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Introduction

A number of normally innocuous and soluble proteins aggregate to form insoluble amyloid fibrils in several serious neurodegenerative diseases including Alzheimer's disease, Huntington's disease, and the transmissible prion diseases [START_REF] Pepys | Amyloidosis[END_REF]. In addition, an increasing number of studies describe so called "functional" amyloids, which have beneficial roles in organisms [START_REF] Erskine | Functional Amyloid and Other Protein Fibers in the Biofilm Matrix[END_REF][START_REF] Greenwald | Biology of amyloid: Structure, function, and regulation[END_REF][START_REF] Otzen | We find them here, we find them there: Functional bacterial amyloid[END_REF]. Although amyloidogenic precursor proteins differ with respect to amino acid sequence, the resulting amyloid fibrils have similar generic features such as being straight, rich in structure, around 10 nm in diameter, thermostable, and protease-resistant [START_REF] Steven | Molecular biology of assemblies and machines[END_REF]. The incidence of amyloid aggregates in important human diseases, and increasing evidence on the involvement of amyloids in a variety of critical biological functions, have attracted much effort towards elucidating the relationship between the amino acid sequence and aggregation potential of proteins. Numerous studies have demonstrated that the propensity to form amyloids is coded by the amino acid sequence [START_REF] Ahmed | A structure-based approach to predict predisposition to amyloidosis[END_REF][START_REF] Conchillo-Solé | AGGRESCAN: a server for the prediction and evaluation of "hot spots" of aggregation in polypeptides[END_REF][START_REF] Fernandez-Escamilla | Prediction of sequencedependent and mutational effects on the aggregation of peptides and proteins[END_REF][START_REF] Gaetano Tartaglia | The Zyggregator method for predicting protein aggregation propensitiesw[END_REF][START_REF] Thompson | The 3D profile method for identifying fibril-forming segments of proteins[END_REF][START_REF] Walsh | PASTA 2.0: An improved server for protein aggregation prediction[END_REF]. Based on this data, several computational programs for prediction of protein amyloidogenicity have been developed [START_REF] Ahmed | Breaking the amyloidogenicity code: methods to predict amyloids from amino acid sequence[END_REF]. Benchmarks of these programs show that depending on the datasets or a given protein, some perform better than others, however, there is no general agreement about which program is best. Today, the most appropriate approach to predict amyloidogenicity of proteins is to use a combination of several available software products, which allow a consensus to be reached. Therefore, in this work, we designed a bioinformatics pipeline for annotation of protein amyloidogenicity utilising three predictors of amyloidogenicity, ArchCandy [START_REF] Ahmed | A structure-based approach to predict predisposition to amyloidosis[END_REF], TANGO [START_REF] Fernandez-Escamilla | Prediction of sequencedependent and mutational effects on the aggregation of peptides and proteins[END_REF] and PASTA [START_REF] Walsh | PASTA 2.0: An improved server for protein aggregation prediction[END_REF]. They were selected based on their popularity, diversity of basic principles and algorithms, and the ability to be executed locally for analysis of a large number of sequences. The novelty of this tool is amyloidogenicity prediction in the context of other known or predicted structural states, such as intrinsically disordered regions (IDRs), transmembrane regions, structured domains and others. Data increasingly indicate that an accurate estimation of the structural state(s) encoded by a given amino acid sequence requires evaluation of the probabilities of a protein region to have either stable 3D structure or an unstructured state, as well as the likelihoods of transition between these states and insoluble aggregates [START_REF] Harrison | Amyloid peptides and proteins in review[END_REF][START_REF] Ahmed | Breaking the amyloidogenicity code: methods to predict amyloids from amino acid sequence[END_REF]. Thus, here, we describe a computational pipeline called TAPASS (Tool for Annotation of Protein Amyloidogenicity in the context of other Structural States) allowing the attainment of consensual results on the occurrence and distribution of amyloid-forming regions in proteins assessed through the prism of the overall structural context. TAPASS pays special attention to the amyloidogenic regions located in IDRs by considering them as the most likely elements leading to aggregation. The pipeline can be used to analyse both individual proteins of interest and large data sets including several proteomes. It can launch experiments to discover new amyloid-forming proteins and interpretation of experimental results. As genome sequencing combined with clinical data becomes more affordable, our tool provides an opportunity to create individual risk profiles for the different types of amyloidoses ushering in an era of personalised medicine.

Results and Discussion

Relationship between amyloidogenicity and the other structural states It has been observed that proteomes contain a very high percentage (up to 90%) of proteins with amyloidogenic regions (AR) [START_REF] Monsellier | Aggregation propensity of the human proteome[END_REF][START_REF] Prabakaran | Aggregation prone regions in human proteome: Insights from large-scale data analyses[END_REF] contrary to the small number of proteins known to be involved in amyloidoses [START_REF] Pepys | Amyloidosis[END_REF]. This can be explained by the fact that most of the predicted ARs are hidden within or constrained by the 3D structure and, in reality, can not interact with each other in an amyloid-forming -structural conformation. To be able to form cross- amyloid fibrils, the structured domains must become partially or completely unfolded. This additional obstacle makes the amyloidogenesis via ARs of structured domains less probable than via ARs located within naturally unfolded regions. Indeed, in most of the known cases of amyloidoses, the native conformation of the polypeptide chains, which are known to form amyloid deposits in vivo, is intrinsically disordered. Thus, to get a more realistic census of the aggregation prone regions in the proteomes, it is necessary to cross amyloidogenicity prediction with information about the location of the IDRs (hereinafter also referred as unstructured region) (Fig 1). Therefore, during design of the pipeline, we focused on such "Exposed Amyloidgenic Regions" (EARs) located within IDRs and carrying high amyloid-forming potential. Note that the EARs differ from the previously discussed ARs, which are exposed on the surfaces of the structured domains [START_REF] Louros | Structure-based machine-guided mapping of amyloid sequence space reveals uncharted sequence clusters with higher solubilities[END_REF]. In the latter case, the constrained conformations of the ARs normally do not allow them to adopt the required amyloid-forming conformation. The likelihood of transition from each principal state to the aggregates is denoted by the thickness of the arrows. The amyloidogenic regions hidden within the structured domains need to be unfolded prior to the aggregation, significantly decreasing their propensity to transition, while the amyloidogenic regions located within IDRs are exposed and can readily self-assemble into the amyloids.

Design of a pipeline

The TAPASS pipeline is able to detect structured and unstructured regions of proteins and to cross them with the prediction of amyloidogenic regions (Fig. 2). The pipeline has two input options called "Protein sequence query" and "AlphaFold model query". The input file with the first option contains protein sequences in FASTA format. In the stand-alone version, the pipeline can also deal with text files with proteomes extracted from the UniProt database [START_REF] Bateman | UniProt: A worldwide hub of protein knowledge[END_REF]. Input files in this format allow us to collect additional information about proteins (gene id, GO terms, version, modification date and others). For proteome-wide analysis, the first type of input represents a file in the UniProt Text format, which can be downloaded automatically from the UniPort database [START_REF] Bateman | UniProt: A worldwide hub of protein knowledge[END_REF]. Every component of the pipeline works independently from the others. It allows to manage different predictors in a cluster computing environment. The result of the analysis can be stored as a CSV, a YAML file or get inserted in a relational database (MySQL). For the online tool designed for the prediction of individual proteins, the input is either an amino acid sequence in the FASTA format or AlphaFold model in the PDB format. The output is graphically visualized and can be downloaded by users as a CSV file.

Once protein sequences are extracted from the input file, the following predictors are launched: for detection of intrinsically disorder regions we use IUPred [START_REF] Dosztányi | The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins[END_REF] and an in-house predictor called BISMM filter, for structured domains we use CATH associated with HMMER 3.3 [START_REF] Dawson | CATH: An expanded resource to predict protein function through structure and sequence[END_REF][START_REF] Eddy | Accelerated Profile HMM Searches[END_REF], for transmembrane regions, TMHMM [START_REF] Krogh | Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes[END_REF], for signal peptides, SignalP [START_REF] Petersen | SignalP 4.0: Discriminating signal peptides from transmembrane regions[END_REF], for short linear motifs, SLiMs [START_REF] Kumar | ELM-the eukaryotic linear motif resource in 2020[END_REF][START_REF] Ruhanen | Potential of known and short prokaryotic protein motifs as a basis for novel peptide-based antibacterial therapeutics: A computational survey[END_REF], for structural and functional domains, PFAM [START_REF] El-Gebali | The Pfam protein families database in 2019[END_REF], for amyloidogenic regions, ArchCandy2.0 [START_REF] Ahmed | A structure-based approach to predict predisposition to amyloidosis[END_REF], TANGO [START_REF] Fernandez-Escamilla | Prediction of sequencedependent and mutational effects on the aggregation of peptides and proteins[END_REF] and PASTA 2.0 [START_REF] Walsh | PASTA 2.0: An improved server for protein aggregation prediction[END_REF] (Fig. 2A). Default parameters recommended by the authors of the tools were set for IUPred, TMHMM, SignalP, ArchCandy2.0 and TANGO. The self-aggregation option of Pasta 2.0 was chosen as the most suitable for large-scale analyses. The Pasta 2.0 program requires the specification of a maximum number of hits per protein with the default number equals 10 best hits. This restriction may lead to the absence of many statistically significant hits in an output of a given protein, especially in IDRs. To overcome this limitation, we used Pasta to detect the EARs that are located exclusively within IDRs. For the analysis of ARs we summarized 10 best hits in the whole protein sequence and 10 best hits located within IDRs.

Structured CATH and PFAM domains were detected by running the input sequences against their libraries of HMMs. Only significant hits with E-values for CATH and PFAM HMMs below 0,001 were kept. To predict short linear motifs (SLiMs) present in eukaryotic and prokaryotic organisms, we used their corresponding sets of regular expressions. To complete the IUPred predictions, we added our in-house predictor of intrinsically disorder regions (BISMM filter), which selects highly (over 75%) hydrophilic and proline-rich (over 25%) regions.

For this pipeline, our first version of the ArchCandy program [START_REF] Ahmed | A structure-based approach to predict predisposition to amyloidosis[END_REF] for predicting amyloidogenic regions was updated by improving scoring functions and adding new β-arc types. This updated version, ArchCandy 2.0, was used in the pipeline.

The input file of "AlphaFold model query" contains the atomic coordinates with per-residue confidence scores (pLDDT) of an AlphaFold model in the PDB format. By using this file, TAPASS generates an amino acid sequence of the analyzed protein together with information about structured and unstructured regions within this protein (Fig 2B).

Priority rules to cross results of the predictors for assignment of structured/unstructured regions pipeline assigns each residue of the analysed protein as belonging to a structured or an unstructured region. In general, we consider a region as structured if it contains a hit of CATH or TMHMM (Fig. 3). If both BISMM filter and IUPred do not predict an IDR at a given region, it is mapped as structured. If either BISMM filter or IUPred predicts an unstructured state for an analysed region, it is considered as an IDR. For some protein regions, predictions of structured domains by CATH and TMHMM contradict predictions by IUPred or BISMM filter. To overcome this problem, we formulated the following priority rules. If a structured region predicted by CATH or TMHMM overlaps with IDR prediction by IUPred and BISMM filter, this region is considered as structured. At the same time, structured regions of less than 30 residues are considered as unstructured because these regions are too short to form a stable 3D structure. For the same reason, we consider proteins shorter than 30 residues as unstructured. An exception is made for TMHMM prediction of transmembrane regions, which being shorter than 30 residues, are still considered structured. IDRs of less than 20 residues are considered as structured because they frequently represent long loops of protein structures. N-terminal regions predicted as signal peptides are excluded from our subsequent analysis. Figure 3 shows an example of binary structured/unstructured region assignment of a protein based on CATH, IUPred, TMHMM and SignalP predictions and application of the priority rules. In the case of "AlphaFold model query", we developed an algorithm and program to transform the structural models to the assignment of structured versus unstructured regions for each protein. The detection of IDRs was based on two criteria that must be met simultaneously: (1) level of the AlphaFold model confidence (pLDDT) is lower than 70%, (2) a 10-residue window contains less than 2 residues hidden in the structure while the remaining ones are exposed to the solvent. Our decision whether the side chains are hidden or exposed were based on calculation of Relative Accessible Surface Area [START_REF] Lee | The interpretation of protein structures: Estimation of static accessibility[END_REF] with the threshold of above 0.15 for the side chains exposed to the solvent. After this, we applied the priority rules implemented in TAPASS to the AlphaFold assignment. Namely, structured regions of less than 30 residues predicted by AlphaFold were considered as unstructured, with an exception for regions that were overlapped at least 50% with TMHMM prediction of transmembrane regions. IDRs of less than 20 residues were considered as structured.

Identification of ARs and EARs

The results of the three amyloid predictors, ArchCandy2 [START_REF] Ahmed | A structure-based approach to predict predisposition to amyloidosis[END_REF], TANGO [START_REF] Fernandez-Escamilla | Prediction of sequencedependent and mutational effects on the aggregation of peptides and proteins[END_REF] and PASTA 2.0 [START_REF] Walsh | PASTA 2.0: An improved server for protein aggregation prediction[END_REF], were treated separately. Each predictor distinguished between two types of regions in a protein sequence: amyloidogenic regions (ARs) and nonamyloidogenic regions, with the best scores over and below the threshold, respectively. To detect EARs, predicted ARs were superimposed on IDRs (Fig. 4). An AR was considered as EAR if at least 80% of a hit of AR predictor overlapped with an IDR. Structured domain is shown in blue, IDR is in yellow and EAR predicted by ArchCandy is in magenta. The EAR correspond to the RHIM motif, which is known to form functional amyloid fibrils mediating virusinduced necrosis of human cells [START_REF] Kajava | Evolutionary link between metazoan RHIM motif and prion-forming domain of fungal heterokaryon incompatibility factor Het-s/Het-S[END_REF].

Mapping amyloidogenicity prediction on functional annotations and cellular localization.

In addition to the amyloidogenicity prediction, TAPASS outputs information about the cellular localisation, post-translational modifications, and function of proteins. For example, secreted proteins are identified by the presence of the signal peptides predicted by SignalP, membrane proteins are detected by TMHMM prediction, and proteins located in the nucleus carry a Nuclear Localisation Signal (NLS), which can be found by the presence of 4 SLiMs (ELME000270, ELME000271, ELME000276 and ELME000278) [START_REF] Kumar | ELM-the eukaryotic linear motif resource in 2020[END_REF]. Furthermore, SLiMs detection can tell us to which other cellular compartments the analysed protein is addressed, the post-translational modifications it can have (phosphorylation, glycosylation,…), its cleavage sites, potential degradation motifs, and protein-protein interactions. TAPASS is also using CATH and PFAM [START_REF] Dawson | CATH: An expanded resource to predict protein function through structure and sequence[END_REF][START_REF] El-Gebali | The Pfam protein families database in 2019[END_REF] predictions that represent sources of information regarding structure and function of protein domains.

Execution time

To assess the speed of the pipeline when processing large volume of data, we selected 76 reference proteomes with 1 123 749 proteins in total from the UniProt databank [START_REF] Bateman | UniProt: A worldwide hub of protein knowledge[END_REF]. The proteomes belong to the three kingdoms : eukaryote, bacteria and archaea. Our tests of the execution time showed that all 1 123 749 proteins were analysed in around 350 core-hours by using a 64-bits machine with a core i7 CPU (3.6 GHz).

TAPASS prediction of structured vs unstructured regions from protein sequence queries compared with AlphaFold predictions.

A recently developed artificial intelligence program AlphaFold [START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF] is becoming the gold standard computational technique for assessing the predictive power of other approaches. Currently, in contrast to the TAPASS option with sequence queries, the AlphaFold option is not suitable for a largescale analysis of proteomes due to a time-consuming step of the model construction. However, we can use it to benchmark the results of the sequence query analysis at the stage of structured versus unstructured region assignment. For this purpose, we downloaded structural models of 20294 human proteins built by AlphaFold, and their sequences by using https://alphafold.ebi.ac.uk. We run TAPASS separately against both sequences and structural models from the AlphaFold set. As a result, we obtained predictions of structured/unstructured regions for 20294 human proteins using both options of TAPASS. Our comparison of the results showed that the value of accuracy of TAPASS prediction from the sequences is quite high (equals 0.81). This value is calculated as (N -total_incorrect)/N, where N is total a number of amino acids in the set and we consider the AlphaFold prediction as a true result. The correlation coefficient (Fisher, 1958) between sequence and AlphaFold predictions equals 0.62, indicating a strong positive correlation. Thus, the TAPASS option with protein sequence queries works accurately to assign structured/unstructured regions. At the same time, currently, it is the most suitable option for proteomewide analysis in comparison to the option with AlphaFold.

Web-interface of TAPASS

TAPASS can be used through the web interface (http://bioinfo.montp.cnrs.fr/?r=TAPASS). On the input page, the user can paste or upload a query sequence in the FASTA format, or a query AlphaFold model in the PDB format, and choose the predictors.

The TAPASS output page displays predictions of all programs in a schematic graphical manner mapped on the amino acid sequence of the analysed protein (Fig. 5), where specific regions of interest can be magnified. The summarized structured/unstructured region assignment is called "IDR_consens", with the unstructured regions shown as green boxes. SLiMs are shown only within the "IDR_consens" regions. Since the amyloidogenicity prediction (AR and, especially, EARs) represent the main result of this pipeline, these regions are grouped at the top of the graphical output. In addition, in the online version of TAPASS, we display localisation of tandem repeat regions identified by the MetaRepeatFinder [START_REF] Richard | TRDistiller: A rapid filter for enrichment of sequence datasets with proteins containing tandem repeats[END_REF]. These repetitive regions are frequently associated with the amyloidogenicity. The results can be downloaded in CSV format. 

Conclusions

An adequate prediction of protein aggregation requires both the usage of several software to obtain a consensus, and the superimposition of these results on the assignment of structured/unstructured regions. Here, we describe the TAPASS pipeline, which was designed for such purposes. The pipeline is focused on the detection of Exposed Amyloidogenic Regions, which by definition are located within IDRs and carrying high amyloidogenic potential. TAPASS also provide information about the cellular localisation, post-translational modifications, and functions of amyloid-forming proteins. In addition to the protein sequence input, users can submit the atomic coordinates of the AlphaFold model of any given protein to obtain its EARs. A large-scale analysis of these models can be done by using AlphaFold structures already predicted from proteomes stored at https://alphafold.ebi.ac.uk.

Our pipeline can be used to discover new aggregation-prone proteins, as well as formulate experimental studies and interpret their results. As genome sequencing data linked with clinical data become more affordable, TAPASS can be used to predict individual risk profiles for different amyloidoses.

The architecture of the pipeline allows completing it with the other predictors. For example, recently, protein aggregation in Liquid-liquid Phase Separation has emerged as a new paradigm in the regulation of cellular activities [START_REF] Molliex | Phase Separation by Low Complexity Domains Promotes Stress Granule Assemblyand Drives Pathological Fibrillization[END_REF] and new computational programs to predict this aggregation can be included in the TAPASS.

Figure 1 .

 1 Figure 1. Simplified scheme illustrating the transition between the principal structural states of proteins (stable structured domain, membrane domain, and intrinsically disordered region) and the aggregates. The depicted hypothetical protein has amyloidogenic regions (shown in red) in all main structural states.

Figure 2 .

 2 Figure 2. Component diagram of TAPASS (standalone version) with option Protein sequence query (panel A) and option AlphaFold model query (panel B).For proteome-wide analysis, the first type of input represents a file in the UniProt Text format, which can be downloaded automatically from the UniPort database[START_REF] Bateman | UniProt: A worldwide hub of protein knowledge[END_REF]. Every component of the pipeline works independently from the others. It allows to manage different predictors in a cluster computing environment. The result of the analysis can be stored as a CSV, a YAML file or get inserted in a relational database (MySQL). For the online tool designed for the prediction of individual proteins, the input is either an amino acid sequence in the FASTA format or AlphaFold model in the PDB format. The output is graphically visualized and can be downloaded by users as a CSV file.

Figure 3 .

 3 Figure 3. Prediction of unstructured (IDR) and structured (SR) regions based on the priority rules used in the pipeline. An N-terminal region predicted as a signal peptide is excluded from our SR /IDR assignment.

Figure 4 .

 4 Figure 4. AlphaFold model of Human Receptor-interacting serine/threonine-protein kinase 3 (hRIPK3).Structured domain is shown in blue, IDR is in yellow and EAR predicted by ArchCandy is in magenta. The EAR correspond to the RHIM motif, which is known to form functional amyloid fibrils mediating virusinduced necrosis of human cells[START_REF] Kajava | Evolutionary link between metazoan RHIM motif and prion-forming domain of fungal heterokaryon incompatibility factor Het-s/Het-S[END_REF].

Figure 5 .

 5 Figure 5. An output webpage of TAPASS showing, as an example, the prediction results for human oligodendrocyte-myelin glycoprotein protein (OMGP_HUMAN). More detailed information about positions of the regions, IDs of SLiMs, CATH, PFAM is stored in the corresponding CSV file.
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