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Figure 1: Conceptual future scenarios of 2D and 3D transformations and mixed-reality data visualisation. (a) A user at a desktop extrudes a 3D bar chart by grabbing and pulling from the monitor. (b) A remote worker on the side of a street extruding a 3D scatterplot from a tablet with a virtual surface aiding organisation of a faceted bar chart. (c) Two collaborators visualising data on a wall without the need for large high-resolution displays.

INTRODUCTION

Prior to computer graphics, abstract data was mostly represented in 2D for publication in reports, books, or posters. Meanwhile 3D representation was limited to physical constructs of spatial data like geographic globes, chemical, medical, or architectural models. The first wave of desktop computers with reasonable graphics capability led to a proliferation of representations of 3D data projected onto 2D screens. This arguably resulted in the overuse of 3D graphics-such as the classic gratuitous 3D charts so hated by Tufte and others-and early studies of 3D visualisations on 2D screens demonstrated their limitations. This has since led to a long period in the information visualisation research community of consolidation of the information visualisation design space around 2D representations, optimally arranged for 2D screens.

With the emergence of mixed reality (MR) technologies in recent years, we need to reconsider some of our assumptions about the "natural habitat" of data visualisations. Mixed-reality (MR) headsets, such as the Microsoft HoloLens 2, are finally achieving tetherless, robust spatial tracking and high-resolution stereoscopic rendering with reasonable field-of-view. These headsets now also have an understanding of their environment, mapping surfaces in the room and tracking the hand gestures of their user. We can render 2D-like graphics that are visibly projected on any surface in the environment, 2.5D-like graphics that visibly extrude out from said surfaces, or suspend them in the 3D space around us-all with equal ease and fidelity (Figure 2).

This new capability presents us with new design choices and possibilities for data visualisation in an immersive environmentalso known as Immersive Analytics [START_REF] Chandler | Immersive Analytics[END_REF][START_REF] Marriott | Immersive Analytics[END_REF]. We should of course continue to visualise data in the best manner possible, whether it be on a 2D surface or in 3D space. With the flexibility that MR provides however, we can consider how any given visualisation can freely move between these two environments-a surface or the space-to suit a user's needs. Imagine, the ability to temporarily extrude a 2D visualisation out from a monitor into 3D just by grabbing and pulling it with your hand to encode some data to the third spatial dimension (Figure 1a), or to extrude out visualisations from a tablet and place them suspended in the space in front of you (Figure 1b). These visualisations can also be placed flush against arbitrary surfaces, mimicking a large wall-sized 2D display while retaining the flexibility of 3D (Figure 1c). In contrast to these, we can also flatten a 3D visualisation down to 2D on a surface, such as by applying a projection or creating a cross-sectional view. Supporting these transitions between surfaces and spaces in immersive environments has been identified as one of the grand challenges of Immersive Analytics [START_REF] Ens | Grand Challenges in Immersive Analytics[END_REF].

While recent work (Section 2) has demonstrated applications involving the use of 2D surfaces and displays in conjunction with MR for data visualisation, we specifically focus on how visualisations can be transformed between different states. We provide a more formal exploration of how transformations between these states can facilitate common visualisation tasks (Section 3). We then develop a design space and conceptual framework that helps to define and describe these transformations in terms of their visual state changes and the user interaction(s) that accompany it (Section 4). We then demonstrate instantiations of visualisation transformation techniques that we created in MR (Section 5 and our supplemental video). Lastly, we provide some high-level guidelines and considerations for how best to design transformations, as well as a discussion of limitations and possible future work (Section 6).

RELATED WORK 2.1 Animated Transitions and User Control

Perhaps most relevant to our work is the study of animated transitions between related statistical graphics. Animation has been shown to be useful in numerous ways, such as to keep track of changes between visual states [START_REF] Heer | Animated Transitions in Statistical Data Graphics[END_REF][START_REF] Robertson | Animated visualization of multiple intersecting hierarchies[END_REF], improve decision making [START_REF] Gonzalez | Does Animation in User Interfaces Improve Decision Making?[END_REF], or increase viewer engagement [START_REF] Amini | Hooked on Data Videos: Assessing the Effect of Animation and Pictographs on Viewer Engagement[END_REF][START_REF] Heer | Animated Transitions in Statistical Data Graphics[END_REF]. Various grammars and toolkits have been developed to aid visualisation designers in creating effective and engaging animated transitions (e.g., [START_REF] Kim | Gemini: A Grammar and Recommender System for Animated Transitions in Statistical Graphics[END_REF][START_REF] John R Thompson | Data Animator: Authoring Expressive Animated Data Graphics[END_REF]). These all focus on conventional 2D displays however, and therefore there has been little consideration of how transitions should be authored for immersive 3D environments. Moreover, there is a preference to use keyframe animation for creating transitions [START_REF] Thompson | Understanding the Design Space and Authoring Paradigms for Animated Data Graphics[END_REF], which is an interpolation between a start and end state across some time period (and potentially within this, staging and staggering [START_REF] Chevalier | The Not-so-Staggering Effect of Staggered Animated Transitions on Visual Tracking[END_REF][START_REF] Heer | Animated Transitions in Statistical Data Graphics[END_REF]). While this paradigm is convenient for the designer, it does not take into account how users may control the behaviour of the animation itself. A good example of the utility of user-controlled transitions in 2D visualisation is the DimpVis interaction technique by Kondo and Collins [START_REF] Kondo | DimpVis: Exploring Time-Varying Information Visualizations by Direct Manipulation[END_REF], which uses direct manipulation on graphical marks to progress through a time-varying visualisation (or in other words, an animation).

As MR better facilitates multi-modal input and direct manipulation with hand tracking, it is natural to expect a higher degree of user control for these animations, such as to alter which variables are being aggregated or to control the progress of a transition. While standard animated transitions are effective for presentation purposes, it has been shown that user control of transitions is required to support data analysis [START_REF] Robertson | Effectiveness of Animation in Trend Visualization[END_REF]. However, the input space is more complex in immersive environments, opening up many more design options and considerations for designing interactive transformations. In this work, we aim to establish a design space that maps out these opportunities and more.

Transitions between 2D and 3D on Flat Displays

While data visualisation has traditionally been performed in 2D on flat displays, some previous research has demonstrated careful use of 3D to enhance some aspect of users' exploration-even without the use of stereoscopic displays. [START_REF] Bezerianos | Graphdice: A System for Exploring Multivariate Social Networks[END_REF] and a similar technique used between 2D aircraft trajectories views [START_REF] Hurter | FromDaDy: Spreading Aircraft Trajectories Across Views to Support Iterative Queries[END_REF]. These transform a visualisation between 2D and 3D by shifting between orthographic and perspective projections [START_REF] Munzner | Visualization Analysis and Design[END_REF] at the beginning and end of each rotation. Such 3D rotation transitions were later studied to understand how they can convey information in dense visualisations [START_REF] Cordeil | Assessing and Improving 3D Rotation Transition in Dense Visualizations[END_REF]. Matrix Cubes by Bach et al. extends this by visualising multiple adjacency matrices of different time steps as a single 3D space time cube, which can then be partitioned into multiple 2D slices and so forth [START_REF] Bach | Visualizing Dynamic Networks with Matrix Cubes[END_REF]. 3D rotation transitions to 2.5D perspective views have also been used to improve visual links between 2D visualisations [START_REF] Collins | VisLink: Revealing Relationships Amongst Visualizations[END_REF] or as a transitional view between parallel coordinates and radar charts [START_REF] Fanea | An interactive 3D integration of parallel coordinates and star glyphs[END_REF].

While the focus of the user's exploration in these examples is still on 2D visualisations, there is clear value in the use of 3D to supplement certain aspects such as transition awareness and context preserving. These are, of course, all within the confines of a 2D display. In this work, we aim to fill this gap by exploring further possibilities of these transitions in an immersive 3D space.

Transitions between 2D and 3D in Immersive Analytics

Considerable research in Immersive Analytics has explored techniques to improve the perception and understandability of 3D visualisations, especially as a result of common 3D pitfalls such as occlusion and perspective distortion [START_REF] Gracia | New insights into the suitability of the third dimension for visualizing multivariate/multidimensional data: A study based on loss of quality quantification[END_REF][START_REF] Munzner | Visualization Analysis and Design[END_REF]. For example, Kraus et al. investigated the role of immersion on cluster identification tasks [START_REF] Kraus | The Impact of Immersion on Cluster Identification Tasks[END_REF], and Prouzeau et al. proposed the use of haptic feedback and highlight planes with handheld controllers to help find occluded features in 3D scatterplots [START_REF] Prouzeau | Scaptics and Highlight-Planes: Immersive Interaction Techniques for Finding Occluded Features in 3D Scatterplots[END_REF]. On the other hand, some research has, whether intentionally or not, devised ways of side-stepping these 3D challenges by allowing for 3D visualisations to temporarily be transformed into 2D. For example, FiberClay by Hurter et al. allows users to project 3D trajectories down into 2D at orthogonal angles using bimanual rotational and scaling operations [START_REF] Hurter | FiberClay: Sculpting Three Dimensional Trajectories to Reveal Structural Insights[END_REF], in a manner reminiscent of Scatterdice. [START_REF] Smiley | The MADE-Axis: A Modular Actuated Device to Embody the Axis of a Data Dimension[END_REF]. While some of these works share striking similarities with our work, our goal is to devise a higher level design space that can encapsulate these techniques and others like them. We also explore how these transformations can be activated and controlled by users, rather than solely focusing on their visual design.

Physical and Virtual Surfaces in Immersive Analytics

Physical surfaces, such as wall-sized displays, tabletops, and tablets, are very commonly used in Immersive Analytics applications for varying purposes. By default, surfaces can be used to display conventional 2D visualisations, while separate standalone 3D visualisations are rendered as floating objects using an MR headset (e.g., [START_REF] Cavallo | Dataspace: A Reconfigurable Hybrid Reality Environment for Collaborative Information Analysis[END_REF][START_REF] Wang | Towards an Understanding of Augmented Reality Extensions for Existing 3D Data Analysis Tools[END_REF]), allowing for a wider range of visualisations-both 2D and 3D-to be displayed simultaneously in the workspace. A physical surface can also act as a shared area that is suitable for collaboration, with MR headsets providing private spaces for each user to work individually [START_REF] James | Personal+Context navigation: combining AR and shared displays in Network Path-following[END_REF][START_REF] Sun | Collaborative Visual Analysis with Multi-level Information Sharing Using a Wall-Size Display and See-Through HMDs[END_REF]. They can also facilitate touch interaction that can be used in tandem with MR, such as through a multi-touch display (e.g., [START_REF] Butscher | Clusters, Trends, and Outliers: How Immersive Technologies Can Facilitate the Collaborative Analysis of Multidimensional Data[END_REF][START_REF] Hubenschmid | STREAM: Exploring the Combination of Spatially-Aware Tablets with Augmented Reality Head-Mounted Displays for Immersive Analytics[END_REF][START_REF] Sereno | Supporting Volumetric Data Visualization and Analysis by Combining Augmented Reality Visuals with Multi-Touch Input[END_REF]), infrared touch sensor (e.g., [START_REF] Sousa | VRRRRoom: Virtual Reality for Radiologists in the Reading Room[END_REF]), or even using the headset's hand-tracking capabilities [START_REF] Xiao | MRTouch: Adding Touch Input to Head-Mounted Mixed Reality[END_REF]. By leveraging touch input, it is common for visualisations on 2D displays to be directly "augmented" with superimposed 3D graphics in MR. These include graphical marks which spatially encode data using the third dimension protruding from the surface [START_REF] Langner | MARVIS: Combining Mobile Devices and Augmented Reality for Visual Data Analysis[END_REF][START_REF] Tahir Mahmood | Building Multiple Coordinated Spaces for Effective Immersive Analytics through Distributed Cognition[END_REF][START_REF] Reipschlager | Personal Augmented Reality for Information Visualization on Large Interactive Displays[END_REF], visual links [START_REF] Hubenschmid | STREAM: Exploring the Combination of Spatially-Aware Tablets with Augmented Reality Head-Mounted Displays for Immersive Analytics[END_REF], or even entire visualisations that are contextually placed close to the surface [START_REF] Langner | MARVIS: Combining Mobile Devices and Augmented Reality for Visual Data Analysis[END_REF][START_REF] Tahir Mahmood | Building Multiple Coordinated Spaces for Effective Immersive Analytics through Distributed Cognition[END_REF][START_REF] Reipschlager | Personal Augmented Reality for Information Visualization on Large Interactive Displays[END_REF]. Such surface augmentations have also been demonstrated to be used with real-world objects in the form of embedded visualisations using MR headsets [START_REF] Willett | Embedded Data Representations[END_REF]. In contrast to physical surfaces, virtual surfaces may act as substitutes in cases where access to physical surfaces is not possible-such as in highly mobile settings [START_REF] Ens | Spatial Analytic Interfaces: Spatial User Interfaces for In Situ Visual Analytics[END_REF]-or when tangibility is not strictly requiredsuch as when only used for organisation and presentation [START_REF] Lee | Shared Surfaces and Spaces: Collaborative Data Visualisation in a Co-located Immersive Environment[END_REF]. These works motivate the combination of a 2D surface with the 3D virtual space. Few however consider how visualisations may transition between the two and in what manner. Moreover, due to the close connection that 2D content has with surfaces (e.g., [START_REF] Cavallo | Immersive Insights: A Hybrid Analytics System ForCollaborative Exploratory Data Analysis[END_REF][START_REF] Ens | Shared Façades: Surface-Embedded Layout Management for Ad Hoc Collaboration Using Head-Worn Displays[END_REF][START_REF] Hyub | Projective Windows: Bringing Windows in Space to the Fingertip[END_REF][START_REF] Reipschlager | Personal Augmented Reality for Information Visualization on Large Interactive Displays[END_REF][START_REF] Wang | Towards an Understanding of Augmented Reality Extensions for Existing 3D Data Analysis Tools[END_REF]) and 3D content with space (e.g., [START_REF] Butscher | Clusters, Trends, and Outliers: How Immersive Technologies Can Facilitate the Collaborative Analysis of Multidimensional Data[END_REF][START_REF] Sousa | VRRRRoom: Virtual Reality for Radiologists in the Reading Room[END_REF][START_REF] Wagner Filho | VirtualDesk: A Comfortable and Efficient Immersive Information Visualization Approach[END_REF]]), we believe that surfaces present a strong signifier that 2D visualisations can somehow be "brought into" space. As a result, we focus on this transformation between 2D surfaces and 3D spaces in our work.

THE PURPOSE OF VISUALISATION TRANSFORMATIONS

As previously discussed in Section 2, we see visualisation transformations in immersive environments as animations which are initiated and controlled by user interaction for some specific purpose. Before we can identify the types of tasks to support however, it is first important to understand the types of transformations that are possible in an immersive 3D environment.

Visualisation states and transformations between them

A visualisation transformation involves a change from one visual state to another. In immersive environments, visualisations can exist either in space around the user or on a flat surface. We therefore map out how 2D and 3D visualisations can exist in these two environments in a matrix, as seen in Figure 2. This matrix describes a visualisation with two parameters: its Dimensionality (i.e., 2D vs 3D), and its Environment (i.e., surface vs space). 2D visualisations are intrinsically native to surfaces, with 3D native to space. It is also possible for a 2D visualisation to exist suspended in space, or a 3D visualisation to be projected onto a surface. While the manner in which the user perceives these from their native formats is different, the visualisation fundamentally still encodes the same data in the same visual aesthetics. However, we find that a frequent purpose for the transformation of visualisations, especially when moving between two and three dimensions, is to change the multiplicity of the views and to facilitate comparison between them. For example, side-by-side views in 2D may be transitioned to a directly overlaid stack in 3D for more direct comparison, and vice-versa. We therefore rely on the following definitions for our work: • By Dimensionality, we refer to whether or not a visualisation encodes meaningful information in only two dimensions on a flat plane, or in all three dimensions in a volume. This information can either be mapped directly from source data, or based on calculated/derived value(s) or model(s). For example, we consider a scatterplot that maps data along the x and y axes to be 2D, regardless if the scatterplot itself is rendered on a flat 2D surface or a virtual object floating in 3D space. In addition, the use of 3D primitives such as spheres or cones will still be considered as 2D if no data is encoded along the third spatial dimension.

• By Multiplicity, we refer to whether or not a visualisation is comprised of a single view or of multiple views. Certain operations or transformations can be applied to one or more views in the visualisation simultaneously. In an immersive environment, Gestalt principles such as similarity and proximity can be used to identify multi-view visualisations [START_REF] Ware | Information Visualization: Perception for Design[END_REF]. These two dimensions form the four main states in Figure 3 that a visualisation may be in both before and after a transformation: single 2D (S2D), single 3D (S3D), multiple 2D (M2D), and multiple 3D (M3D). We also define a set of common terminology that help us better classify and explain visualisation transformations. Along the dimensionality axis, transforming a visualisation from 2D to 3D is extrusion, and the opposite direction is flattening. Along the multiplicity axis, from single to multiple is distribution, and the opposite direction is collection.

Mapping tasks to visualisation transformations

We now associate tasks to the different transitions between these visualisation states. As interactivity is vital in the visual analytics process [START_REF] Thomas | Illuminating the Path: The Research and Development Agenda for Visual Analytics[END_REF], we focus on its use for data exploration as opposed to presentation [START_REF] Amini | Hooked on Data Videos: Assessing the Effect of Animation and Pictographs on Viewer Engagement[END_REF]. Note however that we are not focused on visualisation authoring [START_REF] Satyanarayan | Critical Reflections on Visualization Authoring Systems[END_REF], but instead how existing visualisations may be interacted and manipulated to fulfil different purposes.

There exist many visualisation task taxonomies in the literature (e.g., [START_REF] Amar | Low-Level Components of Analytic Activity in Information Visualization[END_REF][START_REF] Heer | Interactive Dynamics for Visual Analysis: A taxonomy of tools that support the fluent and flexible use of visualizations[END_REF][START_REF] Lee | Task taxonomy for graph visualization[END_REF][START_REF] Munzner | Visualization Analysis and Design[END_REF][START_REF] Schulz | A Design Space of Visualization Tasks[END_REF]). However, many of these are primarily based on desktop applications that do not support both 2D and 3D visualisations simultaneously. While we initially tried to map these tasks to the different transitions in Figure 3, we soon found that numerous tasks either do not require these transformations or are not appropriate for them (e.g., record, annotate). We therefore derived and mapped a new set of tasks that are relevant to each transition, as shown in Figure 4. As our work is inherently limited to transformations between 2D and 3D, the list of tasks we describe is not exhaustive as compared to those in related works. It comprises of 14 tasks, some of which are mirrored between states. We detail these tasks in this section.

Single 2D

↔ Single 3D Transformations. S2D to S3D transformations all encode some new information along the third unused dimension, causing data points to visibly "extrude" from the surface. Add Spatial Data Encoding encodes an additional data dimension from the original source using the third spatial dimension. This is equivalent to adding a third depth dimension to a 2D visualisation. Reveal Data Property is similar in that it also encodes information along the third spatial dimension, but the extent to which the third spatial dimension is used is dependent on some calculated value or property of the data (e.g., mean, node centrality).

S3D to S2D transformations involve the visualisation being "flattened" down from a 3D to a 2D object. They primarily reduce the amount of information that the visualisation encodes, usually to manage visual complexity. Aggregate and Filter are two main approaches in doing so, and our mapping reflects this. Note that we treat slicing and cutting, operations commonly used for spatial and volumetric data sets, as filter operations due to them effectively hiding portions of the visualisation. Project on the other hand encompasses transformations which project a 3D visualisation down to 2D. As Munzner describes [START_REF] Munzner | Visualization Analysis and Design[END_REF], this is differentiated between orthographic and perspective projection. Orthographic projections simply exclude values for a given data dimension that is to be dropped in the transition from 3D to 2D, and are functionally the opposite operation to Add Spatial Data Encoding. Examples of these can be seen in related work, with 3D visualisations being orthographically projected down into 2D in rotational transitions [START_REF] Bezerianos | Graphdice: A System for Exploring Multivariate Social Networks[END_REF][START_REF] Elmqvist | Rolling the Dice: Multidimensional Visual Exploration using Scatterplot Matrix Navigation[END_REF][START_REF] Hurter | FromDaDy: Spreading Aircraft Trajectories Across Views to Support Iterative Queries[END_REF]. Perspective projections on the other hand have greater implications due to the use of head-mounted displays in MR, as users can control how this projection occurs by moving their own head position or changing the orientation of the visualisation.

Single 2D

↔ Multiple 2D Transformations. S2D to M2D transformations all involve Creating Juxtaposed Views. Views are created and "distributed" from an initial 2D visualisation. While these transformations can be performed entirely on a flat 2D display, there are opportunities to distribute and arrange the views in 3D spatial layouts [START_REF] Liu | Design and Evaluation of Interactive Small Multiples Data Visualisation in Immersive Spaces[END_REF].

M2D to S2D transformations on the other hand involve "collecting" multiple visualisations together into a single one. Isolate View allows users to focus their attention on a single view by isolating it from the rest. As with above, single views can exist on both a surface or elsewhere in space.

3.2.3 Single 3D ↔ 2D/3D Multiple Transformations. S3D to either of the multiple visualisation states (M2D and M3D) involves the Partitioning of the 3D visualisation into several smaller visualisations, which get distributed in some manner. For when the target state is M2D, each partition is further reduced down to two dimensions. This would be the case when each individual partition has no benefit being in 3D. Alternatively, the partitions can remain in M3D, mainly in instances where they still encode 3D information (such as for volumetric visualisation).

Multiple visualisations to S3D involves Stacking them together to form a single visualisation. This can be considered as the reverse operation to Partitioning. In the specific case of S3D ↔ M3D, the same operations that exist for S2D ↔ M2D still apply.

Multiple 2D

↔ Multiple 3D Transformations. M2D to M3D can be seen as a mirror image of S2D to S3D. That is, any of the tasks performed to single visualisations can also be applied as a Linked Operation across multiple visualisations at the same time.

The selection of which visualisations should be transformed may be performed either implicitly, usually due to some semantic grouping (e.g., small multiples), or explicitly defined by the user.

A DESIGN SPACE FOR VISUALISATION TRANSFORMATIONS

We now consider how visualisation transformations between different states can be designed by crafting the design space shown in Figure 5. It was created through an iterative semi-systematic process, where we first brainstormed and developed prototype transformation techniques (shown in Section 5.2), then updated the design space to best describe these, and repeat. We took inspiration both from related work (e.g., [START_REF] Hurter | FiberClay: Sculpting Three Dimensional Trajectories to Reveal Structural Insights[END_REF][START_REF] Langner | MARVIS: Combining Mobile Devices and Augmented Reality for Visual Data Analysis[END_REF][START_REF] Reipschlager | Personal Augmented Reality for Information Visualization on Large Interactive Displays[END_REF][START_REF] Yang | Tilt Map: Interactive Transitions Between Choropleth Map, Prism Map and Bar Chart in Immersive Environments[END_REF]) and our own previous work on 2D and 3D visualisation [START_REF] Lee | Shared Surfaces and Spaces: Collaborative Data Visualisation in a Co-located Immersive Environment[END_REF][START_REF] Smiley | The MADE-Axis: A Modular Actuated Device to Embody the Axis of a Data Dimension[END_REF] during this process. The design space is meant to be read from the perspective of a designer that is creating an immersive visual analytics system for data analysts to use. The designer needs to consider both visualisation and interaction elements to make proper and effective transformations. The transformations they create can then be implemented into the system which users can then leverage for their own analysis. The design space loosely follows the general flow of a visualisation transformation: the initial state of the visualisation that is required for the transformation to be applicable; the user interaction(s) that enable the transformation; the transformation itself; and the resulting state of the visualisation after the transformation is concluded. These roughly fall under three colour-coded categories: the visual representations of the data (in yellow), the interaction(s) that the user is performing (in blue), and the transformation itself (in green). Several design dimensions are not mutually exclusive (marked by an asterisk), meaning that multiple elements from it can be considered in the design. The design space is not prescriptive, and is intended more as a guide to aid designers in considering the various options and aspects of visualisation transformations. In this section, we describe each part of the design space in turn and their design dimensions.

Initial Visualisation State

All Visualisation State sections refer to the various properties of the visualisation object. The Initial Visualisation State is the state of the visualisation prior to the transformation occurring. In the context of the state transitions described in Section 3, this section can be viewed as a starting node in Figure 4. As our transformations are applied by the user onto existing visualisations, the Initial Visualisation State is effectively the list of conditions that needs to be met by any given visualisation for the transformation to be usable. For example, a particular transformation may only make sense to be used on a scatterplot, and not for any other types of visualisations. This visual state is then affected by the Transformation section, as denoted by the arrow. We separate this section into two categories: Schema and the Geometric State.

4.1.1 Schema. This refers to the manner in which the visualisation maps data to graphics. It has three design dimensions:

Multiplicity. This is whether or not the visualisation needs to be Single or Multiple -view for the transformation to be valid. It is the same concept as discussed in Section 3.

Dimensionality. This is whether or not the visualisation needs to be 2D

or 3D for the transformation to be valid. It is the same concept as discussed in Section 3.

Visual Encoding. This is the set of one or more required visual encodings for the transformation to be valid. These encodings are similar in concept to those found in other visualisation taxonomies (e.g., [START_REF] Munzner | Visualization Analysis and Design[END_REF]), such as Marks , Colour , Size , and so forth.

Geometric

State. This refers to the properties of the visualisation as a virtual object in the immersive three-dimensional space.

It has two design dimensions:

Geometric Pose. This is the physical attributes of the visualisation in regards to its Position , Rotation , and Scale in the immersive three-dimensional space. As an example, a 2D visualisation may need to be facing in a direction perpendicular to the ground, or it may need to be at a certain height from the ground, or even both conditions at the same time. Note that scale in this context refers to the overall size of the visualisation, and not its graphical marks.

Surface Relation. This is the geometric relation between the visualisation and any particular surface in the environment (e.g., walls, tables). The choice of relationship matters since it can be a strong signifier as to whether or not certain transformations are available to the user. For example, a 2D visualisation suspended in space affords different ways of interacting with it compared to one that is displayed against a surface. There are three different possibilities for this:

• Attached is when a visualisation is bound to a surface. This can either be a visualisation that is physically rendered on a display, or a virtual visualisation rendered in MR that is aligned parallel to a surface.

• Colliding is when a visualisation intersects with a surface, generally at a non-orthogonal angle. This is possible in MR as virtual objects can be rendered in 3D space that do not conform to real-world physics or collisions.

• Separate is when a visualisation has no association with a surface. This is the case for visualisations that are suspended in space with no use of surfaces (e.g., [START_REF] Hurter | FiberClay: Sculpting Three Dimensional Trajectories to Reveal Structural Insights[END_REF][START_REF] Yang | Tilt Map: Interactive Transitions Between Choropleth Map, Prism Map and Bar Chart in Immersive Environments[END_REF]. The geometric state of a visualisation can be used as input parameters which then affect how the transformation functions, as indicated by the arrow. These input parameters are explained later.

User Interaction

The User Interaction section refers to the interactions with the system that the user performs in order to trigger (and optionally control) the visualisation transformation. As previously mentioned, this greater focus on interactivity distinguishes our transformations from conventional animated transitions (see Section 2.1). Note that all design dimensions in this section allow for multiple elements to be used at once, allowing for possibilities such as multi-modal interaction. This section is separated into two categories with a oneway relationship: Interaction Technique and the Input Parameters.

Interaction

Technique. This is the action that the user needs to perform in order to trigger and/or control the transformation. It has two design dimensions:

Input Modality. This is the input mode(s) that is being used in the interaction. While the set of possible modalities is dependent on the input devices available to the user, we consider a number of modalities that are commonly available on consumer MR devices such as the Microsoft HoloLens 2 in our design space:

• Mid-air inputs generally involve hand-tracking to detect user movements and gestures in space. Such gestures may use either direct manipulation (e.g., pinch on a virtual object) or indirect manipulation (e.g., hand wave in front of user).

• Touch inputs are those which are performed on a tangible surface. These inputs may be detected by a touchenabled display, an infrared touch tracking device, or simulated via the device's hand-tracking capabilities [START_REF] Xiao | MRTouch: Adding Touch Input to Head-Mounted Mixed Reality[END_REF].

• Tangible inputs are from a physical object, such as a virtual reality controller or mouse. This may involve a button press or some movement of the object. • Voice inputs are voice commands similar to those readily supported on MR headsets. • Gaze refers to the eye or head gaze of the user. Inputs can be performed using dwell-based interactions or eye gestures [START_REF] Hyrskykari | Gaze Gestures or Dwell-Based Interaction?[END_REF].

Targets. This refers to any specific visual element that the user is interacting with, particularly in the case of deictic techniques. It is necessary for two reasons. First, it can help distinguish between several transformations that share the same input modality by requiring the action to be performed on different targets. Second, it is an inherent selection operation that can then affect the transformation itself (explained later). We present a non-exhaustive list of possible targets for transformations:

• Marks are the graphical elements on the visualisation that encode data. For our purposes, this can be any graphical primitive or higher order graphic that is perceived as being interactable. Selecting a mark may require precise selection directly on it, or instead select the closest mark to the interact point.

• Axes are the visible axes objects that represent the coordinate system. All components of an axis (e.g., line, ticks, labels) can be encapsulated into a single target, or each one can be individually targetable for higher granularity.

• Substrate is the spatial region which the graphical marks exist in. As compared to marks, substrate refers to the broader area whereby there is no requirement to interact with any specific mark.

• Legend

is the legend that is associated with the visualisation, allowing for selection of a specific categorical item or value in a continuous range.

• Surface is any physical or virtual surface in the environment. This can be one which a visualisation is displayed on, or a different surface entirely.

• None is simply the case where there is no target involved in the interaction technique. This would be for non-deictic interactions, such as hand waves and gestures in a general area in front of the user. The notion of coupling input modality and target together is particularly useful when considering how embodied interaction can be used for these transformations in MR. Related work in Immersive Analytics has used embodied interaction principles and paradigms to "reach through" and manipulate data visualisations in meaningful ways (e.g., [START_REF] Batch | There Is No Spoon: Evaluating Performance, Space Use, and Presence with Expert Domain Users in Immersive Analytics[END_REF][START_REF] Cordeil | ImAxes: Immersive Axes As Embodied Affordances for Interactive Multivariate Data Visualisation[END_REF][START_REF] Yang | Tilt Map: Interactive Transitions Between Choropleth Map, Prism Map and Bar Chart in Immersive Environments[END_REF]), and it is important our design space also captures this. Use of embodied interaction can also be beneficial as it may carry certain connotations or metaphors that aid in the use of the transformation technique. For example, directly interacting with a specific mark on a visualisation may imply that the transformation affects the data point in some fashion, as opposed to something more abstract like a command line interface.

Input

Parameters. These are the values which are derived from the manner which the user performs the aforementioned interaction technique(s), hence the one-way arrow. These input parameters are then used as part of the transformation in order for the user to control how it behaves and/or how it progresses. As the possibilities here are virtually endless, we opt for a more abstract view of these parameters in terms of how they are derived. Note that the Geometric Pose of the visualisation also valid input parameters. We describe two broad forms of input parameters: Geometric Values. These are values that are derived from the geometric properties of both the interaction technique(s) and the visualisation. Certain values may need to be calculated on-the-fly based on certain mathematical functions or interaction metaphors. These are useful when simple numerical values are needed to control the transformation, such as a time variable that progresses through a transformation (e.g., [START_REF] Kondo | DimpVis: Exploring Time-Varying Information Visualizations by Direct Manipulation[END_REF]). Examples of these values are:

• Position , Rotation , and Scale , which can either be directly from the visualisation's Geometric Pose, or in some cases from a tracked tangible object or controller. • Distance is a numerical value between some start and end point. Examples are the distance between both the user's hands, the distance between a visualisation from a surface, or the distance which the user has dragged when performing a drag-and-drop interaction. • Angle is a numerical value comparing the rotation of one object to another. Examples are the angle between a visualisation and a surface, or the angle between a visualisation and the floor plane.

Targeted Values. These are values that are derived from the selected Target(s) as part of the Interaction Technique. These relate to various aspects of the underlying dataset, which may be necessary for the transformation to function. For example, a transformation may aggregate itself based on a particular data variable, which is defined through the targeting process. Examples of values are:

• Observation and Variable respectively refer to one or more elements or data dimensions in the dataset. Observations may be selected by targeting specific marks on the substrate or categories in the legend, whereas variables may be selected by targeting an axis (and therefore its corresponding variable).

• Axis

refers specifically to a spatial axis (i.e., x, y, or z) and not any corresponding variable. This may be used in instances where the data variable is not important, and only the spatial axis that the user is interested in.

Transformation

The Transformation section is how the transformation itself progresses. When a visualisation is in the correct state (based on the Initial Visualisation State) and the user is performing the necessary inputs (based on the User Interaction), only then does the transformation occur. At its core, the transformation constantly updates the visualisation to an Intermediary Visualisation State, changing its Schema and/or its Geometric State. This constant changing of properties is, in essence, the output of the transformation before it fully terminates into a Final Visualisation State (or back to the initial state, see below).

A core component of this section that is not explicitly described in the design space of Figure 5 is the underlying operations that map input parameters and data to the intermediate visualisation state and its visual encodings. This is due to the overwhelming number of ways that this mapping may be performed, especially when considering factors such as data types and transformations, visualisation idioms, and any other bespoke visualisation customisations. In order to still sufficiently describe the design of the transformation process, we take a generalised, high-level approach in an overall category which we refer to as Control.

Control. As described, this is the manner in which the transformation itself behaves. It is comprised of four design dimensions:

Task. This is the intended purpose of the transformation. For example, the transformation may add a particular spatial encoding, partition the visualisation into several segments, or project a visualisation down to 2D. As this inherently applies a constraint on the possible Multiplicity and Dimensionality choices (as per Section 3), choosing this task would be one of the first decisions made when designing transformations.

Function. This is the manner and frequency in which the Intermediate Visualisation State is visibly changed as transformation progresses. We identify two main types of transformations:

• Continuous transformations have smooth visual changes throughout the entire transformation. This is similar in concept to the typical approach of keyframe animation. • Staged transformations have staged visual changes throughout the entire transformation. This is similar in concept to staggering approaches in conventional animated transitions [START_REF] Chevalier | The Not-so-Staggering Effect of Staggered Animated Transitions on Visual Tracking[END_REF][START_REF] Heer | Animated Transitions in Statistical Data Graphics[END_REF].

Duration. This refers to how long the transformation lasts and when it terminates. There are two possible options:

• Controlled transformations are those in which the user has direct control over how the visualisation changes throughout the transformation process. The intermediate visualisation state is procedurally generated based on the input parameters, which in turn are based on the user's input. As a result, the transformation will terminate whenever the user stops interacting. This can be particularly useful when the intermediate visualisation state sufficiently reveals information to the point where reaching an "optimal" final state is not necessary, allowing the user to cut short the transformation and move on.

• Fixed transformations are akin to conventional animated transitions in that they change over a certain period of time.

While the user may still influence the final state of the visualisation via the input parameters, they otherwise have no control over how the transformation progresses once it has started. The duration of the transformation may be predefined by the designer, or chosen by the user via an input parameter. The duration may also be zero in the case of jump cuts.

Persistence. This refers to whether or not the effects of the transformation persist on the visualisation after the transformation has terminated, regardless of whether or not its duration is Controlled or Fixed. Two main possibilities exist:

• Ephemeral transformations reset back to their Initial Visualisation State. This reset may be instantaneous, or a smooth animation that effectively plays the transformation in reverse. This is mostly relevant for Controlled transformations, as the intermediate visualisation state may no longer be desirable to retain, hence the need for an automatic reset.

• Permanent transformations are just that: the visualisation permanently remains in the Final Visualisation State until it is modified further, or the user does some action to reverse the transformation. Note that when terminating Controlled transformations, the visualisation may skip to a predefined Final Visualisation State, or it may be a freezeframe of the Intermediate State at that point in time. In the latter case, we do not consider the visualisation to have actually reached the Final State yet from a design standpoint.

Final Visualisation State

Lastly, the Final Visualisation State section refers to the properties of the visualisation once the transformation has concluded. We consider this to be the destination node in any visual state transition in Figure 4. The design dimensions and properties are the same as in the Initial State, except these no longer act as conditionals, but instead as a set of changes that have occurred throughout the transformation.

USING THE DESIGN SPACE

In this section, we demonstrate how our design space can be used to describe existing examples of visualisation transformations found in related work in immersive analytics. We then demonstrate how the design space may be used to create new visualisation transformations by presenting a set of techniques that we believe best showcases its use.

Transformations in Related Work

As described in Section 2.3, related work has shown examples of transforming visualisations between 2D and 3D through user interaction in order to serve various purposes.

In FiberClay [START_REF] Hurter | FiberClay: Sculpting Three Dimensional Trajectories to Reveal Structural Insights[END_REF], the user can Project a Single -view, 3D trajectory visualisation of flights down into 2D

. This corresponds with a S3D to S2D transition. Besides its dimensionality and multiplicity, no specific visual encoding or geometric state is necessary. With two Tangible handheld controllers, the user presses down a button on both controllers in the general space around them (i.e., no target) to initiate the transformation. Depending on the Distance and Angle of the two controllers in relation to each other, the 3D visualisation's Scale along a single axis is modified in a Continuous fashion, effectively projecting it down to 2D as this value approaches zero. The transformation is Controlled by the user at all times, with the visualisation being left as a Permanent S2D visualisation upon completion. Tilt Map [START_REF] Yang | Tilt Map: Interactive Transitions Between Choropleth Map, Prism Map and Bar Chart in Immersive Environments[END_REF] actually consists of two separate transformations, each occurring at separate intervals. The first is a S2D to an S3D transition as it goes from 2D choropleth to a 3D prism map. This Adds a Spatial Encoding, adjusting the height of each prism along the new spatial axis. The height is dependent on the Rotation of the visualisation's geometric pose relative to the horizontal plane. Note that the interaction technique here is irrelevant, as the rotation of the visualisation may be controlled by any means. Within the transformation, the height adjustment is handled in a Continuous fashion and is Controlled by the user. The second is a S3D to S2D transition where the 3D prism map is Projected into a 2D bar chart. In a similar fashion, the Rotation of the visualisation is used to affect the progress of the transition into the bar chart. In both cases, the results of the transformation are Permanent , until of course the user performs the reverse action.

Example Visualisation Transformations

We now showcase a number of visualisation transformation techniques in the context of the design space, which were developed using the Unity3D game engine and the Immersive Analytics Toolkit [START_REF] Cordeil | IATK: An Immersive Analytics Toolkit[END_REF]. The code can be found on a publicly available GitHub repository 1 . The application was deployed on a Microsoft HoloLens 2 headset, which also allowed us to leverage its hand and surface detection capabilities. All of our techniques use a regular vertical wall as the surface, and primarily make use of mid-air interaction.

We describe one of these techniques in detail from a design perspective as though we are creating one such transformation from scratch. We then briefly describe our remaining techniques to demonstrate the range of possibilities when designing visualisation transitions. For readability, these latter techniques are separated into three categories roughly based on Figure 3: extrusion-based transformations from 2D to 3D, flatten-based transformations from 3D to 2D, and other generic transformation methods that can be adapted to any visualisation type. We include images in three general phases: the visualisation before the transformation, it during the transformation, and it after the transformation, with pictograms of their respective design space dimensions shown below. Please see the supplemental material for a video version of these techniques.

Example

Usage of the Design Space. Scatterplots are commonly used to visualise bivariate data. They however are subject to overplotting, particularly when the data is densely packed. To allow users to get around this, we want to somehow allow them to Reveal a Data Property, which in this case is the degree that each point is overplotted. From Figure 4, we see that this is suited for extrusion transformations between S2D and S3D visualisations. Therefore, we first require that our visualisation be a Single -view 2D scatterplot in the Initial Visualisation State for the transformation to be available. As 2D visualisations can be considered native to surfaces and 3D to space (Figure 2), we want to emulate our data being extruded into 3D space. Therefore, we also require that the Initial Visualisation be Attached to any surface. Through this, we can leverage the additional dimension to encode our calculated overplotting property, translating each point in a smooth Continuous function. The geometric length of this dimension as it extrudes outwards can either be Fixed or Controlled by the user. In this case, we choose Controlled as we want our system to be as interactive as possible.

While we have effectively worked backwards by considering our transformation first, we now know what inputs we need from the user to control this geometric length. As we need a linear value to map to length, we leverage a "pinch-and-drag" metaphor using Mid-air interaction, allowing us to derive a Distance value between the initial and current interaction points. This initial pinch can be anywhere on the scatterplot's Substrate , as we do not require any specific data values to be selected. While the exact declaration of how the input parameter(s) affects the Intermediate Visaul State is not part of the design space, we choose to Scale the third dimension's length based on this new Distance value.

Lastly, we consider whether or not we want the effects of the transformation to be permanent or not. As overplotting is something which analysts should be aware of, but not necessarily focus their exploration around, we can safely have the transformation be

Ephemeral

, as its state should automatically reset once the user lets go of their pinch gesture.

Overplotting Extrusion

Extrusion-based

Techniques. Extrusion transformations transform a visualisation from 2D to 3D. All of our extrusion techniques use a "grab and pull" metaphor with a mid-air pinch gesture, which simulates the visualisation being stretched or extruded outwards from the surface.

Shortest Paths Extrusion is used to reveal a data property, in this case the the shortest paths between nodes in a single 2D network. It requires any single 2D network visualisation that is attached to a surface. The user needs to grab onto two different nodes using mid-air interaction, one with each hand, which then act as input parameters to the transformation. Using a continuous function, the nodes are all extruded along the third spatial dimension based on the shortest path distance between the two selected nodes calculated using the Floyd-Warshall algorithm. This extrusion distance is also scaled depending on the minimum distance of either hand from the surface.

Shortest Paths Extrusion

Histogram Extrusion is used to reveal the distribution within each categorical value in a single 2D bar chart. By grabbing onto any part of the visualisation substrate, each bar extrudes outwards into splitting into multiple histograms that are read perpendicular to the surface. This transformation follows a staged function, as the number of bins in the extruded histograms is controlled by the user based on the distance from their hand to the surface.

Histogram Extrusion

Parallel Coordinates Plot Extrusion creates juxtaposed views stemming from a single 2D scatterplot, which is initiated by grabbing onto either of the two axes. As the user pulls away from the surface, new 2D scatterplots are created at different stages depending on the distance from the surface to their hand. The axis that was grabbed is an input parameter, which sets the fixed dimension across all created scatterplots, with the other axis dimension set to the next most correlated dimension. The geometric position of each view is also set by the transformation to be equidistant to each other. The 2D scatterplots are each linked together, forming a 3D parallel coordinates plot.

Parallel Coordinates Plot Extrusion 5.2.3 Flatten-Based Techniques. Flatten transformations transform a visualisation from 3D to 2D. All of our flattening techniques rely on a 'push into surface' metaphor, whereby the user holds onto and collides a 3D visualisation into a surface to squish or flatten it.

3D Scatterplot Projection projects a single 3D scatterplot that is colliding with a surface down to two dimensions. The initial placement of the scatterplot is performed to get it to collide with the surface is outside of the transformation process. When the movement operation is finished however (in this case the grab action), the transformation instantly projects all data points from 3D to 2D depending on the rotation of the scatterplot and the user's viewpoint. 

3D Bar Chart Partitioning

Volumetric Surface Slicing filters out all but a slice of a single 3D visualisation that is colliding with a surface. As the user controls the distance and rotation of the volume in relation to the surface by moving it around, the transformation continuously filters out all parts of the volume that are not touching the surface, creating a single 2D slice that is visibly attached to the surface.

Volumetric Surface Slicing 5.2.4 Generic Techniques. These techniques do not strictly relate to any specific visualisation type and therefore can be adapted to many different situations.

Apply Linked Operation applies a linked extrusion or reduction operation on multiple 2D or 3D visualisations at the same time, turning an M2D into M3D or vice versa. In this specific example, an Overplotting Extrusion transformation is applied to all 2D scatterplots in a matrix using the same interaction technique. As the user may wish to compare different views with each other, the transformation effects are permanent.

Apply Linked Operation

Matrix Extrusion creates juxtaposed views from a single attached 2D scatterplot or other visualisation by grabbing onto the top-right corner of its substrate. As the user drags their hand diagonally towards the top-right, a matrix of 2D charts is created and expanded in stages, based on the distance between the start grab point and the current position of the user's hand.

Matrix Extrusion

DISCUSSION, LIMITATIONS, AND FUTURE WORK

We believe our design space provides a rich framework for the design and creation of visualisation transformations between 2D and 3D. During the process of creating both the design space and our exemplary techniques, we identified some important considerations and questions that merit future research, as these are beyond the scope of this paper. We reflect on some of these in this section.

Using the design space and design principles. Our proposed design space can be used to help guide the creation of visualisation transformation in immersive environments. In contrast to prior work in animated transitions (e.g., [START_REF] Kim | Gemini: A Grammar and Recommender System for Animated Transitions in Statistical Graphics[END_REF][START_REF] John R Thompson | Data Animator: Authoring Expressive Animated Data Graphics[END_REF]), we do not provide a grammar with a strict syntax. It relies on the designer to take into consideration the sorts of input modalities, interactions, data types, and contexts in which they are designing these visualisation transformations for. As we have not conducted a user study or an evaluation with experts however, we cannot give concrete design principles on how best to make these decisions. We can however derive some general guidelines based off prior knowledge in both visualisation and HCI research. First, visualisation transformations should still aim to minimise the use of 3D as much as possible [START_REF] Munzner | Visualization Analysis and Design[END_REF]. This may either be through flattening 3D visualisations down into 2D, or by using more ephemeral transformations such that 3D is only used sparingly and in short bursts. Second, following direct manipulation principles [START_REF] Shneiderman | The Future of Interactive Systems and the Emergence of Direct Manipulation †[END_REF], the intermediary visual state during a transformation should closely match the user interaction as much as possible, such as the "grab-and-pull" metaphor of our extrusion techniques, or the tilt metaphor found in Tilt Map [START_REF] Yang | Tilt Map: Interactive Transitions Between Choropleth Map, Prism Map and Bar Chart in Immersive Environments[END_REF]. Third, the number of visual changes that occur throughout the transformation should be kept to a minimum. While regular animated transitions may undergo several visual encoding changes at once, necessitating the need for staggering to minimise visual complexity [START_REF] Chevalier | The Not-so-Staggering Effect of Staggered Animated Transitions on Visual Tracking[END_REF][START_REF] Heer | Animated Transitions in Statistical Data Graphics[END_REF], transformations between 2D and 3D can bypass this issue by simply not modifying as many visual variables at the same time. For example, our overplotting extrusion technique does not need rank the frequency of each overplotted x-y coordinate, as the depth dimension (and colour) is sufficient enough for seeing this information.

Use of 3D visualisations and the 'peeking' metaphor. Some of our exemplary techniques use ephemeral transformations because, as described in Section 4.3, the information they reveal does not serve any purpose in the long term. For example, once a user is able to identify which data points are overplotted, the effects of the transformation can be discarded as this information is now known to the user. This act of taking a 'peek' at the data in 3D is similar to techniques such as ScatterDice [START_REF] Elmqvist | Rolling the Dice: Multidimensional Visual Exploration using Scatterplot Matrix Navigation[END_REF] and GraphDice [START_REF] Bezerianos | Graphdice: A System for Exploring Multivariate Social Networks[END_REF] for maintaining transition awareness. In both cases, 3D is used sparingly and only in short bursts, rather than relying on it for an extended period of time. While it is possible to achieve similar results by changing visualisation encodings or creating different views of the data on 2D visualisations, we believe that these peeking transformations do not involve a lot of cognitive processes to perform such that the peeking metaphor can provide much timelier access to the required information. This also adheres to our aforementioned guideline as to avoid relying too heavily on 3D.

Discoverability and configuration of visualisation transformations. The notion of extruding objects from a 2D surface into a 3D MR environment is not new in the literature. However, previous work had typically consisted only of a single technique that applies to the entire object of interest, such as a hand motion anywhere on the surface (e.g., [START_REF] Benko | Cross-Dimensional Gestural Interaction Techniques for Hybrid Immersive Environments[END_REF][START_REF] Reipschläger | DesignAR: Immersive 3D-Modeling Combining Augmented Reality with Interactive Displays[END_REF]), picking up a physical object (e.g., [START_REF] Ens | Uplift: A Tangible and Immersive Tabletop System for Casual Collaborative Visual Analytics[END_REF]), pulling on a visible widget (e.g., [START_REF] Shengzhi | Pulling a 3D model from an editor display (e.g. Maya, C4D) to a real-world environment[END_REF]), or pressing a button on a handheld controller (e.g., [START_REF] Hurter | FiberClay: Sculpting Three Dimensional Trajectories to Reveal Structural Insights[END_REF][START_REF] Jackson | Lift-Off: Using Reference Imagery and Freehand Sketching to Create 3D Models in VR[END_REF]). With our work, we demonstrated techniques that can coexist simultaneously on any given visualisation (i.e., overplotting, parallel coordinates plot, and matrix extrusions) that are accessed through direct interaction. This naturally raises concerns of discoverability. As our design space was crafted with Immersive Analytics system designers in mind, they will need to consider how users might learn how to access these transformations. It is clear that some form of instruction, guidance, or affordance needs to be given to the user, especially when so many configurations of data representations are possible-and therefore a combinatorial explosion of different possible transformations. Future work may seek to provide further structure and standardisation to the design space, such that any given interaction technique will result in a consistent form of transformation no matter the visualisation schema or data type. Moreover, future work might circumvent the issue altogether by exposing the capability of creating and configuring visualisation transformations to the end-user directly, allowing them to tailor transformations in a manner which they find most useful for their given task.

Chaining and branching transformations. While we demonstrated our design space as being capable of describing existing transformations in the literature (Section 5.1), it still assumes that each visualisation transformation is a discrete standalone action with a clear initial and final state. What this does not fully capture however is the chaining and/or branching of different transformations together. This is made evident when considering Tilt Map by Yang et al. [START_REF] Yang | Tilt Map: Interactive Transitions Between Choropleth Map, Prism Map and Bar Chart in Immersive Environments[END_REF]. While we considered its transformations (choropleth to prism and prism to bar) as two distinct transformations that share the same interaction modalities and parameters, it can also be considered as one larger transformation but with two main stages-all performed with the same action. Moreover, there may be the possibility for branching transformations that change course depending on how this action is performed. In the case of our extrusion techniques, for example, depending on whether the user pulls away from the surface orthogonally or at an angle, a different follow-up transformation can be applied. We believe that some higher level view of how these different transformations are linked with each other is necessary to adequately understand and design such techniques.

Transformations involving different surfaces. For the purposes of generalisability, our design space uses an abstract notion of "surface". In reality, there exist many different types of surfaces (e.g., tabletops, tablets, phones) that each have their own considerations to take into account, such as orientation, size, and portability. Despite all of our techniques being demonstrated on a single vertical flat wall, it is to be expected that not all would be practical or effective when applied to other types of surfaces. It is highly likely that this distinction needs to be recognised fully in future work. Furthermore, while we specified these surfaces to be flat planes, there may be instances where visualisations can be attached to or even rendered on non-Euclidean surfaces. Such possibilities lie firmly outside the scope of this work however.

CONCLUSION

In this paper, we investigated the design of visualisation transformations between 2D and 3D in mixed-reality environments. We first discussed the relationship between 2D and 3D visualisations with surfaces and spaces, followed by describing the possible tasks that these transformations can fulfil when transitioning between four main states: single-view 2D, single-view 3D, multi-view 2D, and multi-view 3D. We then proposed a design space which designers of Immersive Analytics tools can use to create these transformations, which their end users may then make use of in their own analysis. This considers numerous factors such as the form of user input required, whether or not the transformation is directly controlled by the user throughout its animation, and if the effects of the transformation are permanent or not. We then demonstrated this design space with a set of example transformation techniques that were developed for the Microsoft HoloLens 2 headset. We believe that the use of 2D and 3D visualisations in this fashion will help inspire a different paradigm of Immersive Analytics, where data visualisations can freely flow between surfaces and space depending on the needs of the user.
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 2 Figure 2: A matrix of how visualisations can exist in mixedreality. Visualisation Dimensionality refers to the number of spatial encodings a visualisation has. Environment refers to where a visualisation is placed within the user's surroundings. Native visualisations have a number of spatial encodings equal to the number of spatial dimensions in their display environment.
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 3 Figure 3: A matrix of the different states that a visualisation can be in while in an immersive environment. Visualisations can exist in any one of the four states in the matrix. Transformations between 2D and 3D visualisations are referred to as extrude or flatten actions; between single and multiple are referred to as distribute or collect actions.
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 4 Figure 4: A mapping of possible visualisation tasks to the different transitions between the four visualisation states. A transformation technique is generally associated with one of these tasks for it to carry practical significance.

*

  transformations revert to their initial state Transformation begins when visualisation is in correct state and user interaction is performed CONTROL Choice of interaction technique affects which parameters are possible * Design dimensions marked with an asterisk are not mutually exclusive, allowing for multiple elements to be considered at once

Figure 5 :

 5 Figure 5: A design space for visualisation transformations between 2D and 3D. The Initial Visualisation State acts as requirements for the transformation to be available to the user. User Interaction is the actions the user needs to take to perform the transformation. Transformation refers to how the transformation progresses once triggered by the user.

  3D Scatterplot Projection 3D Bar Chart Partitioning partitions a single 3D bar chart into multiple 2D bar charts. As the 3D bar chart collides with a surface, a staged transformation occurs whereby rows of bars are partitioned off from the 3D bar chart and animate towards the surface. The number of partitions is dependent on the controlled position and rotation of the bar chart to the surface.

  

  2D choropleth map, 3D prism map, and 2D bar chart by simply tilting a handheld controller[START_REF] Yang | Tilt Map: Interactive Transitions Between Choropleth Map, Prism Map and Bar Chart in Immersive Environments[END_REF]. As the map is tilted, it smoothly transforms between a 2D choropleth, 3D prism, and 2D bar chart at set angular intervals. This simple interaction allows the user to control both the transition and the visual state depending on their given needs. In contrast, Reipschlager et al. use Augmented

	Reality Visualisation Layers to enhance 2D visualisations on wall-
	sized displays with superimposed 3D visualisation through simple
	touch gestures [45], simulating a transformation into 3D. Other
	works provide visualisation authoring tools that make it easy to
	create both 2D and 3D visualisations, allowing users to quickly
	swap between them at will. Most notably, ImAxes by Cordeil et
	al. enables the construction of 3D visualisations simply by placing
	three embodied virtual axis objects at orthogonal angles in VR [14].
	Using the same ImAxes grammar, Smiley et al. demonstrate how
	the MADE-Axis-a tangible controller for data visualisation-can
	be used to physically construct both 2D and 3D visualisations by
	leveraging its composability in a collaborative MR prototype

Most closely related to our work, Tilt Map by Yang et al. demonstrates transitions between a

https://github.com/benjaminchlee/2D-3D-MR-Transformations
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