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Buckling of graphene under compressive strain: DFT calculations
and second generation REBO potential
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• Buckling of graphene has been investigated using DFT calculations and
MS simulations.

• A constant value for the effective thickness of graphene has been de-
termined whatever the size of the buckle.

• No orientation (armchair/zigzag) effect of graphene on buckling.



Buckling of graphene under compressive strain: DFT
calculations and second generation REBO potential

C. Chila, J. Durincka, C. Coupeaua

aInstitut Pprime, Université de Poitiers/UPR 3346 CNRS/ENSMA, France

Abstract
Mechanical properties of coatings can be determined from the character-
ization of the buckling structures morphologies. Extending this scientific 
strategy to 2D materials has been proposed by defining an effective thickness 
that only depends on the elastic coefficients. In  this context, the buckling of 
graphene under compressive strain is studied by first-principles calculations 
and molecular statics simulations. No effect of the graphene orientation (arm-
chair or zigzag) with respect to the straight-sided buckle is evidenced on the 
morphology of buckles. The results confirm also that the effective thickness 
stays constant whatever the size of the buckles, even at the nanometer scale.

Keywords: Buckling, Graphene, Density Functional Theory, Molecular 
Statics

1. Introduction

High compressive stresses are often observed in coatings and thin films
(see [1] for a review). They are then prone to delaminating and buckling, a
phenomenon that leads in most cases to the loss of functionality that was ini-
tially conferred to the film/substrate composites. The elementary buckling
structures observed experimentally most often consist in telephone cords,
circular blisters or straight-sided buckles [2–14]. The buckling of coatings
has been theoretically studied in the past, mainly in the framework of the
elastic theory of thin plates. In particular, the Föppl-von Kármán (FvK)
equations allow determining the equilibrium shape of the buckled structure
and the critical strain (or stress) for buckling to occur [15, 16]. Finite el-
ement simulations have been also extensively carried out to figure out the



influence of different physical parameters on buckling, such as the pressure
mismatch between the inner and outer parts of the buckle [12, 17, 18] or the
elastic contrast between the film and the substrate [19, 20], the plasticity of
the film and the substrate as well [18, 21, 22]. Based on these elastic mod-
els, a new scientific strategy has been thus developed over the last decade,
that consists in determining, from a fine morphological characterization of
elementary buckles, some mechanical parameters of the involved coated sys-
tems, such as the Young’s modulus, the internal stresses or the film/substrate
adhesion [3, 4, 7, 10, 22–25].

Buckling structures have already been experimentally observed in 2D ma-
terials. For instance, networks of straight-sided buckles are commonly evi-
denced by scanning probe microscopy on graphene grown by chemical vapor
deposition (CVD) on different types of substrates, such as SiC(0001) [24],
poly-ethylene-terephthalate (PET) [26, 27] or cobalt [28]. More complex
structures are sometimes observed, such as for instance multi-lobed buck-
les on Ir(111) not really well-understood up to now [29] or even bubbles on
exfoliated graphene deposited on silicon oxide [30]. Using the previously
mentioned scientific strategy to determine mechanical properties from buck-
les morphology may be questionable since the thickness of a 2D material
is not explicitly defined. Molecular dynamics (MD) simulations have been
carried out to highlight the mechanical behaviour of graphene under stress.
A non geometrical thickness, called effective thickness in the following, has
thus been determined and found to depend on both the bending and in-plane
stiffness [31–33]. Most of the MD studies have been based on carbon nan-
otubes (CNTs) and the elastic coefficients have been found to stay roughly
constant as a function of the CNT radius of curvature, up to a critical value
of around 1 nm [31, 33]. Moreover, it has been demonstrated that the elastic
coefficients at such an atomic scale sometimes depend [31] or not [33, 34]
on the armchair or zigzag configurations of graphene. These numerical MD
results, however, depend significantly on the interatomic potentials that are
used to describe the mechanical behaviour of graphene. Many density func-
tional theory (DFT) calculations have been reported in the literature but, to
our knowledge, no DFT studies have been specifically focused on the buckling
of graphene sheets. It can be however noted that MD simulations have been
performed on graphene by Lu and Huang [34] who have shown in particu-
lar that the critical strain for buckling linearly increases with the decreasing
width of the buckle, suggesting that the elastic theory is still valid for such
a 2D material.
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In this context, we have performed DFT calculations and molecular stat-
ics (MS) simulations on single layer graphene strained by uniaxial compres-
sion. The numerical results are first presented and then compared and dis-
cussed with respect to other previous studies in which values of the graphene
thickness have been determined. The relevance of experimentally character-
izing the morphology of buckles to extract some mechanical information on
2D materials is finally discussed.

2. Numerical details

The two representative graphene monolayers considered in the simulations
are shown in Fig. 1: one with the armchair direction (Fig. 1a) and the other
with the zigzag (Fig. 1b) lying along the (Ox) direction. Periodic boundary
conditions are implemented along (Ox), (Oy) and (Oz) directions. The di-
mension Lx is ranging from 5 to 43 unit cells and the dimension Ly is fixed
to 3 unit cells each composed by 4 atoms. Lz is equal to 15Å, leaving a suf-
ficiently thick vacuum layer that prevents the graphene from self-interacting
with its image along (Oz). A sinusoidal out-of-plane perturbation with a
maximum deflection equal to 1Å, located at the Lx/2 position, is imposed
to the graphene. The strain is then applied by increments of 0.01 % along
the (Ox) axis, i.e. along either the armchair or the zig-zag directions. At
each strain step, the different atomic configurations are released using DFT
calculations or MS simulations using interatomic potentials.

Figure 1: Atomic graphene configurations for (a) the armchair and (b) the zigzag orien-
tations. The strain ϵ is applied along the (Ox) axis. The unit cell is represented by the
red dotted rectangle.

DFT caculations are performed using the VASP (Vienna Ab initio Simula-
tion Package) code, within the Generalized Gradient Approximation (GGA)
framework parametrized by Perdew, Burke and Ernzerhof (PBE) [35]. The
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interactions between ions (core electrons and atom nucleus) and valence elec-
trons are described by the Projector Augmented Wave (PAW) pseudopo-
tential formalism. A Monkhorst-Pack sampling of the irreducible Brillouin
zone of 10×10×1 is used with a kinetic cut-off energy equal to 600 eV. The
groundstate charge density is calculated using the blocked Davidson iteration
scheme, until the total energy no longer varies by more than 10−6 eV and the
position of the ions is optimized according to a conjugate gradient algorithm
until the maximum force on ions is less than 10−4 eV.Å−1.

For larger graphene monolayers, with Lx ranging from 18 Å to 104Å,
molecular statics simulations are performed using the LAMMPS program
[36]. Interactions between carbon atoms are modeled using the second gen-
eration of the Reactive Empirical Bond Order (REBO 2002) potential [37].
The atomic positions are optimized and the energy is minimized for each
strained configuration using a conjugate gradient algorithm until the maxi-
mum force between atoms is lower than 10−6 eV.Å−1.

3. Results

The out-of-plane displacement w of the buckled graphene strained at 1%
is plotted in Fig. 2 for both the zigzag and the armchair configurations.
The buckling of “thick” films has been extensively studied in the past, by
using the FvK equations [15]. For a 1D straight-sided buckle on a rigid
substrate, named also as the Euler’s column, the equilibrium buckled shape
is characterized by the displacements u and w along (Ox) and (Oz) directions
respectively [15]:

u(x) =
πδ2

32B
sin

(
2πx

B

)
, (1)

w(x) =
δ

2

[
1 + cos

(πx
B

)]
, (2)

with δ, the maximum deflection of the buckle and B, its half width. It is
shown in Fig. 2(a) and 2(b) that the numerical MS data (circular and tri-
angular dots for the zigzag and armchair configuration, respectively) are in
good agreement with the equilibrium shape predicted by the elastic contin-
uum theory with B = Lx/2.

In the following, the applied strain ϵ is considered to be positive in com-
pression and negative in tension. The evolution of the maximum deflection
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Figure 2: MS simulations of the out-of-plane displacement for (a) a zigzag (Lz
x = 39.4Å

or Bz = 19.7Å, circle dots) and (b) a armchair (La
x = 38.4Å or Ba = 19.2Å, triangular

dots) configuration. The compressive strain along the (Ox) axis is equal to 1%. The fit
based on the Eq.(2) has been superimposed as straight lines. (c) Maximum deflection δ
of the buckle as a function of the compressive strain ϵ, for both the armchair and zigzag
configurations.

with ϵ > 0 is plotted in Fig. 2(c) for the zigzag and the armchair configu-
rations. δ continuously increases with the increasing strain for zigzag and
armchair configurations. The slight difference observed in Fig. 2(c) is related
to the values of half widths Bz and Ba that differ by about 0.5Å between
zigzag and armchair configurations, respectively. Finally, no buckling occurs
at strain values lower than a critical strain ϵc. In the framework of the elastic
theory, this critical strain for buckling is given, for a film with a thickness h,
by [15]:

ϵc =
π2

12

(
h

B

)2

, (3)
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and the maximum deflection δ of a straight-sided buckle writes as [15]:

δ =
4B

π

√
ϵ− ϵc. (4)

It is noticed in Eq.(3) that ϵc depends on the thickness of the film, a
parameter that is not geometrically defined for graphene and for 2D materials
in general. Another relationship for the critical strain can be derived from
the critical load determined for the buckling of rectangular plates of width
2B [38]:

ϵc =
π2D

CxxB2
, (5)

where D is the bending modulus and Cxx, the in-plane elastic coefficient.
Combining Eqs. (3) and (5), the expression of an effective thickness can be
given by:

h = 2

√
3D

Cxx

, (6)

that depends only on the elastic properties of graphene. Another way to
figure out the thickness of graphene is to directly use simulated data obtained
for the buckling of graphene. The first method consists in fitting ϵc given by
the Eq. (4) against the numerical values of the maximum deflection δ with
respect to the applied strain ϵ. The result of the fitting procedure is shown in
Fig. 2(c) as black lines, with critical strain values found equal to ϵac = 0.206%
and ϵzc = 0.193% for the armchair and zigzag directions, respectively. It is
found that

√
ϵac/ϵ

z
c is approximately equal to Bz/Ba with a relative error

less than 0.7%, meaning that the buckling for both configurations behaves as
predicted by the Eq. (3) with the same value of h. It confirms that the slight
difference observed in Fig. 2(c) for the armchair and zigzag configurations is
related to the discrepancy between half widths Bz and Ba. Another method,
based on the calculation of the elastic energy stored in a strained film and
already used in a previous work by Lu and Huang [34], has been considered
here to systematically determine the effective thickness of graphene as a
function of B for both configurations. In the planar state, the elastic energy
per unit length of the film is given by [11] :

Uflat = BhĒϵ2, (7)

where Ē is the reduced Young’s modulus (Ē = E
1−ν2

with ν the Poisson’s
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ratio). For ϵ > ϵc, the elastic energy per unit length of a buckled film is
defined as [11]:

Ubuckled = Uflat −BhĒ(ϵ− ϵc)
2, (8)

leading to:
Ubuckled = BhĒϵc(2ϵ− ϵc). (9)

Figure 3: Energy elastic per unit length calculated by MS of a zigzag graphene (B=15 Å)
as a function of the strain. The hatched zone corresponds to tension strains. Vertical
dotted line corresponds to the transition between the flat (parabolic dependence) and the
buckle (linear dependence) states.

Thus, the elastic energy stored in the buckled film linearly depends on ϵ,
while it evolves as ϵ2 in the planar state. These two different regimes have
consequently been used to determine the buckling onset of graphene, i.e. at
ϵ = ϵc. As an example, the elastic energy per length unit U extracted from
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the MS simulations is plotted in Fig. 3 with respect to the applied strain ϵ, for
graphene with dimensions Lx=30Å. A critical strain ϵc is clearly evidenced
above which the calculated elastic energy U fits with a straight line (buckled
state) and below which it fits with a parabola (plate state). In this case, ϵc
is found to be equal to 0.43%.

Figure 4: Critical strain for buckling ϵc and effective thickness h, as a function of the half-
width B and for both armchair (triangular dots) and zigzag (circle dots) configurations.
The MS and DFT calculations are shown in black and white dots respectively. Grey
dashed lines correspond to average value for both configurations.

The critical strain ϵc has been determined by DFT calculations and MS
simulations, for various B values ranging from 6.2Å to 52.8Å (Fig. 4(a)). It
shows that ϵc continuously increases with decreasing B, in agreement with
[34] and that DFT and MS calculations give similar results. The effective
thickness of the graphene has been determined using the Eq.(3) and plotted in
Fig. 4(b) as a function of B, for both the zigzag and armchair configurations.
The value of h is shown to be constant whatever B, even for values of B lower
than the nanometer. A slight discrepancy (around 6%) is observed between
the DFT and MS data, as expected due to the assumptions related to each
method. Eqs. (3) and (4) describing the buckling in the framework of the
continuum elastic theory are thus staying valid even for 2D materials provided
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that a value for the thickness is considered appropriately. Finally, no effect
of the graphene orientation, armchair or zigzag, on buckling is found to be
significant in our numerical simulations, as also observed by MD simulations
in [34]. Such a conclusion has also been numerically obtained by MD in the
case of stretching/bending tests [32].

4. Discussion and conclusion

Most of the thickness values found in the literature for graphene are less
than the interlayer spacing of 3.34Å in graphite. These values correspond to
an effective thickness, i.e. a thickness that is related to the elastic coefficients
of the single graphene layer. In our study, an effective thickness of 0.91Å has
been determined by DFT in the framework of the elastic buckling of plates.
The value h of the thickness has been found not to depend on the size of the
buckle, in agreement with the average thickness determined in a previous
work [39] by fitting the ϵc=f(B) curve obtained by MD. The in-plane rigidity
of graphene has also been determined by DFT and found to be equal to
Cxx = 21.7 eV/Å2. Using h = 0.91Å in Eq. (6), a bending rigidity D equal
to 1.49 eV has been calculated. This value is in good agreement with the
one (D = 1.41 eV) determined by DFT from the energy of carbon nanotubes
with respect to the radius of curvature [40]. Concerning the results obtained
using interatomic potentials, it is known that the REBO 2002 potential gives
Cxx = 289 J.m−2 and D=1.42 eV [39], leading to h=0.97Å using Eq. (6),
also in good agreement with our results. It confirms that the buckling of
graphene can be well described in the framework of the continuum elastic
theory by assuming an effective thickness. In our study, it has been shown
that this effective thickness is constant whatever the size of the buckle, even
at the nanometer scale, and found equal to 0.91Å and 0.97Å using DFT
calculations and MS simulations, respectively.

On one hand, given that the effective thickness for graphene is known, the
strain applied on graphene can be simply determined from the buckle mor-
phology, i.e. from its deflection and its width. This approach is all the more
interesting from a practical point of view since the effective thickness has
been found to be constant whatever the width of the buckle. On the other
hand, it is also believed that such a strategy can be used to determine the
effective thickness of 2D materials from strain-controlled mechanical tests,
giving relevant information on the mechanical properties to which the effec-
tive thickness is related.
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