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Abstract: We introduce a Domain Decomposition Spectral Method (DDSM) as a solution for Maxwell’s
equations in the frequency domain. It will be illustrated in the framework of the Aperiodic Fourier
Modal Method (AFMM). This method may be applied to compute the electromagnetic field diffracted
by a large-scale surface under any kind of incident excitation. In the proposed approach, a large-size
surface is decomposed into square sub-cells, and a projector, linking the set of eigenvectors of the
large-scale problem to those of the small-size sub-cells, is defined. This projector allows one to
associate univocally the spectrum of any electromagnetic field of a problem stated on the large-size
domain with its footprint on the small-scale problem eigenfunctions. This approach is suitable for
parallel computing, since the spectrum of the electromagnetic field is computed on each sub-cell
independently from the others. In order to demonstrate the method’s ability, to simulate both near
and far fields of a full three-dimensional (3D) structure, we apply it to design large area diffractive
metalenses with a conventional personal computer.

Keywords: metasurfaces; metalens

1. Introduction

Regardless of the numerical method used to solve an electromagnetic (EM) problem,
the number of unknowns of the field components increases as well as the electrical size of
the device. Consequently, the modeling of extended structures can be time and memory
consuming for a conventional computer. This makes the numerical simulation of large-scale
problems more challenging for numerical simulations, and it is still an open task. Of course,
in practice, the meaning of fast or large depends on the performance of the employed
computer resources.

In order to overcome this challenging task and to ensure fast and reliable numerical
solutions, two main points could be considered. The first one is the way the code is
implemented, and the second one is focused on the numerical method used to solve
equations at hand.

For a given electromagnetic problem stated on a large-scale domain, one of the first
intuitive methods to overcome the large size issues is the sub-structuring of its computa-
tional domain. This technique consists of dividing the whole domain into a sequence of
sub-domains. The solution inside these sub-domains may be found using an iterative or
parallel strategy. Concerning the iterative process, the solution of the equation is found
after solving the boundary conditions equations. This approach is considered within the
context of the iterative domain decomposition techniques such as Schwarz’s method [1–6].
However, when the number of interfaces increases, the strategy can be time consuming. On
the other hand, the parallel computing strategy relies on overlapping [7] or stitching [8] the
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grid of the sub-domains without applying any boundary conditions. Concerning the nu-
merical method, a large class of electromagnetic field simulation for photonics applications
requires solving the partial differential equations (PDE) obtained from Maxwell’s equations
and a set of ad hoc boundary conditions. A priori, there is no unique and universal method
to efficiently solve the PDEs obtained from Maxwell’s equations in the general case. Among
these methods, some clearly appear to be more used than others, either for their simplicity
of implementation, or for their ability to take into account complex-geometry problems,
or because they are the most efficient in terms of numerical accuracy. Yet, finite difference
methods [9,10], finite element methods [11,12], or spectral modal methods [13–21] are con-
sidered from these methods. Furthermore, all these numerical methods involve different
amounts of theoretical effort which yield different computational efficiencies. It is clear that
improving the efficiency of the numerical implementation and process will often require
more pre-computational analytical effort as well as more in-depth understanding and usage
of electromagnetic theory. For instance, spectral modal methods aim to approximate an
unknown function, as a solution of a differential or an integral equation, by a finite sum of
eigenmodes. These eigenmodes are expanded into a so-called basis function. In the case of
finite difference and finite elements methods, many studies have been conducted to make
them suitable to large-scale problems [7,22,23].

Contrary to these methods, the spectral modal methods, in spite of many previous
developments [7,8], still face some major challenges to find numerical solutions for some
large-scale problems.

In this paper, we propose a mathematical formalism based on a projector enabling
the projection of any eigenvector defined on a domain Ω into a sequence of eigenfunctions
based on smaller-scale boundary value problems defined on subdomains Ω̃ij. In the
proposed domain decomposition method, a large-scale surface is squared into sub-cells.
Hence, a projector, i.e., a link between the large problem and the small one, is introduced.
This projector, which is defined from the sequence of eigenfunctions of both large and small
problems, univocally enables the association of the spectrum of any electromagnetic field
component related to a large-size problem, with its restriction on the small-size systems.
Consequently, the spectrum of the electromagnetic field component on each sub-cell may
be simulated independently. This makes the proposed approach suitable to be integrated
in a parallel computing scheme in order to allow for accounting larger size systems.

This paper is organized as follows: After the introduction (Section 1), we introduce in
Section 2 the physical system and the proposed domain decomposition spectral method
(DDSM). The DDSM is explained and described in detail, and the concept of direct and
inverse transform is presented. Moreover, Section 3 is devoted to applications in the
framework of the modal method. In this section, we introduce the bases of the modal
method applied to a 3D problem. In a first illustration, we demonstrate its ability to
accurately describe a field radiated by an electric dipole. In a second example, we prove the
capability of the DDSM to simulate the near and far fields of a high-refractive-index-deeply-
etched Fresnel plate zone, metalenses made of dielectric cylindrical waveguides (nanorods)
with variables cross-section and a dielectric Pachatarnam–Berry phase metalens.

2. Methods

The framework of the proposed domain decomposition spectral method (DDSM) is the
spectral modal method. For the reader that is not familiar with this method, we highlight
in the following first two subsections the main underlying principle both of the modal and
the spectral methods.

2.1. Maxwell’s Equations and Eigenvalue Problem

Let us consider Maxwell’s equations [20] in a Cartesian coordinates system (O, ex, ey, ez)
and the constitutive relations stated on a 2D bounded domain Ω = [−0.5Dx, 0.5Dx] ×
[−0.5Dy, 0.5Dy] ⊂ R2. We assume that the physical parameters of the medium, namely
the relative permittivity ε(x, y) and the permeability µ(x, y) functions, do not depend on
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the z variable. In this case, any component of the electromagnetic field can be written
as Φ(x, y)exp(−ik0γz), where k0 = ω

√
ε0µ0 is the wavenumber in the vacuum, ω is the

angular frequency and k0γ is the propagation constant along the z direction. ε0 and µ0 are
the permittivity and the permeability of the vacuum. It can be shown that the transverse
components of the electromagnetic field Ex, Ey, Hx and Hy satisfy an eigenvalue equation:

LEHLHE|Φ〉 = −γ2|Φ〉 (1)

where Φ = [Ex, Ey]t, and
LEH =

1
k2

0

[
−∂xE−1∂y ∂xE−1∂x + k2

0µ

−∂yE−1∂y − k2
0µ ∂y∂x

]

LHE =
1
k2

0

[
−∂xµ−1∂y ∂xµ−1∂x + k2

0E
−∂yµ−1∂y − k2

0E ∂y∂x

] , (2)

The eigenvalue Equation (1) is solved using the spectral method briefly described in the
next subsection.

2.2. Spectral Method and Modal Method

In electromagnetism, a spectral method aims to describe a function |Φ〉 representing
any electromagnetic field component with a set of finite expansion coefficients Φnm on a
selected basis also known as expansion functions |enm〉:

|Φ〉 = Φnm|enm〉 (3)

by using Einstein’s convention. Expansion or weighted coefficients Φnm are the spectrum
of the expanded function Φ with respect to the sequence of expansion vectors |enm〉. In a
Cartesian coordinates system with axis (O, x), (O, y), (O, z), and in the framework of the
modal method, the structure under consideration is often divided into some layers denoted
I(l)z with respect to the propagation direction that is assumed to be (O, z) in our case. For
example, in Figure 1, a 2D-diffraction grating is divided into 4 layers I(1)z , I(2)z , I(3)z and I(4)z
with respect to the propagation direction.

Figure 1. Sketch of a 2D grating. In the framework of the modal method, the 2D structure is divided

into 4 layers I(1)z , I(2)z , I(3)z and I(4)z with respect to the propagation direction that is assumed to
be (O, z).

In any of the layers I(l)z , the physical parameters, namely the permittivity and per-
meability, are described as functions that do not depend on the variable z. Consequently,
each component of the electromagnetic field may be expanded on a set of eigenfunctions,
i.e., solutions |Φkl〉 of an eigenvalue equation similar to Equation (1):

L|Φ〉 = −γ2|Φ〉. (4)
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The completeness of the set of eigenvectors (|Φkl〉)kl allows one to expand any function | f 〉
defined on a domain Ω as a linear combination of the eigenvectors |Φkl〉:

| f 〉 = Akl |Φkl〉. (5)

Regarding Equation (5), the modal method can be viewed as a spectral method using as
basis functions a set of eigenvectors |Φkl〉 of the operator L. The Fourier modal method
(FMM) consists of expanding the eigenvectors |Φkl〉 in terms of a generalized Fourier basis:

|Φkl〉 = Φnm
kl |enm〉, (6)

where |enm〉 = |en〉 ⊗ |em〉, with

enm(x, y) = e−ik0αnxe−ik0βmy. (7)

Taking into account Equation (6), the vector | f 〉 of Equation (5) may be expressed in terms
of the Fourier basis functions as:

| f 〉 = AklΦnm
kl |enm〉. (8)

From a numerical point of view, only a finite number of (2Mx + 1)× (2My + 1), ((Mx, My) ∈
N2) Fourier coefficients is kept by selecting a finite sequence of αn and βn in the expression
Equation (7): {

αn = α0 + nλ/Dx, n ∈ [−Mx : Mx]
βm = β0 + mλ/Dy, m ∈ [−My : My]

(9)

where Dx (resp. Dy) is the period along the (O, x) (resp. (O, y)) axis and λ is the operating
wavelength. The parameters α0 and β0 are linked to the incident wave. The choice of the
truncation orders, Mx and My, strongly depends on the values of Dx and Dy. A large-
scale problem involves large values of Dx and/or Dy, yielding large truncation orders
Mx and My as well as prohibitive computation time and memory storage capacity. This
is one of the main limitations of the Fourier modal method when a large-scale problem
issue is targeted such as the one addressed when designing some classes of photonics
devices as metasurfaces. In order to accurately design highly efficient metasurfaces, near
field (evanescent modes) are required to account for complex interactions among its sub-
wavelength-scale constituents (meta-atoms). These evanescent modes, which are high-
frequency harmonic modes, generally are highly sensitive to the truncation orders Mx and
My. The larger the size of the computational domain, the larger the values of the truncation
orders that should be taken into account in order to describe the rapid oscillations of the
evanescent modes. However, increasing Mx and My yields high computational cost and
memory storage capacity. One of the trivial ways to compute high harmonic modes without
increasing the truncation orders Mx and My is to reduce the size of the computational
domain. This issue is addressed in the next subsection.

2.3. Domain Decomposition Spectral Method: Direct Transform

Here, we aim to find an approximation | f̃ 〉 of | f 〉 of Equation (8) on a domain Ω̃ ⊂ Ω,
of width dx, dy with respect to (O, x) resp. (O, y), assuming that a set of eigenvalues and
eigenvectors are known for a boundary value problem stated on Ω̃:

L̃|Φ̃pq〉 = −γ̃2|Φ̃pq〉. (10)

We set | f̃ 〉 as
| f̃ 〉 = ÃpqΦ̃ηµ

pq |ẽηµ〉, (11)

where
ẽηµ(x, y) = e−ik0α̃η xe−ik0 β̃µy (12)
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with α̃[η] = α0 + [−ηx : ηx]λ/dx and β̃[µ] = β0 + [−µy : µy]λ/dy. The weighted coefficients
Ãpq (Equation (11)) are computed using a Galerkin-weighted-residual method. It can be
easily shown that:

[Ãpq] = [Pvw
kl ][Akl ], (13)

where P is equal to:

[Pvw
kl ] =

[
Φ̃ηµ

pq

]−1[
〈ẽ†

vw, ẽηµ〉
]−1[
〈ẽ†

vw, enm〉
]
[Φnm

kl ]. (14)

Here, P clearly appears as the projector of the space spanned by
(
|Φkl〉 = Φnm

kl |enm〉
)

kl onto

the subspace spanned by
(
|Φ̃pq〉 = Φ̃ηµ

pq |ẽηµ〉
)

pq
. In the current case of orthonormal Fourier

basis functions, the set of |ẽnm〉 satisfies 〈ẽ†
vw, ẽnm〉 = δv−nδw−m. Therefore, Equation (14)

yields

[Pvw
kl ] =

[
Φ̃ηµ

pq

]−1[
〈ẽ†

vw, ekl〉
]
[Φnm

kl ]. (15)

Here, we define the inner product of two periodic or pseudo-periodic functions gn and hm
defined on an interval [xa, xb] as:

〈g†
n, hm〉 =

1
xb − xa

∫ xb

xa
g†

n(x)hm(x)dx, (16)

where g†
n denotes the complex conjugate of gn. The inner product of Equation (15) may

then be expressed as{
〈ẽ†

v, ek〉x∈[a,b] = e−i(xb+xa)τx sinc[(xb − xa)τx]

〈ẽ†
w, el〉y∈[a,b] = e−i(yb+ya)τy sinc

[
(yb − ya)τy

] . (17)

where τx = (
v
dx
− k

Dx
), τy = (

w
dy
− l

Dy
). The definition of the inner product can be

extended to the case of a two-dimensional (2D) problem by using the Kronecker product:

〈g̃†
vw, hkl〉 = 〈g̃†

v, hk〉 · 〈g̃†
w, hl〉. (18)

Let us consider now that the bounded plane Ω is squared into several elementary sub-cells
Ω =

⋃
i,j Ω̃ij, with Ω̃ij = [xi, xi+1]× [yj, yj+1]. Let us assume the known spectral coefficients

Ãpq(i, j), related to each sub-domain Ω̃ij such as any restriction of the expanded function
f̃ij describing any component of the electromagnetic field on Ω̃ij, is written as:

| f̃ij〉 = Ãpq(ij)Φ̃ηµ
pq |ẽηµ〉. (19)

The proposed DDSM allows us to obtain access to the near-field (i.e., electric and magnetic
field) distribution of the device under study using Equation (19). However, in modeling
an electromagnetic device, far-field information may be required in order to capture an
accurate picture of the structure’s performance. Within the framework of the spectral
method presented here, the problem we face consists of reconstructing the spectral coef-
ficients of the electromagnetic field on the whole domain Ω, knowing the coefficients on
each sub-domain Ω̃ij obtained from the direct spectral decomposition transformation. This
inverse transform issue will be detailed in the next subsection.
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2.4. Domain Decomposition Spectral Method: Inverse Transform

The process we denoted as inverse transform consists of computing the global coef-
ficient Akl . These spectral coefficients are required to describe any electromagnetic field
component function f in the whole space as:

f (x, y, z) = ∑
kl

Akle−ik0γkl z ∑
n,m

Φnn
kl enm(x, y). (20)

Using once again the Galerking-weighted-residual method, one can demonstrate that the
set of Akl is obtained from Ãpq(ij) throughout the following matrix relation:

[Akl ] =
[
Q(1, 1) Q(1, 2) ... Q(N, N)

]


Ãpq(1, 1)
Ãpq(1, 2)
...
Ãpq(N, N)

 (21)

with [
Qkl

vw(i, j)
]
= [Φnm

kl ]−1
[
〈e†

kl , ẽvw〉(i, j)
][

Φ̃ηµ
pq

]
. (22)

We summarize in Figure 2 the main steps of DDSM when it is applied to compute near
and far fields of a photonics device in the framework of modal methods. For a better
understanding, we also report in Figure 3 the flowchart and parallelization structure of
the employed method [24]. As a first step, the computational domain Ω is squared into
sub-domains Ω̃ij. Secondly, using the direct transform, the incident field is projected on the
eigenvectors defined on each Ω̃ij in the incident medium. Forward simulations can then
be independently performed for each sub-domain, yielding an approximation of the near
field on each Ω̃ij. Afterwards, the set of simulated near fields on each sub-cell is stitched
together to reproduce the electromagnetic field on the whole surface. Finally, the inverse
transform can be used to obtain the spectral coefficients of the field related to the whole
domain if needed.

Figure 2. Sketch of the direct and inverse transform of DDSM applied to the near and far fields
simulation of a photonics device.
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Figure 3. Flowchart and parallelization structure of the direct and inverse transform of DDSM
applied to the near and far fields simulation of a photonics device.

Having introduced the mathematical formalism of the proposed approach, we are
now ready to go further into some applications.

3. Applications
3.1. DDSM Applied to a Dipole Field Expansion in the Framework of Modal Method

The purpose of the present section is merely to show what the DDSM looks like when
applied to a simple case. In a Cartesian coordinates system (O, x, y, z), we are interested in
the footprint of the field radiated by an electric dipole located at the origin O(0, 0, 0) in a
given plane z = −zs, as shown in Figure 4a. This plane will be the 2D computation domain
Ω. This kind of simulation may be useful while performing the so-called adjoint simulation
in an optimization problem of metalenses. In the case of the forward simulation, the device
under optimization is excited by a planewave, while the adjoint simulation required the
use of a dipole source located at the desired foci Figure 4b. In the framework of modal
expansion, any component of the electromagnetic field of this dipole source can be fully
described in the whole space by a set of known expansion coefficients Apq, Bpq and a set of
eigenvectors |Φnm

pq 〉 as:

| f (z)〉 = [ApqΦnm
pq eik0γpqz + BpqΦnm

pq e−ik0γpqz]|enm〉. (23)

For our illustration, only the first part of the above expression describing the downward
wave is kept:

| f (z)〉 = ApqΦnm
pq eik0γpqz|enm〉. (24)

The set of eigenvectors |Φnm
pq 〉 and their associated eigenvalues γpq can be computed thanks

to Equation (1). Practical details for the numerical computation of the weighted coefficients
[Apq] and [Bpq] can be found in [25]. We report in Figure 5a,b, the phase and the real part, re-
spectively, of Ex(x, y, zs = −20λ), in vacuum ∀(x, y) ∈ [−0.5Dx, 0.5Dx]× [−0.5Dy, 0.5Dy].
The truncation orders Mx and My are set to Mx = My = 31, Dx = Dy = 26.67λ.
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(a) (b)

Figure 4. Sketch of a dipole field decomposition. The fundamental strategy of the DDSM to compute
the footprint of a dipole field on an arbitrary large-area surface consists in dividing the surface into
elementary sub-cells. Any component of the dipole field can then be locally simulated, on each
sub-cell. Here, the surface z = −zs is subdivided into 3× 3 sub-cells. (a) Dipole field decomposition
and recomposition. (b) Sketch of simulation of metasurface under a dipole illumination.

(a) Footprint of the phase of Ex component (b) Footprint of the real part of Ex compo-
nent

Figure 5. Footprints of the phase (a) and the real part (b) of an Ex electric dipole on the plane z = −20λ.
The numerical computation is performed on the whole domain [−0.5Dx, 0.5Dx]× [−0.5Dy, 0.5Dy].
The operating wavelength: λ = 0.64µm, Dx = Dy = 26.67λ, truncation orders Mx = My = 31.

A typical well-defined wavefront of a dipole source can be distinguished. These results
will serve as a baseline and will be compared to those obtained with the proposed domain
decomposition method. First, the plane z = −zs is squared into several elementary sub-cells
Ω =

⋃
i,j Ω̃ij, with Ω̃ij = [xi, xi+1]× [yj, yj+1]. Then, the eigenvalue equation Equation (10),

obtained from Maxwell’s equations, equipped with PMLs (perfectly matched coordinates),
are numerically and independently solved in each sub-cell. From a geometrical point of
view, in a homogenous medium, the eigenvalue Equation (10) only depends on the size
of the computation area. Consequently, for a set of sub-cells Ω̃ij of the same size, only
one numerical simulation based on Equation (10) is performed to obtain the sequence of
eigenvectors |Φ̃pq〉. The truncation orders are set to mx = my = 10. The sequence of the
spectral coefficients [Ãpq(i, j)] in each sub-cell Ω̃ij = [xi, xi+1]× [yj, yj+1] is then obtained
from the weighted coefficients [Apq] using Equation (13). The restriction of any component
of the electromagnetic field | fi,j(z)〉 on a sub-cell Ω̃ij is then written as:

| f̃(i,j)(z)〉 = Ãpq(i, j)Φ̃nm
pq eik0γ̃pqz|ẽnm〉. (25)

The set of the simulated fields on each sub-cell is then stitched together (geographically,
without any post-processing) to reproduce the electromagnetic field on the whole surface Ω.
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Figure 6a,b represent the real parts and the phase, respectively, computed using
Equation (25) by dividing the computational domain [−0.5Dx, 0.5Dx]× [−0.5Dy, 0.5Dy]
into 3× 3 sub-domains. In Figure 7a,b, this number is extended to 5× 5 sub-domains. In
all these figures, where no post-processing treatment is applied, the field distribution in the
sub-cells areas and the effect of the PMLs areas are clearly shown. Comparing these results
with the baseline results of Figure 5a,b, one can also remark that out of the PMLs areas (ratio
PMLs-area-wide/Ωij-wide<< 1/10), the footprints of the dipole source are well-described
on each sub-cell Ω̃ij by the sequence of computed local spectral coefficients [Ãpq(i, j)]. The
method then shows its ability to represent the footprint of a given electromagnetic field
component. This leads to the next step where we are ready to deploy the proposed concept
to compute the electromagnetic field diffracted by a large-scale device. Three potential
devices are investigated: a dielectric Fresnel Plate Zone (FPZ), a metalens made of dielectric
cylindrical waveguides (nanorodes) with variables cross-sections and a Pachatarnam–Berry
phase dielectric metalens.

(a) Phase of Ex with a parallel computing (b) Footprint of the real part of Ex compo-
nent

Figure 6. Footprints of the phase (a) and the real part (b) of an Ex electric dipole in the plane z = −20λ.
The whole domain [−0.5Dx, 0.5Dx]× [−0.5Dy, 0.5Dy] is divided into a 3× 3 sub-cell Ωij. Based on
the proposed parallel strategy, the numerical computation is performed on each sub-cell Ωij. The
operating wavelength: λ = 0.64 µm, dx = dy = 8.89λ, truncation orders mx = my = 10.

(a) Phase of Ex with a parallel computing (b) Footprint of the real part of Ex compo-
nent

Figure 7. Footprints of the phase (a) and the real part (b) of an Ex electric dipole in the plane
z = −20λ. The whole domain [−0.5Dx, 0.5Dx]× [−0.5Dy, 0.5Dy] is divided onto a 5× 5 sub-cell Ωij.
The operating wavelength: λ = 0.64 µm, dx = dy = 5.33λ, truncation orders mx = my = 6.

3.2. Modal Method Applied to a Large Binary Fresnel Plate Zone (Binary FPZ)

In this section, the first proposed case will be presented. The task consists of a forward
simulation of both the near and far-field components of a 2D dielectric binary FPZ with
a height h under a linearly polarized incident plane wave, as shown in Figure 8a. The
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FPZ consists of a set of concentric dielectric rings, known as Fresnel zones, operating as
a dielectric lens using diffraction to focus light into a given focal point. The considered
dielectric material has a refractive index of 1.99 deposited on a SiO2 substrate (refractive
index = 1.45). Its height is set to h = 400 nm for an operating wavelength of λ = 532 nm. To
obtain a constructive interference at the focus point, the radius of the Fresnel zones should
satisfy the equation:

Rn = k0

√
nλ f + (

nλ

2
)2, (26)

where f is the lens’ focal length, λ is the operating wavelength and k0 = 2π/λ is the
wavenumber in the focusing medium. The aperiodic Fourier modal method (AFMM) [26–28],
a full-wave analysis based on the Fourier modal method equipped with PMLs (perfectly
matched layers) [29–33], is used to compute the electromagnetic field components. It is
well known that in the case of the FMM or AFMM, the total computation time grows as
O(N6) (bi-periodic problem) with respect to the total truncation order N required for all the
field components (i.e, the four field components used for the continuity equation). On the
other hand, memory consumption time grows as O(N4). Therefore, scaling the computa-
tion [−0.5Dx, 0.5Dx]× [−0.5Dy, 0.5Dy] surface into some sub-sections will certainly provide
advantages to scaling both the computational time and the required memory capacities as
(2mx + 1)(2my + 1)/(2Mx + 1)(2My + 1). In our illustration, the lens’ focal length is set
to 70λ, and the number of FPZ rings is 15, yielding a 100λ-width device. To apply the
DDSM to the proposed geometry, the 100λ × 100λ × 400 nm structure is divided into
5× 5× 400 nm sub-cells of dx × dy × h = 6.7277λ× 6.7277λ× 400 nm sub-voxels. Each
sub-voxel is treated independently, with very low truncation numbers mx and my, thereby
enabling the simulation to be more feasible in terms of memory and time consumption. In
the current case (2mx + 1)× (2my + 1) = (2× 12 + 1)× (2× 12 + 1), Fourier harmonics
are enough to describe the electromagnetic field behavior on each sub-domain. On the
contrary, the electromagnetic field expansion considering the whole domain Ω involves at
least (2Mx + 1)× (2My + 1) = (2× 62 + 1)× (2× 62 + 1) Fourier harmonics yielding a
simulation that is extremely consuming in both time and memory. The insets in Figure 8c,d
display the top-view layout of the FPZ lens and the (x, y)-plane phase distribution of
the transmitted electric field on the emerging surface of the lens, respectively. Regarding
Figure 8d, one can remark the full [−π, π] phase coverage characterizing a binary phase
zone plate. Making good use of the inverse transform post-processing, we can obtain
access to field distribution in the whole 3D space. In particular, we compute and display in
Figure 8e the transmitted field in the 3D space. Regarding this result, one can remark that
the incident electric field intensity at the foci considerably increases up to 3500 times. As re-
ported in Table 1, the computational times for the simulation of the near field (i.e., emerged
field on the FPZ surface) using the Fourier modal method 2D-AFMM implemented with
mx = my Fourier basis functions (so that the size of the eigenvalues equations matrix is
2(2mx + 1)× 2(2mx + 1)) are 35.07 s for mx = my = 9, 57.29 s for mx = my = 10, 90.77 s
for mx = my = 11, and 152.67 s for mx = my = 12 (Mx = My = 62). These simulations are
performed on a classical personal computer DELL PRECISION 3640, with an intel CORE
i9 (3.10 Ghz) processor. Note that since the [−0.5Dx, 0.5Dx]× [−0.5Dy, 0.5Dy] surface is
strongly inter-meshed, 212 × 212 nodes have been used both for the highly pixelated profile
of the FPZ lens surface and also for the computation nodes of the near field.
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(a) Fresnel plate zone under polarized inci-
dent plane wave

(b) Plate metalens under a polarized incident
plane wave

(c) sketch of a 100λ-width Binary
FPZ

(d) phase distribution on the top
face

(e) |E(x, z)|2

Figure 8. A forward simulation of a 100λ-width FPZ using the DDSM. The computation domain
is subdivided into 5× 5 sub-domains Ωij. (c) presents the sketch of the diffractive Fresnel lens,
(d) shows the phase distribution on the top face of the lens and (e) displays the transmitted field.
Numerical parameters: λ = 0.532 µm, zs = 70λ, n = 31 zones (15 rings), Dx = Dy = 100λ h = 400
nm, refractive index of the lens material 1.99, refractive index of the substrate 1.45, mx = my = 12,
(Mx = My = 62).

Table 1. Panel of the computation times for the simulation of the FPZ near field on each sub-cell
using the aperiodic Fourier modal method (AFMM). Simulation is performed on a classical computer
DELL PRECISION 3640 with a processor intel CORE i9 (3.10 Ghz). The whole [−0.5Dx, 0.5Dx]×
[−0.5Dy, 0.5Dy] surface is strongly inter-meshed 212 × 212 nodes have been used both for the highly
pixelated profile the FPZ lens surface and also for the computation nodes of the near field.

mx = my 9 10 11 12

computation times (s) 35.07 57.29 90.77 152.67

3.3. Modal Method and Large Metalens Consisted of Set of Different Cross-Sections Nanorods

The considered second example is a dielectric metalens consisting of a set of subwave-
length-scale dielectric Si waveguides with a refractive index of 3.6082, which is deposited
on a substrate with a refractive index of 2.4626 in Figure 8b. At a given point (x, y) on the
metalens, the radius of each waveguide is chosen so that the spatial distribution of the
phase profile θ(x, y) follows the following equation:

θ(x, y) = k0[ f −
√

x2 + y2 + f 2]. (27)

The metalens height is set to h = 5.57 µm and the operating wavelength is λ = 7 µm. The
lens is designed to focus on a linearly polarized incident plane wave at a focus length of
f = 10λ.
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We perform forward simulation on a Ω = 12.8571λ× 12.8571λ-width device. The
results are presented in Figure 9. The device surface is squared into 3× 3 sub-domains Ωij,
as shown in Figure 9a. The truncation orders are set to mx = my = 17, which is equivalent
to Mx = My = 52 on Ω. A [−π, π] coverage is clearly distinguished in Figure 9b, where the
phase distribution of the emerged electric field on the top face of the metalens is presented.
Applying the inverse transform allows one to obtain the spectral coefficients of the global
structure. The emerged near and far fields can then be computed and the focus action of
the metalens can be visualized, as shown in Figure 9c.

(a) Top view of the metalens (b) Phase spatial distribution on
the emerged face

(c) Transmitted power

Figure 9. Forward simulation of a metalens consisting of sub-wavelength dielectric nanorodes with
different cross-section. Power distributions of the focusing spot in the (x, y = 0, z) plane, λ = 7 µm,
zs = 10λ, domain Ω = 12.8571λ× 12.8571λ = 3× 3 sub-cell Ωij, h = 5.57 µm, materials: dielectrics
Si 3.6082 deposited on material with refractive index (2.4626), mx = my = 17, Mx = My = 52.

In Figure 10a, and for the same device, we increase the number of the sub-domains
from 3× 3 up to 5× 5. This allows one to decrease the truncation orders down to mx =
my = 10 (Mx = My = 52). As shown in Figure 10b,c, results related to this new partition
are still accurate.

(a) Top view of the metalens (b) Phase spatial distribution on
the emerged face

(c) Transmitted power

Figure 10. Forward simulation of a metalens consisting of sub-wavelength dielectric nanorodes with
different cross-section. Power distributions of the focusing spot in the (x, y = 0, z) plane, λ = 7 µm,
zs = 10λ, domain Ω = 12.8571λ× 12.8571λ = 5× 5 sub-cell Ωij, h = 5.57 µm, materials: dielectrics
Si ν = 3.6082 deposited on material with refractive index 2.4626, mx = my = 10, Mx = My = 52.

3.4. Large-Scale Pachatarnam–Berry Phase-Based (PB) Metalens Simulation

In the third example, we are interested in a Pachatarnam–Berry phase metalens. It
consists of an arrangement of rotated dielectric meta-atoms having a predefined shape and
a refractive index of 1.99 deposited on a SiO2 substrate (refractive index= 1.45). In our
example, a rectangular shape is considered. The dimensions of the rectangular meta-atoms
are (length = 300 nm, width = 105 nm) and the metalens height is h = 400 nm. These
parameters are chosen such that the PB phase-based metasurface converts and focuses a
fraction of the left-hand circularly polarized (LCP) incident light injected from the substrate
into right-hand circular polarization (RCP). To obtain the desired in plane (x, y) phase
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distribution for focusing, each meta-atom located at position (x, y) in the plane is rotated at
an angle θ(x, y) with respect to (O, x) axis such as

θ(x, y) =
1
2

k0[ f −
√

x2 + y2 + f 2]. (28)

The operating wavelength is set to λ = 0.532 µm. The simulation was run on the
same personal computer as the previous case. Results are presented in Figure 11. The
computation domain Ω = 23.30λ× 23.30λ is squared into 3× 3 sub-domains leading to
dx = dy = 7.76λ-width sub-cells. The phase distribution of the co-polarization ERCP

x (x, y),
ERCP

y (x, y) components of the emerged RCP electric field at the top face of the metalens,
obtained using the direct and the inverse transform, are presented in Figure 11c,d. A [−π, π]
coverage is clearly distinguished. Applying the inverse transform yields in Figure 11b, an
accurate reproduction of the transmitted power of the metalens.

(a) Top view of the metalens (b) Transmitted power

(c) Phase distribution of ERCP
x (x, y) on the

emerged face
(d) Phase distribution of ERCP

y (x, y) on the
emerged face

Figure 11. Forward simulation of a Ω = 23.3λ × 23.3λ-width Pachatarnam–Berry phase-based
metalens. The lens is designed to have a focus length of f = 20λ. The number of sub-cells and
truncation orders are set to 3× 3 and mx = my = 12 (Mx = My = 37), respectively. (b) displays the
power distribution in the (x, y = 0, z) plane. The phase distribution of the co-polarization ERCP

x (x, y),
ERCP

y (x, y) components of the emerged RCP electric field at the top face of the metalens, obtained
using the direct and the inverse transform, are presented in (c,d). A [−π, π] coverage is clearly
distinguished. Numerical parameters: λ = 0.532 µm, focus length zs = 20λ, Dx = Dy = 23.30λ,
h = 400 nm.

Finally, we increase the PB-based metalens up to 30.6λ× 30.6λ width. One can easily
admit that increasing the lens size will lead to a more efficient device. The spatial distri-
bution of the transmitted power and phases of the electric field of the cross-polarization
are shown in Figure 12. As expected, both the power energy flow and the resolution of
the designed lens are increased compared to the previous case of a 23.30λ width metalens
(Figure 11). However, increasing the lens’ geometrical features requires increasing the
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number of sub-cells in order to keep a low value of the truncation numbers mx and my. The
device is divided into 5× 5 sub-cells of 6.16λ× 6.16λ, where the truncation orders are set
to mx = my = 10.

(a) Top view of the metalens (b) Transmitted power

(c) Phase distribution of ERCP
x (x, y) on the

emerged face
(d) Phase distribution of ERCP

y (x, y) on the
emerged face

Figure 12. Forward simulation of a Ω = 30.8λ × 30.8λ-width Pachatarnam–Berry phase-based
metalens. The lens is designed to have a focus length of f = 20λ. Power distributions of the focusing
spot in the (x, y = 0, z) plane. Phase distribution of Ex(x, y) component of the cross-polarization
(RCP) on the top of the PB-based metalens. The number sub-cells and truncation orders are set to
5× 5 and mx = my = 10, respectively. Numerical parameters: λ = 0.532 µm, focus length zs = 20λ,
h = 400 nm.

4. Conclusions and Outlook

To summarize, we introduce an approach, namely a domain decomposition spectral
method DDSM, based on spectral methods, which can be optimally and simply integrated in
a parallel computing scheme to provide a solution for large-size systems. On one hand, the
power of a spectral method relies on the use of a few coefficients to describe both near and
far-electromagnetic fields in a three-dimensional space. On the other hand, modal methods
provide a better representation of physical phenomena involving modal interactions such as
resonance phenomena through dielectric and metallic periodic and aperiodic metasurfaces.
While many previous works, mainly based on spatial domain methods such as finite
difference time and frequency domain methods, finite elements methods, etc., address
large-scale problems efficiently, despite some previous developments, the simulation of
large-scale aperiodic devices remains a challenging problem for full spectral modal methods.
We expect that our work will help to tackle this issue. In order to show the efficiency of the
proposed work, we provided numerous examples, such as an electric dipole simulation
and some monochromatic metalenses illuminated under both circular and linear polarized
incident plane waves. In fact, the proposed method is based on two processes: the direct
and inverse transforms, which allow one to compute, efficiently, both near and far-field
spectrums. The DDSM direct transform consists of decomposing the spectral coefficients
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of the total field onto some spectral coefficients related to the sub-domains. Meanwhile,
the inverse transform consists of reconstructing the spectral coefficients of the total field
starting from the coefficients of decomposition of each field obtained from the direct spectral
decomposition transformation.

Our domain decomposition spectral method provides a promising pathway for han-
dling large aperiodic, but it is still limited, and further enhancements are needed to extend
this method to a very, very large-scale problem. Indeed, the process of decomposition of the
incident field requires the resolution of a unique eigenvalue equation stated on a very-very
wide domain. However, in an electromagnetism problem, the incident field is not unknown
to the problem. This field is generally well known, and its modal characteristic can be
efficiently and reliably computed based on interpolating methods.

Therefore, we plan to calculate the modal characteristics of incident fields based on
neural network models. This strategy could ultimately and reliably increase the perfor-
mance of the method in the case of very, very large-scale problems.
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