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Abstract 

 

Purpose: Surgery simulators can be used to learn technical and non-technical skills and, to analyse posture. 

Ergonomic skill can be automatically detected with a Human Pose Estimation algorithm to help improve the 

surgeon’s work quality. The objective of this study was to analyse the postural behaviour of surgeons and identify 

expertise-dependent movements. Our hypothesis was that hesitation and the occurrence of surgical instruments 

interfering with movement (defined as interfering movements) decrease with expertise. 

Material and Methods: Sixty surgeons with three expertise levels (novice, intermediate, and expert) were 

recruited. During a training session using an arthroscopic simulator, each participant’s movements were video-

recorded with an RGB camera. A modified OpenPose algorithm was used to detect the surgeon's joints. The 

detection frequency of each joint in a specific area was visualized with a heatmap-like approach and used to 

calculate a mobility score. 

Results: This analysis allowed quantifying surgical movements. Overall, the mean mobility score was 0.823, 

0.816, and 0.820 for novice, intermediate and expert surgeons, respectively. The mobility score alone was not 

enough to identify postural behaviour differences. A visual analysis of each participants’ movements highlighted 

expertise-dependent interfering movements.  

Conclusion: Video-recording and analysis of surgeon’s movements are a non-invasive approach to obtain 

quantitative and qualitative ergonomic information in order to provide feedback during training. Our findings 

suggest that the interfering movements do not decrease with expertise but differ in function of the surgeon’s level.  

Keywords: 2D human pose estimation, Orthopedic Surgery, Process Assessment, Simulation training 
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1. Introduction 

 

Simulation-based learning technique have been used in different fields of medicine for many years [1]. One of the 

oldest simulation models is a clay nasal reconstruction model from ancient India that dates back to 600 BC [2]. 

Thanks to technological advances, medical simulators have improved in realism and number of simulated 

procedures [1, 2]. Laparoscopic surgery is the specialty that most requires of simulation-based training for many 

reasons including the reduction of tutoring time by experts and the development of technical skills [3–5]. Indeed, 

simulation has many advantages such as  improved ethics, perfect reproducibility, and acquisition of technical 

skills without endangering the patient’s health [2–4]. Concerning technical skills, simulators record the execution 

time, gesture accuracy, and correct use of the laparoscope [5–7]. These competencies have been shown to be 

insufficient, lacking non-technical skills aspects such as communication, stress management and gesture [7–9]. 

Technical and non-technical skills are indissociable, as shown by Fecso et al., using statistical correlations [10]. 

Another important skill is ergonomic self-awareness, to avoid musculoskeletal pain caused by repetitive surgeries. 

The most studied ergonomic factors are the movement and posture of the surgeon’s head, shoulder, and neck[11, 

12].  

 

Surgeon’s posture can be detected using cameras and/or electromyographic sensors (EMGs) [13–16]. These 

technologies allow analysing the surgeon’s ergonomic dynamics by estimating postural angles and muscle tension 

[17, 18] and by providing information to limit musculoskeletal pain in the lower back, neck and shoulders. Some 

studies have analysed the various parameters that influence the surgeon’s posture with the aim of proposing 

solutions to reduce pain and improve the overall surgical ergonomic [16, 17, 19]. These methods are based on 

data collected using EMGs and/or Inertial Measurement Units (IMU) directly attached to the surgeon’s body. The 

camera-based method described by Berguer et al. [19] uses reflective markers visible thanks to incandescent bulbs 

to capture the surgeon’s posture. However, these devices may hinder the surgeon’s movements, creating a possible 

bias, and are time-consuming to attach. Overall, the data obtained with these different devices are similar: 

movement frequency, angle calculation between body joints, and muscles activity.  

 

Human pose estimation (HPE) algorithms have been developed and improved since the 80’s and have been used 

to detect and monitor surgeons’ posture detection [20–22]. This technology has been rapidly implemented in 

different domains such as surveillance [22], athletics, and medical applications [21]. The HPE algorithm was the 

Pictorial Structure, using color and regression algorithms applied on 2 dimensional (2D) pictures [23]. The 

democratization of deep learning has increased HPE accuracy and performance. For instance, the ‘DeepPose’ tool 

(2014) has with a HPE accuracy of 60% [24–26]. Since then many other algorithms have been developed to 

improve posture detection in different situations. Deep learning HPE methods have been used to address several 

challenges including multi-person detection and realtime pose estimation [27–29]. For multi-person detection, 

two major approaches exist:  “top-down” and “bottom-up”. In “top-down” approaches, first people are detected 

and separated and then the body joints are detected. “Bottom-up” approaches move from joints to people  [27–

31]. The most popular deep learning HPE tool is OpenPose because it allows multi-person pose detection, is the 

most documented method, and is an open-source algorithm [31, 32]. It can also be used for real-time posture 

detection  [27, 28]. This “top-down” algorithm was trained to recognize different body joint dataset which is useful 

for adapting joint detection in function of the available images or videos [28, 31–33]. 

 

The purpose of the present work was to observe different postural behaviours and to correlate their frequency with 

surgical expertise.  These postural behaviours include those arising from discomfort hesitation, and those due to 

the surgical tool inference with the desired movement (i.e. “interfering movement”). Our hypothesis was that the 

number of interfering movements was higher for “novice” than for “expert” surgeons. To test this hypothesis, we 

developed an original and innovative mobility score to analyse and compare the surgeons’ movements during a 

simulated surgical intervention. We also created a comprehensive heatmap that illustrates the median mobility 

scores. This representation is helpful to focus the analysis on exercises with the most differences among surgeons 

during simulation-based learning. 

 

2. Materials and Methods 

 

To test our hypothesis, a cohort of surgeons with different level of expertise were monitored while using a virtual 

reality arthroscopic simulator using a convenient non-invasive human pose detection method. 

 

2.1. Virtual Reality Arthroscopic simulation training protocol 

 

Sixty surgeons were recruited over 9 months (November 2020 to July 2021) for a controlled prospective 

observational study: 
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- 36 “novices”: junior residents (one or two years post-graduation); 

- 12 “intermediate”: < 100 arthroscopies as principal operator per year or < 5 years after the postgraduate 

diploma in orthopaedic surgery; 

- 12 “experts”: > 100 arthroscopies as principal operator per year and > 5 years after the postgraduate 

diploma in orthopaedic surgery. 

 

These criteria to define the expertise level were previously used in a similar study [34]. The cohort was 

multicentric and mainly composed of right-handed men. Women were under-represented in the “intermediate” 

and “experts” groups (Tab. 1). Informed consent was obtained from all participants. The Fundamentals of 

Arthroscopy Surgery (FAST) and KNEE modules from the VirtaMed AG (Zurich) ArthroS™ arthroscopy 

simulator were used for the study. The FAST module was used for basic exercises, and KNEE was used for more 

complex tasks [35]. A standardised experimental set-up consisting of nine different exercises was proposed to 

each surgeons to evaluate all the technical arthroscopic competences. These exercises included also a simulated 

arthroscopic meniscectomy that was performed three times consecutively at the end of the session [34]. These 

exercises were selected because they require precise surgical skills during real arthroscopic interventions. Each 

participant was recorded during the session using a frontal standard RGB camera (recording frequency of 30 Hertz 

and a resolution of 240 x 320 pixels). Recording was done using a Python script (version 3.7) on a dedicated 

laptop (16GB RAM, Intel core i7). Each recorded video was anonymized using a standard procedure to enable 

blind analysis. 

 

Tab. 1 Description of the surgeon cohort 

Expertise level Number 
Mean age 

(min/max) 
Hospital localisation Man/Woman 

Right/Left 

handed 

Novice 36 25.17 (24/29) 
Angers, Brest, Nantes, Rennes, 

Tours 
26/10 21/5 

Intermediate 12 32.5 (30/39) 
Angers, Lyon, Nantes, Rennes, 

Tours 
11/1 12/0 

Expert 12 56.72 (39/70) 
Angers, Bordeaux, Brest, Lille, 

Nantes, Paris, Rennes 
11/1 11/1 

 

2.2. Detection of the surgeons' posture 

 

A simplified version of OpenPose [33] was used to detect the participants' joints in the videos of their training 

session. This algorithm could be adapted using the detection confidence threshold as parameter to return the 

orthonormal coordinates of each joint1. The detection confidence threshold was automatically optimised to detect 

a precise list of body joints. Indeed, the simulator module hides the participants’ lower body part (Fig.1) that 

therefore cannot be detected by the algorithm in the input RGB images. 

 

 
Fig. 1 Camera view of a surgeon using the KNEE module. The lower limbs and head are not visible or hidden 

 

                                                
1 https://github.com/quanhua92/human-pose-estimation-opencv  
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Despite the confidence threshold parameter optimization, the resulting detection was considered too noisy. To 

filter and smooth the signal, a Savitzky-Golay filter was applied on abscissa and ordinates values of each detected 

joint [36]. Two parameters were needed for this algorithm: the length of the sliding window and the polynomial 

degree that represents the data distribution. Both are explained in the following to subsections.  

 

- Length of the window 

 

This parameter is essential to obtain a filtering close to the original data without making up information. There is 

no strict mathematical rule for this and the sliding window length is highly data dependent. To ensure that data 

were not over-smoothed, the window length was constrained as follow: 

1

t
 ∑t

t=0 abs(x(t) − x(t)′)  > √σx
2

2
  (1) 

 

where 𝜎𝑥
2 is the standard deviation of the original data, and x(t) and x(t)’ are the original and Savitzky-Golay 

values, respectively, at the time t. 

 

- Polynomial degree 

 

A third degree polynomial was found to best fit the original data after testing polynomial degrees from 2 to 5. Fig. 

2 presents the denoising process with the Savitzky-Golay filter and these parameters. 

 

 
Fig. 2 Graphical representation of the camera coordinates of the neck-body joint of one surgeon during the 

“periscoping” exercise in function of time (in millisecond; ms). Original signal before (in blue) (a) and after 

denoising (in red) (b) using a Savitzky-Golay filter with automatic window size and a third degree polynomial 

 

2.3. Analysis of the 2D coordinates 

 

The final joint coordinates were visualised using a virtual skeleton (Fig. 3.a and a movie in Supplementary 

Material). From this representation an original approach was developed to visualise and analyse posture as a 

movement heatmap (Fig. 3.b) and to calculate a novel mobility score.  

 

- Movement heatmap 

 

The movement heatmap was created in two steps: i) partitioning of the camera coordinate space into a series of 

10*10 pixel squares, and ii) computing the frequency at which each joint appeared in each squares. When a joint 

was included in one of the squares, its corresponding coefficient in the matrix was incremented by one. This step 

was repeated for each coordinate present in the exercise coordinate list (each time step). At the end of the process, 

the matrix is represented by a grey-scale picture, from light (low frequency) to dark (high frequency). This 

representation provides a global view of the movements performed by a surgeon during simulator exercises (Fig. 

3.b). 
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Fig. 3 Representation of the surgeon’s pose estimation by the simplified OpenPose algorithm (a); movement 

heatmap linked to the surgeon posture (b) 

 

- Mobility score 

 

The movement heatmap showed the physical extent of joint motion in relation to the global environment. It was 

used to compute a mobility score (MS) that takes into account the theoretical maximum (maxtheory) value of the 

coefficient (when all joint coordinates are in the same 10*10 pixel square during the entire exercise) and the 

observed reached maximum (maxobs), defined by the maximum coefficient value (i.e. the one with the most joint 

coordinates during the whole exercise). The third quartile (Q3) takes into account the coefficient value 

distributions. The MS was calculated with the following formula: 

 

𝑀𝑆 =  1 −
|𝑚𝑎𝑥𝑡ℎ𝑒𝑜𝑟𝑦−(𝑚𝑎𝑥𝑜𝑏𝑠−𝑄3)×4|

𝑓𝑟𝑎𝑚𝑒𝑠−𝑠𝑞𝑢𝑎𝑟𝑒𝑠
    (2) 

 

where frames and squares are the total number of frames that constitute the exercise video and the total number 

of incremented coefficients, respectively. 

The MS represents the distribution of joint coordinates in the global environment and ranges between 0 and 1. A 

score close to 0 indicates few movements, whereas values, close to 1 indicate a large number of joint movement. 

The MS was calculated for each surgeon, exercise, and joint combination. Importantly, the MS is height and 

camera position independent.  

 

2.4. Statistics 

 

As the MS did not follow a normal distribution (significant Shapiro-Wilk test), the Mann Whitney test was used 

to compare MS values among the expertise groups. Differences were considered significant if the p-value was < 

0.05. 

  

3. Results 

To facilitate comparison and highlight differences in the three expertise groups, the median MS values of each 

implicated joint in the different exercises were represented using a grey scale intensity (Fig. 4). Several differences 

can be seen between the three groups. For instance, the median MS values for the left shoulder of “Novice 1” 

(upper part of Fig.4) indicated that this surgeon moved a lot during the simulation exercises (MS between 0.9 and 

1.0 for more than 80% of exercises (Fig. 4)). This movement profile was close to that of the “novices” group, but 

with higher scores for all exercises, with the exception of “image centering” and “probing”.  

 

To obtain an overview of the three expertise groups for all exercises, the mean MS for each group was calculated 

by grouping all joints and exercises: 0.823 (standard deviation: 0.22), 0.816 (standard deviation: 0.22), and 0.820 

(standard deviation: 0.25) for the “novice”, “intermediate” and “expert” groups, respectively. No significant 

difference was observed among these three mean global MS (p>0.05). When focusing on the individual joints, 

wrists and left elbow were moved frequently during each exercise. Moreover, the MS profiles for the same 

exercise (e.g. “telescoping” and “periscoping”) were different in the three expertise. Overall, the MS profiles of 

the three expertise groups suggested that “novice” and “expert” surgeons had the median in the same gradient for 

many exercises compared with “intermediate” moving globally less than the others. 
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Fig. 4 Upper part: representation of the left shoulder score for one “novice” surgeon for all exercises. Lower part, 

“mobility heatmap”: median mobility score for each exercise and joint in the three expertise groups 

 

 

 

On the basis of the MS profile, the next analysis focused on a subset of joint-exercise pairs where the MS 

differences among expertise levels were most pronounced. This subset included exercises that required the most 

technical skills and therefore are more relevant for surgical training. This subset included both shoulders for 

“periscoping”, “guided diagnostic'' and “guided meniscectomy 1” and the left shoulder for “probing”. Fig. 5 shows 

boxplots of these scores, allowing for deeper visual analysis. Differences between expertise groups were most 

visible for “periscoping” where the “expert” group having significantly lower right shoulder mobility (p = 0.0215, 

p = 0.0379 compared with the novice and intermediate group, respectively) (Tab. 2). Similarly, the MS for left 

shoulder in the “guided diagnostic” exercise (p = 0.0392, p = 0.0193) and “guided meniscectomy 1” for the left 

shoulder (p = 0.0174, p = 0.0113) were higher in the expert group than the novice and intermediate groups.  This 

analysis also emphasised the MS heterogeneity within the “expert” and “novice” groups, particularly for the 

“probing” exercise, as indicated by the large number of outliers.  

 

Comparison of the median MS for each examined joint-exercise pair with the Mann Whitney test highlighted at 

least one significant difference between expertise groups. Overall, the “novice” and “intermediate” groups showed 

similar performance resulting in only one significant differences, for the “probing” exercise. 
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Tab. 2 Comparison of median MS in function of the expertise level with the Mann-Whitney test. Significant 

differences ( p-value < 0.05) are highlighted in grey 

 

Exercise Body joint Novice VS 

Intermediate 

Novice VS Expert Intermediate VS 

Expert 

“Periscoping” Right Shoulder 0.2672 0.0215 0.0379 

Left Shoulder 0.4429 0.1024 0.1473 

“Guided 

diagnostic” 

Right Shoulder 0.3164 0.0392 0.0193 

Left Shoulder 0.0854 0.2293 0.0538 

“Guided 

meniscectomy 

1” 

Right Shoulder 0.3657 0.4659 0.3721 

Left Shoulder 0.3708 0.0174 0.0113 

“Probing” Left Shoulder 0.0288 0.2677 0.1551 
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Fig. 5 Boxplots of the right and left shoulder MS in the “periscoping”, “guided diagnostic” and “guided 

meniscectomy 1” exercises and of the left shoulder MS for “probing”. Blue, orange, and green boxes correspond 

to the “novice” (N), “intermediate “(I), and “expert” (E) groups respectively 
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To qualitatively understand these differences among expertise groups the videos were visually analysed to detect 

interfering movements. "Novice" surgeons had interfering movements and hesitation movements close to their 

chest that sometimes interfered with each other leading to non-smooth displacements. The “intermediate” 

expertise level group was the most heterogeneous. Compared with the "novice" group the frequency and amplitude 

of interfering movements were decreased in the “intermediate” group, and overall their movements were more 

similar to those of expert surgeons. In the "expert" group, interfering movements were rarer but participants often 

physically or verbally interacted with the work environment or the study operator (i.e. scratched themselves, 

pointed to the simulator screen). Our clinical partners were not surprised by these observations especially for the 

“novice” group, and confirmed they were common in the operating room. 

 

4. Discussion 

 

This study wanted to assess surgical postural skills in line with other studies in this domain. Previous studies 

analysed surgical ergonomics to estimate risks [16, 17, 37], or to compare open and laparoscopic  surgical 

procedures [19]. The most common methods rely on physical markers or sensors directly placed on the surgeon, 

such as Inertial Measurement Units (IMU), electromyographic sensors, or reflective bulbs [16, 17, 19, 37], that 

can be cumbersome. Concerning  marker-less assessment, some studies used OpenPose to assess the surgeon’s 

cognitive skills [38] or to perform automatic surgical procedure recognition [39]. Conversely, no study used 

marker-less methods to assess the surgeon's postural skills by comparing postural behaviour variability in function 

of the expertise level. Our study employed OpenPose and a novel quantification method to measure postural 

behaviours of different automatically detected joints in different surgical exercises. This allowed us to compare 

surgeons in a height-agnostic manner and independently of the camera positioning. Our study included several 

strengths such as: its multicentric data collection (sixty surgeons across nine French national hospitals) 

accessibility due to inexpensive and lighting recording equipment; and procedural reproducibility allowed by the 

simulator. 

 

Shoulders showed the most significant differences among groups, whereas wrists displayed the highest MS for 

most exercises. This was explained by the impact of joint movements on the other joints. Indeed, when the 

shoulder had an accelerated movement, the impact on the elbow was amplified and even more on the wrist. The 

same scheme was observed when the elbow had an accelerated movement. This information explained why the 

biggest MS differences among groups and exercises concerned the shoulders and not the elbows and even less the 

wrists. 

 

Mobility scores comparison highlighted significant differences between the “expert” group and the “novice” or 

“intermediate” groups (Tab. 2.) but not for all exercise-joint pair. This could be explained by the presence of 

outliers with extreme values within each expertise group, particularly for the right shoulder in the “novice” group 

during the periscoping exercise. The presence of outliers, above and below the median indicates that MS 

comparison was not fully adapted to study the postural skills and that this metric alone does not sufficiently 

describe interfering movements. In future this analysis will be paired with a gold standard ergonomic assessment 

because even expert clinicians often lack postural self-awareness skills, thus increasing the risk of injury [16, 17]. 

This was noted by our clinical collaborators especially concerning ergonomic differences resulting in using the 

endoscope and surgical instruments with both the dominant and non-dominant hands depending on the surgical 

side (i.e. left vs right knee).  

 

Our qualitative results (interfering movements) can be explained by the different levels of knowledge and 

technical skills depending on the surgeon's expertise level, as shown by Morineau et al. [40]. They found that 

"intermediate" surgeons activated more conflicts and controls than "expert" and "novice" surgeons and this 

explained the reduced work amplitude for "intermediate" surgeons. Controls and conflicts were slightly lower in 

the “expert” than in the "intermediate" group and simulation exercises were less taxing than real surgery [40]. 

Interfering movements could also be explained by unintentional “gamification” that might have biased the last 

two repetition of the “guided meniscectomy” exercise [41]. Indeed, surgeons wanted to increase the score returned 

by the simulator (by reducing the operation time) without worrying about their posture and surgical movements. 

More precise sub-group analyse will be necessary to understand these cognitive aspects that could allow defining 

a quantitative link between cognitive state and postural behaviour. Moreover, the combination of cognitive and 

postural domains could redefine the expertise groups and may represent another approach to understand surgical 

posture, which we intend to investigate in the future.  

 

Our current study has several limitations. Specifically, information was lacking about the lower limbs due to the 

simulator and camera position. Moreover, the absence of depth information from the monoscopic camera set-up 

led to reduced appreciation of three-dimensional movements [34,35]. The OpenPose joint detection could also be 
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improved technically. This might lead to the removal of the parameterized filtering algorithm, and the increase of 

the overall method robustness. Lastly, it would be more pertinent to do the HPE in real-time to provide educational 

feedback to trainees. However, our 2D based method has many financial and utilisation advantages allowing a 

future leading to potentially more widespread use in the surgical theatre without interfering with the surgery itself. 

This would allow its use not only for training but also for continuous ergonomic analysis.  

 

5. Conclusion 

 

The study hypothesis was partially verified. Interfering movements were observed also in surgeons with higher 

expertise level, but they were different in the three groups. Exercises have been carefully selected, examing those 

that require precise technical skills reflective of real arthroscopic interventions and display the most differences 

observed using the global heatmap (Fig. 4).. The chosen 2D method with a standard camera was a non-invasive 

way to detect the surgeons’ postures and therefore, may be used directly in operating room. The creation of 

movement heatmap and the corresponding MS provided interesting information about the physical skills of 

arthroscopic surgeons. Our approach highlighted several qualitative and quantitative differences in postural 

behaviour that reflect the surgical expertise level. In the future, this approach may be used for training purposes, 

and also for measuring and improving surgical ergonomics in the operating room. 
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