
Supplementary Material

1 SPIKES ACTIVITY PER NEURON FOR EACH LAYER

In this section, we observe the spikes activity per neuron in each layer when using the baseline and the
compressed network. The goal is to analyze the effect of the compression on each neuron’s spikes activity
during the learning phase. For this experiment, we use two convolutional-pooling pairs and SVM to classify
the Caltech face/motorbike dataset (400 train images). The first convolutional layer contains 32 neurons,
and the second 64 neurons. For the compressed network, we record the following rates: 79% for the first
layer and 98% for the second layer. Moreover, we train each layer ten epochs and report the recorded
accumulated spikes activity in Figure S1.

Figure S1. Accumulated spikes activity per neuron for the first and second layer, for (A) the baseline and
(B) the compressed network.

We can observe from Figure S1 that the spikes activity in all the figures is increasing during training.
Moreover, if we compare the activity in both cases (baseline and compressed), we see that the spikes
activity is different. In the first layer, we have values between 50 and 190 for the baseline and between
72 and 162 for the compressed network due to the compression. However, it is interesting to see that the
minimum value increases in the compressed network due to the threshold adaptation mechanism used in
the network. For the second layer, we got spikes values between 20 and 100 for the baseline and between
28 and 110. Therefore, for the second layer, we have a slight increase in the minimum spikes activity
due to threshold adaptation and an increase in the maximum spikes activity on the compressed network,
which is the opposite of what we had in the first layer. We suspect this is due to the synaptic reinforcement
mechanism used with the pruning process.

1



Supplementary Material

2 NEURONS THRESHOLD EVOLUTION ON THE CSNN SIMULATOR

Due to the importance of the threshold adaptation mechanism used in our network, we analyze the evolution
of the neuron’s threshold during training in this section. We keep the same network architecture with the
same compressed rate for this experiment and use the same dataset. In Figure S2, we can see the activity of
the two layers for both networks.

Figure S2. Neurons threshold evolution of the first and second layer during training, for (A) the baseline
and (B) the compressed network.

Interestingly, the neuron’s threshold dynamic in the first layer differs from the second in both use cases
because the first layer is exposed to the inputs directly after preprocessing. In contrast, the second layer
receives data processed by the first convolutional and pooling layer. In the simulation, there is a thmin

value, which represents the minimum possible threshold value, and we set it to 8 for the first layer and
1 for the second layer. Comparing the first layer in both cases, we see that the threshold values increase
during training. In the baseline, the maximum value is ten, and in the compressed one, it is a little bit
higher. Furthermore, after epoch 4, we can see that in the compressed network, the thresholds are lower
and stable between 8 and 8.7. Yet, in the baseline, the values kept changing the same way. In the second
layer, we can see that the neuron’s threshold is much higher after ten epochs than in the first layer. In the
baseline, the values are between 170 and 238. In the compressed one, the values are between 220 and
280. Therefore, the increase in the neuron’s threshold value is due to the compression and the synaptic
reinforcement applied, which affects the threshold adaptation mechanism and causes it to increase the
threshold to preserve the required activity.

3 WEIGHTS DISTRIBUTION IN CSNN SIMULATOR AND SPINNAKER

In this section, a network of two fully-connected layers of 400 and 1600 neurons is trained with the CSNN
simulator. After that, we upload the trained weights on the SpiNNaker board. Figure S3 and Table S1 show
the weight distribution for the two use cases in both layers.

2



Supplementary Material

Figure S3. Trained weights distribution in CSNN simulator and SpiNNaker for (A) the baseline and (B)
the compressed network.

Table S1. Weights distribution in CSNN simulator and SpiNNaker

Baseline Compressed
Weights 0 0 < w < 1 1 0 0 < w < 1 1

CSNN simulator L1 202729 59606 51265 209143 13902 90555
L2 148253 491325 422 463459 15010 161531

SpiNNaker L1 208611 38676 66313 217177 5632 90791
L2 154828 483965 1207 472103 5912 161985

According to Table S1 in the first layer of the baseline, a considerable amount of the weights are zero,
and the rest are distributed between zero and one. In the compressed network, %76.68 of weights from
the middle interval (0 < w < 1) are pushed close to either zero or one, as we can see in Figure S3. For
the second layer of the baseline, most of the weights are between zero and one. Moreover, the weights
are near zero and one for the compressed network, which is the expected result after compression. For the
SpiNNaker board, we extract the weights from the board after uploading them to see if they are unchanged.
As shown in Figure S3, the extracted weights are in the same distribution. However, since ARM968 has no
specific hardware for floating points, SpiNNaker supports up to 32-bit fixed-point precision. Therefore, the
stored weights in SpiNNaker are slightly different, as shown in Figure S3.

4 REDUCING THE SPIKES ACTIVITY IN SPINNAKER

As we saw in the manuscript, the SpiNNaker board generates many spikes, which may affect the
classification task. Therefore, there are different possibilities to reduce it. This section discusses two
of them: the use of inhibition and neuron parameter tuning.

Frontiers 3



Supplementary Material

4.1 Adding inhibitory neurons

Inhibition is essential for the STDP learning rule, which helps the network prevent neurons from learning
similar features. In Table S2, we can see the effect of using the inhibition on the baseline and the compressed
network when presenting four digits from MNIST.

Table S2. Spikes activity per layer with/without inhibition

Baseline Compressed

Without inhibitory neurons

With inhibitory neurons

We can see from Table S2 that we have fewer spikes when using the inhibition. Furthermore, half of the
neurons in the second layer are not firing when using compression.

4.2 Neural parameters tuning

We can prevent the neurons from generating more spikes by tuning the neural parameters. In this section,
we test different values of the refractory period, as shown in Table S3. In our experiment, we present
four samples, each for 20ms, and the resting time is 10ms. Therefore, the refractory period τrefrac in our
experiment equals 5ms, 15ms, 25ms, and 35ms.

As shown in Table S3, by increasing τrefrac we have fewer spikes, and still, the neurons are triggered
with the corresponding inputs. However, as we can see in the same table, higher values of τrefrac (35 ms)
affect the network responses, and we don’t have any spikes for the last input. As we mentioned, other
parameters (vth, vrest, vreset) have also an effect on the neuron activity. In our future work, we will explore
other parameters to find the best configuration for the neuron parameters.

4



Supplementary Material

Table S3. Spikes activity per layer with different refractory period (5ms and 15ms)

Refractory period Baseline Compressed

5ms

15ms

25ms

35ms

Frontiers 5


	Spikes activity per neuron for each layer
	Neurons threshold evolution on the CSNN simulator
	Weights distribution in CSNN simulator and SpiNNaker
	Reducing the spikes activity in SpiNNaker
	Adding inhibitory neurons
	Neural parameters tuning


