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Introduction

Simulation-based learning technique have been used in different fields of medicine for many years [START_REF] Satava | Historical Review of Surgical Simulation-A Personal Perspective[END_REF]. One of the oldest simulation models is a clay nasal reconstruction model from ancient India that dates back to 600 BC [START_REF] Badash | Innovations in surgery simulation: a review of past, current and future techniques[END_REF]. Thanks to technological advances, medical simulators have improved in realism and number of simulated procedures [START_REF] Satava | Historical Review of Surgical Simulation-A Personal Perspective[END_REF][START_REF] Badash | Innovations in surgery simulation: a review of past, current and future techniques[END_REF]. Laparoscopic surgery is the specialty that most requires of simulation-based training for many reasons including the reduction of tutoring time by experts and the development of technical skills [START_REF] Sutherland | Surgical Simulation[END_REF][4][START_REF] Brewin | Full immersion simulation: validation of a distributed simulation environment for technical and non-technical skills training in Urology[END_REF]. Indeed, simulation has many advantages such as improved ethics, perfect reproducibility, and acquisition of technical skills without endangering the patient's health [START_REF] Badash | Innovations in surgery simulation: a review of past, current and future techniques[END_REF][START_REF] Sutherland | Surgical Simulation[END_REF][4]. Concerning technical skills, simulators record the execution time, gesture accuracy, and correct use of the laparoscope [START_REF] Brewin | Full immersion simulation: validation of a distributed simulation environment for technical and non-technical skills training in Urology[END_REF][START_REF] Narazaki | Robotic surgery training and performance[END_REF][START_REF] Smith | Assessing laparoscopic manipulative skills[END_REF]. These competencies have been shown to be insufficient, lacking non-technical skills aspects such as communication, stress management and gesture [START_REF] Smith | Assessing laparoscopic manipulative skills[END_REF][START_REF] Agha | The role of non-technical skills in surgery[END_REF][START_REF] Sharma | Non-technical skills assessment in surgery[END_REF]. Technical and non-technical skills are indissociable, as shown by Fecso et al., using statistical correlations [START_REF] Fecso | Relationship between intraoperative non-technical performance and technical events in bariatric surgery[END_REF].

Another important skill is ergonomic self-awareness, to avoid musculoskeletal pain caused by repetitive surgeries.

The most studied ergonomic factors are the movement and posture of the surgeon's head, shoulder, and neck [START_REF] Azari | Quantifying surgeon maneuevers across experience levels through marker-less hand motion kinematics of simulated surgical tasks[END_REF][START_REF] Meltzer | Measuring Ergonomic Risk in Operating Surgeons by Using Wearable Technology[END_REF].

Surgeon's posture can be detected using cameras and/or electromyographic sensors (EMGs) [START_REF] Farella | A Wireless Body Area Sensor Network for Posture Detection[END_REF][START_REF] Xu | Human Posture Recognition and fall detection Using Kinect V2 Camera[END_REF][START_REF] Nisky | A framework for analysis of surgeon arm posture variability in robot-assisted surgery[END_REF][START_REF] Dalager | Surgeons' posture and muscle strain during laparoscopic and robotic surgery[END_REF]. These technologies allow analysing the surgeon's ergonomic dynamics by estimating postural angles and muscle tension [START_REF] Athanasiadis | An analysis of the ergonomic risk of surgical trainees and experienced surgeons during laparoscopic procedures[END_REF][START_REF] Lobo | Estimation of surgeons' ergonomic dynamics with a structured light system during endoscopic surgery[END_REF] and by providing information to limit musculoskeletal pain in the lower back, neck and shoulders. Some studies have analysed the various parameters that influence the surgeon's posture with the aim of proposing solutions to reduce pain and improve the overall surgical ergonomic [START_REF] Dalager | Surgeons' posture and muscle strain during laparoscopic and robotic surgery[END_REF][START_REF] Athanasiadis | An analysis of the ergonomic risk of surgical trainees and experienced surgeons during laparoscopic procedures[END_REF][START_REF] Berguer | A comparison of surgeons' posture during laparoscopic and open surgical procedures[END_REF]. These methods are based on data collected using EMGs and/or Inertial Measurement Units (IMU) directly attached to the surgeon's body. The camera-based method described by Berguer et al. [START_REF] Berguer | A comparison of surgeons' posture during laparoscopic and open surgical procedures[END_REF] uses reflective markers visible thanks to incandescent bulbs to capture the surgeon's posture. However, these devices may hinder the surgeon's movements, creating a possible bias, and are time-consuming to attach. Overall, the data obtained with these different devices are similar: movement frequency, angle calculation between body joints, and muscles activity.

Human pose estimation (HPE) algorithms have been developed and improved since the 80's and have been used to detect and monitor surgeons' posture detection [START_REF] Sarafianos | 3D Human pose estimation: A review of the literature and analysis of covariates[END_REF][START_REF] Aggarwal | Human motion analysis: a review[END_REF][START_REF] Gavrila | The Visual Analysis of Human Movement: A Survey[END_REF]. This technology has been rapidly implemented in different domains such as surveillance [START_REF] Gavrila | The Visual Analysis of Human Movement: A Survey[END_REF], athletics, and medical applications [START_REF] Aggarwal | Human motion analysis: a review[END_REF]. The HPE algorithm was the Pictorial Structure, using color and regression algorithms applied on 2 dimensional (2D) pictures [START_REF] Fischler | The Representation and Matching of Pictorial Structures[END_REF]. The democratization of deep learning has increased HPE accuracy and performance. For instance, the 'DeepPose' tool (2014) has with a HPE accuracy of 60% [START_REF] Khan | A Review of Human Pose Estimation from Single Image[END_REF][START_REF] Liu | 2-D Human Pose Estimation from Images Based on Deep Learning: A Review[END_REF][START_REF] Toshev | DeepPose: Human Pose Estimation via Deep Neural Networks[END_REF]. Since then many other algorithms have been developed to improve posture detection in different situations. Deep learning HPE methods have been used to address several challenges including multi-person detection and realtime pose estimation [START_REF] Cao | Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields[END_REF][START_REF] Cao | OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields[END_REF][START_REF] Chen | Monocular Human Pose Estimation: A Survey of Deep Learning-based Methods[END_REF]. For multi-person detection, two major approaches exist: "top-down" and "bottom-up". In "top-down" approaches, first people are detected and separated and then the body joints are detected. "Bottom-up" approaches move from joints to people [START_REF] Cao | Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields[END_REF][START_REF] Cao | OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields[END_REF][START_REF] Chen | Monocular Human Pose Estimation: A Survey of Deep Learning-based Methods[END_REF][START_REF] Dang | Deep learning based 2D human pose estimation: A survey[END_REF][START_REF] Tanugraha | Understanding OpenPose (with code reference)-Part 1[END_REF]. The most popular deep learning HPE tool is OpenPose because it allows multi-person pose detection, is the most documented method, and is an open-source algorithm [START_REF] Tanugraha | Understanding OpenPose (with code reference)-Part 1[END_REF][START_REF] Lichtman | An Overview of Human Pose Estimation with Deep Learning[END_REF]. It can also be used for real-time posture detection [START_REF] Cao | Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields[END_REF][START_REF] Cao | OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields[END_REF]. This "top-down" algorithm was trained to recognize different body joint dataset which is useful for adapting joint detection in function of the available images or videos [START_REF] Cao | OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields[END_REF][START_REF] Tanugraha | Understanding OpenPose (with code reference)-Part 1[END_REF][START_REF] Lichtman | An Overview of Human Pose Estimation with Deep Learning[END_REF][START_REF] Viswakumar | Human Gait Analysis Using OpenPose[END_REF].

The purpose of the present work was to observe different postural behaviours and to correlate their frequency with surgical expertise. These postural behaviours include those arising from discomfort hesitation, and those due to the surgical tool inference with the desired movement (i.e. "interfering movement"). Our hypothesis was that the number of interfering movements was higher for "novice" than for "expert" surgeons. To test this hypothesis, we developed an original and innovative mobility score to analyse and compare the surgeons' movements during a simulated surgical intervention. We also created a comprehensive heatmap that illustrates the median mobility scores. This representation is helpful to focus the analysis on exercises with the most differences among surgeons during simulation-based learning.

Materials and Methods

To test our hypothesis, a cohort of surgeons with different level of expertise were monitored while using a virtual reality arthroscopic simulator using a convenient non-invasive human pose detection method.

Virtual Reality Arthroscopic simulation training protocol

Sixty surgeons were recruited over 9 months (November 2020 to July 2021) for a controlled prospective observational study:

-36 "novices": junior residents (one or two years post-graduation); -12 "intermediate": < 100 arthroscopies as principal operator per year or < 5 years after the postgraduate diploma in orthopaedic surgery; -12 "experts": > 100 arthroscopies as principal operator per year and > 5 years after the postgraduate diploma in orthopaedic surgery.

These criteria to define the expertise level were previously used in a similar study [START_REF] Tronchot | Validation of virtual reality arthroscopy simulator relevance in characterising experienced surgeons[END_REF]. The cohort was multicentric and mainly composed of right-handed men. Women were under-represented in the "intermediate" and "experts" groups (Tab. 1). Informed consent was obtained from all participants. The Fundamentals of Arthroscopy Surgery (FAST) and KNEE modules from the VirtaMed AG (Zurich) ArthroS™ arthroscopy simulator were used for the study. The FAST module was used for basic exercises, and KNEE was used for more complex tasks [START_REF] Anetzberger | Ten hours of simulator training in arthroscopy are insufficient to reach the target level based on the Diagnostic Arthroscopic Skill Score[END_REF]. A standardised experimental set-up consisting of nine different exercises was proposed to each surgeons to evaluate all the technical arthroscopic competences. These exercises included also a simulated arthroscopic meniscectomy that was performed three times consecutively at the end of the session [START_REF] Tronchot | Validation of virtual reality arthroscopy simulator relevance in characterising experienced surgeons[END_REF]. These exercises were selected because they require precise surgical skills during real arthroscopic interventions. Each participant was recorded during the session using a frontal standard RGB camera (recording frequency of 30 Hertz and a resolution of 240 x 320 pixels). Recording was done using a Python script (version 3.7) on a dedicated laptop (16GB RAM, Intel core i7). Each recorded video was anonymized using a standard procedure to enable blind analysis.

Tab. A simplified version of OpenPose [START_REF] Viswakumar | Human Gait Analysis Using OpenPose[END_REF] was used to detect the participants' joints in the videos of their training session. This algorithm could be adapted using the detection confidence threshold as parameter to return the orthonormal coordinates of each joint 1 . The detection confidence threshold was automatically optimised to detect a precise list of body joints. Indeed, the simulator module hides the participants' lower body part (Fig. 1) that therefore cannot be detected by the algorithm in the input RGB images.

Fig. 1 Camera view of a surgeon using the KNEE module. The lower limbs and head are not visible or hidden 1 https://github.com/quanhua92/human-pose-estimation-opencv

Despite the confidence threshold parameter optimization, the resulting detection was considered too noisy. To filter and smooth the signal, a Savitzky-Golay filter was applied on abscissa and ordinates values of each detected joint [START_REF] Sadeghi | Optimum window length of Savitzky-Golay filters with arbitrary order[END_REF]. Two parameters were needed for this algorithm: the length of the sliding window and the polynomial degree that represents the data distribution. Both are explained in the following to subsections.

-

Length of the window

This parameter is essential to obtain a filtering close to the original data without making up information. There is no strict mathematical rule for this and the sliding window length is highly data dependent. To ensure that data were not over-smoothed, the window length was constrained as follow:

1 t ∑ t t=0 abs(x(t) -x(t) ′ ) > √ σ x 2 2 (1)
where 𝜎 𝑥 2 is the standard deviation of the original data, and x(t) and x(t)' are the original and Savitzky-Golay values, respectively, at the time t.

-Polynomial degree A third degree polynomial was found to best fit the original data after testing polynomial degrees from 2 to 5. Fig. 2 presents the denoising process with the Savitzky-Golay filter and these parameters. 

Analysis of the 2D coordinates

The final joint coordinates were visualised using a virtual skeleton (Fig. 3.a and a movie in Supplementary Material). From this representation an original approach was developed to visualise and analyse posture as a movement heatmap (Fig. 3.b) and to calculate a novel mobility score.

-

Movement heatmap

The movement heatmap was created in two steps: i) partitioning of the camera coordinate space into a series of 10*10 pixel squares, and ii) computing the frequency at which each joint appeared in each squares. When a joint was included in one of the squares, its corresponding coefficient in the matrix was incremented by one. This step was repeated for each coordinate present in the exercise coordinate list (each time step). At the end of the process, the matrix is represented by a grey-scale picture, from light (low frequency) to dark (high frequency). This representation provides a global view of the movements performed by a surgeon during simulator exercises (Fig. 

𝑀𝑆 = 1 - |𝑚𝑎𝑥 𝑡ℎ𝑒𝑜𝑟𝑦 -(𝑚𝑎𝑥 𝑜𝑏𝑠 -𝑄3)×4| 𝑓𝑟𝑎𝑚𝑒𝑠-𝑠𝑞𝑢𝑎𝑟𝑒𝑠 (2) 
where frames and squares are the total number of frames that constitute the exercise video and the total number of incremented coefficients, respectively. The MS represents the distribution of joint coordinates in the global environment and ranges between 0 and 1. A score close to 0 indicates few movements, whereas values, close to 1 indicate a large number of joint movement. The MS was calculated for each surgeon, exercise, and joint combination. Importantly, the MS is height and camera position independent.

Statistics

As the MS did not follow a normal distribution (significant Shapiro-Wilk test), the Mann Whitney test was used to compare MS values among the expertise groups. Differences were considered significant if the p-value was < 0.05.

Results

To facilitate comparison and highlight differences in the three expertise groups, the median MS values of each implicated joint in the different exercises were represented using a grey scale intensity (Fig. 4). Several differences can be seen between the three groups. For instance, the median MS values for the left shoulder of "Novice 1" (upper part of Fig. 4) indicated that this surgeon moved a lot during the simulation exercises (MS between 0.9 and 1.0 for more than 80% of exercises (Fig. 4)). This movement profile was close to that of the "novices" group, but with higher scores for all exercises, with the exception of "image centering" and "probing".

To obtain an overview of the three expertise groups for all exercises, the mean MS for each group was calculated by grouping all joints and exercises: 0.823 (standard deviation: 0.22), 0.816 (standard deviation: 0.22), and 0.820 (standard deviation: 0.25) for the "novice", "intermediate" and "expert" groups, respectively. No significant difference was observed among these three mean global MS (p>0.05). When focusing on the individual joints, wrists and left elbow were moved frequently during each exercise. Moreover, the MS profiles for the same exercise (e.g. "telescoping" and "periscoping") were different in the three expertise. Overall, the MS profiles of the three expertise groups suggested that "novice" and "expert" surgeons had the median in the same gradient for many exercises compared with "intermediate" moving globally less than the others. Fig. 4 Upper part: representation of the left shoulder score for one "novice" surgeon for all exercises. Lower part, "mobility heatmap": median mobility score for each exercise and joint in the three expertise groups On the basis of the MS profile, the next analysis focused on a subset of joint-exercise pairs where the MS differences among expertise levels were most pronounced. This subset included exercises that required the most technical skills and therefore are more relevant for surgical training. This subset included both shoulders for "periscoping", "guided diagnostic'' and "guided meniscectomy 1" and the left shoulder for "probing". Fig. 5 shows boxplots of these scores, allowing for deeper visual analysis. Differences between expertise groups were most visible for "periscoping" where the "expert" group having significantly lower right shoulder mobility (p = 0.0215, p = 0.0379 compared with the novice and intermediate group, respectively) (Tab. 2). Similarly, the MS for left shoulder in the "guided diagnostic" exercise (p = 0.0392, p = 0.0193) and "guided meniscectomy 1" for the left shoulder (p = 0.0174, p = 0.0113) were higher in the expert group than the novice and intermediate groups. This analysis also emphasised the MS heterogeneity within the "expert" and "novice" groups, particularly for the "probing" exercise, as indicated by the large number of outliers.

Comparison of the median MS for each examined joint-exercise pair with the Mann Whitney test highlighted at least one significant difference between expertise groups. Overall, the "novice" and "intermediate" groups showed similar performance resulting in only one significant differences, for the "probing" exercise. Fig. 5 Boxplots of the right and left shoulder MS in the "periscoping", "guided diagnostic" and "guided meniscectomy 1" exercises and of the left shoulder MS for "probing". Blue, orange, and green boxes correspond to the "novice" (N), "intermediate "(I), and "expert" (E) groups respectively

Tab. 2 Comparison of median MS in function of the expertise level with the

To qualitatively understand these differences among expertise groups the videos were visually analysed to detect interfering movements. "Novice" surgeons had interfering movements and hesitation movements close to their chest that sometimes interfered with each other leading to non-smooth displacements. The "intermediate" expertise level group was the most heterogeneous. Compared with the "novice" group the frequency and amplitude of interfering movements were decreased in the "intermediate" group, and overall their movements were more similar to those of expert surgeons. In the "expert" group, interfering movements were rarer but participants often physically or verbally interacted with the work environment or the study operator (i.e. scratched themselves, pointed to the simulator screen). Our clinical partners were not surprised by these observations especially for the "novice" group, and confirmed they were common in the operating room.

Discussion

This study wanted to assess surgical postural skills in line with other studies in this domain. Previous studies analysed surgical ergonomics to estimate risks [START_REF] Dalager | Surgeons' posture and muscle strain during laparoscopic and robotic surgery[END_REF][START_REF] Athanasiadis | An analysis of the ergonomic risk of surgical trainees and experienced surgeons during laparoscopic procedures[END_REF][START_REF] Carbonaro | A Wearable Sensor-Based Platform for Surgeon Posture Monitoring: A Tool to Prevent Musculoskeletal Disorders[END_REF], or to compare open and laparoscopic surgical procedures [START_REF] Berguer | A comparison of surgeons' posture during laparoscopic and open surgical procedures[END_REF]. The most common methods rely on physical markers or sensors directly placed on the surgeon, such as Inertial Measurement Units (IMU), electromyographic sensors, or reflective bulbs [START_REF] Dalager | Surgeons' posture and muscle strain during laparoscopic and robotic surgery[END_REF][START_REF] Athanasiadis | An analysis of the ergonomic risk of surgical trainees and experienced surgeons during laparoscopic procedures[END_REF][START_REF] Berguer | A comparison of surgeons' posture during laparoscopic and open surgical procedures[END_REF][START_REF] Carbonaro | A Wearable Sensor-Based Platform for Surgeon Posture Monitoring: A Tool to Prevent Musculoskeletal Disorders[END_REF], that can be cumbersome. Concerning marker-less assessment, some studies used OpenPose to assess the surgeon's cognitive skills [START_REF] Dias | Psychophysiological Data and Computer Vision to Assess Cognitive Load and Team Dynamics in Cardiac Surgery[END_REF] or to perform automatic surgical procedure recognition [START_REF] Kishi | Convolutional Neural Network based on Temporal Pose Features for Surgical Procedure Recognition[END_REF]. Conversely, no study used marker-less methods to assess the surgeon's postural skills by comparing postural behaviour variability in function of the expertise level. Our study employed OpenPose and a novel quantification method to measure postural behaviours of different automatically detected joints in different surgical exercises. This allowed us to compare surgeons in a height-agnostic manner and independently of the camera positioning. Our study included several strengths such as: its multicentric data collection (sixty surgeons across nine French national hospitals) accessibility due to inexpensive and lighting recording equipment; and procedural reproducibility allowed by the simulator.

Shoulders showed the most significant differences among groups, whereas wrists displayed the highest MS for most exercises. This was explained by the impact of joint movements on the other joints. Indeed, when the shoulder had an accelerated movement, the impact on the elbow was amplified and even more on the wrist. The same scheme was observed when the elbow had an accelerated movement. This information explained why the biggest MS differences among groups and exercises concerned the shoulders and not the elbows and even less the wrists.

Mobility scores comparison highlighted significant differences between the "expert" group and the "novice" or "intermediate" groups (Tab. 2.) but not for all exercise-joint pair. This could be explained by the presence of outliers with extreme values within each expertise group, particularly for the right shoulder in the "novice" group during the periscoping exercise. The presence of outliers, above and below the median indicates that MS comparison was not fully adapted to study the postural skills and that this metric alone does not sufficiently describe interfering movements. In future this analysis will be paired with a gold standard ergonomic assessment because even expert clinicians often lack postural self-awareness skills, thus increasing the risk of injury [START_REF] Dalager | Surgeons' posture and muscle strain during laparoscopic and robotic surgery[END_REF][START_REF] Athanasiadis | An analysis of the ergonomic risk of surgical trainees and experienced surgeons during laparoscopic procedures[END_REF]. This was noted by our clinical collaborators especially concerning ergonomic differences resulting in using the endoscope and surgical instruments with both the dominant and non-dominant hands depending on the surgical side (i.e. left vs right knee).

Our qualitative results (interfering movements) can be explained by the different levels of knowledge and technical skills depending on the surgeon's expertise level, as shown by Morineau et al. [START_REF] Morineau | Decision Making During Preoperative Surgical Planning[END_REF]. They found that "intermediate" surgeons activated more conflicts and controls than "expert" and "novice" surgeons and this explained the reduced work amplitude for "intermediate" surgeons. Controls and conflicts were slightly lower in the "expert" than in the "intermediate" group and simulation exercises were less taxing than real surgery [START_REF] Morineau | Decision Making During Preoperative Surgical Planning[END_REF].

Interfering movements could also be explained by unintentional "gamification" that might have biased the last two repetition of the "guided meniscectomy" exercise [START_REF] Kapralos | An Overview of Virtual Simulation and Serious Gaming for Surgical Education and Training[END_REF]. Indeed, surgeons wanted to increase the score returned by the simulator (by reducing the operation time) without worrying about their posture and surgical movements. More precise sub-group analyse will be necessary to understand these cognitive aspects that could allow defining a quantitative link between cognitive state and postural behaviour. Moreover, the combination of cognitive and postural domains could redefine the expertise groups and may represent another approach to understand surgical posture, which we intend to investigate in the future.

Our current study has several limitations. Specifically, information was lacking about the lower limbs due to the simulator and camera position. Moreover, the absence of depth information from the monoscopic camera set-up led to reduced appreciation of three-dimensional movements [START_REF] Tronchot | Validation of virtual reality arthroscopy simulator relevance in characterising experienced surgeons[END_REF][START_REF] Anetzberger | Ten hours of simulator training in arthroscopy are insufficient to reach the target level based on the Diagnostic Arthroscopic Skill Score[END_REF]. The OpenPose joint detection could also be improved technically. This might lead to the removal of the parameterized filtering algorithm, and the increase of the overall method robustness. Lastly, it would be more pertinent to do the HPE in real-time to provide educational feedback to trainees. However, our 2D based method has many financial and utilisation advantages allowing a future leading to potentially more widespread use in the surgical theatre without interfering with the surgery itself. This would allow its use not only for training but also for continuous ergonomic analysis.

Conclusion

The study hypothesis was partially verified. Interfering movements were observed also in surgeons with higher expertise level, but they were different in the three groups. Exercises have been carefully selected, examing those that require precise technical skills reflective of real arthroscopic interventions and display the most differences observed using the global heatmap (Fig. 4).. The chosen 2D method with a standard camera was a non-invasive way to detect the surgeons' postures and therefore, may be used directly in operating room. The creation of movement heatmap and the corresponding MS provided interesting information about the physical skills of arthroscopic surgeons. Our approach highlighted several qualitative and quantitative differences in postural behaviour that reflect the surgical expertise level. In the future, this approach may be used for training purposes, and also for measuring and improving surgical ergonomics in the operating room.
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 2 Fig. 2 Graphical representation of the camera coordinates of the neck-body joint of one surgeon during the "periscoping" exercise in function of time (in millisecond; ms). Original signal before (in blue) (a) and after denoising (in red) (b) using a Savitzky-Golay filter with automatic window size and a third degree polynomial 2.3. Analysis of the 2D coordinates

  3.b).

Fig. 3

 3 Fig. 3 Representation of the surgeon's pose estimation by the simplified OpenPose algorithm (a); movement heatmap linked to the surgeon posture (b) -Mobility scoreThe movement heatmap showed the physical extent of joint motion in relation to the global environment. It was used to compute a mobility score (MS) that takes into account the theoretical maximum (maxtheory) value of the coefficient (when all joint coordinates are in the same 10*10 pixel square during the entire exercise) and the observed reached maximum (maxobs), defined by the maximum coefficient value (i.e. the one with the most joint coordinates during the whole exercise). The third quartile (Q3) takes into account the coefficient value distributions. The MS was calculated with the following formula:

  

1

  Description of the surgeon cohort

	Expertise level Number	Mean age (min/max)	Hospital localisation	Man/Woman	Right/Left handed
	Novice	36	25.17 (24/29)	Angers, Brest, Nantes, Rennes, Tours	26/10	21/5
	Intermediate	12	32.5 (30/39)	Angers, Lyon, Nantes, Rennes, Tours	11/1	12/0
	Expert	12	56.72 (39/70)	Angers, Bordeaux, Brest, Lille, Nantes, Paris, Rennes	11/1	11/1
	2.2.					

Detection of the surgeons' posture

  Mann-Whitney test. Significant differences ( p-value < 0.05) are highlighted in grey

	Exercise	Body joint	Novice VS	Novice VS Expert	Intermediate VS
			Intermediate		Expert
	"Periscoping" Right Shoulder	0.2672	0.0215	0.0379
		Left Shoulder	0.4429	0.1024	0.1473
	"Guided	Right Shoulder	0.3164	0.0392	0.0193
	diagnostic"				
		Left Shoulder	0.0854	0.2293	0.0538
	"Guided	Right Shoulder	0.3657	0.4659	0.3721
	meniscectomy				
	1"				
		Left Shoulder	0.3708	0.0174	0.0113
	"Probing"	Left Shoulder	0.0288	0.2677	0.1551