
HAL Id: hal-03826854
https://hal.science/hal-03826854v1

Preprint submitted on 24 Oct 2022 (v1), last revised 6 Nov 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cerise: Program Verification on a Capability Machine in
the Presence of Untrusted Code

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany,
Alix Trieu, Dominique Devriese, Lars Birkedal

To cite this version:
Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, et al..
Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code. 2022.
�hal-03826854v1�

https://hal.science/hal-03826854v1
https://hal.archives-ouvertes.fr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Cerise: Program Verification on a Capability Machine in the
Presence of Untrusted Code

AÏNA LINN GEORGES, Aarhus University, Denmark
ARMAËL GUÉNEAU, Aarhus University, Denmark
THOMAS VAN STRYDONCK, KU Leuven, Belgium
AMIN TIMANY, Aarhus University, Denmark
ALIX TRIEU, Aarhus University, Denmark
DOMINIQUE DEVRIESE, Vrije Universiteit Brussel, Belgium
LARS BIRKEDAL, Aarhus University, Denmark

A capability machine is a type of CPU allowing fine-grained privilege separation using capabilities, machine
words that represent certain kinds of authority. We present a mathematical model and accompanying proof
methods that can be used for formal verification of functional correctness of programs running on a capability
machine, even when they invoke and are invoked by unknown (and possibly malicious) code. We use a
program logic called Cerise for reasoning about known code, and an associated logical relation, for reasoning
about unknown code. The logical relation formally captures the capability safety guarantees provided by the
capability machine. The Cerise program logic, logical relation, and all the examples considered in the paper
have been mechanized using the Iris program logic framework in the Coq proof assistant.

The methodology we present underlies recent work of the authors on formal reasoning about capability
machines [Georges et al. 2021; Skorstengaard et al. 2019a; Van Strydonck et al. 2021], but was left somewhat
implicit in those publications. In this paper we present a pedagogical introduction to the methodology, in a
simpler setting (no exotic capabilities), and starting fromminimal examples. Wework our way up to new results
about a heap-based calling convention and implementations of sophisticated object-capability patterns of the
kind previously studied for high-level languages with object-capabilities, demonstrating that the methodology
scales to such reasoning.

ACM Reference Format:
Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Dominique Devriese,
and Lars Birkedal. 2021. Cerise: Program Verification on a Capability Machine in the Presence of Untrusted
Code. J. ACM 1, 1 (October 2021), 55 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A capability machine is a type of CPU that enables fine-grained memory compartmentalization and
privilege separation through the use of capabilities. This type of hardware architecture has been
studied since the 60ies [Dennis and Van Horn 1966; Levy 1984], and in particular more recently as
part of the CHERI project [Watson et al. 2020]. Capability machines offer fine-grained and scalable

Authors’ addresses: Aïna LinnGeorges, ageorges@cs.au.dk, Aarhus University, Denmark; Armaël Guéneau, armael@cs.au.dk,
Aarhus University, Denmark; Thomas Van Strydonck, thomas.vanstrydonck@cs.kuleuven.be, KU Leuven, Belgium; Amin
Timany, timany@cs.au.dk, Aarhus University, Denmark; Alix Trieu, alix.trieu@cs.au.dk, Aarhus University, Denmark;
Dominique Devriese, dominique.devriese@vub.be, Vrije Universiteit Brussel, Belgium; Lars Birkedal, birkedal@cs.au.dk,
Aarhus University, Denmark.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
0004-5411/2021/10-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

char* p = malloc(10);

Standard CPU Capability machine

0xFF18CE0 base: 0xFF18CE0
end: 0xFF18CEA
addr: 0xFF18CE0

perm: rw

1 capability/1 word

Fig. 1. Representation of a pointer in a standard architecture vs. a capability machine. A capability is similar
to a pointer with extra meta-data.

privilege separation at the hardware level and they are a compelling target for secure compilation
[Chisnall et al. 2017; El-Korashy et al. 2020; Skorstengaard et al. 2019b; Van Strydonck et al. 2019].

Capability machines distinguish, at the level of hardware, between machine integers and capabil-
ities; and a capability can be understood as a pointer with associated metadata, cf. Fig 1. A machine
word containing an integer value can only be used for numerical computations and cannot be used
as a pointer to access memory. On the other hand, a machine word containing a capability can be
used to access a given portion of memory, depending on the metadata contained in the capability.
We also say that the capability has authority over some fragment of memory.

A capability thus corresponds to a native machine value, and can be stored in a CPU register
or in memory. While this might seem wasteful due to the amount of extra metadata that needs to
be carried around, for realistic capability machines a lot of work has been dedicated to the design
of compressed representations for capabilities, see, e.g., [Carter et al. 1994; Woodruff et al. 2019].
In this paper, we will abstract from these details and represent capabilities in their uncompressed
form, as a tuple carrying the metadata.

A capability machine guarantees the integrity of capabilities: one cannot create fresh capabilities
out of thin air or modify the metadata of existing capabilities in arbitrary ways. For instance, CHERI
associates tags to machine words to identify whether they represent a capability or an integer.
Such a tag bit is checked and set by the machine, and is not directly accessible by software. More
generally, new capabilities can only be derived from existing capabilities using a restricted set of
operations provided by the machine. As such, all capabilities on the system are recursively derived
from the full-authority capabilities that are initially provided to software at boot time. Intuitively,
the machine ensures that a given program cannot forge capabilities and obtain more authority than
it held previously, a property sometimes referred to as capability monotonicity [Nienhuis et al.
2020].
Capabilities therefore allow a piece of code to interact securely with untrusted third-party

code, even within the same address space, by restricting the set of capabilities the untrusted code
(transitively) has access to. In a system composed of mutually untrusted components (which might
even contain malicious code), capabilities provide a way of enforcing that the overall system
nevertheless satisfies some security properties.

Note, however, that capabilities are low-level, flexible, building blocks, which operate at the level
of the machine code and whose metadata “just” triggers some additional runtime checks by the
machine. This means that the properties we can actually enforce using capabilities crucially depend

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 3

on how we use capabilities: the variety of properties that can be enforced stems from how one can
use and combine capabilities.

In this paper we show how we can formally prove that security properties are enforced for some
known verified code, even when that code is linked with unverified untrusted third-party code.
Our model of interaction between the known and unknown code is very simple: we assume the
code is in the same address space and that control is transferred from one to the other using an
ordinary jump instruction. We focus on a restricted subset of the capabilities present in the CHERI
architecture (using only “normal” read/write capabilities and a kind of so-called sentry capabilities,
which provide a basic form of encapsulation, see Section 2.4). Because the security properties we
consider hold even in the presence of unverified unknown code, they are sometimes referred to
as robust safety properties [Swasey et al. 2017]. The security properties we focus on are centered
around memory compartmentalization, in particular, local state encapsulation. We consider a
range of examples, starting with very basic examples (sharing a buffer with some unknown code),
through implementations of closures with encapsulated state, and end up with a quite sophisticated
low-level implementation of an interval library, for which we show that certain representation
invariants are preserved, even when interacting with unknown code.

We proceed as follows:
• We first explain informally how one can program with capabilities and use capabilities to
enforce memory compartmentalization (Section 2).
• We then introduce the formal operational semantics of a simple capability machine with
sentry capabilities (Section 3).
• We define the Cerise program logic which can be used to formally verify the correctness of

programs running on the capability machine. Our program logic is defined by instantiating
the Iris framework [Jung et al. 2018], which provides an expressive separation logic with
powerful reasoning principles, including, in particular, the notion of a logical invariant

(Section 4).
• We define, using our program logic, the specification of what a “safe” capability and a “safe”
program is. Intuitively, a capability (respectively, a program) is “safe” if it cannot be used
to invalidate an invariant at the logical level. Hence, safe capabilities can be shared freely
with unknown code. Safety of a capability is defined in the program logic as a unary logical
relation (Section 5).
• We show that if a program only has access to “safe” values, then running the program itself
is also “safe”. This is a global property of the capability machine, expressing its capability
safety: it is not possible to increase one’s authority beyond what was available initially,
independently of the sequence of instructions that one executes (Section 5). Concretely,
the theorem takes the form of a contract that holds for arbitrary code,1 and which can be
combined in the program logic with manual proofs for trusted code. The last piece of the
puzzle is then a so-called Adequacy theorem (Section 4), which relates invariants established
in the program logic to the operational semantics of the machine. Given a concrete scenario
(typically, a complete system mixing known verified code with unknown untrusted code),
this makes it possible to obtain a theorem about the execution of the system which only
depends on the operational semantics of the machine (not on the program logic).
• In Section 6 we then return to the examples from Section 2 and show how to use Cerise to
formally prove that the desired memory compartmentalization results really do hold.
• In Section 7 we consider more sophisticated examples, which involve dynamic memory
allocation. We focus on the low-level implementation of ML-like programs, and introduce

1Because it holds for arbitrary code, we sometimes refer to this as a universal contract.

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

(a) Scenario 1: passing control to
untrusted code

(b) Scenario 2: being called by
untrusted code (possibly many

times)

Fig. 2. Two scenarios where a (trusted) component interacts with its (untrusted) context. The trusted compo-
nent is represented with a plain background, while the untrusted context is represented with a red dotted
background.

a heap-based calling convention for closures implementing ML functions. We extend the
earlier Adequacy theorem to account for dynamically allocated memory.
• In Section 8 we demonstrate how to use our methodology to establish correctness of

object capability patterns (OCPs) from the literature. In particular, we consider the OCP of
dynamic sealing, as presented by [Swasey et al. 2017] in the context of a high-level language
and we demonstrate that Cerise can be used to prove similar results about a low-level
implementation of their example.
• Section 9 offers some perspectives on the relevance of our technical contributions and how
we envision them being used in the development of secure systems.
• Finally, we discuss related work in Section 10.

This paper pedagogically introduces and explains the methodology underlying a sequence of
recent research papers [Georges et al. 2021; Skorstengaard et al. 2018, 2019a; Van Strydonck et al.
2021], in the form of the Cerise program logic, but also contributes new material. The operational
semantics, program logic and logical relation discussed in Sections 3, 4 and 5 are based on those
used by [Georges et al. 2021] (but we have removed local and uninitialized capabilities as well as
Kripke indexing for simplicity and instead added much more extensive explanations and proofs).
Sections 2 and 6 are new; they provide a clear and accessible introduction to capability machine
programming and our reasoning tools. The examples in Sections 7-8 are also new and represent a
non-trivial verification effort.
The results and examples presented here have been fully formalized in Coq, and are available

online: https://github.com/logsem/cerise. The development can also be viewed online at https://
logsem.github.io/cerise/journal/; we use circled numbers such as 1 to link directly to corresponding
Coq formal statements in the following.

2 PROGRAMMINGWITH CAPABILITIES
Let us give a taste of how one might use capabilities when writing programs with the goal of
enforcing some additional memory protection or encapsulation guarantees. We consider a fairly
simple but quite general adversarial model, where we wish to verify the correctness of a known
component interacting with a possibly adversarial third-party component whose code is unverified
and untrusted.

In this section we detail two concrete example programs, which use capabilities in two different
scenarios. In the first scenario, illustrated in Figure 2a, we consider a program that eventually
passes control to the untrusted third-party code, but uses capabilities to protect a region of memory

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://github.com/logsem/cerise
https://logsem.github.io/cerise/journal/
https://logsem.github.io/cerise/journal/
https://logsem.github.io/cerise/journal/index.html

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 5

containing some secret data from being accessed by the untrusted code. In the second scenario
(Figure 2b), we consider the case of a verified component being called by the third-party code. The
goal is then for the verified component to use capabilities to protect (or “encapsulate”) a piece of
private memory, which it may access during its execution, but which should remain inaccessible to
the unverified code.

2.1 Anatomy of a capability (in our model)
We are interested in a subset of the capabilities available in a CHERI capability machine. We thus
work with a simplified machine model, featuring basic capabilities that are used to give access
to a range of memory, as well as so-called “sealed entry” capabilities (abbreviated as “sentry”
capabilities [Watson et al. 2020, §3.8]) that provide encapsulation features. The sentry capabilities
were also called “enter” capabilities in earlier work, e.g., in the M-Machine by [Carter et al. 1994].

Concretely, we model capabilities as 4-tuples (𝑝, 𝑏, 𝑒, 𝑎). In actual hardware, capabilities are
encoded as fixed-size binary words, but here we abstract over their concrete representation.

Capability: (𝑝, 𝑏, 𝑒, 𝑎)
𝑝 ∈ {o, ro, rx, rw, rwx, e} permission
𝑏 ∈ Addr base address
𝑒 ∈ Addr end address
𝑎 ∈ Addr current address

A capability (𝑝, 𝑏, 𝑒, 𝑎) represents a machine word that can be used to access memory within the
region [𝑏, 𝑒) delimited by its base address 𝑏 and end address 𝑒 . The permission 𝑝 specifies what is
possible to do within this memory range: permission o specifies that the capability actually gives
no access rights, ro grants read-only access to memory, rx grants the right to read and execute the
contents of the memory, rw gives read and write access, and rwx gives read, write, and execute
access. Capabilities with permission e behave a bit differently (they are used to provide a form of
encapsulation), and will be explained later in Section 2.4.

A capability is meant to be used as a pointer, and thus additionally points to a specific address 𝑎
(typically, but not necessarily, belonging to the range [𝑏, 𝑒)). Each time the capability is used to
access memory, the machine will automatically check that 𝑎 is between bounds 𝑏 and 𝑒 , and that the
access is permitted according to 𝑝 . From a capability (𝑝,𝑏, 𝑒, 𝑎) it is easy to derive another capability
(𝑝,𝑏, 𝑒, 𝑎′) pointing to a different address 𝑎′ also within range [𝑏, 𝑒) – in other words, while a
capability points to a specific address, it really holds authority over the whole region delimited by
its beginning and end address.
Note that, on a capability machine, machine words can represent not only binary-encoded

capabilities, but also traditional fixed-size integers. However, unlike on a traditional computer
architecture, integers cannot be used as pointers. In other words, without holding a capability, one
cannot access memory at all. In this paper, we rely on difference in notation to distinguish between
capabilities and integers. In actual hardware, this is done by associating an extra one-bit tag to each
word to distinguish capabilities from integers.

2.2 Sometimes, failure is a good thing
It is worth pointing out a sometimes counter-intuitive aspect of reasoning about security of
programs running on a capability machine, especially for readers with a background in reasoning
about safety in higher-level languages. For a high-level language, program safety can be seen
as the absence of undefined behavior or runtime errors. For instance, an out-of-bounds array
access is undefined behavior in C, and it leads to a runtime error, such as raising an exception, in

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

memory-safe languages such as Rust or OCaml. We are instead interested in security properties for
which a runtime failure can actually be considered a good thing.

Generally speaking, a low-level machine has many cases where it can fail at runtime, stopping
the normal course of execution. In a standard (non-capability) machine, this can happen, e.g., if
the machine attempts to execute an invalid instruction which cannot be decoded. The addition
of capabilities only adds more possibilities for runtime faults: each time a capability is used, the
capability machine will check that it has adequate permission and bounds, and raise a runtime
fault otherwise.
Now, the point is that, from a security perspective, these additional runtime faults are a good

thing. Using these additional checks, the capability machine turns dangerous behavior (out-of-
bounds accesses leading to buffer overflow attacks, etc.) into proper faults before they can cause
damage. Thus, for our purposes, it is always safe for the machine to fail: it means that an illegal
operation may have been attempted, and the execution has been stopped in response.
Of course, when writing concrete programs, we will typically want to verify that we do not

involuntarily trigger faults, as this would make our programs less useful. But when interacting
with adversarial code, this is a possibility that we have to take into account anyway: we cannot
prevent unknown code from shooting itself in the foot, e.g. by trying to access memory it does not
have a valid capability for, or by decoding illegal instructions.

To sum up, in this work we reason about security properties that are not violated in the case of
machine failure. This includes, for example, integrity of private data: no data can be compromised
if the machine stops running. It is therefore useful to keep in mind that we consider failure to be
trivially safe!

2.3 Restricting access to memory by constraining available capabilities
Consider Scenario 1 from Figure 2a: how can one write a program which passes control to untrusted
code while protecting some secret data? That is, we wish to write a program that sets up capabilities
so that its secrets are preserved even after it runs untrusted code.

The key intuition is that, at any point of the execution, one can only access the part of memory
that is accessible using the currently available capabilities. In other words, the authority of a
running program comes from the set of capabilities which are transitivitely reachable from the
CPU registers.
This is illustrated below, in a scenario where the pc register (“program counter”) contains a

capability with permission rx pointing to some memory region (containing the code of the program
being executed), and register r1 contains a capability with permission rw, pointing to a region of
memory, which itself contains a rw capability pointing to another memory region. The collection
of the “hatched” memory regions corresponds to the overall subset of memory accessible by the
program.

rx
pc

42
r0

rw
r1

...
registers

rw
memory

If one wishes to reduce the set of available memory or its associated access rights—for instance to
protect secrets from being leaked to an adversary—then it is be enough to constrain the capabilities
currently available. This can be done in a few different ways.

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 7

First, one can simply remove a capability from registers in order to remove access to the memory
it was giving access to. For instance, after executing the instruction “mov r1 0”, which overwrites
the contents of register r1 with the integer 0, one loses access to the memory regions which were
previously accessible from the capability stored in that register.

rx
pc

42
r0

0
r1

...
registers

memory

Alternatively, it is possible to restrict the range of a capability to point to a smaller memory
region. This changes the set of accessible memory to a subset of what was previously available.
For instance, starting from our initial scenario and running the instruction “subseg r1 a0 a1”
will change the range of the capability stored in register r1 to [𝑎0, 𝑎1). (The machine will check
that [𝑎0, 𝑎1) is indeed included in the range of the original capability.) In our example scenario
(illustrated below), we then only keep the beginning of the region accessible from r1, and this
entails that the third region of memory becomes inaccessible, since it was only reachable from a
capability stored at the end of the region accessible from r1.

rx
pc

42
r0

rw
r1

...
registers

𝑎0 𝑎1 memory

Finally, one can restrict the permission of a capability to a permission that grants less access
rights. For instance, running the instruction “restrict r1 RO” in our initial scenario modifies the
capability stored in r1 to only grant read-only access to its corresponding memory region. Note
that we still have read-write access to the last memory region, as we can still read the capability
(with permission rw) pointing to it.

rx
pc

42
r0

ro
r1

...
registers

rw
memory

Example: sharing a sub-buffer with unknown code. Using some of the mechanisms detailed
above, we can implement a very simple program that shares a buffer with unknown, possibly
adversarial, code while using capabilities to protect some data that would otherwise be vulnerable
to buffer overflow attacks.

The assembly code for the program is shown in Figure 3. It consists of a code section containing
the instructions of the program, followed by some data which (for simplicity) we simply assume to
be statically allocated. The data section holds the zero-terminated string "Hi", which we wish to
share with the untrusted code, and the integer 42 which represents our secret data.
Initially, we assume the program counter to contain a rwx capability for the whole region

holding our program. This capability serves two purposes: it allows the machine to execute our

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

; initially, PC = (RWX, code, end, code)

; r0 = (unknown) pointer to the continuation

code:

mov r1 PC ; r1 = (RWX, code, end, code)

lea r1 [data-code] ; r1 = (RWX, code, end, data)

subseg r1 [data] [data+3] ; r1 = (RWX, data, data+3, data)

jmp r0 ; jump to unknown code: we give it read-write

; access to the first 3 words of the data,

; but not the secret value

data:

; the first 3 data words contain public data that will be passed

; to the unknown code (the "Hi" string)

'H', 'i', 0,

; they are followed by secret data (the integer 42)

42

end:

Fig. 3. Program sharing a buffer with possibly adversarial code.

program, but can also be manipulated by the program itself to derive a capability pointing to its
own data. By convention, the register r0 is assumed to contain a pointer to the continuation of
the program, i.e. other code that the program will pass control to after it is done executing. As no
assumption is made about the contents of r0, it is conservatively assumed to point to unknown,
arbitrary code.
Our program executes as follows: it first loads the capability held by the program counter into

register r1. Then, using the lea instruction, it changes the “current address” of the capability to
point to the data label (lea modifies a capability by adding an offset to its “current address”). In
assembly programs, we use the brackets notation [...] to denote an arithmetic expression that is
computed statically when assembling the program.
At this point, the capability held in r1 points to the start of the "Hi" string, but has (rwx)

authority over the whole code and data section. This capability would be unsafe to share with the
untrusted code, as they could simply use lea to increment the capability’s current address past
the end of the string, and obtain a valid capability to the secret value (thus performing a basic
“buffer overflow” attack). To prevent this from happening, we use the subseg instruction to obtain
a capability whose range of authority is restricted to the sub-buffer holding the "Hi" string. Finally,
we pass control to the untrusted code by using the jmp instruction, loading the contents of register
r0 into pc.
This example illustrates that even a basic mode of use of capabilities (restricting them appro-

priately) can easily prevent buffer overflow attacks. In Section 6.1, we show how we can formally
prove that, for any untrusted code, the value of the secret data will be equal to 42 at every step of the
execution, including after control has been passed to the untrusted code. We have also developed
a relational model, which can be used to prove that the secret value cannot even be read by the
unknown code, but the details of this relational model are out of scope of this paper.

2.4 Securely encapsulating code and private capabilities
The previous example illustrates how to restrict available capabilities to prevent an adversary from
accessing secret data. However, what if we additionally want our program to be called back by the

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 9

untrusted code, as in Scenario 2b? In that case, when the trusted code gets invoked again we would
like to recover access to the capabilities it previously had to its private state.
This is unfortunately not achievable with the capabilities that we have described so far. If we

remove capabilities to private memory before passing control to untrusted code, then there is
no way for us to get them back later on: the only capabilities we will get access to in a further
invocation are capabilities the untrusted code itself has access to.
Sentry capabilities provide this missing feature. They implement a form of encapsulation that

resembles the use of closures with encapsulated local state in high-level languages, and they allow
implementing compartments which encapsulate private state and capabilities but can be called
from untrusted code. From a security perspective, sentry capabilities allow setting up protection
boundaries: the code executing before and after an invocation of a sentry capability has different
authority and thus represent distrusting components. We denote sentry capabilities with permission
e (for “Enter”, a terminology originating from the M-machine [Carter et al. 1994]).

One typically creates a sentry capability pointing to a region ofmemory describing a compartment
containing executable code and local state (or private capabilities to that local state). A sentry
capability is opaque: it cannot be used to read or write to the memory region it points to, and
it cannot be modified using restrict or subseg. It can thus be safely shared with untrusted
third-parties: they will not be able to access the encapsulated code and data. In the figure below,
the memory region pointed to by r1 (hatched in gray) is not accessible for either reading or writing.

rx
pc

42
r0

e
r1

...
registers

memory

The only possible operation is to “invoke” the sentry capability using the jmp instruction, thus
passing control to the code held in the region pointed to by the capability (in other words, “running”
the compartment). When jmp is called on a sentry capability, it turns the capability into a capability
with permission read-execute (rx) over the same memory region, and puts it into the program
counter register pc. This simultaneously runs the encapsulated code, and gives access to the data
and capabilities stored there, which were previously inaccessible. Running instruction jmp r1 on
the scenario of the previous figure leads to the machine state shown below.

rx
pc

42
r0

e
r1

...
registers

memory

Register pc now contains an rx capability to the previously opaque region, meaning that code
contained in that region can execute. Furthermore, it may access other capabilities stored in that
region, which can in turn be used to transitively access other private regions of memory.

Example: a counter compartment. To illustrate the use of sentry capabilities, let us consider the
example of a simple secure compartment implementing a counter. An instance of the counter holds
a private memory cell containing the current (integer) value of the counter. Every time the code
in the counter’s compartment is invoked, it increases the value stored in the memory cell. Using

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

; initially, PC = (RWX, init, end, init)

; r0 = (unknown) pointer to the context

init:

mov r1 PC ; r1 = (RWX, init, end, init)

lea r1 [data-init] ; r1 = (RWX, init, end, data)

mov r2 r1 ; r2 = (RWX, init, end, data)

lea r2 1 ; r2 = (RWX, init, end, data+1)

store r1 r2 ; mem[data] <- (RWX, init, end, data+1)

lea r1 [code-data] ; r1 = (RWX, init, end, code)

subseg r1 [code] [end] ; r1 = (RWX, code, end, code)

restrict r1 E ; r1 = (E, code, end, code)

mov r2 0 ; r2 = 0

jmp r0 ; jump to unknown code: we only give it access

; to an enter capability pointing to 'code'

; when 'code' gets executed from the E capability,

; PC = (RX, code, end, code)

; r0 = (unknown) return pointer to the continuation

code:

mov r1 PC ; r1 = (RX, code, end, code)

lea r1 [data-code] ; r1 = (RX, code, end, data)

load r1 r1 ; r1 = (RWX, init, end, data+1)

load r2 r1 ; r2 = <counter value>

add r2 r2 1 ; r2 = <counter value> + 1

store r1 r2 ; mem[data+1] <- <counter value> + 1

mov r1 0 ; r1 = 0

jmp r0 ; return to unknown code

data:

0xFFFF, ; will be overwritten with (RWX, init, end, data+1), i.e.

; a read-write capability to the counter value

0 ; our private data: the current value of the counter

end:

Fig. 4. Program implementing a secure counter

a sentry capability, one can expose the counter to an untrusted context, without giving it direct
access to the counter value.
It is worth pointing out that this is similar to the use of closures encapsulating local state in

high-level languages. Typically, a similar counter program could be implemented in a high-level
language as follows, using a function closure to encapsulate a reference holding the counter value.

let 𝑥 = ref 0 in (𝜆(). 𝑥 := !𝑥 + 1; !𝑥)

As before, our actual counter program is implemented in assembly, and its code appears in
Figure 4. Its implementation is divided into two parts. First, the code starting at label init (and
ending at code) is used to set up the counter compartment; it is intended to run only once at the
beginning of the program. Then, the region between code and end corresponds to the contents of
the counter compartment itself, including its executable code (between code and data) and private
data (between data and end).

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 11

The role of the initialization code is to create a sentry capability encapsulating the code–end
region, and then pass control to the (untrusted) context, giving it access to the newly created sentry
capability. Additionally, the initialization code stores at address data a capability giving read-write
access to the compartment’s region, and pointing to the counter’s value at address data+1.
One might wonder why we have this extra indirection to the counter’s value through the

capability in data. Recall that after calling jmp on a sentry capability, the program counter is only
provisioned with an rx capability. For the counter code to be able to actually increment the counter
value (at address data+1), it needs to have write access to it. The additional rwx capability stored at
address data by the initialization code is thus used to “promote” read access on the compartment’s
region into read-write access to that same region.
The code of the counter’s compartment can then run many times, once each time the context

chooses to invoke the sentry capability it got from the initialization code. At each invocation, the
counter’s implementation (at address code) reads the rwx capability stored in the data section,
uses it to increment the value of the counter, and passes control back to its caller.

Let us walk through the details of the code. The initialization code is assumed to run starting with
a program counter giving rwx access over the whole program region. The first four instructions
derive, from the program counter, rwx capabilities pointing to addresses data and data+1. Then,
using the store instruction, the capability (rwx, init, end, data+1) is stored at address data. Next,
after using lea and subseg to adjust the address and bounds of the capability, a sentry capability
is created pointing to the compartment’s region [code, end). This is done using the restrict
instruction, turning a capability with permission rwx into a capability with permission e. Register
r2 is then cleared, to make sure that the rwx capability pointing to the counter value is not leaked
to the context. Finally, the initialization code jumps to the pointer in r0, which by convention points
to the context.
The compartment’s code (starting at address code) then gets executed each time the context

invokes the sentry capability. Because we have only shared a sentry capability (e, code, end, code)
with the context, we know that when the compartment gets executed, the program counter must
contain (rx, code, end, code). By reading the program counter, the first two instructions of the
code then derive an rx capability pointing to address data, and use it (with load) to read the
capability that was stored there, granting rwx access to data+1. The subsequent load, add and
store instructions use this second capability to increment the value of the counter. Finally, before
returning to the context by jumping to r0, the program takes care of clearing register r1, overwriting
its contents with 0. This is quite crucial, as otherwise an rwx capability would be leaked to the
context, giving it direct access to the counter’s private state!
To sum up, our example program carefully selects which capabilities it shares with unknown

code, and leverages the encapsulation properties of sentry capabilities provided by the machine.
Consequently, it should seem clear, at least informally, that the integrity of the counter’s value
is guaranteed through the execution. More precisely, we should be able to formally prove some
invariant about it: for instance, that it is nonnegative at every step of the execution, for any un-
trusted context. In Section 6.2, we show in more detail how to formally establish this property.

In this section, we have showcased how one might program with capabilities in order to obtain
security guarantees, and make it possible to interact with adversarial code while protecting private
data and invariants.

In the rest of this paper, we show how we can make the intuitions that we have developed so far
more precise, and formally prove capability safety for machine code programs that interact with
untrusted code. Namely:

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

• We expect to have some concrete known code, which has some private data and invariants,
and interacts with untrusted code.
• We formally define the operational semantics of the capability machine that we consider
(Section 3). This precisely defines the behavior of the machine on which the rest of our
framework is built.
• Then we develop (Section 4) a program logic which supports formally verifying correctness
properties about known code. Given some verified known code, we would then like to be
able to conclude some result about a complete execution of the machine, when it runs a
combination of the known code and some arbitrary untrusted code.
• To that end we need a way of formally capturing the fact that the machine effectively

restricts the behavior of arbitrary code at runtime, by limiting the capabilities it has access
to. We do this (Section 5) by defining a logical relation capturing “capability safety” of
arbitrary code.
• By combining the Adequacy theorem of our program logic and the Fundamental theorem
of our logical relation, we can prove safety of concrete examples (Section 6) and obtain
theorems about complete executions of the machine.

3 OPERATIONAL SEMANTICS OF A CAPABILITY MACHINE
The very basis of our framework is a formal description of the capability machine we consider:
which instructions it supports, and its behavior when it runs and executes programs. Technically
speaking, this description corresponds to the operational semantics of the machine, upon which
the program logic described next in Section 4 is built.

Our capability machine draws inspiration from CHERI [Watson et al. 2020], albeit in a simplified
form, and only covers a subset of the features found in CHERI machines. Compared to a realistic
CHERImachine, we consider a number of simplifications: our instruction set isminimal, ourmachine
does not have virtual memory or different privilege levels, machine words can store unbounded
integers, every instruction can be encoded in a single machine word, we do not consider memory
alignment issues, and we abstract away from the binary encoding of capabilities. Nevertheless, our
semantics does capture many of the aspects that make reasoning about machine code programs
challenging: our machine has a finite amount of memory, a fixed number of registers, and there are
no distinctions between code and data nor structured control flow for programs, owing to the fact
that program instructions are simply encoded and stored in memory as normal integers.

Figure 5 gives the basic definitions that will play a role in the operational semantics of machine
instructions. The set of memory addresses Addr is finite, and corresponds to the integer range
[0,AddrMax]. A memory word 𝑤 ∈ Word is either an (unbounded) integer or a capability 𝑐 .
Capabilities are of the form (𝑝,𝑏, 𝑒, 𝑎), giving access to the memory range [𝑏, 𝑒) with permission 𝑝 ,
while currently pointing to 𝑎. The permissions 𝑝 are ordered according to the lattice appearing at
the top-right of the figure, inducing a bottom-to-top partial order ≼ on permissions. There are six
different permissions; the null (o), read-only (ro), enter (e), read-write (rw), read-execute (rx) and
read-write-execute (rwx) permissions.
The state of the machine is modeled by the semantics as a pair of an execution state 𝑠 and

a configuration 𝜑 . An execution state flag indicates whether the machine is presently running
(Running), has successfully halted (Halted), or has stopped execution by raising an error (Failed). A
configuration 𝜑 contains the state of the registers 𝜑.reg and the memory 𝜑.mem. A register file reg
consists of a map from register names 𝑟 to machine words, while the memory𝑚 maps addresses to
words.

Next, Figure 5 shows the list of instructions of our machine. An instruction 𝑖 typically operates
on register names 𝑟 , but can also sometimes take integer values as parameters; 𝜌 denotes an

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 13

𝑎 ∈ Addr ≜ [0,AddrMax]
𝑝 ∈ Perm ::= o | e | ro | rx | rw | rwx
𝑐 ∈ Cap ≜ {(𝑝, 𝑏, 𝑒, 𝑎) | 𝑏, 𝑒, 𝑎 ∈ Addr}
𝑤 ∈ Word ≜ Z + Cap
reg ∈ Reg ≜ RegName→Word
𝑚 ∈ Mem ≜ Addr→Word
𝑠 ∈ ExecState ::= Running | Halted | Failed
𝜑 ∈ ExecConf ≜ Reg ×Mem

rwx

rw rx

ro e

o

Lattice defining the ≼ relation.
(We have 𝑝1 ≼ 𝑝2 if there is a path going up from 𝑝1 to 𝑝2 in the diagram.)

𝑟 ∈ RegName ::= pc | r0 | r1 | . . . | r31 𝜌 ∈ Z + RegName
𝑖 ::= jmp 𝑟 | jnz 𝑟 𝑟 | mov 𝑟 𝜌 | load 𝑟 𝑟 | store 𝑟 𝜌 | add 𝑟 𝜌 𝜌 | sub 𝑟 𝜌 𝜌 |

lt 𝑟 𝜌 𝜌 | lea 𝑟 𝜌 | restrict 𝑟 𝜌 | subseg 𝑟 𝜌 𝜌 | isptr 𝑟 𝑟 | getp 𝑟 𝑟 |
getb 𝑟 𝑟 | gete 𝑟 𝑟 | geta 𝑟 𝑟 | fail | halt

Fig. 5. Base definitions for the machine’s words, state, and instructions.

instruction parameter which can be either a register name or a constant integer. Our machine
features general purpose registers (r0 – r31), on top of the pc register, which points to the address in
memory where the currently executing instruction is stored. (Technically speaking, pc must point
to a memory cell containing an integer which can be successfully decoded into an instruction.) pc
should therefore always contain a capability with at least permission rx; in any other case, the
machine fails immediately.
Figure 6 defines the small-step operational semantics for the capability machine. The rule

ExecSingle describes how a single instruction gets executed. An execution step requires an
executable and in-bounds capability in the pc register, and fails otherwise. It expects the memory
cell pointed to by the capability to store an integer 𝑧, decodes it into an instruction and executes
the instruction on the current state 𝜑 ; the new configuration is denoted Jdecode(𝑧)K(𝜑). The table
making up most of Figure 6 defines the operational behavior J𝑖K(𝜑) for each instruction 𝑖 of the
machine.

Most instructions use the auxiliary function updPC to increment the pc register after their proper
operations. Because the address space is finite, pointer arithmetic such as incrementing pc can result
in illegal addresses. To avoid notational clutter, we will always write as if arithmetic operations
succeed, and consider that otherwise themachine transitions to a Failed state. The auxiliary function
getWord is used to get the value corresponding to the argument 𝜌 of an instruction: either its
corresponding integer value if it is an immediate integer, or the contents of the corresponding
register if it is a register name. The auxiliary function updatePcPerm is used in the definition of the
behavior of the jmp and jnz instructions to unseal sentry capabilities. As mentioned previously, an
additional effect of these jump instructions is to unseal sentry (e) capabilities into rx capabilities.
We now describe the semantics of the instructions of the machine, as formally defined in the

table of Figure 6. The fail and halt instructions stop the execution of the machine, in the Failed
and Halted state respectively. mov 𝑟 𝜌 copies 𝜌 (either an immediate value or the contents of
the corresponding register name) into register 𝑟 . The instructions load and store allow reading
and writing memory: load 𝑟1 𝑟2 reads the value pointed to by the capability in 𝑟2 provided it
has the permission r and points within its bounds; store 𝑟 𝜌 stores 𝜌 to the location pointed to
by the capability in 𝑟 provided it has the w permission and points within bounds. The jmp and

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

ExecSingle

(Running, 𝜑) →


Jdecode(𝑧)K(𝜑) if 𝜑.reg(pc) = (𝑝,𝑏, 𝑒, 𝑎) ∧ 𝑏 ≤ 𝑎 < 𝑒 ∧

𝑝 ∈ {rx, rwx} ∧ 𝜑.mem(a) = 𝑧

(Failed, 𝜑) otherwise

𝑖 J𝑖K(𝜑) Conditions
fail (Failed, 𝜑)
halt (Halted, 𝜑)

mov 𝑟 𝜌 updPC(𝜑 [reg.𝑟 ↦→ 𝑤]) 𝑤 = getWord(𝜑, 𝜌)

load 𝑟1 𝑟2 updPC(𝜑 [reg.𝑟1 ↦→ 𝑤]) 𝜑.reg(𝑟2) = (𝑝,𝑏, 𝑒, 𝑎) and𝑤 = 𝜑.mem(𝑎)
and 𝑏 ≤ 𝑎 < 𝑒 and 𝑝 ∈ {ro, rx, rw, rwx}

store 𝑟 𝜌 updPC(𝜑 [mem.𝑎 ↦→ 𝑤]) 𝜑.reg(𝑟) = (𝑝,𝑏, 𝑒, 𝑎) and 𝑏 ≤ 𝑎 < 𝑒 and
𝑝 ∈ {rw, rwx} and𝑤 = getWord(𝜑, 𝜌)

jmp 𝑟
(Running,
𝜑 [reg.pc ↦→ newPc]) newPc = updatePcPerm(𝜑.reg(𝑟))

jnz 𝑟1 𝑟2

if 𝜑.reg(𝑟2) ≠ 0, then
(Running,
𝜑 [reg.pc ↦→ newPc])

else updPC(𝜑)

newPc = updatePcPerm(𝜑.reg(𝑟1))

restrict 𝑟 𝜌 updPC(𝜑 [reg.𝑟 ↦→ 𝑤])
𝜑.reg(𝑟) = (𝑝,𝑏, 𝑒, 𝑎) and
𝑝 ′ = decodePerm(getWord(𝜑, 𝜌)) and 𝑝 ′ ≼ 𝑝

and𝑤 = (𝑝 ′, 𝑏, 𝑒, 𝑎)

subseg 𝑟 𝜌1 𝜌2 updPC(𝜑 [reg.𝑟 ↦→ 𝑤])
𝜑.reg(𝑟) = (𝑝,𝑏, 𝑒, 𝑎) and for 𝑖 ∈ {1, 2},
𝑧𝑖 = getWord(𝜑, 𝜌𝑖) and 𝑧𝑖 ∈ Z and 𝑏 ≤ 𝑧1 and
0 ≤ 𝑧2 ≤ 𝑒 and 𝑝 ≠ e and𝑤 = (𝑝, 𝑧1, 𝑧2, 𝑎)

lea 𝑟 𝜌 updPC(𝜑 [reg.𝑟 ↦→ 𝑤]) 𝜑.reg(𝑟) = (𝑝,𝑏, 𝑒, 𝑎) and 𝑧 = getWord(𝜑, 𝜌)
and 𝑝 ≠ e and𝑤 = (𝑝,𝑏, 𝑒, 𝑎 + 𝑧)

add 𝑟 𝜌1 𝜌2 updPC(𝜑 [reg.𝑟 ↦→ 𝑧]) for 𝑖 ∈ {1, 2}, 𝑧𝑖 = getWord(𝜑, 𝜌𝑖)
and 𝑧𝑖 ∈ Z and 𝑧 = 𝑧1 + 𝑧2

sub 𝑟 𝜌1 𝜌2 updPC(𝜑 [reg.𝑟 ↦→ 𝑧]) for 𝑖 ∈ {1, 2}, 𝑧𝑖 = getWord(𝜑, 𝜌𝑖)
and 𝑧𝑖 ∈ Z and 𝑧 = 𝑧1 − 𝑧2

lt 𝑟 𝜌1 𝜌2 updPC(𝜑 [reg.𝑟 ↦→ 𝑧]) for 𝑖 ∈ {1, 2}, 𝑧𝑖 = getWord(𝜑, 𝜌𝑖)
and 𝑧𝑖 ∈ Z and if 𝑧1 < 𝑧2 then 𝑧 = 1 else 𝑧 = 0

getp 𝑟1 𝑟2 updPC(𝜑 [reg.𝑟1 ↦→ 𝑧]) 𝜑.reg(𝑟2) = (𝑝, _, _, _) and 𝑧 = encodePerm(𝑝)
getb 𝑟1 𝑟2 updPC(𝜑 [reg.𝑟1 ↦→ 𝑏]) 𝜑.reg(𝑟2) = (_, 𝑏, _, _)
gete 𝑟1 𝑟2 updPC(𝜑 [reg.𝑟1 ↦→ 𝑒]) 𝜑.reg(𝑟2) = (_, _, 𝑒, _)
geta 𝑟1 𝑟2 updPC(𝜑 [reg.𝑟1 ↦→ 𝑎]) 𝜑.reg(𝑟2) = (_, _, _, 𝑎)

isptr 𝑟1 𝑟2 updPC(𝜑 [reg.𝑟1 ↦→ 𝑧]) if 𝜑.reg(𝑟2) = (_, _, _, _)
then 𝑧 = 1 else 𝑧 = 0

_ (Failed, 𝜑) otherwise

updPC(𝜑) =
{
(Running, 𝜑 [reg.pc ↦→ (𝑝, 𝑏, 𝑒, 𝑎 + 1)]) if 𝜑.reg(pc) = (𝑝,𝑏, 𝑒, 𝑎)
(Failed, 𝜑) otherwise

getWord(𝜑, 𝜌) =
{

𝜌 if 𝜌 ∈ Z
𝜑.reg(𝜌) if 𝜌 ∈ RegName

updatePcPerm(𝑤) =
{
(rx, 𝑏, 𝑒, 𝑎) if𝑤 = (e, 𝑏, 𝑒, 𝑎)
𝑤 otherwise

Fig. 6. Operational semantics: execution of a single instruction.

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 15

jnz instructions correspond to an unconditional and conditional jump respectively, thus loading
the provided capability into pc. Using updatePcPerm, in the case of a sentry (e) capability, they
unseal it into a rx capability first. Three instructions allow deriving new capabilities from existing
ones. restrict 𝑟 𝜌 allows restricting the permission of a capability (where 𝜌 provides an integer
encoding of the desired permission), provided it is less permissive than the current permission
according to ≼. subseg 𝑟 𝜌1 𝜌2 restricts the range of authority of the capability stored in 𝑟 , provided
it is a subset of the current range of the capability. lea 𝑟 𝜌 modifies the current address of the
capability in 𝑟 , by adding to it the integer offset 𝜌 . As should be expected, subseg and lea fail for
sentry capabilities. Arithmetic operations are provided by the add, sub and lt instructions, which
implement addition, subtraction, and comparison on integers, respectively. Finally, a number of
instructions allow inspecting machine words and capabilities. isptr can be used to query whether
a machine word is an integer or a capability, and getp, getb, gete, and geta return the different
parts of a capability (permission, bounds and address). (More precisely, getp returns an integer
encoding the permission, as given by encodePerm.) If any of the capability checks for an instruction
are not satisfied, the machine fails.

An important aspect of our operational semantics is how it explicitly accounts for errors: when
a capability check fails (for instance when a program tries to use a capability outside of its range),
the semantics does not get stuck (meaning that it would not be able to reduce): instead, it explicitly
transitions to a state with the Failed execution state flag.

4 PROGRAM LOGIC
The operational semantics presented in the previous section formally define the behavior of our
machine when it runs and executes code. Based on that, we expect to be able to formally verify
concrete programs running on the machine.
The most direct approach would be to manually establish properties of sequences of reduction

steps, based on the sole definition of the operational semantics. We do not follow this approach,
because it would quickly become very tedious even for simple programs.
Instead, we draw from previous research in program logics and separation logic, and define

Cerise: a program logic which provides a convenient framework in which to modularly reason
about programs running on our machine. Indeed:
• It is typically more convenient to devise a system of proof rules for programs, rather
than work directly at the level of abstraction provided by the bare operational semantics.
Such rules form a program logic, which can be proved sound according to the operational
semantics, and then can be used to verify properties of concrete programs.

• Separation logic, a family of program logics, has been widely used to reason about programs
manipulating shared mutable state (such as memory). On our capability machine, not only
do all programs access a mutable shared memory, but programs are themselves represented
as unstructured data in memory; so the use of separation logic is particularly called for.
Separation logic enables modular reasoning about programs that operate only on a sub-part
of the global state, allowing them to be freely composed with programs that operate on a
disjoint part of the state.

The first step is to consider what part of the machine state should be described by separation
logic assertions. Here, the machine state consists of both the machine memory and the machine
registers. Indeed, it is useful to modularly reason about programs operating on both a subset of
memory and a subset of the available registers.

Technically speaking, we build the Cerise program logic on top of the Iris framework [Jung et al.
2018], which provides us with additional useful features, such as invariants. In the following we

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

𝑃,𝑄 ∈ iProp ::=
True | False | ∀𝑥 . 𝑃 | ∃𝑥 . 𝑃 | . . . higher-order logic
| 𝑃 ∗𝑄 | 𝑃 −−∗ 𝑄 | ⌈𝜙⌉ | □ 𝑃 | ⊲ 𝑃 separation logic
| a ↦→ 𝑤 | 𝑟 Z⇒ 𝑤 | ®𝑎 ↦→ ®𝑙 machine resources
| 𝑃 invariants
| ⟨𝑃⟩ → ⟨𝑠 . 𝑄⟩ | {𝑃}⇝ {𝑠 . 𝑄} | {𝑃}⇝ • program logic

Fig. 7. The syntax of our program logic.

introduce both the basic separation logic assertions describing the machine state and additional
features inherited from Iris (Section 4.1). Then, we describe the rules that are used to specify the
execution of machine instructions and programs (Section 4.2).
Note that the program logic is, in a sense, only a technical device. The end goal is to obtain

theorems that only refer to reductions in the operational semantics of our machine. To that end, we
present (Section 4.3) an Adequacy theorem for our logic, which allows us to “extract” a correctness
theorem expressed in terms of the operational semantics of the machine from a proof established
in the program logic.

4.1 Basic resources
Figure 7 shows the syntax of our Cerise program logic based on Iris. We write iProp for the universe
of propositions. These feature the standard connectives of higher-order logic and separation logic,
including the separating conjunction ∗ and the magic wand −−∗ (read as an implication). The
proposition ⌈𝜙⌉ asserts that the pure proposition 𝜙 holds, where 𝜙 is a proposition from the meta
logic.
Iris assertions can be divided in two categories: ephemeral assertions and persistent assertions.

Ephemeral assertions describe facts or resources that are available at a given point but might
become false or unavailable later. Persistent assertions describe facts that never cease to be true.
The assertion □ 𝑃 , read “persistently 𝑃”, is persistent, and asserts ownership over resources whose
duplicable part satisfies 𝑃 . In other words, □ 𝑃 is like 𝑃 except that it does not assert any exclusive
ownership over resources. As the knowledge associated with a persistent assertion can never be
invalidated, persistent assertions can be freely duplicated.
The modality ⊲ 𝑃 expresses (roughly) that the assertion 𝑃 holds after one “logical step” of

execution. In this paper, we mainly use it to define recursive predicates using guarded recursion. It
is not necessary to understand how the modality behaves in detail and the reader can safely ignore
it for the most part and just recall that it supports an abstract accounting of execution steps.

Our logic includes resources (predicates) that describe parts of the current state of the machine.
The assertion a ↦→ 𝑤 expresses that the memory cell at address a contains the machine word𝑤 .
Furthermore, this assertion should be read as giving unique ownership over location a, giving the
right to freely read and update the corresponding memory cell. Similarly, the assertion 𝑟 Z⇒ 𝑤

asserts ownership of a CPU register 𝑟 containing the word𝑤 . We write ®𝑎 ↦→ ®𝑙 for the ownership of
contiguous memory cells at addresses ®𝑎 containing ®𝑙 .
A key feature of the logic is the notion of an invariant. The assertion 𝑃 asserts that 𝑃 should

hold at all times, now and for every future step of the execution (where 𝑃 can be any separation logic
assertion). An invariant is a persistent assertion. An invariant 𝑃 can be created (or “allocated”)
by handing over the resources for 𝑃 , turning them into 𝑃 . Then, whenever we know that 𝑃

holds, we can get access to the resources 𝑃 held in the invariant, but only for the duration of one

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 17

program step. Indeed, since the invariant must hold at every step of the execution, when accessing
its resources, one needs to show that it holds again no later than one program step after. A more
precise rule for accessing invariants is given next in Section 4.2 (rule Inv).

4.2 Program specifications
The predicates for machine resources we just presented allow describing the state of the machine.
Our logic, moreover, includes assertions that can be used to specify machine executions, similar
to Hoare triples used in program logics for high-level languages. Because we work with a low-
level machine (where code is located in memory), we distinguish between three different types of
program specifications:

⟨𝑃⟩ → ⟨𝑠 .𝑄⟩ single instruction
{𝑃}⇝ {𝑠 .𝑄} code fragment
{𝑃}⇝ • complete safe execution.

In each case, 𝑃 are 𝑄 are separation logic assertions describing the state of the machine (reg-
isters and memory). 𝑃 corresponds to a pre-condition, 𝑄 a post-condition, and 𝑠 binds in 𝑄 the
corresponding execution state (of type ExecState, see Figure 5).
Informally, ⟨𝑃⟩ → ⟨𝑠 . 𝑄⟩ holds if, starting from a machine state satisfying 𝑃 , the machine can

execute one step of computation, and reach a state satisfying𝑄 in an execution state 𝑠 . The predicate
{𝑃}⇝ {𝑠 .𝑄} holds if, starting from a state satisfying 𝑃 , then the machine can diverge (i.e. loop) or
reach a state satisfying 𝑄 in an execution state 𝑠 . This is typically used to describe the execution
of a code fragment. Finally, {𝑃}⇝ • holds if, starting from a machine state satisfying 𝑃 , then the
machine loops forever or runs until completion, ending in either a Halted or Failed state. In this
case, we say that the initial configuration described by 𝑃 is safe. (Not every configuration is safe:
the resources in 𝑃 describing registers and memory must suffice for the machine to run and execute
the code pointed to by pc: we do not have {𝑝𝑐 Z⇒ 𝑤}⇝ • in general.)

Additionally, these three specifications require the logical invariants to be preserved at every step of
the execution. This requirement is implicit in the definition of invariants, but it is a crucial reasoning
principle that we will leverage.
Echoing back to Section 2.2, note that our program specification for a complete safe execution

allows the program to fail (or diverge). Indeed, wewill capture the preservation of security properties
by preserving invariants throughout execution and having the machine fail is both fine (invariants
are trivially preserved when the machine ends up in a failure state) and unavoidable (we cannot
prevent unknown code from triggering a capability check failure). Similar considerations apply for
divergence.

Notations. In the rest of the paper, we will rely on a couple of additional notations when writing
program specifications. Because we often want to reason about the case where an instruction
(or program fragment) does not fail, we write ⟨𝑃⟩ → ⟨𝑄⟩ (respectively {𝑃} ⇝ {𝑄}) to denote a
resulting execution state equal to Running:

⟨𝑃⟩ → ⟨𝑄⟩ ≜ ⟨𝑃⟩ → ⟨𝑠 . ⌈𝑠 = Running⌉ ∗𝑄⟩
{𝑃}⇝ {𝑄} ≜ {𝑃}⇝ {𝑠 . ⌈𝑠 = Running⌉ ∗𝑄} .

When writing pre- and post-conditions, we will often need to include a points-to resource
describing the contents of the pc register. We introduce a short-hand notation for that purpose,
and write𝑤 ; 𝑃 to assert 𝑃 and additionally that pc is set to𝑤 :

𝑤 ; 𝑃 ≜ pc Z⇒ 𝑤 ∗ 𝑃

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

Using these two notations, the specification for a single instruction, in a case where it does not
fail, is written as ⟨𝑤0; 𝑃⟩ → ⟨𝑤1;𝑄⟩ (typically, we have𝑤1 = 𝑤0 + 1, except in the case of the jmp
and jnz instructions, or when explicitly writing to the pc register).

Properties. Our program specifications satisfy the well-known “frame rule” of separation logic,
which permits local reasoning, and asserts that it is always possible to extend a specification by
adding arbitrary resources not accessed by the program.

FragFrame
{𝑃}⇝ {𝑠 . 𝑄}

{𝑃 ∗ 𝑅}⇝ {𝑠 . 𝑄 ∗ 𝑅}

StepFrame
⟨𝑃⟩ → ⟨𝑠 . 𝑄⟩

⟨𝑃 ∗ 𝑅⟩ → ⟨𝑠 . 𝑄 ∗ 𝑅⟩

FullFrame
{𝑃}⇝ •

{𝑃 ∗ 𝑅}⇝ •

Program specifications can also be composed using sequencing rules. In order to establish a
specification of the form {𝑃}⇝ {𝑠 .𝑄}, one typically uses single-instructions rules (⟨𝑅⟩ → ⟨𝑠 . 𝑆⟩)
in a sequence, one for each instruction of the relevant code block. Specifications for two program
fragments that follow each other can also be combined to obtain a specification for the sequence
of the two fragments. We prove general sequencing rules for our three kind of specifications; for
simplicity, we only reproduce here restricted rules that deal with successful executions (relying on
the notations introduced before):

SeqFrag
{𝑃}⇝ {𝑄} {𝑄}⇝ {𝑅}

{𝑃}⇝ {𝑅}

SeqFull
{𝑃}⇝ {𝑄} {𝑄}⇝ •

{𝑃}⇝ •

StepFull
⟨𝑃⟩ → ⟨𝑄⟩ {𝑄}⇝ •

{𝑃}⇝ •

StepFrag
⟨𝑃⟩ → ⟨𝑄⟩ {𝑄}⇝ {𝑅}

{𝑃}⇝ {𝑅}

When reasoning about a single execution step, one can additionally access resources held in
known invariants. This is done using the Inv rule, given below: 2

Inv
⟨𝑃 ∗ ⊲𝑅⟩ → ⟨𝑠 .𝑄 ∗ ⊲𝑅⟩

𝑅 ⊢ ⟨𝑃⟩ → ⟨𝑠 . 𝑄⟩

Example specifications. As illustrative examples, Figure 8 shows specifications for the subseg,
load and store instructions, as well as the rclear macro which is used to clear the contents of
a number of specified registers. The first rule shows a specification for the subseg instruction. It
states that if the program counter contains a capability pointing to a memory location 𝑎pc , if that
location contains an integer 𝑛 which decodes into subseg 𝑟 𝑧1 𝑧2, and if the register 𝑟 contains a
capability, then assuming that the program counter is valid (ValidPC(...)) and that 𝑧1 and 𝑧2 are
valid new bounds (ValidSubseg(...)), the machine successfully increments the program counter and
restricts the capability held in register 𝑟 with new bounds 𝑧1 and 𝑧2.
The second rule is also a specification for subseg, but in a case where it fails a bound check,

i.e. ValidSubseg(𝑝, 𝑏, 𝑒, 𝑧1, 𝑧2) does not hold. (For instance, when the new bounds 𝑧1 and 𝑧2 would
allow accessing more memory than what is available through the original capability.) Then, the
rule does give us a specification for an execution step, but with a resulting execution state of Failed,
meaning that the execution cannot continue afterwards.

2For clarity of the presentation, we choose to omit additional details related to Iris invariant namespaces and masks. We
refer to the Coq development for the full details 2 .

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://plv.mpi-sws.org/coqdoc/iris/iris.base_logic.lib.invariants.html#inv_alloc

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 19

ValidPC(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ValidSubseg(𝑝, 𝑏, 𝑒, 𝑧1, 𝑧2) decode(𝑛) = subseg 𝑟 𝑧1 𝑧2〈
(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ; 𝑎pc ↦→ 𝑛 ∗ 𝑟 Z⇒ (𝑝,𝑏, 𝑒, 𝑎)

〉
→〈

(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc + 1) ; 𝑎pc ↦→ 𝑛 ∗ 𝑟 Z⇒ (𝑝, 𝑧1, 𝑧2, 𝑎)
〉

ValidPC(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ¬ValidSubseg(𝑝, 𝑏, 𝑒, 𝑧1, 𝑧2) decode(𝑛) = subseg 𝑟 𝑧1 𝑧2〈
(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ; 𝑎pc ↦→ 𝑛 ∗ 𝑟 Z⇒ (𝑝, 𝑏, 𝑒, 𝑎)

〉
→〈

𝑠 . ⌈𝑠 = Failed⌉ ∗
(
(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ; 𝑎pc ↦→ 𝑛 ∗ 𝑟 Z⇒ (𝑝,𝑏, 𝑒, 𝑎)

)〉
ValidPC(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ValidLoad(𝑝, 𝑏, 𝑒, 𝑎) decode(𝑛) = load dst src〈
(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ; 𝑎pc ↦→ 𝑛 ∗ dst Z⇒ − ∗ src Z⇒ (𝑝,𝑏, 𝑒, 𝑎) ∗ 𝑎 ↦→ 𝑤

〉
→〈

(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc + 1) ; 𝑎pc ↦→ 𝑛 ∗ dst Z⇒ 𝑤 ∗ src Z⇒ (𝑝,𝑏, 𝑒, 𝑎) ∗ 𝑎 ↦→ 𝑤
〉

ValidPC(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ValidStore(𝑝, 𝑏, 𝑒, 𝑎) decode(𝑛) = store dst src〈
(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ; 𝑎pc ↦→ 𝑛 ∗ dst Z⇒ (𝑝,𝑏, 𝑒, 𝑎) ∗ src Z⇒ 𝑤 ∗ 𝑎 ↦→ −

〉
→〈

(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc + 1) ; 𝑎pc ↦→ 𝑛 ∗ dst Z⇒ (𝑝,𝑏, 𝑒, 𝑎) ∗ src Z⇒ 𝑤 ∗ 𝑎 ↦→ 𝑤
〉

∀𝑖 ∈ [0, 𝑛), ValidPC(𝑝, 𝑏, 𝑒, 𝑎𝑖) 𝑛 = length(rclear_instrs 𝑙){
(𝑝, 𝑏, 𝑒, 𝑎0);∗𝑟 ∈𝑙 𝑟 Z⇒ − ∗∗𝑖∈[0,𝑛) 𝑎𝑖 ↦→ (rclear_instrs 𝑙) [𝑖]} ⇝{
(𝑝, 𝑏, 𝑒, 𝑎𝑛);∗𝑟 ∈𝑙 𝑟 Z⇒ 0 ∗ ∗𝑖∈[0,𝑛) 𝑎𝑖 ↦→ (rclear_instrs 𝑙) [𝑖]}
ValidPC(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ≜ rx ≼ 𝑝pc ∧ 𝑏pc ≤ 𝑎pc < 𝑒pc
ValidSubseg(𝑝, 𝑏, 𝑒, 𝑧1, 𝑧2) ≜ 𝑝 ≠ e ∧ 𝑏 ≤ 𝑧1 ∧ 0 ≤ 𝑧2 ≤ 𝑒

ValidLoad(𝑝, 𝑏, 𝑒, 𝑎) ≜ ro ≼ 𝑝 ∧ 𝑏 ≤ 𝑎 < 𝑒

ValidStore(𝑝, 𝑏, 𝑒, 𝑎) ≜ rw ≼ 𝑝 ∧ 𝑏 ≤ 𝑎 < 𝑒

rclear_instrs 𝑙 ≜ map (𝜆𝑟 . encode(move 𝑟 0)) 𝑙

Fig. 8. Specifications for the machine instructions subseg, load and store and for the rclear macro that
sets a given list of registers to zero. Changes to the machine state are highlighted in red.

The third and fourth rules give specifications for the load and store instructions (in non-failing
cases). The specification for load states that load dst src loads a word from memory pointed to
by a capability in register src and stores its contents in register dst. The specification for store
states that store dst src reads a word from the src register and writes it into the memory location
pointed to by the capability in dst.
Note that these specifications for subseg, load and store are not in fact the most general

specifications for these instructions. They assume that some side-conditions hold, and specify the
behavior of the instruction in the case of either a “normal” successful execution, or a failing one.
These specifications are typically useful for reasoning about the correctness of a concrete program.
We have also proved in Coq (e.g., 3 for the subseg instruction) “most general” specifications,
covering in one lemma all possible cases for a given instructions. These are useful for deriving
the more specific rules shown previously. Furthermore, we use them directly in the proof of the
Fundamental Theorem (Theorem 2), for specifying the behavior of arbitrary instructions that might
or might not fail.
The last rule of Figure 8 shows a derivable specification for a program composed of several

instructions, the rclear macro. This macro (meaning, a small program that is typically inserted
inline as part of a larger program) clears a number of registers by setting their content to 0. It is

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_machine.rules.rules_Subseg.html#wp_Subseg

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

parameterized by a list 𝑙 of register names, and its code consists of a sequence of instructions move 𝑟 0
for each register name 𝑟 in 𝑙 . We state rclear’s specification using the program specification for
code fragments. This specification is provable using the basic reasoning rules for move. It requires
that the body of the macro (“rclear_instrs 𝑙”) is laid out contiguously in memory range [𝑎0, 𝑎𝑛),
while the program counter initially points to 𝑎0. When the program counter eventually points to
𝑎𝑛 , the address immediately after the macro’s instructions, then all the registers in 𝑙 have been
cleared and now contain 0. (The “big star”∗ denotes an iterated separating conjunction, here over
the registers 𝑟 in list 𝑙 .)

4.3 Adequacy theorem
After establishing program specifications and properties at the level of our program logic, we
ultimately want to transfer these results into properties of a program execution at the level of the
operational semantics of the bare machine. Generally speaking, we prove using the rules of the Iris
logic a statement of the form 𝑃 ⊢ 𝑄 , where 𝑃 and 𝑄 are Iris propositions (read “𝑄 holds assuming
invariant 𝑃”). From this, we want to deduce that some mathematical proposition Φ holds (as a Coq
proposition, in our case), where Φ describes some property of the machine execution expressed in
terms of its operational semantics.
Because we are interested in establishing invariants about a program execution, we typically

want to obtain in Φ that at every step of the execution, the state of the machine satisfies an invariant
corresponding to the Iris assertion 𝑃 .

Deriving mathematical facts from Iris proof derivations is made possible thanks to the so-called
adequacy theorem of Iris 4 . This theorem has a very general but intricate statement. In this section,
we describe a simpler but more specialized adequacy theorem for our capability machine, which
we can use to reason about the examples introduced in Section 2. (We also describe in Section 7 a
more advanced adequacy theorem, suitable for reasoning about programs such as the case study
of Section 8.) This specialized adequacy theorem is itself established on top of the general Iris
adequacy theorem. When it applies, it is more convenient to use; but in the general case, it is always
possible to directly leverage the general adequacy theorem.

We now present our specialized adequacy theorem. We first define a notion of memory invariant

(Definition 1), which corresponds to a predicate over a finite subset of the machine memory.
Typically, we will consider predicates of the form: “the value at this specific memory address holds a
positive integer” (for instance, the value of the counter of Section 2.4). A memory invariant is given
by a predicate 𝐼 over machine memory and a set of addresses 𝐷 (the “domain” of the invariant); we
then require that 𝐼 is not impacted by changes outside of 𝐷 .

Definition 1 (Memory invariant 5). We say that 𝐼 is a memory invariant over 𝐷 if 𝐼 is a

predicate over machine memory, 𝐷 a finite set of addresses, and:

∀𝑚𝑚′. (∀𝑎 ∈ 𝐷. 𝑚(𝑎) =𝑚′(𝑎)) =⇒ 𝐼 (𝑚) ⇔ 𝐼 (𝑚′).

We now present the statement of our specialized adequacy theorem; we explain the ingredients
in the theorem statement below. Given a memory invariant 𝐼 over a set 𝐷 , our adequacy theorem
(Theorem 1) can be used to show that 𝐼 indeed holds of the memory at every step of the execution,
provided we can show that it holds as an invariant in Iris.

Theorem 1 (Adeqacy 6). Given a memory invariant 𝐼 over 𝐷 , a memory fragment prog :
[𝑏, 𝑒) → Word, a memory fragment adv : [𝑏adv, 𝑒adv) → Word, an initial memory mem, and an

initial register file reg, assuming that:

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://plv.mpi-sws.org/coqdoc/iris//iris.program_logic.adequacy.html#wp_invariance
https://logsem.github.io/cerise/journal/cap_machine.examples.template_adequacy.html#memory_inv
https://logsem.github.io/cerise/jfp/cap_machine.examples.template_adequacy.html#with_adv.template_adequacy

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 21

(1) the initial state of memory mem satisfies:

prog ⊎ adv ⊆ mem 𝐷 ⊆ dom(prog) = [𝑏, 𝑒)
(2) invariant 𝐼 holds of the initial memory:

𝐼 (mem)
(3) the adversary region contains no capabilities:

∀𝑎 ∈ dom(adv). adv(𝑎) ∈ Z
(4) the initial state of registers reg satisfies:

reg(pc) = (rwx, 𝑏, 𝑒, 𝑏), reg(r0) = (rwx, 𝑏adv, 𝑒adv, 𝑏adv), reg(𝑟) ∈ Z otherwise

(5) the proof in Iris that the initial configuration is safe given invariant 𝐼 :

∀reg,
∃𝑚,∗(𝑎,𝑤) ∈𝑚 𝑎 ↦→ 𝑤 ∗ ⌈dom(𝑚) = 𝐷⌉ ∗ ⌈𝐼 (𝑚)⌉

⊢


(rwx, 𝑏, 𝑒, 𝑏);

r0 Z⇒ (rwx, 𝑏adv, 𝑒adv, 𝑏adv) ∗
∗(𝑟,𝑣) ∈reg,

𝑟∉{pc,r0 }
𝑟 Z⇒ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

∗(𝑎,𝑧) ∈adv 𝑎 ↦→ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗
∗(𝑎,𝑤) ∈prog,

𝑎∉𝐷

𝑎 ↦→ 𝑤


⇝ •

Then, for any reg
′
, mem

′
, if (reg,mem) −→∗ (reg′,mem

′), then 𝐼 (mem
′).

Theorem 1 establishes that, starting from an initial machine state (reg,mem), any subsequent
machine state (reg′,mem

′) satisfies 𝐼 (mem
′). This is subject to a number of conditions, in particular

about the initial state of the machine.
First, the initial memory must be provisioned with relevant code and data. This means that

the program that we wish to verify (both its code and data) given by memory fragment prog :
[𝑏, 𝑒) →Word should be included in the initial memory. Moreover, some additional “adversarial
code” given by adv : [𝑏adv, 𝑒adv) → Word should be included in the initial memory. Indeed, we
are not only interested in reasoning about the execution of our verified program in isolation, but
also its interaction with unverified, possibly adversarial code. The initial memory mem should
therefore include prog and adv, in disjoint regions. Furthermore, the domain of the invariant 𝐼
should be included in the program’s region [𝑏, 𝑒). The intent is that 𝐼 specifies an invariant about
some private data of the verified program, and thus should not depend on other parts of memory.

Second, as should be expected, the invariant 𝐼 must hold of the initial memory mem.
Third, the adversary memory adv is required not to contain any capabilities. This conservatively

ensures that adv does not contain any “rogue” capability that would give undesired access to the
verified program’s private state. No further assumption is made about adv, which is thus free to
contain arbitrary code (i.e. instructions encoded as integers). Furthermore, note that the absence
of capabilities in adv does not mean that code in adv will not be able to access memory at all: at
runtime, it will still get access to a capability to its own region through the program counter pc.

Then, the initial register file reg should be provided with a rwx capability to the verified program
in pc (meaning that it executes first), and a capability to the unverified code in register r0 (as we
have seen in Section 2, by convention r0 holds the pointer to a program’s continuation). Other
registers are conservatively required not to contain any capabilities.
Finally, one needs to establish at the level of the program logic that the program is safe to run

under invariant 𝐼 . Concretely, one needs to prove a specification for a complete safe execution (of

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

the form {𝑃}⇝ •), given “points-to” resources in the pre-condition that correspond to the initial
state of registers and memory. In particular, we get access to points-to resources for the adversary
region (along the fact that they contain integers) and points-to resources for the region containing
the program to execute.
Note that no resources are given for the domain of 𝐼 as part of the initial resources for the

complete-execution specification. Instead, these resources are part of the logical invariant under
which the specification must be established (inside . . .). This corresponds to the intuition that
these resources should only be modified in a way that preserves invariant 𝐼 . This logical invariant
therefore specifies that there exists a subset of memory𝑚, which covers the memory region defined
by 𝐷 , such that the invariant holds the corresponding points-to resources and such that 𝐼 (𝑚) holds,
i.e. the memory invariant 𝐼 holds of this memory subset. (Recall from Section 4.1 that ⌈𝜙⌉ denotes
an Iris proposition that asserts that the mathematical proposition 𝜙 holds.)
The reader may be surprised to notice that the region containing “adversarial” code has no

special status. Indeed, it simply corresponds to a memory region containing (a priori unknown)
integers. Nevertheless, remember that we ultimately want our program to be able to pass control
to the unknown adversary code by jumping to the capability in r0, as we have seen our example
programs do. This means we need to have a way of reasoning about “what it will do”, at least to
ensure that it will not break our program’s invariants.
In the next section, we show how to reason about whether unknown code can be considered

“safe to execute”, so that we can pass control to it while preserving previously established invariants.

5 REASONING ABOUT UNTRUSTED CODE IN CERISE
Code running on a capability machine is constrained by the set of capabilities it has access to. This
is a crucial idea for reasoning about adversarial code. Whatever code the machine is running, if
this code does not have access to a capability for, e.g., writing to a memory region, then it will not
be able to modify memory in that region. In other words, one can prove a theorem describing the
behavior of arbitrary code depending only on the capabilities it has access to.
One major technical contribution of this work is to formulate and mechanize such a theorem.

Specifically, we are concerned with the preservation of invariants established in the program logic.
We will thus give a definition of which machine words that are “safe” to share with unknown code.
Informally, a word is safe if it cannot be used to break any previously established logical invariants.
We will then prove that, as long as some arbitrary code only has access to safe machine words, its
execution indeed preserves logical invariants.
Interestingly, we can establish this result while staying within the framework of the Cerise

program logic exposed in the previous section. This illustrates the generality of said program logic:
verifying specifications for known programs or specifying the behavior of arbitrary code are only
two of its possible applications.

5.1 Logical Relation
Our formal definition of what makes a machine word safe, meaning “safe to share with unknown
code”, appears in Figure 9. It takes the form of a unary logical relation, defining simultaneously
the notions of a machine word that is “safe to share” (V) and “safe to execute” (E). The namesV
and E originate from the tradition of logical relations, corresponding respectively to the “value
relation” and the “expression relation”, although this interpretation is perhaps less obvious in the
setting of low-level machine code. We explain the definition in detail below. The intuition is that:

• A value which is safe to share only gives transitive access to other values that are safe to
share, or code that is safe to execute (in the case of a sentry capability).

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 23

V(𝑤)


V(𝑧),V(o,−,−,−) ≜ True
V(e, 𝑏, 𝑒, 𝑎) ≜ ⊲ □ E(rx, 𝑏, 𝑒, 𝑎)
V(rw/rwx, 𝑏, 𝑒,−) ≜ ∗𝑎∈[𝑏,𝑒) ∃𝑤, 𝑎 ↦→ 𝑤 ∗ V(𝑤)
V(ro/rx, 𝑏, 𝑒,−) ≜ ∗𝑎∈[𝑏,𝑒) ∃𝑃, ∃𝑤, 𝑎 ↦→ 𝑤 ∗ 𝑃 (𝑤) ∗ ⊲□ (∀𝑤, 𝑃 (𝑤) −−∗ V(𝑤))

E(𝑤) ≜ ∀reg,
{
𝑤 ;∗(𝑟,𝑣) ∈reg,𝑟≠pc 𝑟 Z⇒ 𝑣 ∗ V(𝑣)

}
⇝ •

Fig. 9. Logical relation defining “safe to share” and “safe to execute” values.

• A value which is safe to execute allows the machine to run while preserving logical invariants
(by definition of {·; ·}⇝ •), provided the registers contain safe values.

Technically speaking, this informal definition is circular. Luckily, we can define it properly with
the help of the “later” modality ⊲. Iris provides us with a fixed-point operator that only requires
recursive occurences to be guarded under a ⊲, and we use that to formally defineV and E. Except
for this technical requirement, the reader can in practice ignore the use of ⊲ here.

Let us more closely examine the definition ofV , which is defined by case analysis on the shape
of the given machine word𝑤 . If𝑤 is an integer (𝑧), then it is always safe to share, since it cannot
be used to access memory. Similarly, opaque capabilities with permission o are always safe as they
also do not give access to memory.

A sentry capability e is safe to share if the code it encapsulates is safe to execute. Such a capability
can be invoked at any moment and possibly several times: this is expressed through the use of the
persistently modality □. Technically speaking, this means that the property E(rx, 𝑏, 𝑒, 𝑎) must be
established by only relying on persistent resources (typically, logical invariants) that will remain
“available” throughout the entire execution.

A read-write capability rw or rwx gives read and write access to the memory region in its
range. It is therefore safe as long as the words stored in the corresponding memory region are safe,
and continue to be so when the memory gets modified. We thus say that it is safe when we have
an invariant for each memory cell in the capability’s region, which asserts ownership over the
corresponding memory points-to resource, and asserts validity of its contents.
Finally, a capability with permission ro/rx cannot be used by unknown code to modify the

memory words in its range. Therefore, these words can obey any property 𝑃 as long as it entails
safety (V). Intuitively, the words in the interval have to be safe to share, because the adversary
can read them. But since the adversary cannot modify them, it is possible to guarantee a stronger
invariant about them. For instance, 𝑃 (𝑤) could be the predicate “𝑤 = 42”, describing that a value
in the range stays equal to the integer 42.
Notice that this definition of safety does not distinguish between capabilities with permission

ro and rx, or rw and rwx. This seems to strangely imply that permissions with the execute bit
x have no additional expressive power over permissions without the execute bit. And indeed, in
terms of our model—which “only” captures the ability to break memory invariants—their expressive
power is the same!3 The crux of our main theorem (presented in the next sub-section) is that
executing arbitrary code does not produce capabilities with more access to memory than was
available before. Thus, being able to execute code within a memory region does not yield additional
access to memory compared to what was available by simply reading the memory region (it only
leads to additional machine behaviors).

3Having read-only permission over a region also allows one to simply copy the contents of the region into any other
read-execute region and execute them here.

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

Is this definition of safety trivial? One might wonder whether the definition in Figure 9 is trivial,
meaning that any machine word𝑤 will in fact be considered safe. This is thankfully not the case; let
us illustrate concrete cases where a memory word𝑤 is not considered safe to share with unknown
code.

At a high level, E is not trivial because establishing E(𝑤) requires proving that a full execution
of the machine, starting from𝑤 , preserves logical invariants. This requirement is not explicit in the
definition, but comes from the definition of the Cerise program logic. The definition ofV(𝑤) is also
not trivial because, e.g., in the case of an rw capability, it requires the memory points-to 𝑎 ↦→ −
predicate to be part of a specific invariant, ∃𝑤, 𝑎 ↦→ 𝑤 ∗ V(𝑤) . Since the resource “𝑎 ↦→ −” is
not duplicable, there can be only one resource 𝑎 ↦→ −, which cannot be simultaneously part of two
different invariants. Memory cells whose contents evolve according to an invariant more specific
(less permissive) than the one above thus cannot be associated with a safe capability (according to
V).
What is a concrete example of a capability which is not safe? Let us consider a memory cell

at address 𝑥 initialized to 0. Let us assume the following Iris invariant: 𝑥 ↦→ 0 . This invariant
expresses that 𝑥 will contain the integer 0 for the rest of the execution. Then, a capability (rw, 𝑥, 𝑥 +
1, 𝑥) is not safe to share with an adversary. Indeed, an adversary could use such a capability to
write an arbitrary value at address 𝑥 , thus invalidating the Iris invariant. (However, (ro, 𝑥, 𝑥 + 1, 𝑥)
would be safe.) A bit more formally speaking, it is not possible to proveV(rw, 𝑥, 𝑥 + 1, 𝑥), because
it is not possible to create the invariant ∃𝑤, 𝑥 ↦→ 𝑤 ∗ V(𝑤) , as the resource for the memory cell
𝑥 is already part of the invariant 𝑥 ↦→ 0 , and cannot be extracted to create a different invariant.

Similarly, one cannot prove E for a code fragment that writes another value than 0 at address 𝑥
(after getting access to it through the pc register), because the proof would not be able to guarantee
that the Iris invariant related to 𝑥 is preserved at every step.

5.2 Fundamental Theorem
The Fundamental Theorem of our Logical Relation (Theorem 2) (hereafter, FTLR) establishes that
any capability that is “safe to share” (in V) is in fact “safe to execute” (in E). In other words, if
a capability only gives transitive access to safe capabilities, then it is safe to use it as a program
counter capability and execute it: it will not be able to gain extra authority over memory or break
any invariants. Importantly, this theorem is independent of the code that the capability points to,
even though it is this code that will be executed. Hence the result applies to arbitrary code and we
sometimes refer to it as a universal contract because of this.

Theorem 2 (FTLR 7). Let 𝑝 ∈ Perm, 𝑏, 𝑒, 𝑎 ∈ Addr. IfV(𝑝,𝑏, 𝑒, 𝑎), then E(𝑝, 𝑏, 𝑒, 𝑎).
This is a non-trivial theorem, the proof of which requires checking all the possible cases of the

semantics of each instruction of the machine. Indeed, one needs to check that there is no way for
some machine instruction to create capabilities with further authority than what was available.
This could, for example, happen if some runtime checks were missing, making it possible to create
a capability (rw, 𝑏, 𝑒 + 1, 𝑎) from a capability (rw, 𝑏, 𝑒, 𝑎). One can imagine how this would break
expected security guarantees, and reveal a design or implementation bug of the machine. Therefore,
another informal interpretation of the fundamental theorem is that it expresses that the capability
machine “works well” or that it is capability safe.

The fundamental theorem provides a universal security property satisfied by unknown code, and
gives us a way of verifying the correctness of known code that includes calls to possibly malicious
code. To sum up, our logical relation characterizes the interface between a piece of verified code
which wishes to preserve invariants on some internal state, and “external” arbitrary code whose
accessible, safe capabilities have been sufficiently restricted.

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_machine.fundamental.html#fundamental_cap

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 25

It is important to note that the distinction between “known” and “adversary” code only exists at
the logical level: there is no such distinction at runtime. We can have two components that have
been verified separately, and that do not mutually trust each other. In this case, from the point of
view of each component, the other component is considered as being the adversary.

Rules for program verification. From the general statement of the FTLR, we can derive two
corollaries, which can be used to instantiate our adequacy theorem (Theorem 1) with a program
that passes control to an unknown adversarial code region.

Corollary 1 (Unknown integers are safe 8). For𝑚 : [𝑏, 𝑒) →Word,∗
(𝑎,𝑧) ∈𝑚

𝑎 ↦→ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ −−∗ V(𝑝,𝑏, 𝑒, 𝑎)

Corollary 1 can be used to trade ownership over a memory region of integers to the knowledge
that a capability over this region is safe.4 Since integers can encode program instructions, we can
typically use this rule to reason about a memory region containing an (unknown) program. The
rule follows directly from the definition of V for values of 𝑝 different from e; when 𝑝 = e, an
additional application of the FTLR (Theorem 2) is required.
Notice that the pre-condition of the rule matches the resources that one gets in the Adequacy

theorem (Theorem 1) for the adversary region. When using the Adequacy theorem, we will thus be
able to conclude that capabilities pointing to the adversary region are safe.

Corollary 2 (Jump to a safe word 9).
V(𝑤) −−∗
⊲∀reg.

{
updatePcPerm(𝑤);∗(𝑟,𝑣) ∈reg,𝑟≠pc 𝑟 Z⇒ 𝑣 ∗ V(𝑣)

}
⇝ •

Corollary 2 gives us a specification for the execution of the machine after a jump to an unknown
word 𝑤 , assuming that 𝑤 is safe. Recall that updatePcPerm(𝑤) corresponds to the value of the
program counter after jumping to𝑤 (see the machine semantics in Figure 6). The full execution
specification in the conclusion of the rule requires that the machine registers contain safe values:
indeed, we must only share safe words with unknown code.
An important application of Corollary 2 is to reason about the last instruction of a program

encapsulated in a sentry (e) capability, where it “returns” and passes control to its caller by calling
jmp on the (unknown but safe) return pointer held in r0. In this scenario, the return pointer provided
by the caller is unknown but safe, so Corollary 2 gives us a specification for the continuation of the
program.
Additionally, Corollary 2 is typically used in combination with Corollary 1 when instantiating

the Adequacy theorem. Indeed, in order to prove the complete safe execution specification required
by the theorem, one typically needs to justify that one can jmp and pass control to an adversary
region, given the resources granted by the Adequacy theorem.

5.3 Proving the fundamental theorem
To give a more in-depth perspective of the ideas behind the Fundamental Theorem, we detail in
this sub-section one of the interesting cases of its proof. This sub-section can be safely skipped on
a first read.

Proof. (FTLR) We begin by unfolding the definition of E.
∀reg.

{
(𝑝, 𝑏, 𝑒, 𝑎);∗(𝑟,𝑣) ∈reg,𝑟≠pc 𝑟 Z⇒ 𝑣 ∗ V(𝑣)

}
⇝ •

4We simplify the presentation here a bit and omit a view shift from the statement of Corollary 1. See the Coq development
for the exact formal statement 8 .

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_machine.logrel.html#region_integers_alloc
https://logsem.github.io/cerise/journal/cap_machine.fundamental.html#jmp_to_unknown

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

We proceed by Löb induction. The Löb rule is a powerful reasoning principle, which Cerise
inherits from Iris, and which states that (in any context 𝑄), if from ⊲ 𝑃 we can derive 𝑃 , then we
can also derive 𝑃 without any assumptions.

Löb
𝑄 ∧ ⊲ 𝑃 ⊢ 𝑃

𝑄 ⊢ 𝑃
The idea of the rule is that “after we do some work”, we will be able to remove the ⊲ modality

from the assumption, and reach the conclusion. In our case, this means reasoning about one step of
execution, for one instruction. Intuitively, if we show that our property holds for the execution of
one arbitrary instruction, then it must hold for a sequence of many instructions.

We thus let:

IH ≜ ∀𝑝, 𝑏, 𝑒, 𝑎.V(𝑝, 𝑏, 𝑒, 𝑎) −−∗ ∀reg.
{
(𝑝, 𝑏, 𝑒, 𝑎);∗(𝑟,𝑣) ∈reg,𝑟≠pc 𝑟 Z⇒ 𝑣 ∗ V(𝑣)

}
⇝ •

and assume ⊲ IH; we then wish to show IH.
First, we consider the case where (𝑝,𝑏, 𝑒, 𝑎) is not a valid program counter (for instance, if it

contains a non-executable capability, or an integer). Then the machine configuration will step into
a Failed configuration. In that case, any full execution specification ({·; ·}⇝ •) trivially holds, and
we are done.

In the casewhere (𝑝,𝑏, 𝑒, 𝑎) is a valid program counter, wewill have to execute the next instruction
of the program, pointed to by 𝑎. For (𝑝,𝑏, 𝑒, 𝑎) to be a valid program counter, the following needs
to hold:

𝑝 ∈ {rx, rwx} (1)
𝑏 ≤ 𝑎 < 𝑒 (2)

From (1), we can infer thatV(𝑝,𝑏, 𝑒, 𝑎) will unfold to (at least) the following:

∗𝑎∈[𝑏,𝑒) ∃𝑃, ∃𝑤, 𝑎 ↦→ 𝑤 ∗ 𝑃 (𝑤) ∗ ⊲□ ∀𝑤, 𝑃 (𝑤) −−∗ V(𝑤)
Since we know that 𝑎 is an address in the range [𝑏, 𝑒) (2), we can in particular infer that there exists
a predicate 𝑃 such that ⊲□ ∀𝑤, 𝑃 (𝑤) −−∗ V(𝑤), for which the following invariant holds:

∃𝑤, 𝑎 ↦→ 𝑤 ∗ 𝑃 (𝑤) (3)

Ownership over 𝑎 ↦→ 𝑤 is in fact required in order to apply any rule of the program logic (we need
to be able to access memory for the instruction pointed to by pc). We will therefore first open the
invariant (3) to get access to that resource.

Recall the invariant opening rule Inv (Section 4.2). According to that rule, we can get access to
the resources held inside the invariant now, as long as we give them back after one execution step.
Since we wish here to reason about the execution of a single instruction, this is a perfectly good
deal.
Once the invariant has been opened, the following propositions are added to our assumptions,

for some word𝑤 (technically speaking, the Iris context also tracks the fact that these facts come
from an invariant and must be given back next, but we choose to hide these details):5

𝑎 ↦→ 𝑤 (4)
⊲ 𝑃 (𝑤) (5)

Because pc points to 𝑎, and address 𝑎 contains the word𝑤 ,𝑤 should correspond to the (encoding
of the) instruction to execute now. We thus reason by case analysis on decode(𝑤).
5Notice that we directly get 𝑎 ↦→ 𝑤 rather than ⊲𝑎 ↦→ 𝑤, due to the fact that memory points-to are timeless.

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 27

This leads to as many cases as there are instructions in the machine. We will now detail a sub-case
for the load instruction, which is one of the interesting cases. Many of the other cases are similar
in nature.

Case: decode(𝑤) = load 𝑟dst 𝑟src .
We consider here the case where 𝑟dst and 𝑟src are two different registers, both different from pc.

We also only consider the case where 𝑟src contains a capability, which we are permitted to load
from. In other words, our goal is as follows:6

⊲ IH ∗ 𝑎 ↦→ 𝑤 ∗ ⊲ 𝑃 (𝑤)

⊢
(𝑝, 𝑏, 𝑒, 𝑎);

∗(𝑟,𝑣) ∈reg,𝑟≠pc,𝑟dst ,𝑟src 𝑟 Z⇒ 𝑣 ∗ V(𝑣)
∗ 𝑟dst Z⇒ 𝑤 ′ ∗ V(𝑤 ′)
∗ 𝑟src Z⇒ (𝑝 ′, 𝑏 ′, 𝑒 ′, 𝑎′) ∗ V(𝑝 ′, 𝑏 ′, 𝑒 ′, 𝑎′)

⇝ •

As stated, we assume that (𝑝 ′, 𝑏 ′, 𝑒 ′, 𝑎′) permits us to load from 𝑎′. We can thus infer the following
two properties:

𝑝 ′ ∈ {ro, rx, rw, rwx} (6)
𝑏 ′ ≤ 𝑎′ < 𝑒 ′ (7)

Just like before, we can fromV(𝑝 ′, 𝑏 ′, 𝑒 ′, 𝑎′) conclude that the following invariant holds, where 𝑃 ′
is a predicate such that ⊲□ ∀𝑤, 𝑃 ′(𝑤) −−∗ V(𝑤):

∃𝑤, 𝑎′ ↦→ 𝑤 ∗ 𝑃 ′(𝑤) (8)

We consider the (more interesting) case where 𝑎 ≠ 𝑎′. We can thus open the invariant (since it has
not been opened already), meaning that we have for some word 𝑤𝑠𝑟𝑐 the following (again, plus
some invariant-tracking resources not shown here):

𝑎′ ↦→ 𝑤𝑠𝑟𝑐 (9)
⊲ 𝑃 ′(𝑤𝑠𝑟𝑐) (10)

With these assumptions, we now have all the necessary resources to take a step in the program
logic, using the rule for the load instruction (Figure 8). A feature of single-instruction rules of our
program logic is that they include a built-in ⊲ modality. In other words, after applying a single-
instruction rule, we are “one execution step later”, and we can remove one occurrence of ⊲ for each
assumption of our context. In particular, this means that we can turn ⊲ IH into IH, and similarly for
𝑃 (𝑤) and 𝑃 ′(𝑤𝑠𝑟𝑐). We now have to show:

IH ∗ 𝑎 ↦→ 𝑤 ∗ 𝑃 (𝑤) ∗ 𝑎′ ↦→ 𝑤src ∗ 𝑃 ′(𝑤src)

⊢
(𝑝,𝑏, 𝑒, 𝑎 + 1);

∗(𝑟,𝑣) ∈reg,𝑟≠pc,𝑟dst ,𝑟src 𝑟 Z⇒ 𝑣 ∗ V(𝑣)
∗ 𝑟dst Z⇒ 𝑤𝑠𝑟𝑐

∗ 𝑟src Z⇒ (𝑝 ′, 𝑏 ′, 𝑒 ′, 𝑎′) ∗ V(𝑝 ′, 𝑏 ′, 𝑒 ′, 𝑎′)

⇝ •

We now have direct access to IH (our initial goal) as an assumption, so the proof is nearly done.
Before we can invoke IH and conclude the goal, we must do two things: (a) close all the open
invariants (as required by the invariant opening rule), and (b) show that the contents of all registers
satisfiesV (required by the definition of IH). (We actually need to show (b) before addressing (a),
as we will make use of resources from the open invariants.)

Addressing (b), we already know that the contents of registers satisfyV for all registers except
for 𝑟dst—the only register whose contents were changed by the instruction. We must thus prove
V(𝑤𝑠𝑟𝑐). Luckily,𝑤𝑠𝑟𝑐 is not a completely arbitrary word: it was accessible from available memory,
6We again omit details involving masks and update modalities, and refer to the Coq formalization for the full details.

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

so it must be safe as well. More precisely, from the invariant about 𝑎′ (previously opened), we know
that 𝑃 ′(𝑤𝑠𝑟𝑐) holds, and furthermore we know that:

□ ∀𝑤, 𝑃 ′(𝑤) −−∗ V(𝑤)

Owing to the fact thatV(·) is persistent, we can shave off the □ modality, and conclude that
V(𝑤𝑠𝑟𝑐) holds, concluding the proof of (b).
Finally, addressing (a) is straightforward, since we did not change the contents of memory at

either address 𝑎 or 𝑎′. We can therefore close the invariants again, by giving up the same resources
as we initially got from opening them, concluding the proof of (a) and thus the case of the proof for
load.

In the proof sketch above, we followed one specific subcase of the proof for the load instruction.
In the complete proof, we must go through all the possible cases of the semantics for the instruction.
In some cases, the machine fails which terminates the proof easily (for instance, if the capability in
𝑟src does not in fact allow reading memory, or if 𝑟src does not in fact contain a capability). In some
other cases, the machine does not fail, and the proof is similar to the case highlighted here but
slightly different (for instance when 𝑟dst and 𝑟src are the same register).

The proofs for the other instructions of the machine follow a similar pattern. In particular, in the
store case, the register state is not modified except for the pc register, but memory is modified.
As such, closing the invariants is not as easy since we need to establish that the stored word is at
least safe. This is established by using the fact that we assumed that the register only contains safe
words. The case of the restrict, subseg and lea instructions require showing that a capability
with smaller authority remains in the value relationV , and the jmp, jnz and mov cases show that
pc (or other registers) can be updated with arbitrary safe words. The other remaining cases are
rather trivial, as they all only change a register state to an integer, which is always safe. □

6 REASONINGWITH CAPABILITIES: TWO EXAMPLES
In this section, we return to the motivational examples introduced in Section 2, and show how
to prove that they enforce the desired properties, using Cerise’s reasoning tools, laid out in the
previous sections.

6.1 Sharing a sub-buffer with an unknown adversary

code: mov r1 PC

lea r1 [data-code]

subseg r1 [data] [data+3]

jmp r0

data: 'H', 'i', 0, ; public

secret: 42 ; secret

end:

Let us recall (on the right) the code for our buffer-
sharing program, previously introduced in Figure 3.
The labels code, data, secret and end denote ad-
dresses in memory. We wish to prove formally that the
program can share the data between addresses data
and secret (excluded), while protecting the integrity
of the data at address secret.
Using the reasoning rules from our program logic,

we can first prove a specification for the program, specifying its behavior from its first instruction
up until the final jmp. The corresponding specification is as follows, where code_instrs is the
list of integers corresponding to the encoded instructions of the program, i.e., code_instrs =

map encodeInstr [mov r1 pc; . . . ; jmp r0].

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 29

Lemma 1 (Program specification 10).{
(rwx, code, end, code); r0 Z⇒ 𝑤adv ∗ r1 Z⇒ − ∗

[code, data) ↦→ code_instrs

}
⇝{

updatePcPerm(𝑤adv);
r0 Z⇒ 𝑤adv ∗ r1 Z⇒ (rwx, data, secret, data) ∗
[code, data) ↦→ code_instrs

}
One can read from the specification that executing the program will store in r1 an rwx capability

to the memory segment between addresses data and secret (our “buffer”), and pass control to the
word𝑤adv found in register r0.

Proving this specification is easy: it is enough to successively apply the program logic rule of
each individual instruction found in the program.
This specification shows that the program ultimately jumps to the word initially passed in

register r0, but does not describe what happens after, in the case where this word points to a region
containing unknown code. For this, we use the reasoning principles from Section 5.2 (built on top
of the Fundamental Theorem), and derive a specification for a complete execution of the machine,
see Lemma 2 below. The lemma specifies that, starting by executing our program, and given that
r0 contains a capability to a region containing unknown integers, then the machine is safe to run.
Notice that we do not assume a points-to resource for the secret data: instead, this points-to will be
part of an invariant—specifying that it contains the same secret value at every step—and we do not
need to access that here.

Lemma 2 (Full execution specification 11).
(rwx, code, end, code);

r0 Z⇒ (rwx, 𝑏adv, 𝑒adv, 𝑏adv) ∗
r1 Z⇒ − ∗
∗ (𝑟,𝑣) ∈reg,

𝑟∉{pc,r0,r1 }
𝑟 Z⇒ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

[code, data) ↦→ code_instrs ∗
[data, secret) ↦→ [′H′; ′i′; 0] ∗
∗(𝑎,𝑧) ∈adv 𝑎 ↦→ 𝑧 ∗ ⌈𝑧 ∈ Z⌉


⇝ •

Proof. By Lemma 1, the frame rule FragFrame and the sequence rule SeqFull, it suffices to
show the following goal, which corresponds to a specification about the execution of the machine
after the execution of the verified code:

Goal:


(rwx, 𝑏adv, 𝑒adv, 𝑏adv);

r0 Z⇒ (rwx, 𝑏adv, 𝑒adv, 𝑏adv) ∗
r1 Z⇒ (rwx, data, secret, data) ∗
∗ (𝑟,𝑣) ∈reg,

𝑟∉{pc,r0,r1 }
𝑟 Z⇒ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

∗(𝑎,𝑧) ∈adv 𝑎 ↦→ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗
[code, data) ↦→ code_instrs ∗
[data, secret) ↦→ [′H′; ′i′; 0]


⇝ •

We now rely on the reasoning rules derived from the Fundamental Theorem (Section 5.2).
First, from the fact that the adversary region adv does not contain capabilities, we get using
Corollary 1 that any capability on that region is safe, in particular we haveV(rwx, 𝑏adv, 𝑒adv, 𝑏adv).
Then, from Corollary 2 we get a specification for the execution of the machine starting from
V(rwx, 𝑏adv, 𝑒adv, 𝑏adv) (recall that updatePcPerm is the identity on non-e capabilities):

Fact: ∀reg.
{
(rwx, 𝑏adv, 𝑒adv, 𝑏adv);∗(𝑟,𝑣) ∈reg,𝑟≠pc 𝑟 Z⇒ 𝑣 ∗ V(𝑣)

}
⇝ •

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_machine.examples.buffer.html#buffer_spec
https://logsem.github.io/cerise/journal/cap_machine.examples.buffer.html#buffer_full_run_spec

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

From this fact, we can prove our goal provided that we show that the contents of all machine
registers satisfyV . For registers other than r0 and r1, this holds by definition ofV , as we know
they only contain integers. Register r0 contains a capability to the adversary region, which we have
already proved to be safe using Corollary 1. Finally, register r1 contains the capability pointing to
the public buffer. We can again leverage Corollary 1 to obtainV(rwx, data, secret, data) from the
memory points-to for the buffer ([data, secret) ↦→ [′H′;′ i′; 0]), thus concluding the proof. □

Finally, from Lemma 2, established in the program logic, we wish to obtain a final result in
terms of the operational semantics of the machine. The toplevel end-to-end theorem that we
obtain is shown in Theorem 3. We consider a machine whose memory is initially loaded with
our program and unknown adversarial code, and that starts by executing our verified code. The
theorem establishes that the adversary will not be able to tamper with the value held at address
secret: at every step of the execution, it will be unchanged and equal to 42.

Theorem 3 (End-to-end theorem: integrity of the secret data is preserved 12). Starting
from an initial state of the machine (reg,mem) where:

• prog ⊎ adv ⊆ mem, for adv : [𝑏adv, 𝑒adv) →Word and prog : [code, end) →Word
• the contents of prog correspond to the encoded instructions and program data;

• the adversary memory contains no capabilities: ∀𝑎.adv(𝑎) ∈ Z;
• the initial state of registers satisfies:

reg(pc) = (rwx, code, end, code),
reg(r0) = (rwx, 𝑏adv, 𝑒adv, 𝑏adv),
reg(𝑟) ∈ Z otherwise;

Then, for any reg
′
, mem

′
, if (reg,mem) −→∗ (reg′,mem

′), then mem
′(secret) = 42.

Proof. We first invoke Theorem 1, choosing the memory invariant 𝐼 and its domain 𝐷 to be the
invariant 𝐼buf and domain 𝐷buf defined below, asserting that the value at address secret is equal
to 42:

𝐼buf ≜ 𝜆𝑚. 𝑚(secret) = 42
and 𝐷buf = {secret}.

Most side-conditions of the adequacy theorem can be easily discharged. What remains is the
following specification in Iris:

∃𝑚,∗(𝑎,𝑤) ∈𝑚 𝑎 ↦→ 𝑤 ∗
⌈
dom(𝑚) = 𝐷buf

⌉
∗
⌈
𝐼buf (𝑚)

⌉
Goal: ⊢


(rwx, code, end, code);

r0 Z⇒ (rwx, 𝑏adv, 𝑒adv, 𝑏adv) ∗∗(𝑟,𝑣) ∈reg,
𝑟∉{pc,r0 }

𝑟 Z⇒ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

∗(𝑎,𝑧) ∈adv 𝑎 ↦→ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗
∗(𝑎,𝑤) ∈prog,

𝑎∉𝐷buf

𝑎 ↦→ 𝑤


⇝ •

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_machine.examples.buffer.html#adequacy

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 31

We can simplify this goal by unfolding the definition of 𝐼buf , 𝐷buf , prog and massaging the goal
to extract relevant points-to resources. The goal then becomes:

secret ↦→ 42

Goal: ⊢


(rwx, code, end, code);

r0 Z⇒ (rwx, 𝑏adv, 𝑒adv, 𝑏adv) ∗
r1 Z⇒ − ∗
∗ (𝑟,𝑣) ∈reg,

𝑟∉{pc,r0,r1 }
𝑟 Z⇒ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

[code, data) ↦→ code_instrs ∗
[data, secret) ↦→ [′H′; ′i′; 0] ∗
∗(𝑎,𝑧) ∈adv 𝑎 ↦→ 𝑧 ∗ ⌈𝑧 ∈ Z⌉


⇝ •

Note how the points-to resource for the secret address is held as part of the invariant, asserting
that it contains the value 42 at each step. This simplified goal now follows from the full execution
specification established earlier in Lemma 2 by applying the rule FullFrame, which concludes the
proof. □

6.2 Creating a closure around local state
Let us now come back to the example introduced in Section 2.4, whose code is reproduced below.
In this example, the control flow is somewhat more involved, as we have two separate pieces of
known code that run at different times. The initialization code between init and code runs first, and
creates a sentry capability before passing control to the unknown code. The code and data located
between code and end are encapsulated in the sentry capability created by the initialization code.
Because the sentry capability is exposed to the unknown code, the code it encapsulates may be
invoked several times, incrementing the value of the counter each time.

We wish to prove formally that the value of the counter is correctly encapsulated. We prove that
it remains non-negative at every step: starting from zero, it can only get incremented by the code
routine encapsulated in the sentry capability.

init:

mov r1 PC

lea r1 [data-init]

mov r2 r1

lea r2 1

store r1 r2

lea r1 [code-data]

subseg r1 [code] [end]

restrict r1 E

mov r2 0

jmp r0

code:

mov r1 PC

lea r1 [data-code]

load r1 r1

load r2 r1

add r2 r2 1

store r1 r2

mov r1 0

jmp r0

data:

; will be:

; (RWX, init, end, data+1)

0xFFFF,

0 ; counter value

end:

Using the rules of our program logic, we can first prove a specification for the initialization code,
shown in Lemma 3. This specification describes the behavior of the code between init and code,
where init_instrs denote the corresponding list of encoded instructions.

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

Lemma 3 (Specification for the initialization code 13).{
(rwx, init, end, init); r0 Z⇒ 𝑤adv ∗ r1 Z⇒ − ∗ r2 Z⇒ − ∗

data ↦→ − ∗ [init, code) ↦→ init_instrs

}
⇝{

updatePcPerm(𝑤adv);
r0 Z⇒ 𝑤adv ∗ r1 Z⇒ (e, code, end, code) ∗ r2 Z⇒ 0 ∗
data ↦→ (rwx, init, end, data + 1) ∗ [init, code) ↦→ init_instrs

}
From this specification, one can read that running the initialization code will store in register

r1 a sentry capability to [code, end), and write at address data an rwx capability pointing to the
location holding the counter value. The initialization code then passes control to the unknown
word𝑤adv stored in r0.

We can also use the program logic rules to prove a specification for the code routine in [code, data)
which increments the counter, and which will run each time the sentry capability is invoked. The
specification appears in Lemma 4, where code_instrs refers to the list of encoded instructions for
the routine.

Lemma 4 (Specification for the increment routine 14).
[code, data) ↦→ code_instrs ,

data ↦→ (rwx, init, end, data + 1) , ∃𝑛. (data + 1) ↦→ 𝑛 ∗ ⌈𝑛 ≥ 0⌉
⊢ {(rx, code, end, code); r0 Z⇒ 𝑤cont ∗ r1 Z⇒ − ∗ r2 Z⇒ −}⇝
{updatePcPerm(𝑤cont);∃𝑛. r0 Z⇒ 𝑤cont ∗ r1 Z⇒ 0 ∗ r2 Z⇒ 𝑛}

This specification assumes a number of Iris invariants, describing the contents of the [code, end)
memory region. Indeed, because the increment routine is invoked by unknown code, it cannot
make many assumptions about the state of the machine. The only thing that it can assume is that
previously established invariants still hold (because, by definition, capability-safe unknown code
has to preserve invariants).

The specification thus assumes, as invariants: 1) that the region [code, data) contains the code of
the routine; 2) that data contains the rwx capability to the counter value previously stored there by
the initialization code, and finally 3) that the counter value (at address data + 1) is a non-negative
integer.

The specification asserts that the routine can run, starting with pc containing an rx capability to
the [code, end) region, while preserving the invariants. (In particular, this means that incrementing
the counter indeed preserves the fact that it is a non-negative integer.) Recall that the rx permission
in pc corresponds to what one gets after jumping to a sentry capability.

Finally, we prove as before a specification proving safety of complete executions, starting from
the initialization code, then followed by the execution of unknown code, including its possible
invocations of the sentry capability. This specification appears below in Lemma 5.

Lemma 5 (Full execution specification 15).
∃𝑛. (data + 1) ↦→ 𝑛 ∗ ⌈𝑛 ≥ 0⌉

⊢


(rwx, init, end, init);

r0 Z⇒ (rwx, 𝑏adv, 𝑒adv, 𝑏adv) ∗ r1 Z⇒ − ∗ r2 Z⇒ − ∗
∗ (𝑟,𝑣) ∈reg,

𝑟∉{pc,r0 ..r2 }
𝑟 Z⇒ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

[init, code) ↦→ init_instrs ∗
[code, data) ↦→ code_instrs ∗ data ↦→ − ∗
∗(𝑎,𝑧) ∈adv 𝑎 ↦→ 𝑧 ∗ ⌈𝑧 ∈ Z⌉


⇝ •

Proof. By using Lemma 3 (the specification for the initialization code), the frame rule FragFrame
and sequence rule SeqFull, it is enough to show the following goal, which specifies the execution

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_machine.examples.minimal_counter.html#counter_init_spec
https://logsem.github.io/cerise/journal/cap_machine.examples.minimal_counter.html#counter_code_spec
https://logsem.github.io/cerise/journal/cap_machine.examples.minimal_counter.html#counter_full_run_spec

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 33

of the machine after the initialization code has run:
∃𝑛. (data + 1) ↦→ 𝑛 ∗ ⌈𝑛 ≥ 0⌉

Goal: ⊢


(rwx, 𝑏adv, 𝑒adv, 𝑏adv);

r0 Z⇒ (rwx, 𝑏adv, 𝑒adv, 𝑏adv) ∗
r1 Z⇒ (e, code, end, code) ∗ r2 Z⇒ 0 ∗
∗ (𝑟,𝑣) ∈reg,

𝑟∉{pc,r0 ..r2 }
𝑟 Z⇒ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

[init, code) ↦→ init_instrs ∗
[code, data) ↦→ code_instrs ∗
data ↦→ (rwx, init, end, data + 1) ∗
∗(𝑎,𝑧) ∈adv 𝑎 ↦→ 𝑧 ∗ ⌈𝑧 ∈ Z⌉


⇝ •

We then allocate two new invariants, one containing the code of the sentry capability, the other
the points-to resource at address data.

[code, data) ↦→ code_instrs , data ↦→ (rwx, init, end, data + 1) ,
∃𝑛. (data + 1) ↦→ 𝑛 ∗ ⌈𝑛 ≥ 0⌉

Goal: ⊢


(rwx, 𝑏adv, 𝑒adv, 𝑏adv);

r0 Z⇒ (rwx, 𝑏adv, 𝑒adv, 𝑏adv) ∗
r1 Z⇒ (e, code, end, code) ∗ r2 Z⇒ 0 ∗
∗ (𝑟,𝑣) ∈reg,

𝑟∉{pc,r0 ..r2 }
𝑟 Z⇒ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

[init, code) ↦→ init_instrs ∗
∗(𝑎,𝑧) ∈adv 𝑎 ↦→ 𝑧 ∗ ⌈𝑧 ∈ Z⌉


⇝ •

From Corollary 1 and the fact that the adversary region adv does not contain capabilities, we get
that any capability on that region is safe, and therefore thatV(rwx, 𝑏adv, 𝑒adv, 𝑏adv) holds. From
Corollary 2, we get that a full execution starting from (rwx, 𝑏adv, 𝑒adv, 𝑏adv) is safe:

Fact: ∀reg.
{
(rwx, 𝑏adv, 𝑒adv, 𝑏adv);∗(𝑟,𝑣) ∈reg,𝑟≠pc 𝑟 Z⇒ 𝑣 ∗ V(𝑣)

}
⇝ •

In combination with rule FullFrame, this fact allows us to conclude the proof, provided we

can prove safety of values stored in all registers. We have already proved the capability in r0 to be
safe. Registers r2 to r31 contain integers, so they are safe by definition ofV . Safety of the sentry
capability created by the initialization code and stored in r1 remains to be proven.

Goal:

[code, data) ↦→ code_instrs , data ↦→ (rwx, init, end, data + 1) ,
∃𝑛. (data + 1) ↦→ 𝑛 ∗ ⌈𝑛 ≥ 0⌉
⊢ V(e, code, end, code)

By definition ofV and E, this goals unfolds to the following:

Goal:

[code, data) ↦→ code_instrs , data ↦→ (rwx, init, end, data + 1) ,
∃𝑛. (data + 1) ↦→ 𝑛 ∗ ⌈𝑛 ≥ 0⌉
⊢ ⊲□ ∀reg,

{
(rx, code, end, code);∗(𝑟,𝑣) ∈reg,𝑟≠pc 𝑟 Z⇒ 𝑣 ∗ V(𝑣)

}
⇝ •

For technical reasons, we can shave off the later modality (⊲) in front of the goal (we refer to the
Coq formalization for more details). The persistent modality (□) is more interesting: it expresses
the fact that safety of the callback should only depend on persistent assumptions. This corresponds
to the fact that the callback may be invoked several times, in future execution states and because of
this it cannot rely on non-persistent assumptions that only hold at the callback’s creation time.
Fortunately, invariants are persistent, so they remain available for proving the callback’s safety.
Then, let us name𝑤0 the contents of register r0: we get to assumeV(𝑤0) (as for the contents

of other registers). By using Lemma 4 (the specification for the increment routine) with rules

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

FragFrame and SeqFull, it is enough to prove the following goal, which asserts safety of the
execution after passing control back to unknown code by jumping to𝑤0:

Goal: ⊢
{
updatePcPerm(𝑤0);

∃𝑛. r0 Z⇒ 𝑤0 ∗ r1 Z⇒ 0 ∗ r2 Z⇒ 𝑛 ∗
∗(𝑟,𝑣) ∈reg,𝑟∉{pc,r0,r1,r2 } 𝑟 Z⇒ 𝑣 ∗ V(𝑣)

}
⇝ •

Informally, the increment routine returns to the unknown code by passing control to some
unknown word provided in r0: it is safe to do so, since such word can be assumed to be itself safe.
Formally speaking, we knowV(𝑤0), so we apply Corollary 2 which concludes the proof. □

Similarly to the previous example, we derive from Lemma 5 a toplevel theorem which only
refers to the operational semantics of the machine, shown below in Theorem 4. We consider a
machine initially loaded with our program and unknown adversarial code. The theorem establishes
that the value of the counter is properly encapsulated: at every step of the execution, it will be a
non-negative integer.

Theorem 4 (End-to-end theorem: integrity of the counter value is preserved 16). Start-
ing from an initial state of the machine (reg,mem) where:
• prog ⊎ adv ⊆ mem, for adv : [𝑏adv, 𝑒adv) →Word and prog : [init, end) →Word
• the contents of prog correspond to the encoded instructions and program data;

• the adversary memory contains no capabilities: ∀𝑎.adv(𝑎) ∈ Z;
• the initial state of registers satisfies:

reg(pc) = (rwx, init, end, init),
reg(r0) = (rwx, 𝑏adv, 𝑒adv, 𝑏adv),
reg(𝑟) ∈ Z otherwise;

Then, for any reg
′
, mem

′
, if (reg,mem) −→∗ (reg′,mem

′), then mem
′(data + 1) ≥ 0.

Proof. We invoke Theorem 1, with invariant and domain 𝐼cnt and 𝐷cnt defined as follows:

𝐼cnt ≜ 𝜆𝑚.𝑚(data + 1) ≥ 0
and 𝐷cnt = {data + 1}

The main step of the proof is to show that the full execution specification for the initial machine
configuration holds, as stated by the theorem. After some basic unfolding of definitions, it is easy
to show that it follows from the specification we previously established in Lemma 5. □

7 DYNAMIC MEMORY ALLOCATION AND CLOSURES
In the previous sections, we have shown how to use capabilities for memory protection and
compartmentalization in the setting of relatively simple scenarios. In particular, the examples that
we have presented so far only relied on memory allocated statically as part of the initial program
region.

We now investigate how we can use and reason about more complicated programming patterns.
More precisely, we show how we can implement features found in higher-level languages, such as
dynamic memory allocation and function calls which guarantee encapsulation of local variables.
Additionally, we implement an assert routine which we use to formally express properties about
dynamically allocated memory.
This section focuses on presenting the aforementioned higher-level building blocks (§7.1–7.3),

an updated adequacy theorem that incorporates the use of these components (§7.4), then followed
by a simple illustrative example (§7.5). In Section 8, we then apply them to build a larger, more
significant case study, demonstrating how these building blocks can work at scale.

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_machine.examples.minimal_counter.html#adequacy

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 35

7.1 Dynamic memory allocation as a library routine
We show how dynamic memory allocation can be implemented as a library, for which: 1) we prove
an Iris specification making it usable from verified code, and 2) we show that it is safe to share with
untrusted code, so that an adversary can also use the library to allocate memory for its own uses.
Note that this task is made easier by the fact that we do not attempt to provide a way of

deallocating memory. As such, memory provided by the allocation routine is never reclaimed.
We leave deallocation for future work, as it likely requires a significantly more complex runtime
mechanism to ensure that no dangling capabilities remain pointing to previously allocated memory
regions [Filardo et al. 2020; Xia et al. 2019].

Concretely, we implement our allocator library as a simple bump-pointer allocator. The library
provides a malloc entry point, to be called with an integer argument 𝑛, which works as follows:

(1) the routine encapsulates a contiguous region of memory [𝑏, 𝑒), as well as a capability
(rwx, 𝑏, 𝑒, 𝑎) where the interval [𝑏, 𝑎) represents already allocated memory, and [𝑎, 𝑒)
represents memory that can still be allocated;

(2) the routine checks that the input size 𝑛 is strictly positive;
(3) if 𝑎 + 𝑛 is greater than 𝑒 , the routine fails (there is not enough memory available);
(4) otherwise, it then records that memory has been allocated by updating its internal capability

to (rwx, 𝑏, 𝑒, 𝑎 + 𝑛), and returns to the caller the capability (rwx, 𝑎, 𝑎 + 𝑛, 𝑎).

Figure 10 outlines the code for our simple malloc implementation. The code assumes that it is
stored in memory in an interval [𝑏𝑚, 𝑏mid) and that 𝑏mid points to a capability (rwx, 𝑏mid, 𝑒𝑚, 𝑎)
giving access to: itself (so it can be updated), and the memory pool (between address 𝑏mid + 1 and
𝑒𝑚). For simplicity, we assume that the non-allocated memory is already initialized to 0. These
requirements are represented by the following invariant 17 :

mallocInv(bm, em) ≜

∃𝑏mid, 𝑎, [𝑏𝑚, 𝑏mid) ↦→ malloc_instrs ∗
𝑏mid ↦→ (rwx, 𝑏mid, 𝑒𝑚, 𝑎) ∗
[𝑎, 𝑒𝑚) ↦→ [0 · · · 0] ∗
⌈𝑏mid < 𝑎 ≤ 𝑒𝑚⌉

The core property of our safe malloc is that is does not hand out the same addresses across
multiple dynamic allocations. This can be expressed elegantly in separation logic, by specifying
that malloc hands out points-to resources for the allocated memory. Indeed, points-to resources
(𝑎 ↦→ 𝑤) express full ownership over the data at address 𝑎: possessing a resource 𝑎 ↦→ 𝑤 guarantees
that one is the only owner of address 𝑎.

Consequently, remark that the invariant holds memory points-to for the region corresponding to
non-allocated memory (between 𝑎 and 𝑒𝑚), but not for the memory that has already been allocated
(between 𝑏mid + 1 and 𝑎): these resources have been handed out to previous callers of the library.

We show below the specification for malloc 18 . First, note that because malloc can fail if it runs
out of memory or is given a wrong size, the specification documents that the resulting execution
state is either Running or Failed. In the case where it does not fail, we can read that malloc hands
out points-to resources for the allocated range in its post-condition: this expresses the fact that no

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_machine.examples.malloc.html#malloc_inv
https://logsem.github.io/cerise/journal/cap_machine.examples.malloc.html#simple_malloc_subroutine_spec

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

;; r1: integer determining the number

;; of words to allocate

;;

;; malloc fails if size <= 0 or if it

;; does not have enough space left

;;

;; returns in r1 a capability to the

;; allocated memory

bm:

lt r3 0 r1 ;; check that size > 0

mov r2 pc ;; jmp after fail if

lea r2 4 ;; yes; continue and

jnz r2 r3 ;; fail if not

fail

xm:

mov r2 pc

lea r2 [bmid - xm]

;; r2 = (RWX, bm, em, bmid)

load r2 r2 ;; r2 = (RWX, bmid, em, a)

geta r3 r2

lea r2 r1

;; r2 = (RWX, bmid, em, a+size)

geta r1 r2

mov r4 r2

subseg r4 r3 r1

sub r3 r3 r1

lea r4 r3

mov r3 r2

sub r1 0 r1

lea r3 r1

getb r1 r3

lea r3 r1 ;; r3 = (RWX, bmid, em, bmid)

store r3 r2 ;; bmid <- (RWX, bmid, em, a+size)

mov r1 r4 ;; r1 = (RWX, a, a+size, a)

mov r2 0

mov r3 0

mov r4 0

jmp r0

bmid: (RWX, bmid, em, a)

;; ... already allocated memory ...

a:

;; ... free memory ...

em:

Fig. 10. A simple malloc subroutine

piece of code but the caller of malloc can access the newly allocated memory.

mallocInv(bm, em)

⊢
{
(rx, 𝑏𝑚, 𝑒𝑚, 𝑏𝑚);

𝑟0 Z⇒ 𝑤0 ∗ 𝑟1 Z⇒ 𝑛 ∗
𝑟2, 𝑟3, 𝑟4 Z⇒ −

}
⇝

𝑠 .

⌈𝑠 = Running⌉ ∗ pc Z⇒ updatePcPerm(𝑤0) ∗
∃𝑏𝑎, 𝑒𝑎, ⌈𝑏𝑎 + 𝑛 = 𝑒𝑎⌉ ∗
r0 Z⇒ 𝑤0 ∗
r1 Z⇒ (rwx, 𝑏𝑎, 𝑒𝑎, 𝑏𝑎) ∗∗𝑎∈[𝑏𝑎,𝑒𝑎) 𝑎 ↦→ 0 ∗
r2, r3, r4 Z⇒ 0

∨ ⌈𝑠 = Failed⌉


The malloc routine can furthermore be encapsulated using a sentry capability, which can be

shown to be safe to share with an adversary (Lemma 6).

Lemma 6 (malloc is safe 19). mallocInv(𝑏𝑚, 𝑒𝑚) −−∗ V(e, 𝑏𝑚, 𝑒𝑚, 𝑏𝑚)

The proof is comparable to the proof that V(e, code, end, code) on page 33. It relies on the
malloc specification and the fundamental theorem.

7.2 Runtime checks: an assert routine
The final end-to-end theorems presented so far in Section 6 rely on establishing that a certain
memory location satisfies a given invariant. This requires the relevant location is statically allocated
in memory and thus known in advance, thus making it easy to tie it to an Iris invariant.

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_machine.examples.malloc.html#simple_malloc_subroutine_valid

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 37

However, when using our malloc routine, we typically wish to enforce properties about the
contents of dynamically allocated memory locations, whose address is, by definition, not known in
advance. To address this issue, we implement an assert routine, to be linked alongside programs
relying on malloc. One can invoke assert to dynamically test whether the contents of two registers
are equal; if the test fails, assert sets a flag “assert has failed” at a fixed location in memory.

The idea is then that, to assert that some property holds about a piece of dynamically allocated
memory, one can check dynamically whether it holds using assert. Then, one can prove that each
assert check succeeds (meaning that the property indeed holds). Consequently, as a property of
the whole execution, one gets that, at every step, the assert flag (initialized at 0) remains at 0 and is
never set to 1 by assert.

The private memory of the assert routine is described by the following invariant 20 :

assertInv(𝑏𝑎, 𝑒𝑎, aflag) ≜
∃𝑎cap, [𝑏𝑎, 𝑎cap) ↦→ assert_instrs ∗

𝑎cap ↦→ (rw, 𝑎flag, 𝑎flag + 1, 𝑎flag) ∗⌈
𝑎cap + 1 = 𝑎flag ∧ 𝑎flag + 1 = 𝑒𝑎

⌉
The address 𝑎flag denotes the address of the “assert flag”, which is initialized to 0 and set to 1

by the routine in case of failure. As we are interested in using assert in programs where we can
prove that the equality check succeeds, we establish the following specification 21 , which asserts
in a separate invariant that 𝑎flag remains at 0. Registers 𝑟4 and 𝑟5 contain the two integers which
are compared by the routine; we thus require that they are equal.

assertInv(𝑏𝑎, 𝑒𝑎, 𝑎flag) , 𝑎flag ↦→ 0

⊢
(rx, 𝑏𝑎, 𝑒𝑎, 𝑏𝑎);

r0 Z⇒ 𝑤0 ∗
r4 Z⇒ 𝑛 ∗
r5 Z⇒ 𝑛

⇝
{
updatePcPerm(𝑤0);

r0 Z⇒ 𝑤0 ∗
r4, r5 Z⇒ 0

}
Note that, as opposed to malloc, the assert routine should only be shared with verified code,

which calls it according to the specification above. Were assert shared with an unknown adversary,
the adversary could simply call the routine with two different integers, setting the flag to 1, thus
invalidating any guarantees established by verified code. Technically speaking, we cannot prove
safety of the assert routine from the specification above: if we try to proveV(e, 𝑏𝑎, 𝑒𝑎, 𝑏𝑎), then
we get that registers r4 and r5 contain two unknown (valid) words, which could be two different
integers. In that case, we cannot use the specification above, as we would violate the invariant
specifying that 𝑎flag stays at 0.

7.3 A secure heap-based calling convention
We define a heap-based calling convention that uses malloc to dynamically allocate activation
records. An activation record is encapsulated in a closure that reinstates its caller’s local state, and
continues execution from its point of creation. Conceptually, our heap-based calling convention
can be seen as a continuation-passing style calling convention (one passes control to the callee,
giving it a continuation for returning to the caller). This is similar to the calling convention that
was used for instance in the SML/NJ compiler to implement an extension of Standard ML with
call/cc [Appel 1992] (in the setting of a traditional computer architecture).

In the setting of a capability machine, our calling convention is furthermore secure in the sense
that it enforces local state encapsulation. In other words, one can use it to pass control to unknown
adversarial code, while protecting local data of the caller, thanks to the use of sentry capabilities
to implement the continuation. Note that this calling convention does not enforce well-bracketed

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_machine.examples.assert.html#assert_inv
https://logsem.github.io/cerise/journal/cap_machine.examples.assert.html#assert_success_spec

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

38 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

; initially, PC = (RWX, code, end, a)

; target = register containing the address to jump to

; locals, params = lists of register names

; locals, params and target are parameters of the macro;

; they are in practice instantiated with concrete values

code:

...

a:

malloc (length locals) ; 1. allocate and store local state

store_locals r1 locals

mov r6 r1

malloc 7 ; 2. allocate region for activation record

mov r0 r1

store act_instr1 ; store the activation code

lea r0 1

...

store act_instr5

lea r0 1

store r0 r6 ; store the capability to locals

lea r0 1

x:

mov r1 pc ; prepare and store the continuation

lea r1 [cont - x]

store r0 r1

lea r0 -6 ; 3. create the return capability

restrict r0 E

rclear RegName\{PC,r0,r1} ∪ params ; 4. clear all registers except parameters

jmp target ; 5. jump to target

cont:

restore_locals r1 locals ; 6. reinstate local state

...

data:

(RO, table, end, table) ; environment table

table:

(E, bm, em, bm) ; entry point to the malloc subroutine

... ; possibly other routines

end:

Fig. 11. Heap-based calling convention, with a the first instruction in the call macro

control flow (another desirable property); see [Georges et al. 2021; Skorstengaard et al. 2019a,b] for
stack-based calling conventions that do.
We provide a call macro implementing the calling convention, invoked as call target locals

params, where target is the name of the register containing a pointer to the code to invoke, locals
is the list of registers whose content corresponds to the local state to reinstate upon return, and
params is the list of registers containing the parameters to the call (passed to the callee). Its
implementation appears in Figure 11, and a representation of the corresponding memory layout in
Figure 12. (Because call is defined as a macro, its code is used inline as part of a bigger program,
here stored between addresses code and end.)
Before passing control to the callee, the call macro does the following:

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 39

l l_end

locals

rwx

act. code

act act_end

𝑟0 : (e, act, act_end, act)

• •
code endcont

p

dynamically allocated

static code

Fig. 12. Memory layout dynamically created by the calling convention

(1) Invoke malloc to dynamically allocate a region of memory [𝑙, 𝑙end) to store the local state
from the registers specified in locals.

(2) Allocate a region of memory [act, actend) to store the activation record, composed of:
activation code, a capability to the region [𝑙, 𝑙end), and a capability to the instruction of the
program following the call.

(3) Create a sentry capability (e, act, actend, act) encapsulating the activation record; this is
capability for returning to the caller which is passed to the callee.

(4) Clear all registers except those in params.
(5) Jump to target.

When the callee passes back control to the caller by jumping to the continuation, the code stored
in the activation run first. It loads the capability pointing to local state, and returns to the old
program counter set up by the call macro. As the last step, the macro will finally:

6. Restore the local state into the relevant registers from the activation record.

We show below the specification for the code of the macro up to step 5 (the jump to the
target address) 22 . Since the malloc routine is invoked by the macro, the specification relies
on the corresponding invariant for malloc. The parameters of the macro are params, locals and
target, respectively denoting the list of registers containing the parameters to the call, the list
of registers containing local state, and the register containing the capability to jump to. The list
of (encoded) instructions act_instrs denote the concrete instructions making up the activation
code (in Figure 11 they are written as act_instr1...act_instr5 23), which are not shown here for
simplicity.
The post-condition of the specification describes the state immediately after the jump, where:

the activation record has been allocated and initialized in [act, actend); register r0 contains an enter
capability pointing to the activation record, and the local data has been copied to a newly allocated
region [𝑙, 𝑙end).

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_machine.examples.call.html#call_spec
https://logsem.github.io/cerise/journal/cap_machine.examples.call.html#hw_1

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

40 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

mallocInv(𝑏𝑚, 𝑒𝑚)

⊢


(𝑝, code, end, a);

[a, cont) ↦→ call_instrs ∗
data ↦→ (ro, table, end, table) ∗ table ↦→ (e, 𝑏𝑚, 𝑒𝑚, 𝑏𝑚) ∗
params Z⇒ pws ∗ locals Z⇒ lws ∗ target Z⇒ wadv ∗∗ (𝑟,𝑣) ∈reg,

𝑟∉{pc,target }
𝑟∉params ∪ locals

𝑟 Z⇒ 𝑣


⇝


updatePcPerm(wadv);

∃act, actend, l, 𝑙end, reg′,
r0 Z⇒ (e, act, actend, act) ∗
data ↦→ (ro, table, end, table) ∗ table ↦→ (e, 𝑏𝑚, 𝑒𝑚, 𝑏𝑚) ∗
params Z⇒ pws ∗ target Z⇒ wadv ∗ [l, 𝑙end) ↦→ lws ∗
[act, actend) ↦→ act_instrs ++[(rwx, l, 𝑙end, 𝑙end);

(𝑝, code, end, cont)] ∗
∗ (𝑟,𝑣) ∈reg′,

𝑟∉{pc,target,r0 }
𝑟∉params

𝑟 Z⇒ 𝑣


It is then up to the user of the call macro to establish that the capability in r0 is safe to share

with the (possibly unknown) callee. This can be done with the help of the specification for the
activation code 24 , shown next:

⊢

(rx, act, actend, act);
r1 Z⇒ − ∗ r2 Z⇒ − ∗
[act, actend) ↦→ act_instrs ++

[(rwx, l, 𝑙end, 𝑙end);
(𝑝, code, end, cont)]

⇝(𝑝, code, end, cont);
r1 Z⇒ − ∗ r2 Z⇒ (rwx, 𝑙, 𝑙end, 𝑙) ∗
[act, actend) ↦→ act_instrs ++

[(rwx, 𝑙, 𝑙end, 𝑙end);
(𝑝, code, end, cont)]


One can read from this specification that the activation code passes control back to the caller (at

address cont), while loading in register r2 a capability to the region holding the local state, which
can be then loaded back into the corresponding registers by the restore_locals macro (step 6,
which we do not detail here).

To sum up, the calling convention presented here allows one to make a “function call” as one
would do in a higher-level language, while protecting local data of the caller. The code invoked
this way can be completely untrusted: in particular, it does not need to implement the calling
convention itself for the local state encapsulation guarantees to hold. (But of course it might never
“return” and pass control back to the caller.)

In Section 7.5, we demonstrate the use of this heap-based calling convention on a simple example,
showing the interaction of its local state encapsulation guarantees with read-only capabilities.

7.4 Adequacy in the Presence of Dynamically Allocated Memory
We can now provide an updated version of the adequacy theorem (Theorem 1) which directly incor-
porates the malloc and assert library routines. Instead of establishing that a memory invariant is
always preserved at each step, the new adequacy theorem establishes that the flag held by assert
is never modified.
Theorem 5 assumes that the malloc and assert routines are loaded in memory disjoint from

both prog and adv. Furthermore, the assert routine must have its flag initialized to 0. The verified

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_machine.examples.callback.html#scall_epilogue_spec

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 41

Theorem 5 (Updated adeqacy 25). Given memory fragments prog : [𝑏, 𝑒) → Word, malloc :
[𝑏𝑚, 𝑒𝑚) → Word, assert : [𝑏𝑎, 𝑒𝑎) → Word, and for any memory fragment adv : [𝑏adv, 𝑒adv) →
Word, assuming that:

(1) the initial state of memory mem satisfies:

prog ⊎malloc ⊎ assert ⊎ adv ⊆ mem

(2) [𝑏𝑚, 𝑒𝑚) contains the malloc routine;

(3) [𝑏𝑎, 𝑒𝑎) contains the assert routine and its flag at address 𝑎flag ;
(4) the assertion flag is initially set to 0:

mem(𝑎flag) = 0
(5) prog contains a table linking to malloc and assert:

∃data, table,mem(data) = (ro, table, table + 2, table)
mem(table) = (e, 𝑏𝑚, 𝑒𝑚, 𝑏𝑚)

mem(table + 1) = (e, 𝑏𝑎, 𝑒𝑎, 𝑏𝑎)
(6) the adversary region contains no capabilities except for a table linking to malloc:

∃dataadv, tableadv, ∀𝑎 ∈ dom(adv)\{dataadv, tableadv},
adv(𝑎) ∈ Z
adv(dataadv) = (ro, tableadv, tableadv + 1, tableadv)
adv(tableadv) = (e, 𝑏𝑚, 𝑒𝑚, 𝑏𝑚)

(7) the initial state of registers reg satisfies:

reg(pc) = (rwx, 𝑏, 𝑒, 𝑏), reg(r0) = (rwx, 𝑏adv, 𝑒adv, 𝑏adv), reg(𝑟) ∈ Z otherwise

(8) the proof in the program logic that the initial configuration is safe given the invariants:

∀reg,
mallocInv(𝑏𝑚, 𝑒𝑚) , assertInv(ba, ea, 𝑎flag) , 𝑎flag ↦→ 0

⊢



(rwx, 𝑏, 𝑒, 𝑏);

r0 Z⇒ (rwx, 𝑏adv, 𝑒adv, 𝑏adv) ∗
∗(𝑟,𝑣) ∈reg,

𝑟∉{pc,r0 }
𝑟 Z⇒ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

∗ (𝑎,𝑤) ∈prog,
𝑎∉{data,table,table+1}

𝑎 ↦→ 𝑤 ∗

data ↦→ (ro, table, table + 2, table) ∗
table ↦→ (e, 𝑏𝑚, 𝑒𝑚, 𝑏𝑚) ∗
table + 1 ↦→ (e, 𝑏𝑎, 𝑒𝑎, 𝑏𝑎) ∗∗ (𝑎,𝑧) ∈adv

𝑎∉{dataadv ,tableadv }
𝑎 ↦→ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

dataadv ↦→ (ro, tableadv, tableadv + 1, tableadv) ∗
tableadv ↦→ (e, 𝑏𝑚, 𝑒𝑚, 𝑏𝑚)



⇝ •

Then, for any reg
′
, mem

′
, if (reg,mem) −→∗ (reg′,mem

′), then mem
′(𝑎flag) = 0.

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_machine.examples.template_adequacy_ocpl.html#ocpl.ocpl_template_adequacy

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

42 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

; initially, PC = (RWX, code, end, code)

; r1 = (unknown) pointer to adversary function

code:

malloc 1 ; r1 = (RWX, b, b+1, b) where b is fresh

mov r3 r1 ; r3 = (RWX, b, b+1, b)

mov r4 r1 ; r4 = (RWX, b, b+1, b)

store r3 1 ; b <- 1

restrict r4 RO ; r4 = (RO, b, b+1, b)

call r1 [r3] [r4] ; call macro that jumps to r1, keeps r3 as local

; state and passes r4 as parameter

load r1 r3 ; r1 = 1, as long as b was not changed during call

mov r2 1

assert r1 r2 ; assert (r1 = 1)

halt

data:

(RO, table, end, table) ; environment table

table:

(E, bm, em, bm) ; entry point to the malloc subroutine

(E, ba, ea, ba) ; entry point to the assert subroutine

end:

Fig. 13. Program passing a read-only capability to unknown callee

program prog is given access to both the malloc and assert routines. The adversary program adv

is given access to malloc. We assume that prog contains the code and a table that has been filled by
a linker with capabilities giving access to the two routines. Likewise, we assume that adv contains
its program (arbitrary integers) and a table filled by the linker with the capability to the malloc
routine. Similarly to the first adequacy theorem, the theorem states that if the capability machine
starts with the capability pointing to prog in the program counter, and if it has been proved in the
program logic that the machine can run until completion, then the assertion flag is never modified.
In what follows, Lemma 5 will thus allow us to prove end-to-end theorems saying that the

assertion flag will still be unset after a full execution. This corresponds to the end-to-end theorems
of Swasey et al. [2017] which are also phrased in terms of an assert primitive (albeit in a high-
level language) that untrusted code does not get access to. Of course, such results remain a bit
artificial: ultimately, in real systems, we are not directly interested in the contents of assertion flags
in the system’s memory, but rather in the system’s interaction with the outside world: network
communication, the content of displays etc. Our approach can be extended to reason about such
properties, but we don’t go into details here. Instead, we refer to Van Strydonck et al. [2021], where
we have done exactly this extension, by adding MMIO and external event traces to our operational
semantics and using Iris invariants and ghost state to reason about them. This results in end-to-end
theorems that prove security properties about the external event traces of a system, which we
regard as a more realistic end goal of a verification effort.

7.5 Application: read-only sharing of dynamically allocated memory
We now present an example program sharing a read-only capability with adversary code, show-
casing the combined use of the malloc (Section 7.1) and assert (Section 7.2) routines, the secure
calling convention (Section 7.3), and exercising our updated adequacy theorem (Section 7.4).

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 43

Figure 13 shows the implementation of our program of interest. The program dynamically
allocates a region of size 1, into which it stores the integer 1. Next, it creates a copy of the newly
created capability, which is then restricted to read-only (ro). This restricted capability is shared
with an unknown callee, while the original copy is kept as local state. Upon return, an assert
statement checks that the region indeed still contains 1. We then wish to prove that the final
assertion always succeeds.

Notice that in this example, control is passed to untrusted code, corresponding to the first scenario
in Figure 2a. However, we also allow the callee to return, i.e. jump to a callback. This is achieved
using our calling convention to create a secure two-way boundary between known code and the
unknown callee.

In order to prove that the assert statement succeeds, we rely on two facts. First, the heap-based
calling convention guarantees the encapsulation of (rwx, 𝑏, 𝑏 +1, 𝑏). Second, sharing (ro, 𝑏, 𝑏 +1, 𝑏)
with unknown code does not threaten the integrity of 𝑏, since ro capabilities cannot be used to
write to memory. These two facts are key when proving the following specification:

Lemma 7 (Full execution specification 26).

mallocInv(𝑏𝑚, 𝑒𝑚) , assertInv(ba, ea, 𝑎flag) , 𝑎flag ↦→ 0

⊢


(rwx, data, end, code);

r1 Z⇒ 𝑤adv ∗ V(𝑤adv) ∗∗(𝑟,𝑣) ∈reg,𝑟∉{pc,r1 } 𝑟 Z⇒ 𝑤 ∗
[code, end) ↦→ code_instrs ∗
data ↦→ (ro, table, table + 2, table) ∗
[table, table + 2) ↦→ [(e, 𝑏m, 𝑒m, 𝑏m); (e, 𝑏a, 𝑒a, 𝑏a)]


⇝ •

Proof. We begin by applying program logic rules until we make it to the call to unknown code.
At that point, a (fresh) region has been dynamically allocated and initialized to 1, and thus we have
the following Separation Logic resources:

𝑟2 Z⇒ (rwx, 𝑏, 𝑏 + 1, 𝑏) ∗ 𝑏 ↦→ 1

At the call site, the calling convention creates an activation record, and sets up a sentry capability as
the return pointer in r0. (The “...” on the second line below stands for the address of the continuation
after the call.)

𝑟0 Z⇒ (e, act, actend, act) ∗ (11)
[act, actend) ↦→ act_instrs ++[(rwx, 𝑙, 𝑙 + 1, 𝑙); (rwx, code, end, ...)] ∗
𝑙 ↦→ (rwx, 𝑏, 𝑏 + 1, 𝑏) ∗
r2 Z⇒ 0 ∗
r3 Z⇒ (ro, 𝑏, 𝑏 + 1, 𝑏) (12)

Note in particular how the rwx capability pointing to 𝑏 (part of the “local state”) is only reachable
from the capability (pointing to 𝑙) stored in the activation record, while the ro copy is available in
register r3.
The call macro then passes control to the adversary by jumping to𝑤adv . To reason about this

jump, we apply Corollary 2 (assuming𝑤adv is safe). This requires us to show that all parameters in
the current register state are valid. In particular, we must show that the sentry capability set up by
the calling convention (11) is safe to execute, and that the read-only capability (12) is safe to share.
The latter is done by allocating an appropriate invariant, which is allowed to be stronger than

the value relation itself, since the capability in question is read-only. To this end, we will allocate

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_machine.examples.lse.html#roe_spec

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

44 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

an invariant that remembers the current integer pointed to by b, namely 1.

∃𝑤,𝑏 ↦→ 𝑤 ∗𝑤 = 1

That same invariant is then used to prove that (11) is safe to execute, in particular to show that the
assert statement succeeds, and hence does not change the assert flag. □

From this functional specification, we can instantiate our updated adequacy theorem (Theorem 5)
to then derive the following end-to-end theorem about our program.

Theorem 6 (End-to-end theorem: the read-only permission guarantees integrity 27).
Starting from an initial state of the machine (reg,mem) assuming that:

• prog ⊎ adv ⊎malloc ⊎ assert ⊆ mem, where:

adv : [𝑏adv, 𝑒adv) →Word, prog : [code, end) →Word
malloc : [𝑏m, 𝑒m) →Word and assert : [𝑏a, 𝑒a) →Word;
• the contents of prog correspond to the encoded instructions and program data (i.e. table with

capabilities to the malloc and assert subroutines);

• the adversary memory contains no capabilities except a table with a capability to the malloc

subroutine;

• malloc contains the implementation of the malloc subroutine;
• assert contains the implementation of the assert subroutine, with its flag at address 𝑎flag ,

initialized to 0;

• the initial state of registers satisfies:

reg(pc) = (rx, code, end, code),
reg(r1) = (rwx, 𝑏adv, 𝑒adv, 𝑏adv).

Then, for any reg
′,mem

′
, if (reg,mem) −→∗ (reg′,mem

′), then mem
′(𝑎flag) = 0.

Proof. We apply the updated adequacy theorem (Theorem 5), using the specification proved in
Lemma 7. All that remains is to prove the validity of the adversary capability:V(rwx, 𝑏adv, 𝑒adv, 𝑏adv).
This is done in two steps. First, the adversary linking table is proved valid by applying validity of
the malloc subroutine (Lemma 6). Next, the rest of the adversary region is proved valid through
the assumption that it does not contain any other capabilities. The full proof can be found in the
Coq mechanisation. □

8 CASE STUDY: A LIBRARY IMPLEMENTING DYNAMIC SEALING AND A CLIENT
We have presented so far a variety of smaller examples enforcing interesting encapsulation proper-
ties while interacting with adversarial code. In this section, we demonstrate that our approach scales
up to the verification of a larger case study, involving not only the building blocks of Section 7, but
using them to build and modularly verify a number of libraries built on top of each other.
We take inspiration from the literature on object capability patterns (OCPs) from high-level

languages, a technique that enables programmers to protect the private state of their objects from
corruption by untrusted code. More precisely, we consider the dynamic sealing OCP as presented
by [Swasey et al. 2017]. Dynamic sealing enforces a form of data abstraction in the absence of static
types. It can be implemented as a library providing pairs of seal/unseal functions, allowing their
clients to “seal” private data into opaque objects which can be safely shared with untrusted code,
and later unsealed in order to get back the original data.

In the context of a high-level language, [Swasey et al. 2017] present a formally verified implemen-
tation of dynamic sealing, equipped with a specification that captures the abstraction guarantees
it provides. The authors then use this dynamic sealing library to build and verify a library of
abstract integer intervals, where the integrity of an interval value (representing a range [𝑖, 𝑗) with

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_machine.examples.lse_adequacy.html#roe_adequacy

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 45

interval 28 = 𝜆_, let (seal, unseal) = makeseal() in
let makeint = 𝜆 z1 z2, let x = malloc(2) in

x ← {𝑚𝑖𝑛(z1, z2);𝑚𝑎𝑥 (z1, z2)};
seal(x)

in
let imin = 𝜆 i, unseal(i) [0] in
let imax = 𝜆 i, unseal(i) [1] in
(makeint, imin, imax)

client 29 = let (makeint, imin, imax) = interval() in
let checkint = 𝜆 𝑖, assert(imin(𝑖) ≤ imax(𝑖)) in
(checkint, makeint, imin, imax)

Fig. 14. High-level pseudo-code for the implementation of the interval library and its client.

𝑖 ≤ 𝑗) is protected using dynamic sealing. Finally, the authors use their verified integer library
to establish robust safety of a simple client program checking integrity of intervals, establishing
that an untrusted context cannot violate the internal invariants of the program and its underlying
libraries.
We implement and verify low-level variants of the dynamic sealing OCP, interval library, and

their robustly safe client. This represents a non-trivial amount of code: our implementation of those
three components adds up to 632 machine instructions. Nevertheless, despite the fact that those
libraries are implemented in low-level assembly code, we are able to give them specifications at a
level of abstraction similar to their high-level counterparts.

For ease of reading, we will keep the explanations fairly high-level. We will first show high-level
pseudo-code for the implementation of the interval library and its client, and informally discuss
what kind of properties should be enforced. Then, we will present the key ideas for implementing
dynamic sealing on a capability machine, and then for reasoning about it, in particular how to
instantiate its specification to be able to verify the interval library.

8.1 Interval Library and Client
The interval library implements an abstract data type representing intervals. An interval has a
lower and upper bound, which can be extracted via two functions; imin and imax. An interval is
created via a function makeint that takes as input two integers, and chooses the smallest input as
the lower bound, and the largest input as the upper bound. Crucially, the internal representation of
an interval must stay hidden so as to guarantee its integrity.

We thus use dynamic sealing ([Sumii and Pierce 2004]) to dynamically enforce data abstraction
for the intervals representation. We detail our implementation of seals in Section 8.2. For now, it
suffices to know that a seal is a pair of functions, seal and unseal, where the former hides the
internal representation of some value, such that only the latter can expose it.
An interval can be represented as an ordered pair of integers. On the capability machine, we

implement such a pair as a dynamically allocated region of size two, storing the lower and upper
bound of the interval. Then, an interval itself consists of a capability with read/write authority over
the corresponding region of size two. In Figure 14, we depict the high-level implementation of our
interval library. Note that the library implements closures around a fresh seal-unseal pair, used to
seal the aforementioned internal representation of intervals. The low-level implementation that we

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_machine.examples.interval.html
https://logsem.github.io/cerise/journal/cap_machine.examples.interval_client.html

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

46 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

formally reason about can be thought of as the result of compiling the high-level implementation
shown in Figure 14.

The same figure also depicts a client of the interval library. The client exposes four entry points
to the environment: in addition to entries to makeint, imin and imax from a fresh instance of the
interval library, the client also exposes an encapsulated checkint function that, given an interval,
dynamically asserts that the expected representation invariant holds for the interval, that is, that
the minimum of the interval is indeed smaller than or equal to the maximum of the interval.
When formally verifying the interval library and its client, we will need an invariant to keep

track of each interval created by makeint. The invariant should capture the properties enforced by
the implementation of the interval library. We can already list the internal properties of an interval
intuitively. First and foremost, the lower bound of an interval must be less than or equal to its
upper bound. A perhaps more subtle property is that intervals are immutable. Thus, we will need
to define an invariant that represents each interval as a dynamically allocated region of size two,
which stores the lower and upper bound, and is immutable. The seal-unseal pair encapsulated
by the library will be used only to seal intervals that adhere to this representation (satisfy this
invariant). Keeping this intuition in mind, let us now explore the technical implementation of seals.

8.2 Dynamic Sealing
Dynamic sealing makes it possible to support data abstraction dynamically. The function makeseal
creates a pair of functions, seal and unseal, where seal is used to seal a word w into a fresh
sealed word 𝜎 . We will also refer to 𝜎 as the key to w. The only way to extract the word w from 𝜎

is with unseal. The key point is that this seal-unseal pair supports data abstraction by sealing

away or hiding the internal representation of some value, only known and available to the owner
of the associated unseal function.
Although capability machines such as CHERI include seals as a language primitive, we show

here how we can implement seals in software, as a low-level library. The library is implemented
via a data structure that stores each word sealed through seal, associating each sealed word with a
key. A key in itself does not reveal any details about the word it is hiding. However, it can provide
access to that word, granted one has the proper authority to unseal it. Only a valid key should
grant access to a sealed word. Keys, and the data structure that uses them, should intuitively satisfy
two properties; (1) the unforgeable nature of keys and (2) the unique association between a key
and the word it seals.

The seal and unseal subroutines respectively perform insertions and lookups in this underlying
data structure. seal takes a word as input, generates a fresh key, and adds the key value association
to the data structure. unseal takes a key as input, checks that the key is associated to a value in
the data structure, in which case it returns the value.

8.2.1 Reasoning about dynamic sealing. A shared seal-unseal pair can be used to seal any word.
In practice, one typically encapsulates a seal-unseal pair within a library, performing additional
checks and thus ensuring that words that are sealed always satisfy a specific property. Then,
whenever one successfully unseals a given key, one gets that the corresponding word satisfies the
chosen property. For instance, the interval library enforces that each sealed word is a region of size
2, storing the ordered bounds of an interval.
When reasoning about code invoking the dynamic sealing library, one will need to pick, for

each seal-unseal pair, an representation invariant Φ : Word → iProp describing the values to
be sealed/unsealed by the pair7. Then, each seal-unseal pair maintains an Iris invariant sealInv
describing the state of the pair itself, namely the data structure storing the key-values for all sealed
7An analogous representation invariant is used in the [Swasey et al. 2017]

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 47

seal spec 30(−, 𝑏𝑠 , 𝑒𝑠 ,−);
[𝑏𝑠 , 𝑒𝑠) ↦→ seal ∗
sealInv ds Φ ∗
r1 Z⇒ 𝑣 ∗ Φ(𝑣) ∗ · · ·

⇝
𝑠 𝑘.

⌈𝑠 = Running⌉ ∗
isSealedWord 𝑘 𝑣 ∗
r1 Z⇒ 𝑘 ∗ · · ·
∨ ⌈𝑠 = Failed⌉


unseal spec 31(−, 𝑏𝑢, 𝑒𝑢,−);

[𝑏𝑢, 𝑒𝑢) ↦→ unseal ∗
sealInv ds Φ ∗
r1 Z⇒ 𝑘 ∗ · · ·

⇝
𝑠 𝑣 .

⌈𝑠 = Running⌉ ∗
isSealedWord 𝑘 𝑣 ∗
r1 Z⇒ 𝑣 ∗ Φ(𝑣) ∗ · · ·
∨ ⌈𝑠 = Failed⌉


Fig. 15. Specifications of seal and unseal

entries. Additionally, this invariant stores the information that each sealed value satisfies Φ.

sealInv ds Φ 32 ≜
∃wvals, dataStructure ds wvals
∗∗(−,𝑤) ∈wvals Φ(𝑤)

We require that Φ is persistent, since the representation invariant of a sealed word should always
hold once sealed. The dataStructure predicate describes the state of the data structure internal to
the seal library (see Section 8.2.2 for a formal definition). It asserts that ds can be used to access a
data structure storing the key value pairs denoted by wvals (a sequence of pairs in Addr ×Word).
In other words, wvals is the complete list of all words that have been sealed so far, each paired with
their associated key.

A sealed word is sealed forever. It is thus possible to persistently remember that a particular word
is an element of wvals. The predicate isSealedWord 𝑘 𝑣 states that the key 𝑘 is uniquely associated
with the sealed word 𝑣 . We present the formal definition of isSealedWord in Section 8.2.2.

The functional specifications of the seal and unseal subroutines depend on an instance of the
seal invariant sealInv, for a specific user-provided predicate Φ. Then, seal can only be applied to
words for which the representation predicate Φ holds. unseal can fail if a given key is not valid, or
if it is not associated with any sealed word, however if it succeeds, it will return a word for which
Φ holds. The specification of makeseal allocates a fresh sealInv instance, for any Φ chosen by the
client of the library. Figure 15 shows specifications for seal and unseal (where we omits low-level
administrative details).

8.2.2 Implementing a low level seal library. We now present the data structure used to implement
the low-level seal library. We implement it as a linked associative list with a twist, next refered to
as a linked list dictionary. The trick is to take advantage of the unforgeable nature of capabilities,
and use the capability to (a subrange of) a list node as a key to that node; the corresponding value
being then stored in the node.

Figure 16 shows the in-memory representation of a linked list dictionary storing three key-value
pairs. Each node is implemented as a region of size three, where the bottom address acts as the key
address. To avoid access to sealed values, it is important that a key does not provide authority over
the other parts of a node (the value and the next pointer). For instance, the value v1 is uniquely
associated to the capability (rwx, 𝑏1, 𝑏1 + 1,−).
The linked list dictionary library contains two subroutines, findB 33 and append 34 . findB

expects as input an integer b, searches the linked list for a node of the form (rwx, 𝑏, 𝑏 + 3,−) and
returns the value that the associated node stores. It fails if no such node exists. append expects a

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_machine.examples.dynamic_sealing.html#seal_spec
https://logsem.github.io/cerise/journal/cap_machine.examples.dynamic_sealing.html#unseal_spec
https://logsem.github.io/cerise/journal/cap_lang.examples.keylist.html#sealLL
https://logsem.github.io/cerise/journal/cap_lang.examples.keylist.html#findb_instr
https://logsem.github.io/cerise/journal/cap_lang.examples.keylist.html#appendb_instr

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

48 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

0

𝑏1 𝑏1 + 3 𝑏2 𝑏2 + 3 𝑏3 𝑏3 + 3
• 𝑣1 • 𝑣2 • 𝑣3 0

Fig. 16. In-memory representation of an empty dictionary linked list and a dictionary linked list with three
values 𝑣1, 𝑣2 and 𝑣3.

word as input, invokes malloc to dynamically allocate a new node of size three, stores the input
word in the second position of that node, and then stores that node as the new tail of the linked list.
Finally a key can then be derived from the newly created node; we now explain in more detail how
that is done.
A fresh instance of a seal-unseal pair is created by calling the makeseal subroutine, which

returns a pair of closures encapsulating a new empty linked list dictionary. Sealing a word w adds it
to the dictionary, and returns a restricted capability representing the key to the linked list dictionary
entry. Say for instance that the input word w is appended to the list in a fresh node (rwx, 𝑏, 𝑏 + 3, 𝑏).
The seal subroutine will then return the key (rwx, 𝑏, 𝑏 + 1,−) (the address pointed to does not
matter, and is here omitted for clarity).

Recall that in the enclosed linked list dictionary, w will be stored at address b + 1, for which the
returned sealed value, or key, does not have authority. This sealed value is unforgeable. The only
way to create it would be to derive it from a capability (rwx, 𝑏 ′, 𝑒 ′, _) where [𝑏,𝑏 + 1) ⊆ [𝑏 ′, 𝑒 ′).
However, this is impossible since the appended node is freshly allocated using a safe malloc
subroutine, which is guaranteed to hand out fresh regions upon invocation. Only seal has access
to such a capability, and thus sealed values cannot be forged.
In turn, the unseal subroutine expects a rwx capability of range 1 as input. It reads its lower

bound, searches the enclosed linked list for a node with matching lower bound, and returns the
associated word. Let us consider a continuation of the previous example. Say that unseal receives
(rwx, 𝑏, 𝑏+1,−) as input. It begins by authenticating the key by dynamically verifying its permission
to be rwx, and its size to be 1. Upon validating its permission and range, it then runs findB on
the enclosed linked list dictionary with the integer b, and returns the word stored within the
node (rwx, 𝑏, 𝑏 + 3,−) at address 𝑏 + 1, namely the previously sealed word w. The authentication
guarantees that a key has the same unforgeable authority as when it was created.

In summary, the seal and unseal subroutines are implemented as follows:
• seal:

(1) append the input to the enclosed linked list dictionary
(2) restrict the range of the fresh node capability to bottom address of node
(3) return resulting restricted capability

• unseal:
(1) check that permission of input is rwx
(2) check that the range of input is 1
(3) get the lower bound of input
(4) find the node in the linked list dictionary with same lower bound
(5) return the stored word at that node (fail if no such node exists)

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 49

We now have enough ingredients to revisit the predicates used in the previous section to define
the seal invariant. Recall that the dataStructure predicate represents the state of the data structure
internal to the seal library (now defined to be a linked list dictionary), and that the isSealedWord
predicate describes a persistently known association between a sealed word and its key.

dataStructure ds wvals ≜ ∃hd, ds ↦→ hd

∗ isList hd wvals

∗ Exact wvals
isSealedWord k v ≜ ∃wvals, Pref wvals ∗ ⌈(k, v) ∈ wvals⌉ 8 ∗ V(rwx, 𝑘, 𝑘 + 1,−)

The head of the linked list dictionary is stored in location ds. isList corresponds to a standard
inductive separation logic predicate for linked lists. Since the list monotonically grows, it is useful
to persistently remember any prefix of the linked list dictionary. Exact wvals (the authoritative
view of the list state) roughly states that wvals is the full state of the data structure. Pref wvals
(the local fragment view) states that wvals is a prefix of the data structure. isSealedWord 𝑘 𝑣 , a
persistent predicate, states that the word v has been sealed with a key; a capability with with lower
bound k. This key is safe to share, henceV(rwx, 𝑘, 𝑘 + 1,−) holds.
In the next section, we describe how we use the reasoning principles about seal-unseal to

verify our interval library.

8.3 Verifying the Interval Library and its Client
The first key step is to formally define the representation invariant for an interval. Recall the
intuitive description given in Section 8.1: an interval is a capability with authority over a region of
size 2, storing the lower and upper bounds of an interval, and which is immutable.
A first thought might be that one can define the representation invariant using two points-to

predicates for the region. However, this does not capture the immutability of intervals, nor is it
persistent. Instead, we use persistent points-to predicates ([Vindum and Birkedal 2021]). A persistent
points-to predicate 𝑎 ↩→ 𝑤 asserts that address 𝑎 stores the word 𝑤 . It can be used to read from
address 𝑎, but not write to it, and as such, is a persistent resource. This is exactly what we need for
our immutable invariants. We formally define the representation invariant isInterval as follows:

isIntervalInt z1 z2 w 35 ≜ ∃𝑎, ⌈𝑤 = (rwx, 𝑎, 𝑎 + 2, 𝑎)⌉ ∗ 𝑎 ↩→ z1 ∗ (𝑎 + 1) ↩→ z2 ∗ ⌈𝑧1 ≤ 𝑧2⌉
isInterval 36 ≜ 𝜆𝑤, ∃𝑧1 𝑧2, isIntervalInt 𝑧1 𝑧2 𝑤

(Note, in particular, that the invariant also captures the property that the lower bound is less than
or equal to the upper bound.) Using properties of persistent points-to predicates, we can prove the
following lemma:

Lemma 8 (37). isIntervalInt z1 z2 w → isIntervalInt z3 z4 w → ⌈z1 = z3 ∧ z2 = z4⌉ .

Because isInterval is persistent, we can use it as the representation predicate for a seal-unseal
pair, which will thus operate over the following invariant:

sealInv ll isInterval

This seal invariant is allocated by the specification for makeseal, which is invoked during the
creation of an interval library closure.

When sealing a new interval using makeint, we must establish isInterval for the newly created
interval. This requires us to transform the regular points-to predicates handed out by the malloc
specification into persistent points-to predicates, and assert that indeed𝑚𝑖𝑛(𝑧1, 𝑧2) ≤ 𝑚𝑎𝑥 (𝑧1, 𝑧2).
8In the Coq mechanization, wvals associates the word w to k + 1 rather than k, for technical reasons. This small discrepancy
has otherwise no impact on the rest of the proof.

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_lang.examples.interval.html#isInterval_int
https://logsem.github.io/cerise/journal/cap_lang.examples.interval.html#isInterval
https://logsem.github.io/cerise/journal/cap_lang.examples.interval.html#intervals_agree

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

50 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

Specifications for imin and imax return the respective lower and upper bound of a sealed interval.
The seal invariant guarantees that the sealed word is an interval according to the representation
invariant isInterval. In other words, if imin or imax succeeds for some word w, we know that w is
the key to some associated capability pointing to the bounds of an interval [𝑙, 𝑟]; specifically that
isIntervalInt 𝑙 𝑟 𝑤 holds.

During the verification of checkint, the specification for imin gives us some value 𝑙 and predicate
isIntervalInt 𝑙 𝑟 𝑤 . Similarly, the specification for imax gives us some value 𝑟 ′ and predicate
isIntervalInt 𝑙 ′ 𝑟 ′ 𝑤 . Notice that the bounds may be different, but the sealed word𝑤 is the same in
each instance. We can thus apply Lemma 8 on the two given instances of isIntervalInt, and use the
definition of isInterval to conclude that the given assert statement succeeds, namely that 𝑙 ≤ 𝑟 .

Finally, all that remains is to apply adequacy and prove the following final end-to-end theorem:

Theorem 7 (End-to-end theorem: the interval client does not trigger an assertion
failure 38). Starting from an initial state of the machine (reg,mem) in which regions reserved for

the interval library, the seal library, malloc, the assert flag, the client and the adversary are all disjoint,
and initialized as expected, we have that, for any reg

′
, mem

′
, if (reg,mem) −→∗ (reg′,mem

′) then
mem

′(𝑎flag) = 0.

9 DISCUSSION AND PERSPECTIVES
In this paper we have introduced Cerise, a program logic for reasoning about a low-level capability
machine. Moreoever, we have shown how Cerise can be used to define a logical relation for
reasoning about unknown code. Thanks to the logical relation and the fundamental theorem from
Section 5, Cerise can be used for robust verification [Sammler et al. 2020; Swasey et al. 2017], i.e., to
verify correctness of software that interacts with unverified components. The Cerise program logic
is the culmination of ideas used in a sequence of earlier papers [Georges et al. 2021; Skorstengaard
et al. 2018, 2019a; Van Strydonck et al. 2021] and this paper is intended to give an accessible
and didactic introduction to Cerise and the application of Cerise to program verification in the
presence of untrusted code, accompanied with new results on a heap-based calling convention and
implementations of sophisticated object-capability patterns.

Throughout the paper we have introduced increasingly complex examples, which demonstrate
how fine-grained abstractions can be implemented on a capability machine and reasoned about
using Cerise. Our examples from Section 7 and Section 8 are modeled after examples from a paper
about a high-level object capability language [Swasey et al. 2017]. Because of the more low-level
nature of our capability machine, we had to implement some abstractions ourselves (such as the
calling convention in Section 7.3) but we think it is otherwise fair to say that our examples faithfully
represent the examples used by Swasey et al., using the same granularity of encapsulation and
attacker interaction. As such, this paper demonstrates that the low-level security primitives offered
by our capability machine are expressive enough to implement high-level language abstractions,
despite the stronger attacker model of a low-level adversary. At the same time, the examples show
that Cerise is expressive enough to reason about these abstractions.

Cerise is the first instantiation of the Iris framework to such a low-level language and thus this
work also demonstrates that the key features of Iris (such as guarded recursion, ghost state, and
invariants) are equally applicable in this low-level setting as in the high-level settings they were
originally intended for.

Of course, while we implement and reason about our examples directly in the capability machine
assembly language, we are not proposing that real software should all be developed in that way. On
the contrary, we think this is only realistic for low-level code in compiler back-ends [Georges et al.
2021; Skorstengaard et al. 2019a], operating systems and low-level security measures [Van Strydonck

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://logsem.github.io/cerise/journal/cap_lang.examples.interval_client_adequacy.html#template_adequacy

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 51

et al. 2021]. Other software should be developed and reasoned about in a more abstract setting,
which suggests the need for a secure compiler that preserves high-level security guarantees in a
low-level environment. In the context of capability machines, such compilers have been investigated
already, both formally [El-Korashy et al. 2020; Van Strydonck et al. 2019], and practically [Chisnall
et al. 2017; Richardson 2020]. While we in this work have shown how to implement and reason
about some high-level programming patterns at a low level, much interesting work remains to be
done to further explore the design of a high-level language whose security abstractions map well
to those offered by a capability machine.

An important aspect of the universal contract provided by our logical relation and fundamental
theorem is that it formalizes the security guarantee of our capabilitymachinewithout overspecifying
implementations of the ISA. The contract specifies an authority bound that suffices to reason about
adversarial code, but does not overly constrain future extensions or optimized implementations
of the ISA. This is similar to how the ISA itself is designed to specify expected behavior that is
sufficient for software authors to reason about their code without preventing CPU designers from
constructing optimized or extended implementations. In fact, we believe universal contracts offer a
general and powerful approach for formalizing ISA security guarantees. Such security guarantees
are informally stated in informal ISA specifications but they have not yet been incorporated in
formal definitions of ISAs [Armstrong et al. 2019; Bourgeat et al. 2021]. As such, a promising
application of universal contracts like the one from Section 5 is to incorporate them into the ISA
definition to formalize intended ISA security guarantees.
Finally, it is worth acknowledging that in this paper, we only describe a minimal capability

machine that lacks many features from realistic capability machine ISAs. Our approach has been
extended to support some additional features in the literature (e.g., local and uninitialized capabilities
[Georges et al. 2021], and MMIO [Van Strydonck et al. 2021]), but other features are still missing
for now (e.g. sealing, interrupts, virtual memory, etc.). In terms of reasoning, the unary model we
have described only supports reasoning about integrity properties. However, we have implemented
a binary model in our Coq development which can be used to reason about relational properties
(e.g., confidentiality).

10 RELATEDWORK
We now discuss several lines of work related to ours. First, we discuss earlier variants of Cerise
by the authors and colleagues. Then, we discuss work on verifying object capability patterns in
high-level languages, verification of ISA properties in CHERI, and other applications of universal
contracts in the literature.

10.1 Earlier variants of Cerise
Earlier variants of Cerise focused on showing how capabilities can be used to implement a secure,
stack-based calling convention [Georges et al. 2021; Skorstengaard et al. 2019a,b] and nested security

wrappers [Van Strydonck et al. 2021].
[Skorstengaard et al. 2019a] were the first to show that capabilities can be used to implement a

secure stack-based calling convention, i.e., a calling convention where the security guarantees of
function calls at the machine code level are faithful to the high-level notion of a function call. They
employed an additional kind of “local” capabilities and stack clearing to achieve security. Their work
follows a similar methodology as the one described here, that is, they define a logical relation which
characterizes a notion of safety. However, their proofs were not mechanized and the logical relation
was defined using a non-trivial concrete model; in contrast we use the Cerise program logic to define
and prove properties about our logical relation, which means that our development is done at a
higher-level of abstraction and thus we, e.g., do not have to solve any recursive domain equations. In

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

52 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

follow-up non-mechanized work, [Skorstengaard et al. 2019b] achieved similar security guarantees
with a novel calling convention based on so-called “linear” capabilities; capabilities that can never
be duplicated. Although this calling convention avoids the stack clearing required in the previous
work, linear capabilities come with certain architectural restrictions [see e.g. Skorstengaard et al.
2019b, §6.2]. An efficient implementation of linear capabilities has so far not been demonstrated.
The subsequent work by [Georges et al. 2021] introduced a new type of capabilities (called

“uninitialized”) to avoidmost of the stack clearing from Skorstengaard et al.’s first calling convention,
thereby improving runtime efficiency. Importantly, uninitialized capabilities do not come with the
same architectural hurdles as linear capabilities. As a second contribution, Georges et al. used Iris
to formulate safety as a logical relation and mechanized their proofs of security.
The aforementioned logical relations of both Skorstengaard et al. and Georges et al. are more

expressive and therefore significantly more complicated than the one presented here: they permit
reasoning about revocation of local/linear/uninitialized capabilities and well-bracketedness prop-
erties of machine-code “function calls”, on top of local-state encapsulation. In our present work,
object capabilities ensure local state encapsulation, but we do not enforce calls and returns to be
well-bracketed. In particular, we do not prevent an adversary from invoking a return pointer several
times, or storing return pointers for later use. In other words, our calling convention implements the
kind of function calls one has in a high-level language with control operators (e.g., call/cc), where
calls and returns are not necessarily well-bracketed. (It is well-known that models of well-bracketed
function calls are more involved than models of not-necessarily-well-bracketed function calls, see,
e.g., [Abramsky et al. 1998; Dreyer et al. 2012], and here we opted for the latter, to present a more
accessible model, which suffices for a heap-based calling convention and for studying low-level
implementations of object-capability patterns.)
In a different line of work, Van Strydonck et al. [2021] employed a capability machine and

logical relations model similar to the one presented here, but with additional support for MMIO, to
verify safety properties for small, nestable wrappers around security-critical devices on a capability
architecture. As part of the verification effort, multiple end-to-end security theorems were proven,
which state that safety predicates of interest hold over the trace of IO events admitted by the
machine. Here we have instead focused on demonstrating how a core model (without MMIO
support) can be used to reason about low-level implementations of object-capability patterns.

10.2 Verifying object capability patterns in high-level languages
A number of high-level programming languages allow for programming patterns similar to object
capabilities, that enable preserving local state while interacting with unknown code. Examples are
closures, and high-level objects in capability safe languages.

[Devriese et al. 2016] pioneered the use of a logical relation to give a semantic characterization
of capability safety (earlier work used a more conservative syntactic approach based on whether
or not objects contain references to each other and ignored the behaviour of objects). [Devriese
et al. 2016] focused on capability safety for a core calculus of Javascript, including a notion of
observable effects, and used an explicit construction of their logical relation (not a program logic),
which was the inspiration for the capability model by [Skorstengaard et al. 2019a] mentioned above
and for the work by [Swasey et al. 2017], who presented a program logic which allows reasoning
modularly about object capability patterns in a high-level language. The methodology of [Swasey
et al. 2017] is close to the one presented here, but in contrast to [Swasey et al. 2017] we reason
about object capabilities on a low-level machine. For instance, Swasey et al. define two predicates to
describe a reference: a predicate for “high integrity” locations (ℓ ↩→ 𝑣), and one for “low integrity”
locations (lowloc ℓ). The first predicate grants exclusive access to the corresponding reference, and
is therefore not safely shareable with an adversary. The second is shareable with an adversary, but

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 53

can only be used to read and write “low integrity” values. In our setting, “high integrity” directly
corresponds to the predicate 𝑎 ↦→ 𝑤 for a memory location, and “low integrity” corresponds to
the invariant used in the definition ofV: ∃𝑤, 𝑎 ↦→ 𝑤 ∗ V(𝑤) . Correspondingly, our definitions
satisfy similar reasoning rules to the ones established by Swasey et al.. In particular, we believe that
the various object capability patterns they verify can be implemented and verified in a similar way
in the setting of a capability machine, using the principles presented in this paper. We demonstrated
one such implementation by adapting their dynamic sealing example in Section 8. Additionally, the
robust safety theorem of [Swasey et al. 2017] is related to our template adequacy theorem with
malloc and assert (Theorem 5); our assert flag plays a role similar to the OK flag in [Swasey et al.
2017].

10.3 Verifying ISA properties in CHERI
[Nienhuis et al. 2020] formally verify a number of “architectural” properties of CHERI capability
machines. This constitutes a significant mechanization effort: the authors tackle the full generality
of a realistic operational semantics for CHERI, which is significantly more complex than the minimal
machine we consider here. The approach followed by Nienhuis et al. is different from ours: they
state the properties they establish as trace properties, over a trace of “abstract actions” describing
the various capabilities transiting through the machine during the execution. This approach makes
it possible to state the desired properties in a very explicit and concrete fashion. For instance, the
authors state and prove a property of “capability monotonicity”: during the execution, the authority
of available capabilities cannot increase (in other words, the machine does not allow forging new
authority). Intuitively, this seems like a very reasonable property, required for proper operation
of the capability machine. However, in practice it is more subtle: calls between components (in
our case, jumping to an e-capability) do allow for some restricted form of non-monotonicity. The
property proved by Nienhuis et al. is thus restricted to trace fragments that do not include calls
to a different component. Our methodology is less explicit, but more expressive. In our setting,
the fundamental theorem can be understood as expressing that “the machine works well”. Its very
extensional statement is admittedly harder to understand in terms of the operational semantics of
the machine, but it enables deriving correctness statements in terms of the operational semantics
that do apply to a full execution of the machine, including calls between an arbitrary number of
components.

10.4 Other applications of universal contracts
As mentioned, our fundamental theorem constitutes a universal contract for arbitrary code, i.e., it
allows deriving the guarantee that any adversarial capability is safe to execute, given validity of said
capability. This safety is typically obtained by syntactically restricting the adversarial capability;
e.g., requiring that the adressed memory only contains integers.9 Similar notions of universal
contracts have been used for high-level languages (explicitly or implicitly) in the literature. The
aforementioned work of Skorstengaard et al. [2019a,b], and Swasey et al. [2017] all used a version
of universal contracts, and placed varying syntactic restrictions on adversaries. The semantic type
systems of Jung et al. [2017] and Sammler et al. [2020] permit similar reasoning about untrusted
code based on a syntactic well-typedness restriction. The back-translation in the full-abstraction
proof by Van Strydonck et al. [2019] involved an explicit, universal separation logic contract for
a C-like language with capabilities. Generally, whenever a semantic model is used to describe
semantic guarantees satisfied by arbitrary code (possibly subject to syntactic restrictions), and

9Note that instructions are encoded in memory as integers.

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

54 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

when these guarantees are used in the manual verification of other code, this can be regarded as an
application of a universal contract.

Acknowledgements. Thanks to Léon Gondelman and Pierre Pradic for feedback on earlier drafts
of this document.
This work was supported in part by a Villum Investigator grant (no. 25804), Center for Basic

Research in Program Verification (CPV), from the VILLUM Foundation; by the Research Foundation -
Flanders (FWO); and by DFF project 6108-00363 from The Danish Council for Independent Research
for the Natural Sciences (FNU). Thomas Van Strydonck holds a Research Fellowship of the Research
Foundation - Flanders (FWO). Amin Timany was postdoctoral fellow of the Flemish Research
Foundation (FWO) during parts of this project.

REFERENCES
Samson Abramsky, Kohei Honda, and Guy McCusker. 1998. A Fully Abstract Game Semantics for General References.

In Thirteenth Annual IEEE Symposium on Logic in Computer Science, Indianapolis, Indiana, USA, June 21-24, 1998. IEEE
Computer Society, 334–344. https://doi.org/10.1109/LICS.1998.705669

Andrew W. Appel. 1992. Compiling with Continuations. Cambridge University Press.
Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray, Robert M. Norton, Prashanth

Mundkur, Mark Wassell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell.
2019. ISA Semantics for ARMv8-a, RISC-v, and CHERI-MIPS. Proceedings of the ACM on Programming Languages 3,
POPL (Jan. 2019), 71:1–71:31. https://doi.org/10.1145/3290384

Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Gruetter, Andrew Wright, and Adam Chlipala. 2021. A Multipurpose
Formal RISC-V Specification. arXiv:2104.00762 [cs] (April 2021). arXiv:2104.00762 [cs] http://arxiv.org/abs/2104.00762

Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. 1994. Hardware Support for Fast Capability-Based Addressing.
In International Conference on Architectural Support for Programming Languages and Operating Systems. ACM, 319–327.
https://doi.org/10.1145/195473.195579

David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil, Alexandre Joannou, Jonathan Woodruff, A. Theodore Markettos,
J. EdwardMaste, Robert Norton, Stacey Son,Michael Roe, SimonW.Moore, Peter G. Neumann, Ben Laurie, and Robert N.M.
Watson. 2017. CHERI JNI: Sinking the Java Security Model into the C. In International Conference on Architectural Support

for Programming Languages and Operating Systems. ACM, 569–583. https://doi.org/10.1145/3037697.3037725
Jack B. Dennis and Earl C. Van Horn. 1966. Programming Semantics for Multiprogrammed Computations. Commun. ACM

9, 3 (March 1966), 143–155. https://doi.org/10.1145/365230.365252
Dominique Devriese, Lars Birkedal, and Frank Piessens. 2016. Reasoning about Object Capabilities Using Logical Relations

and Effect Parametricity. In European Symposium on Security and Privacy. IEEE. https://doi.org/10.1109/EuroSP.2016.22
Derek Dreyer, Georg Neis, and Lars Birkedal. 2012. The impact of higher-order state and control effects on local relational

reasoning. J. Funct. Program. 22, 4-5 (2012), 477–528. https://doi.org/10.1017/S095679681200024X
Akram El-Korashy, Stelios Tsampas, Marco Patrignani, Dominique Devriese, Deepak Garg, and Frank Piessens. 2020. Capa-

blePtrs: Securely Compiling Partial Programs Using the Pointers-as-Capabilities Principle. (May 2020). arXiv:2005.05944
Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff, Sam Ainsworth, Lucian Paul-Trifu, Brooks Davis, Hongyan

Xia, Edward Tomasz Napierala, Alexander Richardson, John Baldwin, David Chisnall, Jessica Clarke, Khilan Gudka,
Alexandre Joannou, A. Theodore Markettos, Alfredo Mazzinghi, Robert M. Norton, Michael Roe, Peter Sewell, Stacey
Son, Timothy M. Jones, Simon W. Moore, Peter G. Neumann, and Robert N. M. Watson. 2020. Cornucopia: Temporal
Safety for CHERI Heaps. In IEEE Symposium on Security and Privacy. IEEE.

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Sander Huyghebaert, Dominique
Devriese, and Lars Birkedal. 2021. Efficient and provable local capability revocation using uninitialized capabilities. Proc.
ACM Program. Lang. 5, POPL (2021), 1–30. https://doi.org/10.1145/3434287

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017. RustBelt: Securing the Foundations of the
Rust Programming Language. Proc. ACM Program. Lang. 2, POPL, Article 66 (Dec. 2017), 66:1–66:34 pages. https:
//doi.org/10.1145/3158154

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the
ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
https://doi.org/10.1017/S0956796818000151

Henry M. Levy. 1984. Capability-Based Computer Systems. Digital Press. https://homes.cs.washington.edu/~levy/capabook/
Kyndylan Nienhuis, Alexandre Joannou, Thomas Bauereiss, Anthony Fox, Michael Roe, Brian Campbell, Matthew Naylor,

Robert M. Norton, Simon W. Moore, Peter G. Neumann, Ian Stark, Robert N. M. Watson, and Peter Sewell. 2020. Rigorous

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://doi.org/10.1109/LICS.1998.705669
https://doi.org/10.1145/3290384
https://arxiv.org/abs/2104.00762
http://arxiv.org/abs/2104.00762
https://doi.org/10.1145/195473.195579
https://doi.org/10.1145/3037697.3037725
https://doi.org/10.1145/365230.365252
https://doi.org/10.1109/EuroSP.2016.22
https://doi.org/10.1017/S095679681200024X
https://arxiv.org/abs/2005.05944
https://doi.org/10.1145/3434287
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://homes.cs.washington.edu/~levy/capabook/

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 55

engineering for hardware security: Formal modelling and proof in the CHERI design and implementation process. In
Proceedings of the 41st IEEE Symposium on Security and Privacy (SP).

Alexander Richardson. 2020. Complete Spatial Safety for C and C++ Using CHERI Capabilities. Ph.D. Dissertation. University
of Cambridge, Computer Laboratory. https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-949.html

Michael Sammler, Deepak Garg, Derek Dreyer, and Tadeusz Litak. 2020. The high-level benefits of low-level sandboxing.
Proc. ACM Program. Lang. 4, POPL (2020), 32:1–32:32. https://doi.org/10.1145/3371100

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2018. Reasoning About a Machine with Local Capabilities. In
Programming Languages and Systems (Lecture Notes in Computer Science). Springer International Publishing, 475–501.

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2019a. Reasoning about a Machine with Local Capabilities:
Provably Safe Stack and Return Pointer Management. ACM Transactions on Programming Languages and Systems 42, 1
(Dec. 2019), 5:1–5:53. https://doi.org/10.1145/3363519

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2019b. StkTokens: Enforcing Well-Bracketed Control Flow
and Stack Encapsulation Using Linear Capabilities. Proc. ACM Program. Lang. 3, POPL (Jan. 2019), 19:1–19:28. https:
//doi.org/10.1145/3290332

Eijiro Sumii and Benjamin C. Pierce. 2004. A bisimulation for dynamic sealing. In Proceedings of the 31st ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004, Neil D. Jones
and Xavier Leroy (Eds.). ACM, 161–172. https://doi.org/10.1145/964001.964015

David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and Compositional Verification of Object Capability Patterns.
In OOPSLA. ACM. https://people.mpi-sws.org/~swasey/papers/ocpl/ocpl-20170418.pdf

Thomas Van Strydonck, Aïna Linn Georges, Armaël Guéneau, Alix Trieu, Amin Timany, Frank Piessens, Lars Birkedal,
and Dominique Devriese. 2021. Proving Full-System Security Properties under Multiple Attacker Models on Capability
Machines. (2021).

Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. 2019. Linear Capabilities for Fully Abstract Compilation
of Separation-Logic-Verified Code. Proc. ACM Program. Lang. ICFP (2019).

Simon Friis Vindum and Lars Birkedal. 2021. Contextual refinement of the Michael-Scott queue (proof pearl). In CPP ’21:

10th ACM SIGPLAN International Conference on Certified Programs and Proofs, Virtual Event, Denmark, January 17-19,

2021, Catalin Hritcu and Andrei Popescu (Eds.). ACM, 76–90. https://doi.org/10.1145/3437992.3439930
Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Hesham Almatary, Jonathan Anderson, John

Baldwin, Graeme Barnes, David Chisnall, Jessica Clarke, Brooks Davis, Lee Eisen, Nathaniel Wesley Filardo, Richard
Grisenthwaite, Alexandre Joannou, Ben Laurie, A. Theodore Markettos, Simon W. Moore, Steven J. Murdoch, Kyndylan
Nienhuis, Robert Norton, Alexander Richardson, Peter Rugg, Peter Sewell, Stacey Son, and Hongyan Xia. 2020. Capability
Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 8). Technical Report UCAM-CL-TR-951.
University of Cambridge, Computer Laboratory. https://doi.org/10.48456/tr-951

Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony C. J. Fox, Robert M. Norton, David Chisnall, Brooks Davis,
Khilan Gudka, Nathaniel Wesley Filardo, A. Theodore Markettos, Michael Roe, Peter G. Neumann, Robert N. M. Watson,
and Simon W. Moore. 2019. CHERI Concentrate: Practical Compressed Capabilities. IEEE Trans. Computers 68, 10 (2019),
1455–1469. https://doi.org/10.1109/TC.2019.2914037

Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel W. Filardo, Michael Roe, Alexander Richardson, Peter Rugg,
Peter G. Neumann, Simon W. Moore, Robert N. M. Watson, and Timothy M. Jones. 2019. CHERIvoke: Characterising
Pointer Revocation Using CHERI Capabilities for Temporal Memory Safety. In IEEE/ACM International Symposium on

Microarchitecture. ACM. https://doi.org/10.1145/3352460.3358288

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2021.

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-949.html
https://doi.org/10.1145/3371100
https://doi.org/10.1145/3363519
https://doi.org/10.1145/3290332
https://doi.org/10.1145/3290332
https://doi.org/10.1145/964001.964015
https://people.mpi-sws.org/~swasey/papers/ocpl/ocpl-20170418.pdf
https://doi.org/10.1145/3437992.3439930
https://doi.org/10.48456/tr-951
https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1145/3352460.3358288

	Abstract
	1 Introduction
	2 Programming with capabilities
	2.1 Anatomy of a capability (in our model)
	2.2 Sometimes, failure is a good thing
	2.3 Restricting access to memory by constraining available capabilities
	2.4 Securely encapsulating code and private capabilities

	3 Operational semantics of a capability machine
	4 Program logic
	4.1 Basic resources
	4.2 Program specifications
	4.3 Adequacy theorem

	5 Reasoning about Untrusted Code in Cerise
	5.1 Logical Relation
	5.2 Fundamental Theorem
	5.3 Proving the fundamental theorem

	6 Reasoning with capabilities: two examples
	6.1 Sharing a sub-buffer with an unknown adversary
	6.2 Creating a closure around local state

	7 Dynamic Memory Allocation and Closures
	7.1 Dynamic memory allocation as a library routine
	7.2 Runtime checks: an assert routine
	7.3 A secure heap-based calling convention
	7.4 Adequacy in the Presence of Dynamically Allocated Memory
	7.5 Application: read-only sharing of dynamically allocated memory

	8 Case study: a Library Implementing Dynamic Sealing and a Client
	8.1 Interval Library and Client
	8.2 Dynamic Sealing
	8.3 Verifying the Interval Library and its Client

	9 Discussion and Perspectives
	10 Related work
	10.1 Earlier variants of Cerise
	10.2 Verifying object capability patterns in high-level languages
	10.3 Verifying ISA properties in CHERI
	10.4 Other applications of universal contracts

	References

