∈ {1, . . . ,m},

y∗Ψm,σy =
1

T
E

(∫ T

0

τy(Xs)σ(Xs)dBs

)2
+

1

T
E

(∫ T

0

τy(Xs)γ(Xs)dZs

)2


=
1

T

∫ T

0

E(τy(Xs)
2σ(Xs)

2)ds+
λcζ2

T

∫ T

0

E(τy(Xs)
2γ(Xs)

2)ds

6 (‖σ‖2∞ + λcζ2‖γ‖2∞)

∫ ∞
−∞

 m∑
j=1

yjϕj(x)

2

fT (x)dx = (‖σ‖2∞ + λcζ2‖γ‖2∞)‖Ψ1/2
m y‖22,m.(5)

Therefore, since Ψm,σ is positive semidefinite, and by Inequality (5),

trace(Ψ−1/2
m Ψm,σΨ−1/2

m ) 6 m‖Ψ−1/2
m Ψm,σΨ−1/2

m ‖op

= m · sup{y∗Ψm,σy ; y ∈ Rm and ‖Ψ1/2
m y‖2,m = 1}

6 (‖σ‖2∞ + λcζ2‖γ‖2∞)m.

�

A.2. Proof of Theorem 1. The proof of Theorem 1 relies on the two following lemmas.

Lemma 2. There exists a constant c2 > 0, not depending on m and N , such that

E(|Ê∗mÊm|2) 6 c2
mL(m)2

N2
.

Lemma 3. Consider the event

Ωm :=

{
sup
τ∈Sm

∣∣∣∣∣ ‖τ‖2N‖τ‖2fT
− 1

∣∣∣∣∣ 6 1

2

}
.

Under Assumptions 1, there exists a constant c3 > 0, not depending on m and N , such that

P(Ωcm) 6
c3
N7

and P(Λcm) 6
c3
N7

.

The proof of Lemma 2 is postponed to Subsubsection A.2.2, and the proof of Lemma 3 remains the
same as the proof of Comte and Genon-Catalot (2020b), Lemma 6.1, because (B1, Z1), . . . , (BN , ZN ) are
independent.
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A.2.1. Steps of the proof. First of all,

‖b̃m − bI‖2N = ‖bI‖2N1Λc
m

+ ‖b̂m − bI‖2N1Λm

= ‖bI‖2N1Λc
m

+ ‖b̂m − bI‖2N1Λm∩Ωm
+ ‖b̂m − bI‖2N1Λm∩Ωc

m
=: U1 + U2 + U3.

Let us find suitable bounds on E(U1), E(U2) and E(U3).
• Bound on E(U1). By Cauchy-Schwarz’s inequality,

E(U1) 6 E(‖bI‖4N )1/2P(Λcm)1/2 6 E

(
1

T

∫ T

0

bI(Xt)
4dt

)1/2

P(Λcm)1/2

6 c1P(Λcm)1/2 <∞ with c1 =

(∫ ∞
−∞

bI(x)4fT (x)dx

)1/2

<∞.

• Bound on E(U2). Let ΠN,m(.) be the orthogonal projection from L2(I, fT (x)dx) onto Sm with
respect to the empirical scalar product 〈., .〉N . Then,

(6) ‖b̂m − bI‖2N = ‖b̂m −ΠN,m(bI)‖2N + min
τ∈Sm

‖bI − τ‖2N .

As in the proof of Comte and Genon-Catalot (2020b), Proposition 2.1, on Ωm,

‖b̂m −ΠN,m(bI)‖2N = Ê∗mΨ̂−1
m Êm 6 2Ê∗mΨ−1

m Êm.

So,

E(‖b̂m −ΠN,m(bI)‖2N1Λm∩Ωm
) 6 2E

 m∑
j,`=1

[Êm]j [Êm]`[Ψ
−1
m ]j,`


=

2

NT

m∑
j,`=1

[Ψm,σ]j,`[Ψ
−1
m ]j,` =

2

NT
trace(Ψ−1/2

m Ψm,σΨ−1/2
m ).

Then, by Equality (6) and Lemma 1,

E(U2) 6 E
(

min
τ∈Sm

‖bI − τ‖2N
)

+
2

NT
trace(Ψ−1/2

m Ψm,σΨ−1/2
m )

6 min
τ∈Sm

‖bI − τ‖2fT +
2m

NT
(‖σ‖2∞ + λcζ2‖γ‖2∞).

• Bound on E(U3). Since

‖b̂m −ΠN,m(bI)‖2N = Ê∗mΨ̂−1
m Êm,

by the definition of the event Λm, and by Lemma 2,

E(‖b̂m −ΠN,m(bI)‖2N1Λm∩Ωc
m

) 6 E(‖Ψ̂−1
m ‖op|Ê∗mÊm|1Λm∩Ωc

m
)

6
cT

L(m)
· NT

log(NT )
E(|Ê∗mÊm|2)1/2P(Ωcm)1/2 6

c2m
1/2

log(NT )
P(Ωcm)1/2,

where the constant c2 > 0 doesn’t depend on m and N . Moreover,

min
τ∈Sm

‖τ − bI‖2N 6 ‖bI‖2N because 0 ∈ Sm,

and then

‖b̂m − bI‖2N = ‖b̂m −ΠN,m(bI)‖2N + min
τ∈Sm

‖τ − bI‖2N

6 ‖b̂m −ΠN,m(bI)‖2N + ‖bI‖2N .
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Therefore,

E(U3) 6 E(‖b̂m −ΠN,m(bI)‖2N1Λm∩Ωc
m

) + E(‖bI‖2N1Λm∩Ωc
m

)

6
c2m

1/2

log(NT )
P(Ωcm)1/2 + c1P(Ωcm)1/2.

So,

E(‖b̃m − bI‖2N ) 6 min
τ∈Sm

‖bI − τ‖2fT

+
2m

NT
(‖σ‖2∞ + λcζ2‖γ‖2∞) + c2

√
mP(Ωcm)

log(NT )
+ c1(P(Λcm)1/2 + P(Ωcm)1/2).

Therefore, by Lemma 3, there exists a constant c3 > 0, not depending on m and N , such that

E(‖b̃m − bI‖2N ) 6 min
τ∈Sm

‖bI − τ‖2fT + c3

(
m

NT
+

1

N

)
.

�

A.2.2. Proof of Lemma 2. In the sequel, the quadratic variation of any piecewise continuous stochastic
process (Γt)t∈[0,T ] is denoted by (JΓKt)t∈[0,T ]. First of all, note that since B and Z are independent, for
every j ∈ {1, . . . ,m},

s∫ .

0

ϕj(Xs)(σ(Xs)dBs + γ(Xs)dZs)

{

T

=

∫ T

0

ϕj(Xs)
2σ(Xs)

2ds+

∫ T

0

ϕj(Xs)
2γ(Xs)

2dZ(2)
s

=

∫ T

0

ϕj(Xs)
2(σ(Xs)

2 + cζ2λγ(Xs)
2)ds

+

∫ T

0

ϕj(Xs)
2γ(Xs)

2dZ(2)
s

where, for every t ∈ [0, T ],

Z
(2)
t := JZKt =

νt∑
n=1

ζ2
n and Z

(2)
t := Z

(2)
t − cζ2λt.

By Jensen’s inequality and Burkholder-Davis-Gundy’s inequality (see Dellacherie et Meyer (1980), p.
303), there exists a constant c1 > 0, not depending on m and N , such that

E(|Ê∗mÊm|2) 6 m

m∑
j=1

E([Êm]4j ) 6
c1m

N4T 4

m∑
j=1

E

t
N∑
i=1

∫ .

0

ϕj(X
i
s)(σ(Xi

s)dB
i
s + γ(Xi

s)dZ
i
s)

|2

T


6

2c1m

N2T 4

m∑
j=1

E

(s∫ .

0

ϕj(Xs)(σ(Xs)dBs + γ(Xs)dZs)

{2

T

)

6
4c1m

N2T 4

m∑
j=1

E
(∫ T

0

ϕj(Xs)
2(σ(Xs)

2 + cζ2λγ(Xs)
2)ds

)2


+E

(∫ T

0

ϕj(Xs)
2γ(Xs)

2dZ(2)
s

)2
 .

By Jensen’s inequality,(∫ T

0

ϕj(Xs)
2(σ(Xs)

2 + cζ2λγ(Xs)
2)ds

)2

= T 2

(∫ T

0

ϕj(Xs)
2(σ(Xs)

2 + cζ2λγ(Xs)
2)
ds

T

)2

6 T

∫ T

0

ϕj(Xs)
4(σ(Xs)

2 + cζ2λγ(Xs)
2)2ds.
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Moreover, since ‖x‖4,m 6 ‖x‖2,m for every x ∈ Rd,

sup
x∈I

m∑
j=1

ϕj(x)4 = sup
x∈I
‖(ϕj(x))j‖44,m 6 sup

x∈I
‖(ϕj(x))j‖42,m 6 L(m)2.

So, by applying twice the Fubini-Tonelli theorem,
m∑
j=1

E

(∫ T

0

ϕj(Xs)
2(σ(Xs)

2 + cζ2λγ(Xs)
2)ds

)2


6 2T

m∑
j=1

∫ T

0

E(ϕj(Xs)
4(σ(Xs)

4 + c2ζ2λ
2γ(Xs)

4))ds

= 2T 2

∫ ∞
−∞

 m∑
j=1

ϕj(x)4


︸ ︷︷ ︸

6L(m)2

(σ(x)4 + c2ζ2λ
2γ(x)4)fT (x)dx,

and by the isometry type property of the stochastic integral with respect to Z(2),
m∑
j=1

E

(∫ T

0

ϕj(Xs)
2γ(Xs)

2dZ(2)
s

)2
 = λcζ4

m∑
j=1

∫ T

0

E(ϕj(Xs)
4γ(Xs)

4)ds

6 λcζ4TL(m)2

∫ ∞
−∞

γ(x)4fT (x)dx.

Therefore,
E(|Ê∗mÊm|2) 6

c2
N2T 2

mL(m)2

with

c2 = 8c1

(∫ ∞
−∞

(σ(x)4 + c2ζ2λ
2γ(x)4)fT (x)dx+ λcζ4

∫ ∞
−∞

γ(x)4fT (x)dx

)
.

�

A.3. Proof of Theorem 2. Let us consider the events

ΩN :=
⋂

m∈M+
N

Ωm and ΞN := {MN ⊂ M̂N ⊂M+
N},

where

M+
N :=

{
m ∈ {1, . . . , NT } : c2ϕm(‖Ψ−1

m ‖2op ∨ 1) 6 4dT
NT

log(NT )

}
,

and let us recall that

dT = min

{
cT
2
,

1

64c2ϕT (‖fT ‖∞ +
√
cT /2/(3cϕ))

}
.

As a reminder, the sets M̂N andMN introduced in Section 4 are respectively defined by

M̂N =

{
m ∈ {1, . . . , NT } : c2ϕm(‖Ψ̂−1

m ‖2op ∨ 1) 6 dT
NT

log(NT )

}
and

MN =

{
m ∈ {1, . . . , NT } : c2ϕm(‖Ψ−1

m ‖2op ∨ 1) 6
dT
4
· NT

log(NT )

}
.

The proof of Theorem 2 relies on the three following lemmas.

Lemma 4. Under Assumptions 1, 2 and 3, there exists a constant c4 > 0, not depending on N , such
that

P(ΞcN ) 6
c4
N6

.
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Lemma 5. [Bernstein type inequality] Consider the empirical process

νN (τ) :=
1

NT

N∑
i=1

∫ T

0

τ(Xi
s)(σ(Xi

s)dB
i
s + γ(Xi

s)dZ
i
s) ; τ ∈ S1 ∪ · · · ∪ SNT

.

Under Assumption 3, for every ξ, v > 0,

P(νN (τ) > ξ, ‖τ‖2N 6 v2) 6 exp

[
− NTξ2

4[c5(‖σ‖2∞ + ‖γ‖2∞)v2 + ξ‖τ‖∞,I‖γ‖∞]

]
with

c5 =
1

2

[
1 ∨

∫ ∞
−∞

eb|z|/2πλ(dz)

]
.

Lemma 6. Under Assumptions 1 and 3, there exists a constant c6 > 0, not depending on N , such that
for every m ∈MN ,

E

[ sup
τ∈Bm,m′

νn(τ)

]2

− p(m, m̂)


+

1ΞN∩ΩN

 6 c6
NT

where, for every m′ ∈MN ,

Bm,m′ := {τ ∈ Sm∧m′ : ‖τ‖fT = 1} and p(m,m′) :=
ccal

8
· m ∨m

′

NT
.

The proof of Lemma 5 is postponed to Subsubsection A.3.2. Lemma 6 is a consequence of Lemma
5 thanks to the L2

fT
-L∞ chaining technique (see Comte (2001), Proposition 4). Finally, the proof of

Lemma 4 remains the same as the proof of Comte and Genon-Catalot (2020b), Eq. (6.17), because
(B1,Z1), . . . , (BN ,ZN ) are independent.

A.3.1. Steps of the proof. First of all,

‖b̂m̂ − bI‖2N = ‖b̂m̂ − bI‖2N1Ξc
N

+ ‖b̂m̂ − bI‖2N1ΞN

=: U1 + U2.(7)

Let us find suitable bounds on E(U1) and E(U2).
• Bound on E(U1). Since

‖b̂m̂ −ΠN,m̂(bI)‖2N = Ê∗m̂Ψ̂−1
m̂ Êm̂,

by the definition of M̂N , and by Lemma 2,

E(‖b̂m̂ −ΠN,m̂(bI)‖2N1Ξc
N

) 6 E(‖Ψ̂−1
m̂ ‖op|Ê∗NT ÊNT |1Ξc

N
)

6

[
dT

NT

log(NT )

]1/2

E(|Ê∗NT ÊNT |2)1/2P(ΞcN )1/2 6
c1N

log(NT )
P(ΞcN )1/2,

where the constant c1 > 0 doesn’t depend on N . Then,

E(U1) 6 E(‖b̂m̂ −ΠN,m̂(bI)‖2N1Ξc
N

) + E(‖bI‖2N1Ξc
N

)

6
c1N

log(NT )
P(ΞcN )1/2 + c2P(ΞcN )1/2

with

c2 =

(∫ ∞
−∞

bI(x)4fT (x)dx

)1/2

.

So, by Lemma 4, there exists a constant c3 > 0, not depending on N , such that

E(U1) 6
c3
N
.
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• Bound on E(U2). Note that

U2 = ‖b̂m̂ − bI‖2N1ΞN∩Ωc
N

+ ‖b̂m̂ − bI‖2N1ΞN∩ΩN

=: U2,1 + U2,2.

On the one hand, by Lemma 3, there exists a constant c4 > 0, not depending on N , such that

P(ΞN ∩ ΩcN ) 6
∑

m∈M+
N

P(Ωcm) 6
c4
N6

.

Then, as for E(U1), there exists a constant c5 > 0, not depending on N , such that

E(U2,1) 6
c5
N
.

On the other hand,

γN (τ ′)− γN (τ) = ‖τ ′ − b‖2N − ‖τ − b‖2N − 2νN (τ ′ − τ)

for every τ, τ ′ ∈ S1 ∪ · · · ∪ SNT
. Moreover, since

m̂ = arg min
m∈M̂N

{−‖b̂m‖2N + pen(m)} = arg min
m∈M̂N

{γN (̂bm) + pen(m)},

for every m ∈ M̂N ,

(8) γN (̂bm̂) + pen(m̂) 6 γN (̂bm) + pen(m).

On the event ΞN = {MN ⊂ M̂N ⊂M+
N}, Inequality (8) remains true for every m ∈MN . Then,

on ΞN , for any m ∈MN , since Sm + Sm̂ ⊂ Sm∨m̂ under Assumption 2,

‖b̂m̂ − bI‖2N 6 ‖b̂m − bI‖2N + 2‖b̂m̂ − b̂m‖fT νN

(
b̂m̂ − b̂m
‖b̂m̂ − b̂m‖fT

)
+ pen(m)− pen(m̂)

6 ‖b̂m − bI‖2N +
1

8
‖b̂m̂ − b̂m‖2fT

+8

[ sup
τ∈Bm,m̂

|νN (τ)|

]2

− p(m, m̂)


+

+ pen(m) + 8p(m, m̂)− pen(m̂).

Since ‖.‖2fT 1ΩN
6 2‖.‖2N1ΩN

on S1 ∪ · · · ∪Smax(M+
N ), and since 8p(m, m̂) 6 pen(m) + pen(m̂), on

ΞN ∩ ΩN ,

‖b̂m̂ − bI‖2N 6 3‖b̂m − bI‖2N + 4pen(m) + 16

[ sup
τ∈Bm,m̂

|νN (τ)|

]2

− p(m, m̂)


+

.

So, by Lemma 6,

E(U2,2) 6 min
m∈MN

{E(3‖b̂m − bI‖2N1ΞN
) + 4pen(m)}+

16c6
NT

6 c6 min
m∈MN

{
inf
τ∈Sm

‖τ − bI‖2fT +
m

NT

}
+

c6
N

where c6 > 0 is a deterministic constant not depending on N .

�
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A.3.2. Proof of Lemma 5. Consider τ ∈ S1 ∪ · · · ∪ SNT
and, for any i ∈ {1, . . . , N}, let M i(τ) =

(M i(τ)t)t∈[0,T ] be the martingale defined by

M i(τ)t :=

∫ t

0

τ(Xi
s)(σ(Xi

s)dB
i
s + γ(Xi

s)dZ
i
s) ; ∀t ∈ [0, T ].

Moreover, for every ε > 0, consider

Y iε (τ) := εM i(τ)−Aiε(τ)−Biε(τ),

where Aiε(τ) = (Aiε(τ)t)t∈[0,T ] and Biε(τ) = (Biε(τ)t)t∈[0,T ] are the stochastic processes defined by

Aiε(τ)t :=
ε2

2

∫ t

0

τ(Xi
s)

2σ(Xi
s)

2ds

and Biε(τ)t :=

∫ t

0

[∫ ∞
−∞

(eεzτ(Xi
s)γ(Xi

s) − εzτ(Xi
s)γ(Xi

s)− 1)πλ(dz)

]
ds

for every t ∈ [0, T ]. The proof is dissected in three steps.

Step 1. Note that for any i ∈ {1, . . . , N} and t ∈ [0, T ],

|τ(Xi
t)γ(Xi

t)| 6 ‖τ‖∞,I‖γ‖∞
and then, by Assumption 3,

E

(∫ t

0

∫
|z|>1

|eεzτ(Xi
s)γ(Xi

s) − 1|πλ(dz)ds

)
<∞

for any ε ∈ (0, ε∗) with ε∗ = (b ∧ 1)/(2‖τ‖∞,I‖γ‖∞). So, (exp(Y iε (τ)t))t∈[0,T ] is a local martingale
by Applebaum (2009), Corollary 5.2.2. In other words, there exists an increasing sequence of stopping
times (T in)n∈N such that limn→∞ T in = ∞ a.s. and (exp(Y iε (τ)t∧T i

n
)t∈[0,T ] is a martingale. Therefore,

by Lebesgue’s theorem and Markov’s inequality, for every ρ > 0, the stochastic process YN,ε(τ) :=
Y 1
ε (τ) + · · ·+ Y Nε (τ) satisfies

P(eYN,ε(τ)T > ρ) = lim
n→∞

P

(
exp

[
N∑
i=1

Y iε (τ)T∧T i
n

]
> ρ

)

6
1

ρ
lim
n→∞

E(exp(Y 1
ε (τ)T∧T 1

n
))N =

1

ρ
E(exp(Y 1

ε (τ)0))N =
1

ρ
.

Step 2. For any ε ∈ (0, ε∗) and t ∈ [0, T ], let us find suitable bounds on

AN,ε(τ)t :=

N∑
i=1

Aiε(τ)t and BN,ε(τ)t :=

N∑
i=1

Biε(τ)t.

On the one hand,

(9) AN,ε(τ)t 6
ε2‖σ‖2∞

2

N∑
i=1

∫ t

0

τ(Xi
s)

2ds 6
ε2‖σ‖2∞‖τ‖2NNT

2
.

On the other hand, for every β ∈ (−b/2, b/2), by Taylor’s formula and Assumption 3,∫ ∞
−∞

(eβz − βz − 1)πλ(dz) = β2

∫ ∞
−∞

(∫ 1

0

(1− θ)eθβzdθ
)
πλ(dz)

6
c1
2
β2 with c1 =

∫ ∞
−∞

eb|z|/2πλ(dz) <∞.

Since ε ∈ (0, ε∗), one can take β = ετ(Xi
s)γ(Xi

s) for any s ∈ [0, t] and i ∈ {1, . . . , N}, and then

(10) BN,ε(τ)t 6
c1ε

2

2

N∑
i=1

∫ t

0

τ(Xi
s)

2γ(Xi
s)

2ds 6
c1ε

2‖γ‖2∞‖τ‖2NNT
2

.
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Therefore, Inequalities (9) and (10) lead to

AN,ε(τ)t +BN,ε(τ)t 6 c2ε
2(‖σ‖2∞ + ‖γ‖2∞)‖τ‖2NNT with c2 =

1

2
(1 ∨ c1).

Step 3 (conclusion). Consider MN (τ) := M1(τ) + · · · + MN (τ). For any ε ∈ (0, ε∗) and ξ, v > 0,
thanks to Step 2,

P(νN (τ) > ξ, ‖τ‖2N 6 v2) 6 P(eεMN (τ)T > eNTεξ, AN,ε(τ)T +BN,ε(τ)T 6 c2ε
2(‖σ‖2∞ + ‖γ‖2∞)NTv2)

6 P(eYN,ε(τ)T > exp(NTεξ − c2ε
2(‖σ‖2∞ + ‖γ‖2∞)NTv2)).

Moreover, taking

ε =
ξ

2c2(‖σ‖2∞ + ‖γ‖2∞)v2 + ξ/ε∗
< ε∗

leads to

NTεξ − c2ε
2(‖σ‖2∞ + ‖γ‖2∞)NTv2 =

NTξ2[c2(‖σ‖2∞ + ‖γ‖2∞)v2 + ξ/ε∗]

[2c2(‖σ‖2∞ + ‖γ‖2∞)v2 + ξ/ε∗]2

>
NTξ2

4[c2(‖σ‖2∞ + ‖γ‖2∞)v2 + ξ/ε∗]
.

Therefore, by Step 1,

P(νN (τ) > ξ, ‖τ‖2N 6 v2) 6 exp

(
− NTξ2

4[c2(‖σ‖2∞ + ‖γ‖2∞)v2 + ξ‖τ‖∞,I‖γ‖∞]

)
.

�

Appendix B. Figures and tables

Model 1 Model 2 Model 3
Mean MISE 0.1251 0.1469 0.1825
StD MISE 0.0950 0.1688 0.1928

Table 1. Means and StD of the MISE of b̂m̂ (100 repetitions).

Figure 1. Plots of b and of 10 adaptive estimations for Model 1 (m̂ = 5.3).
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Figure 2. Plots of b and of 10 adaptive estimations for Model 2 (m̂ = 4.2).

Figure 3. Plots of b and of 10 adaptive estimations for Model 3 (m̂ = 4.1).

References

[1] Abramowitz, M. and Stegun, I.A. (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathe-
matical Tables. Dover Publications, USA.

[2] Amorino, C. and Gloter, A. (2021). Invariant Density Adaptive Estimation for Ergodic Jump Diffusion Processes over
Anisotropic Classes. Journal of Statistical Planning and Inference 213, 106-129.

[3] Amorino, C., Dion-Blanc, C., Gloter, A. and Lemler, S. (2022). On the Nonparametric Inference of Coefficients of
Self-Exciting Jump-Diffusion. Electronic Journal of Statistics 16, 3212-3277.

[4] Applebaum, C. (2009). Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge.
[5] Belomestny, D., Comte, F. and Genon-Catalot, V. (2019). Sobolev-Hermite versus Sobolev Nonparametric Density

Estimation on R. Annals of the Institute of Statistical Mathematics 71, 1, 29-62.
[6] Bichteler, K. and Jacod, J. (1983). Calcul de Malliavin pour les diffusions avec sauts : existence d’une densité dans le

cas unidimensionnel. Séminaire de Probabilités 17, 132-157.
[7] Chen, Z.Q., Hu, E., Xie, L. and Zhang, X. (2017). Heat Kernels for Nonsymmetric Diffusion Operators with Jumps.

Journal of Differential Equations 263, 10, 6576-6634.
[8] Clément, E. and Gloter, A. (2019). Estimating Functions for SDE Driven by Stable Lévy Processes. Annales de l’Institut

Henri Poincaré (B) 55, 3, 1316-1348.



ON A PROJECTION LEAST SQUARES ESTIMATOR FOR JUMP DIFFUSION PROCESSES 19

[9] Clément, E. and Gloter, A. (2020). Joint Estimation for SDE Driven by Locally Stable Lévy Processes. Electronic
Journal of Statistics 14, 2, 2922-2956.

[10] Cohen, A., Davenport, M.A. and Leviatan, D. (2013). On the Stability and Accuracy of Least Squares Approximations.
Foundations of Computational Mathematics 13, 819-834.

[11] Comte, F. (2001). Adaptive Estimation of the Spectrum of a Stationary Gaussian Sequence. Bernoulli 7, 2, 267-198.
[12] Comte, F. and Genon-Catalot, V. (2020a). Regression Function Estimation as a Partly Inverse Problem. Annals of the

Institute of Statistical Mathematics 72, 4, 1023-1054.
[13] Comte, F. and Genon-Catalot, V. (2020b). Nonparametric Drift Estimation for i.i.d. Paths of Stochastic Differential

Equations. The Annals of Statistics 48, 6, 3336-3365.
[14] Delattre, M., Genon-Catalot, V. and Samson, A. (2013). Maximum Likelihood Estimation for Stochastic Differential

Equations with Random Effects. Scandinavian Journal of Statistics 40, 322-343.
[15] Dellacherie, C.A. and Meyer, P.A. (1980). Probabilités et potentiel : théorie des martingales. Hermann, Paris.
[16] Denis, C., Dion-Blanc, C. and Martinez, M. (2021). A Ridge Estimator of the Drift from Discrete Repeated Observations

of the Solution of a Stochastic Differential Equation. Bernoulli 27, 2675-2713.
[17] DeVore, R.A. and Lorentz, G.G. (1993). Constructive Approximation. Springer Berlin, Heidelberg.
[18] Ditlevsen, S. and De Gaetano, A. (2005). Mixed Effects in Stochastic Differential Equation Models. REVSTAT 3,

137-153.
[19] Dussap, F. (2021). Anisotropic Multivariate Deconvolution Using Projection on the Laguerre Basis. Journal of Statis-

tical Planning and Inference 215, 23-46.
[20] Gloter, A., Loukianova, D. and Mai, H. (2018). Jump Filtering and Efficient Drift Estimation for Lévy-Driven SDEs.

The Annals of Statistics 46, 4, 1445-1480.
[21] Marie, N. and Rosier, A. (2023). Nadaraya-Watson Estimator for I.I.D. Paths of Diffusion Processes. Scandinavian

Journal of Statistics 50, 2, 589-637.
[22] Picchini, U. and Ditlevsen, S. (2011). Practical Estimation of High Dimensional Stochastic Differential Mixed-Effects

Models. Computational Statistics and Data Analysis 55, 1426-1444.
[23] Schmisser, E. (2014). Non-Parametric Adaptive Estimation of the Drift for a Jump Diffusion Process. Stochastic

Processes and their Applications 124, 883-914.
Email address: helene.halconruy@devinci.fr

Email address: nmarie@parisnanterre.fr


