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ON A PROJECTION LEAST SQUARES ESTIMATOR FOR JUMP DIFFUSION
PROCESSES

HÉLÈNE HALCONRUY† AND NICOLAS MARIE�

Abstract. This paper deals with a projection least squares estimator of the drift function of a jump
diffusion process X computed from multiple independent copies of X observed on [0, T ]. Risk bounds
are established on this estimator and on an associated adaptive estimator. Finally, some numerical
experiments are provided.
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1. Introduction

Let Z = (Zt)t∈[0,T ] be the compound Poisson process defined by

Zt :=

νt∑
n=1

ζn =

∫ t

0

∫ ∞
−∞

zµ(ds, dz)

for every t ∈ [0, T ], where ν = (νt)t∈[0,T ] is a (usual) Poisson process of intensity λ > 0, independent
of the ζn’s which are i.i.d. random variables of probability distribution π, and µ is the Poisson random
measure of intensity m(ds, dz) := λπ(dz)ds defined by

µ([0, t]× dz) := |{s ∈ [0, t] : Zs − Zs− ∈ dz}| ; ∀t ∈ [0, T ].

In the sequel, Z is replaced by the centered martingale Z = (Zt)t∈[0,T ] defined by

Zt := Zt −
∫ t

0

∫ ∞
−∞

zm(ds, dz) = Zt − cζλt

for every t ∈ [0, T ], where cζ is the (common) expectation of the ζn’s. Now, let us consider the stochastic
differential equation

(1) Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs +

∫ t

0

γ(Xs)dZs ; t ∈ [0, T ],
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2 HÉLÈNE HALCONRUY† AND NICOLAS MARIE�

where x0 ∈ R, B = (Bt)t∈[0,T ] is a Brownian motion independent of Z, b ∈ C1(R) and its derivative is
bounded, and σ, γ : R→ R are bounded Lipschitz continuous functions such that infx∈R σ(x)2∧γ(x)2 > 0.
Under these conditions on b, σ and γ, Equation (1) has a unique (strong) solution X = (Xt)t∈[0,T ].

As for continuous diffusion processes, the major part of the estimators of the drift function in sto-
chastic differential equations driven by jump processes are computed from one path of the solution to
Equation (1) and converges when T →∞ (see Schmisser [18], Gloter et al. [15], Amorino et al. [2], etc.).
The existence and the uniqueness of the ergodic stationary solution to Equation (1) is then required,
and obtained thanks to a restrictive dissipativity condition on b. For stochastic differential equations
driven by a pure-jump Lévy process, some authors have also studied estimation methods based on high
frequency observations, on a fixed time interval, of one path of the solution (see Clément and Gloter [5, 6]).

Now, consider Xi := I(x0, B
i,Zi) for every i ∈ {1, . . . , N}, where I(.) is the Itô map associated to

Equation (1) and (B1,Z1), . . . , (BN ,ZN ) are N ∈ N∗ independent copies of (B,Z). The estimation of
the drift function b from a continuous-time or a discrete-time observation of (X1, . . . , XN ) is a functional
data analysis problem already investigated in the parametric and in the nonparametric frameworks for
continuous diffusion processes (see Ditlevsen and De Gaetano [12], Picchini and Ditlevsen [17], Delattre
et al. [10], Comte and Genon-Catalot [9], Denis et al. [11], Marie and Rosier [16], etc.). Up to our knowl-
edge, no such estimator of the drift function has been already proposed for jump diffusion processes. So,
our paper deals with a projection least squares estimator b̂m of b computed from X1, . . . , XN , which
means that b̂m is minimizing the objective function

τ 7−→ γN (τ) :=
1

NT

N∑
i=1

(∫ T

0

τ(Xi
s)

2ds− 2

∫ T

0

τ(Xi
s)dX

i
s

)

on a m-dimensional function space Sm. Precisely, risk bounds are established on b̂m and on the adaptive
estimator b̂m̂, where

m̂ = arg min
m∈M̂N

{−‖b̂m‖2N + pen(m)}

with M̂N ⊂ {1, . . . , N},

pen(m) := ccal
m

N
; ∀m ∈ N

and ccal > 0 is a constant to calibrate in practice.

In Section 2, a detailed definition of the projection least squares estimator of b is provided. Section
3 deals with a risk bound on b̂m and Section 4 with a risk bound on the adaptive estimator b̂m̂. Fi-
nally, some numerical experiments are provided in Section 5. The proofs (resp. tables and figures) are
postponed to Appendix A (resp. Appendix B).

2. A projection least squares estimator of the drift function

2.1. The objective function. Assume that the probability distribution of Xs has a density ps(x0, .)
with respect to Lebesgue’s measure for every s ∈ (0, T ], and let fT be the density function defined by

fT (x) :=
1

T

∫ T

0

ps(x0, x)ds ; ∀x ∈ R.

Remark 2.1. Assume that b and π satisfy the following additional conditions:

(1) The function b belongs to the Kato class

K2 :=

{
ϕ : R→ R : lim

δ→0
sup
x∈R

∫ δ

0

∫ ∞
−∞
|f(x+ y) + f(x− y)|s(λ−1)/2(|y|+ s1/2)−(1+λ)dyds = 0

}
.
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(2) The Lévy measure πλ(.) := λπ(.) has a density θ with respect to Lebesgue’s measure. Moreover,
there exists α ∈ (0, 2) such that z ∈ R 7→ θ(z)|z|1+α is bounded, and if α = 1, then∫

r<|z|<R
zθ(z)dz = 0 ; ∀R > r > 0.

By Chen et al. [4], Theorem 1.1 and the remark p. 126, l. 5-7, in Amorino and Gloter [1], for every
s ∈ (0, T ], the probability distribution of Xs has a density ps(x0, .) with respect to Lebesgue’s measure,
and there exists a constant cp > 0, not depending on s, such that

ps(x0, x) 6 cp

[
s−1/2e−λ

(x−x0)2

s +
s

(s1/2 + |x− x0|)1+α

]
; ∀x ∈ R.

So, fT is bounded, which is crucial in Section 4. Indeed, since −1/2 < 1 − (1 + α)/2 < 1/2, for every
x ∈ R,

sup
x∈R

fT (x) 6
cp
T

(∫ T

0

s−1/2ds+

∫ T

0

s1−(1+α)/2ds

)
=

cp
T

[
2T 1/2 +

T 2−(1+α)/2

2− (1 + α)/2

]
<∞.

Now, let us consider the objective function γN (.) defined by

γN (τ) :=
1

NT

N∑
i=1

(∫ T

0

τ(Xi
s)

2ds− 2

∫ T

0

τ(Xi
s)dX

i
s

)
for every τ ∈ Sm, where m ∈ {1, . . . , NT }, NT := [NT ] + 1, Sm := span{ϕ1, . . . , ϕm}, ϕ1, . . . , ϕNT

are
continuous functions from I into R such that (ϕ1, . . . , ϕNT

) is an orthonormal family in L2(I, dx), and
I ⊂ R is a non-empty interval. For any τ ∈ Sm,

E(γN (τ)) =
1

T

∫ T

0

E(|τ(Xs)− b(Xs)|2)ds− 1

T

∫ T

0

E(b(Xs)
2)ds

=

∫ ∞
−∞

(τ(x)− b(x))2fT (x)dx−
∫ ∞
−∞

b(x)2fT (x)dx.

Then, the closer τ is to b, the smaller E(γN (τ)). For this reason, the estimator of b minimizing γN (.) is
studied in this paper.

2.2. The projection least squares estimator and some related matrices. Consider

J :=

m∑
j=1

θjϕj with θ1, . . . , θm ∈ R.

Then,

∇γN (J) =

(
1

NT

N∑
i=1

(
2

m∑
`=1

θ̂`

∫ T

0

ϕj(X
i
s)ϕ`(X

i
s)ds− 2

∫ T

0

ϕj(X
i
s)dX

i
s

))
j∈{1,...,m}

= 2(Ψ̂m(θ1, . . . , θm)∗ − X̂m)

where

Ψ̂m :=

(
1

NT

N∑
i=1

∫ T

0

ϕj(X
i
s)ϕ`(X

i
s)ds

)
j,`∈{1,...,m}

and

X̂m :=

(
1

NT

N∑
i=1

∫ T

0

ϕj(X
i
s)dX

i
s

)
j∈{1,...,m}

.

The symmetric matrix Ψ̂m is positive semidefinite because

u∗Ψ̂mu =
1

NT

N∑
i=1

∫ T

0

 m∑
j=1

ujϕj(X
i
s)

2

ds > 0
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for every u ∈ Rm. If in addition Ψ̂m is invertible, it is positive definite, and then

b̂m =

m∑
j=1

θ̂jϕj with Θ̂m := (θ̂1, . . . , θ̂m)∗ = Ψ̂−1
m X̂m

is the only minimizer of γN (.) on Sm, called the projection least squares estimator of b.

Remarks:
(1) Ψ̂m = (〈ϕj , ϕ`〉N )j,`, where

〈ϕ,ψ〉N :=
1

NT

N∑
i=1

∫ T

0

ϕ(Xi
s)ψ(Xi

s)ds

for every continuous functions ϕ,ψ : R→ R.
(2) X̂m = (〈b, ϕj〉N )∗j + Êm, where

Êm :=

(
1

NT

N∑
i=1

∫ T

0

ϕj(X
i
s)(σ(Xi

s)dB
i
s + γ(Xi

s)dZ
i
s)

)∗
j∈{1,...,m}

.

Let us introduce the two following deterministic matrices related to the previous random ones:

Ψm,σ := NTE(ÊmÊ∗m) and Ψm := E(Ψ̂m) = (〈ϕj , ϕ`〉fT )j,`,

where 〈., .〉fT is the usual scalar product in L2(I, fT (x)dx). Finally, the following lemma will be crucial
in Section 3 to evaluate the order of the variance term in the risk bound on our projection least squares
estimator of b.

Lemma 2.2. trace(Ψ
−1/2
m Ψm,σΨ

−1/2
m ) 6 (‖σ‖2∞ + λcζ2‖γ‖2∞)m.

3. Risk bound on the projection least squares estimator

This section deals with a risk bound on the truncated estimator

b̃m := b̂m1Λm
,

where
Λm :=

{
L(m)(‖Ψ̂−1

m ‖op ∨ 1) 6 cT
NT

log(NT )

}
with

L(m) = 1 ∨

sup
x∈I

m∑
j=1

ϕj(x)2

 and cT =
3 log(3/2)− 1

8T
.

On the event Λm, Ψ̂m is invertible because

inf{sp(Ψ̂m)} > L(m)

cT
· log(NT )

NT
,

and then b̃m is well-defined. In the sequel, m fulfills the following assumption.

Assumption 3.1. L(m)(‖Ψ−1
m ‖op ∨ 1) 6

cT (p)

2
· NT

log(NT )
.

The above condition is a generalization of the so-called stability condition introduced in the nonparametric
regression framework in Cohen et al. [7], and already extended to the independent copies of continuous
diffusion processes framework in Comte and Genon-Catalot [9].

Theorem 3.2. Under Assumption 3.1, there exists a constant c3.2 > 0, not depending on m and N , such
that

E(‖b̃m − bI‖2N ) 6 min
τ∈Sm

‖τ − bI‖2fT + c3.2

(
m

NT
+

1

N

)
.

Remarks:
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• Note that Theorem 3.2 says first that the bound on the variance of b̃m is of order m/N as in the
nonparametric regression framework.

• The order of the bias term

min
τ∈Sm

‖τ − bI‖2fT ,

as well as L(m) and ‖Ψ−1
m ‖op, depend on the ϕj ’s. For instance, assume that I = [`, r] with

`, r ∈ R satisfying ` < r, and that

ϕ1(x) :=

√
1

r− `
1[`,r](x),

ϕ2j+1(x) :=

√
2

r− `
sin

(
2πj

x− `
r− `

)
1[`,r](x) and

ϕ2j(x) :=

√
2

r− `
cos

(
2πj

x− `
r− `

)
1[`,r](x)

for every x ∈ [`, r] and j ∈ N∗. On the one hand, since cos(.)2 + sin(.)2 = 1, there exists a
constant cϕ > 0, not depending on m, N and T , such that

L(m) = 1 ∨

sup
x∈I

m∑
j=1

ϕj(x)2

 6 cϕm.

Moreover, since under the same conditions than in Remark 2.1, there exists m > 0 such that
fT (.) > m on I by Chen et al. [4], Theorem 1.3,

‖Ψ−1
m ‖op =

1

λmin(Ψm)
=

 inf
θ:‖θ‖2,m=1

m∑
j,`=1

θjθ`[Ψm]j,`

−1

=

 inf
θ:‖θ‖2,m=1

∫ r

`

 m∑
j=1

θjϕj(x)

2

fT (x)dx


−1

6
1

m
.

On the other hand, consider the Fourier-Sobolev space

Wβ
2 ([`, r]) :=

{
ϕ ∈ Cβ([`, r];R) :

∫ r

`

ϕ(β)(x)2dx <∞
}

with β ∈ N∗, and assume that b|I ∈ Wβ
0 ([`, r]). By DeVore and Lorentz [14], Corollary 2.4 p.

205, there exists a constant cβ,`,r > 0, not depending on m and N , such that

‖Πm(bI)− bI‖2 6 cβ,`,rm
−2β ,

where Πm is the orthogonal projection from L2(I, dx) onto Sm. Since under appropriate condi-
tions on b and π, as explained in Remark 2.1, fT is upper bounded on I by a constant m > 0,

min
τ∈Sm

‖τ − bI‖2fT 6 m‖Πm(bI)− bI‖2

6 cβ,`,rm
−2β with cβ,`,r = cβ,`,rm.

So, by Theorem 3.2, there exists a constant c3.2,2 > 0, not depending m and N , such that

E(‖b̃m − bI‖2N ) 6 c3.2,2

(
m−2β +

m

N

)
,

and then the bias-variance tradeoff is reached by (the risk bound on) b̃m for m of order N1/(1+2β).
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4. Model selection

First of all, let us state some additional assumptions on the ϕj ’s, on the Lévy measure πλ and on the
density function fT .

Assumption 4.1. The spaces Sm, m ∈ {1, . . . , NT }, satisfy the following conditions:

(1) There exists a constant cϕ > 1, not depending on N , such that for every m ∈ {1, . . . , NT }, the
basis (ϕ1, . . . , ϕm) of Sm satisfies

L(m) = 1 ∨

sup
x∈I

m∑
j=1

ϕj(x)2

 6 c2ϕm.

(2) (Nested spaces) For every m,m′ ∈ {1, . . . , NT }, if m > m′, then Sm′ ⊂ Sm.

The proof of the oracle inequality satisfied by the adaptive estimator relies on a Bernstein type inequality
(see Lemma A.4). In order to control the big jumps of X in the proof of Lemma A.4, the Lévy measure
πλ needs to fulfill the following assumption.

Assumption 4.2. The Lévy measure πλ is sub-exponential: there exist positive constants a, α > 0 such
that, for every x > 1,

πλ((−x, x)c) 6 ae−α|x|.

Assumption 4.3. The density function fT is bounded.

Note that Remark 2.1 provides a sufficient condition for Assumption 4.3 to be satisfied by fT . Now, let
us introduce the set

M̂N :=

{
m ∈ {1, . . . , NT } : c2ϕm(‖Ψ̂−1

m ‖2op ∨ 1) 6 dT
NT

log(NT )

}
with

dT =
1

60T (‖fT ‖∞ + 1/3)
< 2cT ,

as well as its theoretical counterpart

MN :=

{
m ∈ {1, . . . , NT } : c2ϕm(‖Ψ−1

m ‖2op ∨ 1) 6
dT
4
· NT

log(NT )

}
.

Let us also consider

m̂ := arg min
m∈M̂N

{−‖b̂m‖2N + pen(m)},

where

pen(m) := ccal
m

NT
; ∀m ∈ {1, . . . , NT }

and ccal > 0 is a deterministic constant to calibrate.

Theorem 4.4. Under Assumptions 3.1, 4.1, 4.2 and 4.3, there exists a constant c4.4 > 0, not depending
on N , such that

E(‖b̂m̂ − bI‖2N ) 6 c4.4

[
min

m∈MN

{
min
τ∈Sm

‖τ − bI‖2fT +
m

NT

}
+

1

N

]
.

Note that Theorem 4.4 provides a risk bound on the adaptive estimator b̂m̂ of same order than the
minimal risk bound on b̃m (see Theorem 3.2) for m taken inMN .
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5. Numerical experiments

First of all, let us recall that all figures and tables related to this section are postponed to Appendix
B.

Some numerical experiments on our estimation method of b in Equation (1) are presented in this sub-
section when the common distribution π of the ζn’s is standard normal, which implies that Z = Z, and
the intensity of the (usual) Poisson process ν is λ = 0.5. The estimation method investigated on the
theoretical side in Sections 3 and 4 is implemented here for the three following models:

(1) Xt = 0.5−
∫ t

0

Xsds+ 0.5Bt + Zt (linear/additive noise).

(2) Xt = 0.5 + 0.5

∫ t

0

√
1 +X2

sds+ 0.5Bt + Zt (nonlinear/additive noise).

(3) Xt = 0.5 + 0.5

∫ t

0

√
1 +X2

sds+ 0.5

∫ t

0

(1 + cos(Xs)
2)dBs + Zt (nonlinear/multiplicative noise).

For each of the three previous models, our adaptive estimator of b is computed on I = [−3, 3] from
N = 400 paths of the process X observed along the dissection {lT/n ; l = 1, . . . , n} of [0, T ] with n = 200
and T = 5, when (ϕ1, . . . , ϕm) is the m-dimensional trigonometric basis for every m ∈ {1, . . . , 6}. This
experiment is repeated 100 times, and the means and the standard deviations of the MISE of b̂m̂ are
stored in Table 1. Moreover, for each model, 10 estimations (dashed black curves) of b (red curve) are
plotted on Figures 1, 2 and 3.

On the one hand, on average, the MISE of our adaptive estimator is slightly increasing with the complex-
ity of the model: 0.1251 (Model 1) < 0.1469 (Model 2) < 0.1825 (Model 3). The same remark holds for
its standard deviation: 0.0950 (Model 1) < 0.1688 (Model 2) < 0.1928 (Model 3). This means that the
more the model is complex, the more the quality of the estimation degrades, and it’s visible on Figures
1, 2 and 3. However, for all the three previous models, the MISE of b̂m̂ remains good and of same order
than for models without jump component (see Comte and Genon-Catalot [9], Section 4). On the other
hand, the model selection procedure works well because it doesn’t systematically select the lowest or the
highest possible value of m (see m̂ on Figures 1, 2 and 3). For Model 1, the procedure is stable because
m̂ has a low estimated standard deviation (0.4830). The procedure remains satisfactory for Models 2 and
3, with StD(m̂) = 1.1353 and StD(m̂) = 1.2867 respectively, but not as much as for Model 1.
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Appendix A. Proofs

A.1. Proof of Lemma 2.2. First, let us show that the symmetric matrix Ψm,σ is positive semidefinite.
Indeed, for any y ∈ Rm,

y∗Ψm,σy =
1

NT

m∑
j,`=1

yjy`

N∑
i,k=1

E

((∫ T

0

ϕj(X
i
s)(σ(Xi

s)dB
i
s + γ(Xi

s)dZ
i
s)

)

×

(∫ T

0

ϕ`(X
k
s )(σ(Xk

s )dBks + γ(Xk
s )dZks)

))

=
1

NT
E

( N∑
i=1

∫ T

0

τy(Xi
s)(σ(Xi

s)dB
i
s + γ(Xi

s)dZ
i
s)

)2
 > 0 with τy(.) :=

m∑
j=1

yjϕj(.).

Moreover, by the isometry property of Itô’s integral (with respect to B), by the isometry type property
of the stochastic integral with respect to Z, and since σ and γ are bounded, for every j ∈ {1, . . . ,m},

y∗Ψm,σy =
1

T
E

(∫ T

0

τy(Xs)σ(Xs)dBs

)2
+

1

T
E

(∫ T

0

τy(Xs)γ(Xs)dZs

)2


=
1

T

∫ T

0

E(τy(Xs)
2σ(Xs)

2)ds+
λcζ2

T

∫ T

0

E(τy(Xs)
2γ(Xs)

2)ds

6 (‖σ‖2∞ + λcζ2‖γ‖2∞)

∫ ∞
−∞

 m∑
j=1

yjϕj(x)

2

fT (x)dx = (‖σ‖2∞ + λcζ2‖γ‖2∞)‖Ψ1/2
m y‖22,m.(2)

Therefore, since Ψm,σ is positive semidefinite, and by Inequality (2),

trace(Ψ−1/2
m Ψm,σΨ−1/2

m ) 6 m‖Ψ−1/2
m Ψm,σΨ−1/2

m ‖op

= m · sup{y∗Ψm,σy ; y ∈ Rm and ‖Ψ1/2
m y‖2,m = 1}

6 (‖σ‖2∞ + λcζ2‖γ‖2∞)m.

A.2. Proof of Theorem 3.2. The proof of Theorem 3.2 relies on the two following lemmas.

Lemma A.1. There exists a constant cA.1 > 0, not depending on m and N , such that

E(|Ê∗mÊm|2) 6 cA.1
mL(m)2

N2
.

Lemma A.2. Consider the event

Ωm :=

{
sup
τ∈Sm

∣∣∣∣∣ ‖τ‖2N‖τ‖2fT
− 1

∣∣∣∣∣ 6 1

2

}
.

Under Assumptions 3.1, there exists a constant cA.2 > 0, not depending on m and N , such that

P(Ωcm) 6
cA.2
N7

and P(Λcm) 6
cA.2
N7

.
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The proof of Lemma A.1 is postponed to Subsubsection A.2.2, and the proof of Lemma A.2 remains the
same than the proof of Comte and Genon-Catalot [9], Lemma 6.1, because (B1, Z1), . . . , (BN , ZN ) are
independent.

A.2.1. Steps of the proof. First of all,

‖b̃m − bI‖2N = ‖bI‖2N1Λc
m

+ ‖b̂m − bI‖2N1Λm

= ‖bI‖2N1Λc
m

+ ‖b̂m − bI‖2N1Λm∩Ωm + ‖b̂m − bI‖2N1Λm∩Ωc
m

=: U1 + U2 + U3.(3)

Let us find suitable bounds on E(U1), E(U2) and E(U3).
• Bound on E(U1). By Cauchy-Schwarz’s inequality,

E(U1) 6 E(‖bI‖4N )1/2P(Λcm)1/2 6 E

(
1

T

∫ T

0

bI(Xt)
4dt

)1/2

P(Λcm)1/2

6 c1P(Λcm)1/2 <∞ with c1 =

(∫ ∞
−∞

bI(x)4fT (x)dx

)1/2

<∞.

• Bound on E(U2). Let ΠN,m(.) be the orthogonal projection from L2(I, fT (x)dx) onto Sm with
respect to the empirical scalar product 〈., .〉N . Then,

(4) ‖b̂m − bI‖2N = ‖b̂m −ΠN,m(bI)‖2N + min
τ∈Sm

‖bI − τ‖2N .

As in the proof of Comte and Genon-Catalot [9], Proposition 2.1, on Ωm,

‖b̂m −ΠN,m(bI)‖2N = Ê∗mΨ̂−1
m Êm 6 2Ê∗mΨ−1

m Êm.

So,

E(‖b̂m −ΠN,m(bI)‖2N1Λm∩Ωm
) 6 2E

 m∑
j,`=1

[Êm]j [Êm]`Ψ
−1
m (j, `)


=

2

NT

m∑
j,`=1

Ψm,σ(j, `)Ψ−1
m (j, `) =

2

NT
trace(Ψ−1/2

m Ψm,σΨ−1/2
m ).

Then, by Equality (4) and Lemma 2.2,

E(U2) 6 E
(

min
τ∈Sm

‖bI − τ‖2N
)

+
2

NT
trace(Ψ−1/2

m Ψm,σΨ−1/2
m )

6 min
τ∈Sm

‖bI − τ‖2fT +
2m

NT
(‖σ‖2∞ + λcζ2‖γ‖2∞).

• Bound on E(U3). Since

‖b̂m −ΠN,m(bI)‖2N = Ê∗mΨ̂−1
m Êm,

by the definition of the event Λm, and by Lemma A.1,

E(‖b̂m −ΠN,m(bI)‖2N1Λm∩Ωc
m

) 6 E(‖Ψ̂−1
m ‖op|Ê∗mÊm|1Λm∩Ωc

m
)

6
cT

L(m)
· NT

log(NT )
E(|Ê∗mÊm|2)1/2P(Ωcm)1/2 6

c2m
1/2

log(NT )
P(Ωcm)1/2,

where the constant c2 > 0 doesn’t depend on m and N . Then,

E(U3) 6 E(‖b̂m −ΠN,m(bI)‖2N1Λm∩Ωc
m

) + E(‖bI‖2N1Λm∩Ωc
m

)

6
c2m

1/2

log(NT )
P(Ωcm)1/2 + c1P(Ωcm)1/2.
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So,

E(‖b̃m − bI‖2N ) 6 min
τ∈Sm

‖bI − τ‖2fT

+
2m

NT
(‖σ‖2∞ + λcζ2‖γ‖2∞) + c2

√
mP(Ωcm)

log(NT )
+ c1(P(Λcm)1/2 + P(Ωcm)1/2).

Therefore, by Lemma A.2, there exists a constant c3 > 0, not depending on m and N , such that

E(‖b̃m − bI‖2N ) 6 min
τ∈Sm

‖bI − τ‖2fT + c3

(
m

NT
+

1

N

)
.

A.2.2. Proof of Lemma A.1. In the sequel, the quadratic variation of any piecewise continuous stochastic
process (Γt)t∈[0,T ] is denoted by (JΓKt)t∈[0,T ]. First of all, note that since B and Z are independent, for
every j ∈ {1, . . . ,m},

s∫ .

0

ϕj(Xs)(σ(Xs)dBs + γ(Xs)dZs)

{

T

=

∫ T

0

ϕj(Xs)
2σ(Xs)

2ds+

∫ T

0

ϕj(Xs)
2γ(Xs)

2dZ(2)
s

=

∫ T

0

ϕj(Xs)
2(σ(Xs)

2 + cζ2λγ(Xs)
2)ds

+

∫ T

0

ϕj(Xs)
2γ(Xs)

2dZ(2)
s

where, for every t ∈ [0, T ],

Z
(2)
t := JZKt =

νt∑
n=1

ζ2
n and Z

(2)
t := Z

(2)
t − cζ2λt.

By Jensen’s inequality and Burkholder-Davis-Gundy’s inequality (see Dellacherie et Meyer [13], p. 303),
there exists a constant c1 > 0, not depending on m and N , such that

E(|Ê∗mÊm|2) 6 m

m∑
j=1

E(Êm(j)4) 6
c1m

N4T 4

m∑
j=1

E

t
N∑
i=1

∫ T

0

ϕj(X
i
s)(σ(Xi

s)dB
i
s + γ(Xi

s)dZ
i
s)

|2

T


6

2c1m

N2T 4

m∑
j=1

E

t∫ T

0

ϕj(Xs)(σ(Xs)dBs + γ(Xs)dZs)

|2

T


6

4c1m

N2T 4

m∑
j=1

E
(∫ T

0

ϕj(Xs)
2(σ(Xs)

2 + cζ2λγ(Xs)
2)ds

)2


+E

(∫ T

0

ϕj(Xs)
2γ(Xs)

2dZ(2)
s

)2
 .

By Jensen’s inequality,

m∑
j=1

E

(∫ T

0

ϕj(Xs)
2(σ(Xs)

2 + cζ2λγ(Xs)
2)ds

)2
 6 2T

m∑
j=1

∫ T

0

E(ϕj(Xs)
4(σ(Xs)

4 + c2ζ2λ
2γ(Xs)

4))ds

6 2T 2L(m)2

∫ ∞
−∞

(σ(x)4 + c2ζ2λ
2γ(x)4)fT (x)dx,
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and by the isometry type property of the stochastic integral with respect to Z,

m∑
j=1

E

(∫ T

0

ϕj(Xs)
2γ(Xs)

2dZ(2)
s

)2
 = λcζ4

m∑
j=1

∫ T

0

E(ϕj(Xs)
4γ(Xs)

4)ds

6 λcζ4TL(m)2

∫ ∞
−∞

γ(x)4fT (x)dx.

Therefore,
E(|Ê∗mÊm|2) 6

c2
N2T 2

mL(m)2

with

c2 = 8c1

(∫ ∞
−∞

(σ(x)4 + c2ζ2λ
2γ(x)4)fT (x)dx+ λcζ4

∫ ∞
−∞

γ(x)4fT (x)dx

)
.

A.3. Proof of Theorem 4.4. Let us consider the events

ΩN :=
⋂

m∈M+
N

Ωm and ΞN := {MN ⊂ M̂N ⊂M+
N},

where

M+
N :=

{
m ∈ {1, . . . , NT } : c2ϕm(‖Ψ−1

m ‖2op ∨ 1) 6 4dT
NT

log(NT )

}
,

and let us recall that
dT =

1

60T (‖fT ‖∞ + 1/3)
.

As a reminder, the sets M̂N andMN introduced in Section 4 are respectively defined by

M̂N =

{
m ∈ {1, . . . , NT } : c2ϕm(‖Ψ̂−1

m ‖2op ∨ 1) 6 dT
NT

log(NT )

}
and

MN =

{
m ∈ {1, . . . , NT } : c2ϕm(‖Ψ−1

m ‖2op ∨ 1) 6
dT
4
· NT

log(NT )

}
.

The proof of Theorem 4.4 relies on the three following lemmas.

Lemma A.3. Under Assumptions 3.1, 4.1 and 4.2, there exists a constant cA.3 > 0, not depending on
N , such that

P(ΞcN ) 6
cA.3
N6

.

Lemma A.4. [Bernstein type inequality] Consider the empirical process

νN (τ) :=
1

NT

N∑
i=1

∫ T

0

τ(Xi
s)(σ(Xi

s)dB
i
s + γ(Xi

s)dZ
i
s) ; τ ∈ S1 ∪ · · · ∪ SNT

.

Under Assumption 4.2, for every ξ, v > 0,

P(νN (τ) > ξ, ‖τ‖2N 6 v2) 6 exp

[
− NTξ2

4[cA.4(‖σ‖2∞ + ‖γ‖2∞)v2 + ξ‖τ‖∞,I‖γ‖∞]

]
with

cA.4 =
1

2

[
1 ∨

∫ ∞
−∞

e|z|πλ(dz)

]
.

Lemma A.5. Under Assumptions 3.1 and 4.2, there exists a constant cA.5 > 0, not depending on N ,
such that for every m ∈MN ,

E

[ sup
τ∈Bm,m′

νn(τ)

]2

− p(m, m̂)


+

1ΞN∩ΩN

 6
cA.5
NT
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where, for every m′ ∈MN ,

Bm,m′ := {τ ∈ Sm∧m′ : ‖τ‖fT = 1} and p(m,m′) :=
ccal

8
· m ∨m

′

NT
.

The proof of Lemma A.4 is postponed to Subsubsection A.3.2. Lemma A.5 is a consequence of Lemma
A.4 thanks to the L2

fT
-L∞ chaining technique (see Comte [8], Proposition 4). Finally, the proof of

Lemma A.3 remains the same than the proof of Comte and Genon-Catalot [9], Eq. (6.17), because
(B1,Z1), . . . , (BN ,ZN ) are independent.

A.3.1. Steps of the proof. First of all,

‖b̂m̂ − bI‖2N = ‖b̂m̂ − bI‖2N1Ξc
N

+ ‖b̂m̂ − bI‖2N1ΞN

=: U1 + U2.(5)

Let us find suitable bounds on E(U1) and E(U2).
• Bound on E(U1). Since

‖b̂m̂ −ΠN,m̂(bI)‖2N = Ê∗m̂Ψ̂−1
m̂ Êm̂,

by the definition of M̂N , and by Lemma A.1,

E(‖b̂m̂ −ΠN,m̂(bI)‖2N1Ξc
N

) 6 E(‖Ψ̂−1
m̂ ‖op|Ê∗NT ÊNT |1Ξc

N
)

6

[
dT

NT

log(NT )

]1/2

E(|Ê∗NT ÊNT |2)1/2P(ΞcN )1/2 6
c1N

log(NT )
P(ΞcN )1/2,

where the constant c1 > 0 doesn’t depend on N . Then,

E(U1) 6 E(‖b̂m̂ −ΠN,m̂(bI)‖2N1Ξc
N

) + E(‖bI‖2N1Ξc
N

)

6
c1N

log(NT )
P(ΞcN )1/2 + c2P(ΞcN )1/2

with

c2 =

(∫ ∞
−∞

bI(x)4fT (x)dx

)1/2

.

So, by Lemma A.3, there exists a constant c3 > 0, not depending on N , such that

E(U1) 6
c3
N
.

• Bound on E(U2). Note that

U2 = ‖b̂m̂ − bI‖2N1ΞN∩Ωc
N

+ ‖b̂m̂ − bI‖2N1ΞN∩ΩN

=: U2,1 + U2,2.

On the one hand, by Lemma A.2, there exists a constant c4 > 0, not depending on N , such that

P(ΞN ∩ ΩcN ) 6
∑

m∈M+
N

P(Ωcm) 6
c4
N6

.

Then, as for E(U1), there exists a constant c5 > 0, not depending on N , such that

E(U2,1) 6
c5
N
.

On the other hand,

γN (τ ′)− γN (τ) = ‖τ ′ − b‖2N − ‖τ − b‖2N − 2νN (τ ′ − τ)

for every τ, τ ′ ∈ S1 ∪ · · · ∪ SNT
. Moreover, since

m̂ = arg min
m∈M̂N

{−‖b̂m‖2N + pen(m)} = arg min
m∈M̂N

{γN (̂bm) + pen(m)},
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for every m ∈ M̂N ,

(6) γN (̂bm̂) + pen(m̂) 6 γN (̂bm) + pen(m).

On the event ΞN = {MN ⊂ M̂N ⊂M+
N}, Inequality (6) remains true for every m ∈MN . Then,

on ΞN , for any m ∈MN , since Sm + Sm̂ ⊂ Sm∨m̂ under Assumption 4.1,

‖b̂m̂ − bI‖2N 6 ‖b̂m − bI‖2N + 2‖b̂m̂ − b̂m‖fT νN

(
b̂m̂ − b̂m
‖b̂m̂ − b̂m‖fT

)
+ pen(m)− pen(m̂)

6 ‖b̂m − bI‖2N +
1

8
‖b̂m̂ − b̂m‖2fT

+8

[ sup
τ∈Bm,m̂

|νN (τ)|

]2

− p(m, m̂)


+

+ pen(m) + 8p(m, m̂)− pen(m̂).

Since ‖.‖2fT 1ΩN
6 2‖.‖2N1ΩN

on S1 ∪ · · · ∪Smax(M+
N ), and since 8p(m, m̂) 6 pen(m) + pen(m̂), on

ΞN ∩ ΩN ,

‖b̂m̂ − bI‖2N 6 3‖b̂m − bI‖2N + 4pen(m) + 16

[ sup
τ∈Bm,m̂

|νN (τ)|

]2

− p(m, m̂)


+

.

So, by Lemma A.5,

E(U2,2) 6 min
m∈MN

{E(3‖b̂m − bI‖2N1ΞN
) + 4pen(m)}+

16cA.5
NT

6 c6 min
m∈MN

{
inf
τ∈Sm

‖τ − bI‖2fT +
m

NT

}
+

c6
N

where c6 > 0 is a deterministic constant not depending on N .

A.3.2. Proof of Lemma A.4. Consider τ ∈ S1 ∪ · · · ∪ SNT
and, for any i ∈ {1, . . . , N}, let M i(τ) =

(M i(τ))t∈[0,T ] be the martingale defined by

M i(τ) :=

∫ t

0

τ(Xi
s)(σ(Xi

s)dB
i
s + γ(Xi

s)dZ
i
s) ; ∀t ∈ [0, T ].

Moreover, for every ε > 0, consider

Y iε (τ) := εM i(τ)−Aiε(τ)−Biε(τ),

where Aiε(τ) = (Aiε(τ)t)t∈[0,T ] and Biε(τ) = (Biε(τ)t)t∈[0,T ] are the stochastic processes defined by

Aiε(τ)t :=
ε2

2

∫ t

0

τ(Xi
s)

2σ(Xi
s)

2ds

and Biε(τ)t :=

∫ t

0

[∫ ∞
−∞

(eεzτ(Xi
s)γ(Xi

s) − εzτ(Xi
s)γ(Xi

s)− 1)πλ(dz)

]
ds

for every t ∈ [0, T ]. The proof is dissected in three steps.

Step 1. Note that for any i ∈ {1, . . . , N} and t ∈ [0, T ],

|τ(Xi
t)γ(Xi

t)| 6 ‖τ‖∞,I‖γ‖∞
and then, by Assumption 4.2,

E

(∫ t

0

∫
|z|>1

|eεzτ(Xi
s)γ(Xi

s) − 1|πλ(dz)ds

)
<∞

for any ε ∈ (0, ε∗) with ε∗ = (‖τ‖∞,I‖γ‖∞)−1. So, (exp(Y iε (τ)t))t∈[0,T ] is a local martingale by Applebaum
[3], Corollary 5.2.2. In other words, there exists an increasing sequence of stopping times (T in)n∈N such



14 HÉLÈNE HALCONRUY† AND NICOLAS MARIE�

that limn→∞ T in =∞ a.s. and (exp(Y iε (τ)t∧T i
n
)t∈[0,T ] is a martingale. Therefore, by Lebesgue’s theorem

and Markov’s inequality, for every ρ > 0, the stochastic process YN,ε(τ) := Y 1
ε (τ) + · · ·+ Y Nε (τ) satisfies

P(eYN,ε(τ)T > ρ) = lim
n→∞

P

(
exp

[
N∑
i=1

Y iε (τ)T∧T i
n

]
> ρ

)

6
1

ρ
lim
n→∞

E(exp(Y 1
ε (τ)T∧T 1

n
))N =

1

ρ
E(exp(Y 1

ε (τ)0))N =
1

ρ
.

Step 2. For any ε ∈ (0, ε∗) and t ∈ [0, T ], let us find suitable bounds on

AN,ε(τ)t :=

N∑
i=1

Aiε(τ)t and BN,ε(τ)t :=

N∑
i=1

Biε(τ)t.

On the one hand,

(7) AN,ε(τ)t 6
ε2‖σ‖2∞

2

N∑
i=1

∫ t

0

τ(Xi
s)

2ds 6
ε2‖σ‖2∞‖τ‖2NNT

2
.

On the other hand, for every β < 1, by Taylor’s formula and Assumption 4.2,∫ ∞
−∞

(eβz − βz − 1)πλ(dz) = β2

∫ ∞
−∞

(∫ 1

0

(1− θ)eθβzdθ
)
πλ(dz)

6
c1
2
β2 with c1 =

∫ ∞
−∞

e|z|πλ(dz) <∞.

Since ε ∈ (0, ε∗), one can take β = ετ(Xi
s)γ(Xi

s) for any s ∈ [0, t] and i ∈ {1, . . . , N}, and then

(8) BN,ε(τ)t 6
c1ε

2

2

N∑
i=1

∫ t

0

τ(Xi
s)

2γ(Xi
s)

2ds 6
c1ε

2‖γ‖2∞‖τ‖2NNT
2

.

Therefore, Inequalities (7) and (8) lead to

AN,ε(τ)t +BN,ε(τ)t 6 c2ε
2(‖σ‖2∞ + ‖γ‖2∞)‖τ‖2NNT with c2 =

1

2
(1 ∨ c1).

Step 3 (conclusion). Consider MN (τ) := M1(τ) + · · · + MN (τ). For any ε ∈ (0, ε∗) and ξ, v > 0,
thanks to Step 2,

P(νN (τ) > ξ, ‖τ‖2N 6 v2) 6 P(eεMN (τ)T > eNTεξ, AN,ε(τ)T +BN,ε(τ)T 6 c2ε
2(‖σ‖2∞ + ‖γ‖2∞)NTv2)

6 P(eYN,ε(τ)T > exp(NTεξ − c2ε
2(‖σ‖2∞ + ‖γ‖2∞)NTv2)).

Moreover, to take

ε =
ξ

2c2(‖σ‖2∞ + ‖γ‖2∞)v2 + ξ/ε∗
< ε∗

leads to

NTεξ − c2ε
2(‖σ‖2∞ + ‖γ‖2∞)NTv2 =

NTξ2[c2(‖σ‖2∞ + ‖γ‖2∞)v2 + ξ/ε∗]

[2c2(‖σ‖2∞ + ‖γ‖2∞)v2 + ξ/ε∗]2

>
NTξ2

4[c2(‖σ‖2∞ + ‖γ‖2∞)v2 + ξ/ε∗]
.

Therefore, by Step 1,

P(νN (τ) > ξ, ‖τ‖2N 6 v2) 6 exp

(
− NTξ2

4[c2(‖σ‖2∞ + ‖γ‖2∞)v2 + ξ‖τ‖∞,I‖γ‖∞]

)
.

Appendix B. Figures and tables
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Model 1 Model 2 Model 3
Mean MISE 0.1251 0.1469 0.1825
StD MISE 0.0950 0.1688 0.1928

Table 1. Means and StD of the MISE of b̂m̂ (100 repetitions).

Figure 1. Plots of b and of 10 adaptive estimations for Model 1 (m̂ = 5.3).
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Figure 2. Plots of b and of 10 adaptive estimations for Model 2 (m̂ = 4.2).

Figure 3. Plots of b and of 10 adaptive estimations for Model 3 (m̂ = 4.1).


