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ABSTRACT2

Spiking neural networks (SNNs) have attracted interest in recent years due to their low energy3
consumption and the increasing need for more power in real-life machine learning applications.4
Having those bio-inspired networks on neuromorphic hardware for extra-low energy consumption5
is another exciting aspect of this technology. Furthermore, many works discuss the improvement of6
SNNs in terms of performance and hardware implementation. This paper presents a progressive7
layer-based compression approach applied to convolutional spiking neural networks trained either8
with Spike Time Dependent Plasticity (STDP) or Surrogate Gradient (SG). Moreover, we study9
the effect of this approach when used with SpiNNaker. This approach, inspired by neuroplasticity,10
produces highly compressed networks (up to 90% compression rate per layer) while preserving11
most of the network performance, as shown by experimental results on MNIST, FMNIST, Caltech12
face/motorbike, and CIFAR-10 datasets.13
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1 INTRODUCTION

In recent years, the use of neural networks in real-life applications has risen significantly due to the progress15
in the field. However, the current progress increased the complexity of the used models, resulting in more16
resource-hungry models that the Von Neumann architecture cannot guarantee. Spiking neural networks17
(SNNs) are considered a promising alternative to overcome Moore’s law limitation, rise to the energy18
demands of modern network models, and provide a bio-inspired solution for lower energy consumption.19
SNN is inspired by brain functionality and uses spikes to communicate, guarantee low energy consumption,20
and the ability to process natural signals. Deploying SNNs using neuromorphic hardware is another21
promising way to have those benefits on more optimized architectures, making it possible to use such22
technology with energy-constrained applications.23

Nowadays, complex and deep architectures are often necessary for better accuracy regarding24
neural network performance, which explains the rising complexity of the recent models, such as25
MobileNetV2 (Sandler et al., 2018), ResNet152 (He et al., 2016), and GPT-3 (Brown et al., 2020).26
Moreover, in SNN, increasing the size of the network helps improve performance and process complex27
data. As we can see in the existing works, some of them raised the number of neurons in the network to28
get a better accuracy. (Diehl and Cook, 2015), and other works preferred to use multiple layers, each with29
a group of neurons to get a better performance (Lee et al., 2016; Diehl et al., 2015; Kheradpisheh et al.,30
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2018). However, the number of neurons increases using large networks, and so does the internal activity31
and complexity. Therefore, it is more challenging to analyze the network behavior, especially with the32
use of spikes for communication and the asynchronous nature. Moreover, the increase in the network size33
implies an increase in the required resources to run, which will prevent their deployment on hardware using34
technologies like memristive crossbars (Merolla et al., 2011; Strukov et al., 2008), SpiNNaker (Furber35
et al., 2014), or Loihi (Davies et al., 2018).36

In terms of hardware implementation, one of the techniques that we can use to overcome the complexity37
issue is pruning. Pruning compresses the network by reducing one or multiple network components,38
which results in a smaller size that can fit the hardware-limited resources and decreases computational39
operations. Pruning is inspired by the activity of the human brain in the early stages (Huttenlocher, 1979;40
Cun et al., 1990; Hassibi et al., 1994), where the brain losses neurons during the process of learning. The41
changes in synapse strength (known as neuroplasticity) happen not only in the early stages but throughout a42
person’s lifespan. In biology, we have synaptotrophins and synaptotoxins responsible for synapse creation43
and elimination respectively (Sanes and Lichtman, 1999). We can identify three types of pruning when44
working with neural networks: Filter pruning (He et al., 2019; Huang et al., 2018; Li et al., 2016), weights45
pruning (Carreira-Perpinan and Idelbayev, 2018; Liu et al., 2018), and neuron-based pruning (Yu et al.,46
2018).47

In the case of spiking neural networks, we can use pruning to reduce the size of the network. Shi et48
al. (Shi et al., 2019) presented a pruning method for SNNs on emerging non-volatile memory (eNVM)49
devices by exploiting the output firing characteristics of neurons. This technique is used during training and50
can maintain 90% classification accuracy on MNIST with up to 75% of the network pruned. Cho et al. (Cho51
et al., 2019) applied a distance-based pruning on a CMOS SNN chip, which decreases spikes activity by52
52%. Rathi et al. (Rathi et al., 2019) combined weight quantization and pruning during the learning phase.53
Using a two-layer SNN of 6400 neurons and a static pruning threshold, they obtain a highly compressed54
network able to preserve a good performance, which is based on the Spike Time Dependent Plasticity55
(STDP) learning rule (Bi and Poo, 1998). In the work of Chen et al. (Chen et al., 2018), the authors used a56
three-phase prune process. The first two involve removing quiet neurons, and the third one concerns the57
removal of weak synapses. They used the prune operation as a part of the CNN to SNN conversion to58
reduce computational operations by 85%. Finally, Saunders et al. (Saunders et al., 2019) used a two-layer59
network of 900 neurons, and applied pruning once after the learning phase. Therefore, removing half of the60
synapses while preserving 90% network accuracy. For more deep spiking neural networks, we usually train61
using a global learning rule such as Surrogate Gradient (Neftci et al., 2019)or local learning rule like the62
Spike Time Dependent Plasticity (STDP). However, the pruning mechanism remains the same. Chen et63
al. (Chen et al., 2021) proposed a gradient rewiring technique (Grad R), an algorithm for learning weights64
and connectivity in a deep spiking neural network. As a result, the authors minimized the loss in terms of65
performance. Furthermore, they revealed a remarkable structure refining capability in SNN since they had66
a 3.5% loss in accuracy when using 0.73% connectivity. Nguyen et al. (Nguyen et al., 2021) presented67
connection pruning applied to a deep SNN, which is trained using STDP on FPGA. The approach consists68
of two stages: dynamic pruning during the on-chip learning and post-learning pruning after each layer.69
Using a weight update history value, the author calculated it using a proposed formula and compared it to a70
predefined threshold to prune. As a result, they achieved 2.1x speed-up and 64% energy saving during the71
on-chip learning. In the work of Faghihi et al. (Faghihi et al., 2022), a synaptic pruning-based SNN was72
presented, which uses a modified learning rule combined with a synaptic pruning method. Moreover, the73
prune operation is based on a defined threshold µ, resulting in a sparse neural connection between two74
layers that uses a few-shot-based classification method.75
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By looking at the literature, we can see that the existing works focus on when to prune (at the end or76
during network activity), what to prune (neurons or synapses), and how to treat the pruned element (hard-77
pruning or soft-pruning). Our contribution is the proposition of a novel technique for pruning threshold78
selection which is dynamic as opposed to existing works. The new threshold depends on the pruning rate79
of the previous prune operation. This work extends the previous work (Elbez et al., 2022) applied only on80
shallow networks to Convolutional Spiking Neural Networks (CSNN) by using a layer-based progressive81
pruning to get highly compressed layers. The compression rate increases when going more profound in the82
network (up to 98% compression rate). Moreover, the network performance is preserved compared to the83
baseline in the best-case scenario or records less than 3% accuracy loss in the worst-case scenario. We84
evaluated the efficacy of this approach by applying it to MNIST, FMNIST, Caltech face/motorbike, and85
CIFAR-10 datasets and analyzing the result when used with SpiNNaker.86

We can resume our contribution in six points: 1) the extension of the progressive pruning and weight87
reinforcement techniques for convolutional spiking neural networks by adapting the first formula for88
multi-epoch training. 2) the application of progressive compression on networks trained with Spike Time89
Dependent Plasticity (STDP) or Surrogate Gradient (SG). 3) the study of the maximum pruning threshold90
value (α) effect on the network performance and compression rate. 4) proposing a layer-based version of91
this approach for more compression by setting the initial alpha value based on the depth of the actual layer.92
5) testing this approach for the first time on SpiNNaker by deploying the compressed and baseline network93
on the board and estimating the reduced energy. 6) evaluating this technique on multiple datasets instead of94
only MNIST, which is the case in the previous work. Moreover, we share an opensource repository that95
contains the required code to reproduce the experiments using the csnn-simulator, Norse, and SpiNNaker 196

2 MATERIALS AND METHODES

We observe the benefit of compressing a spiking neural network when we want to implement it on hardware.97
Due to limited resources, reducing the elements of a neural network can enable the deployment of more98
extensive networks, which is impossible without compression. Moreover, by reducing the network size, we99
also reduce the resources needed for the deployment. This section describes our approach, the network100
topology, the different datasets used in the experiments, and the SpiNNaker board.101

2.1 The Progressive Compression102

Progressive Compression involves two processes: Progressive Pruning (PP) and Dynamic Synaptic103
Weight Reinforcement (DSWR). Progressive Pruning (PP) eliminates connections between neurons from104
one layer to another. We perform this operation after each batch (group of inputs) during the training105
phase (Elbez et al., 2022). Using a dynamic pruning threshold Tn, n ∈ N, which we calculate using106
equation (1).107

Tn+1 = Tn + α ∗ (Crn/Cn) n ∈ N (1)

α is a constant representing the initial threshold. Tn and Tn+1 are the old and new threshold for the next108
batch, respectively. Cn represents the total number of synapses, and Crn the remaining synapses between109
the two layers at batch n. In (Elbez et al., 2022), the authors applied this approach to single-layer neural110
networks using the MNIST dataset, which proved effective in compressing the network. Therefore, in111
this work, we will extend this work and study the effect of this approach on convolutional spiking neural112
networks trained with STDP or SG.113

1 https://archive.softwareheritage.org/swh:1:rev:d8ead5b48684e309a58ceba04664b4849e9ae5c2
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Dynamic Synaptic Weight Reinforcement (DSWR) is another process combined with the pruning114
operation, which concerns the maintained synapses after pruning. We can see this process in biology115
and the human brain as a part of the synaptogenesis process (Sanes and Lichtman, 1999). Moreover, by116
reinforcing the preserved synapses, we speed up their convergence toward one feature. The equation used117
to determine the amount of reinforcement depends on the currently calculated threshold, and it is done118
based on equation (2).119

Wn+1 = Wn + β ∗ Tn, n ∈ N, W ∈ [0, 1] (2)

β is a constant we define based on experiments. Wn and Wn+1 are the concerned connection’s current120
and new weights, respectively. In our work, for STDP-based networks, we keep the two constants α and121
β the same as in (Elbez et al., 2022) (α = 0.05 and β = 0.1). Those values were fixed using Pareto front122
multiobjective optimization (Deb, 2011) based on network accuracy and compression rate.123

When applying the two formulas on a single-layer network, we trained for one epoch and used it after124
each batch of 10k inputs (in the case of MNIST). However, for deeper networks, we usually train for125
multiple epochs, and following the same method will cause the pruning threshold to be updated numerous126
times and destroy the network connectivity. Therefore, instead of compressing after each batch, we would127
compress after each epoch and add a constraint on the max possible pruning threshold value. If we reach128
this value, we do not update the threshold value. This approach is represented in Figure 1, and as a result,129
equation (3) represents the adapted version of the Progressive Pruning formula for STDP-based networks.130

Figure 1. Compression flowchart for Convolutional SNN

Te+1 = Te + α ∗ (Cre/Ce) e ∈ N, Te+1 ≤ θ (3)

θ is the maximum pruning threshold, which is used to decide if we will compute a new threshold or not131
(θ = 0.3 in this work). Moreover, the reinforcement part stays the same, and we apply it after each prune132
operation.133
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In the case of SG-Based networks, since the weights in the network are not all positive, which is the134
case in STDP-Based ones. We need to update the Progressive Pruning formula in a way it can also135
support negative weights, otherwise, the network will be destroyed by setting all negative weights to136
zero. From equation (3), we will create two formulas (equation (4)) with θ+ and θ−, which represent the137
positive maximum pruning threshold and negative one, respectively. Positive and negative initial threshold138
(α+ = 0.005 and α− = −0.005). Finally, T+

e and T−
e represent the positive and negative threshold values.139

T+
e+1 = T+

e + α+ ∗ (Cre/Ce) e ∈ N, T+
e+1 ≤ θ+ (4)

T−
e+1 = T−

e + α− ∗ (Cre/Ce) e ∈ N, T−
e+1 ≥ θ−

Since the range of the weights in the SG-Based networks using Norse is not similar, the selection of the140
positive θ+ and negative θ+ maximum pruning threshold is computed using equation 5. If we apply this141
equation on a network with positive weights W ∈ [0, 1], we will get θ+ = θ = 0.3, which is the initial142
threshold used with STDP-Based networks.143

θ+ = θ ∗max(WL) (5)

θ− = θ ∗min(WL)

For applying the Dynamic Synaptic Weight Reinforcement (DSWR) with SG-Based networks, we also144
have β+ = 0.1 and β− = −0.1, and the reinforcement is applied based on equation (6).145

W+
n+1 = W+

n + β+ ∗ T+
e , W > 0 (6)

W−
n+1 = W−

n + β− ∗ T−
e , W < 0

Figure 2 shows how the threshold value changes during training (20 epochs) using our approach in146
both cases (STDP-Based and SG-Based). Moreover, we can also follow the evolution of the compression147
rate. After a couple of epochs, we can see in the case of the STDP-Based network (Figure 2 (A)) that the148
threshold value is stable (around 0.32) due to θ = 0.3. Nevertheless, the compression keeps increasing due149
to the learning and the reinforcement applied in the network. Since we have two pruning thresholds for the150
SG-Based network, we can see in Figure 2 (B) how the thresholds change while the compression increases.151
After a couple of epochs, the two thresholds became stable (around 0.06 and -0.06) since θ+ = 0.0595 and152
θ− = −0.0599.153

2.2 Network Topology154

Our experiments use two approaches for training SNN: STDP and SG. This section presents the network155
topology used for each of the two approaches.156
STDP-based networks:157
For the STDP-based networks we use the same topology presented by Falez et al. (Falez et al., 2019),158
which is composed of multiple pairs of convolutional and max pooling layers. Those pairs of layers are159
followed by a dense layer and a support vector machine (SVM) for classification and decision-making.160
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Figure 2. Compression rate and pruning threshold evolution for (A) STDP-Based network and (B)
SG-Based network

Moreover, we use latency coding (Rullen and Thorpe, 2001) for handling spikes in the network. Finally, as161
preprocessing, we apply a difference-of-Gaussian (DoG) filter on the inputs to simulate on-center/off-center162
cells. Network topology is presented in Figure 3 (A). For the simulation, we use csnn-simulator (Falez,163
2019), a C++-based open-source simulator 2.164

We use integrate-and-fire (IF) neurons (Burkitt, 2006) in the different layers of the model. IF neuron165
model adds the input spikes into the membrane potential v(t) until a threshold vth(t) is reached, resulting166
in the neuron firing and sending an output spike. Then, the membrane potential is reset to a defined value167
(0 in this work). This neuron model is represented by the following equation (7) (Falez, 2019).168

Cm
∂v(t)

∂t
=

∑
iεε

vifs(t− ti), fs(x) =

{
1, if x ≥ 0
0, otherwise

v(t) = vr when v(t) ≥ vth(t)

(7)

Cm represents the membrane capacitance, and vi is the spike voltage of the i-th spike. Also, ε and fs169
represent the set of incoming spikes and the kernel of spikes, respectively. Finally, ti is the timestamp of170
the i-th spike.171

What makes the neural network useful is being able to learn. In our work, we use the Spike Time172
Dependent Plasticity (STDP) learning rule, where the synaptic weight update depends on the spike time173
from neurons on both ends of the synapse (pre-neuron and post-neuron). The STDP we use is defined in174
equation (8).175

∆w =

ηwe
− tpre−tpost

τSTDP , if tpre ≤ tpost

−ηwe
− tpre−tpost

τSTDP , otherwise
(8)

τSTDP is the time constant for the STDP learning window, and ηw is the learning rate. tpre and tpost represent176
the spiking time of pre-synaptic and post-synaptic neuron, respectively. We can see from the equation that177

2 https://archive.softwareheritage.org/swh:1:dir:fa5f52f0d1c769c1d4ebc691fd2dea61d3bbce5f
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the update on the synaptic weight ∆w can be either positive or negative, depending on which spike came178
first. In this work, the synaptic weights are between 0 and 1.179

For the multi-layer network to work properly, two additional mechanisms are used. First, the Winner-takes-180
all (WTA) represents an inhibition mechanism to prevent neuron domination when learning and prevent181
multiple neurons in one layer from learning the same feature, which improves the network performance.182
Besides WTA, we need to add a homeostasis mechanism. Since we are using multi-layer SNN we will use183
the same neuron threshold adaptation technique presented in (Falez, 2019), which trains the neurons to184
fire at a given time tobj to maintain the homeostasis. This technique is applied each time a neuron fires or185
gets inhibited. Every neuron’s threshold is updated, so its firing time converges toward tobj. The neuron186
threshold adaptation is presented by equations (9) and (10).187

∆1
th = −ηth(t− tobj)

∆2
th =

{
ηth, if ti = min(t0, ..., tN )
− ηth
ld(n)

, otherwise

(9)

vth(t) = max(thmin, vth(t− 1) + ∆1
th + ∆2

th) (10)

ηth represents the threshold learning rate, and ld is the number of neurons in competition in the layer.188
Furthermore, t and ti are the spike timestamp of the neuron and the firing time of neuron i, respectively.189
Finally, thmin is the minimum possible neuron threshold value.190

In our experiments, the different hyperparameters we used are:191

1. Difference-of-Gaussian: DoGin = 1.0, DoGout = 4.0,DoGsize = 7.0192

2. STDP: ηw = 0.1, τSTDP = 0.1193

3. Neuron Threshold Adaptation: ηth = 1.0, thmin = 1.0, tobjCIFAR-10= 0.95, tobjMNIST= tobjFMNIST= 0.75,194
tobjFace/Motor= 0.80195

Moreover, we use default parameters for the SVM part of the network, which delivers good performance.196

Surrogate Gradient-based networks:197
For the Surrogate Gradient-based experiments, we use Norse (Pehle and Pedersen, 2021) for the simulation.198
Norse is a Python library that expands PyTorch with primitives for bio-inspired neural components, which199
allows us to train multilayer spiking neural networks using Surrogate Gradient.200

We used an architecture similar to the STDP-based network (multiple pairs of convolutional and max201
pooling layers). However, the only difference is replacing the SVM part with a LILinearCell, which consists202
of a group of cells for a leaky-integrator (LI) with an additional linear weighting. We can see in Figure 3 (B)203
that when using Norse, each convolution or Dense layer is followed by a LIFCell, which consists of a group204
of leaky integrate-and-fire (LIF) neurons to process the output of that layer before going to the next one.205
Moreover, we use latency coding (Rullen and Thorpe, 2001) (SpikeLatencyLIFEncoder) before introducing206
the input to the network.207

For training the network, we use the SuperSpike method (Zenke and Ganguli, 2018), which is a voltage-208
based global learning rule that can be interpreted as a nonlinear Hebbian three-factor rule. The learning209
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Figure 3. The network topology for (A) STDP-based networks (B) Surrogate Gradient-based networks

rule is defined in equation 11.210

∆wkij = rij

∫ tk+1

tk

ei(s)︸︷︷︸
Error signal

α ∗

σ′(Ui(s))︸ ︷︷ ︸
Post

(ε ∗ Sj)(s)︸ ︷︷ ︸
Pre

 ds. (11)

tk is the spike time (k = 1,2,...). The error signal represents the third factor in this rule, with ei(s) =211
α ∗ (Ŝi−Si). Si is the spike activity of pre-synaptic neuron i, Ŝi represents the target spike train for a given212
stimulus, and α is a normalized smooth temporal convolution kernel. rij is the learning rate for synapse ij.213

σ
′
(Ui(s)) represents the derivative of a continuous auxiliary function σ of the membrane potential Ui(s),214

and ε is the postsynaptic potential (PSP) shape.215

For the SG-based experiments, the different hyperparameters we used are:216

1. Latency coding: T = 35217

2. LIFCell: Vth = 0.25218

3. SuperSpike: α = 80, Optimizer = Adam, Learning rate = 0.001219

2.3 Datasets220

Using convolutional SNN, we can test the compression effect on the network using different datasets. In221
our experiments, we use MNIST (Lecun et al., 1998), composed of 28x28 pixel images of handwritten digits222
with labels from 0 to 9. MNIST contains 60,000 training images and 10,000 test images. FMNIST (Xiao223
et al., 2017) is similar to MNIST in terms of type, data dimensions, and dataset size. However, FMNIST224
contains clothes with greyscale images instead of handwritten digits. Caltech face/motorbike (Kheradpisheh225
et al., 2018) contains modified data from Caltech-100 by using only two classes (Face/Motor). Caltech226
face/motorbike images are converted to greyscale and resized to 160 pixels in height while preserving the227
aspect ratio, and it contains 400 train and 396 test images. Finally, CIFAR-10 (Krizhevsky and Hinton,228
2009) consists of colored images composed of 32x32 pixel images of objects with ten classes. CIFAR-10229
contains 50000 train images and 10000 test images.230
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2.4 SpiNNaker Board231

Modeling large neural networks on Von Neumann architecture requires a lot of computing resources and232
power consumption (Sharp et al., 2012). SpiNNaker (Painkras et al., 2013) is one of the neuromorphic233
architectures (Basu et al., 2022) that was proposed to overcome the limitations and provide the requirements234
for spiking neural networks.235

SpiNNaker is a biologically inspired, massively parallel computing system optimized for modeling236
and simulating large-scale real-time networks. In this work, we use the SpiNN-5 (SpiNNaker 103)237
board (Painkras et al., 2013) (Furber et al., 2013), which consists of 48 SpiNNaker chips. Each chip238
contains 18 ARM cores with a 32 kB ITCM (instruction tightly coupled memory) and a 64 kB DTCM (data239
tightly coupled memory) per core. Moreover, a 128 MB SDRAM is shared between the 18 cores. To imitate240
the high connectivity of the brain, the cores are interconnected by an asynchronous Network-on-Chip241
(NoC) through a multicast packet-routing mechanism. In addition, SpiNN-5 uses three Xilinx Spartan-6242
FPGAs for high-speed serial links.243

A 100 MB Ethernet controller handles the connection between the SpiNNaker board and the computer.244
We use it to load data to the SpiNNaker memory to perform a real-time simulation. Furthermore, the245
sPyNNaker (Rhodes et al., 2018) is a software package used to define models in PyNN script (Davison246
et al., 2009) and translates models into a suitable form for SpiNNaker.247

3 RESULTS AND DISCUSSION

This section describes our experiments on the image classification task and presents the results using the248
csnn-simulator and Norse.249

3.1 STDP-based networks250

In the case of STDP-based networks, training is done layerwise by training each layer for 100 epochs. For251
the network architecture, the number of layers used varies from one dataset to another, but they all use SVM252
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for decision-making. Therefore, we use one convolutional layer for CIFAR-10, while two convolutional-253
max pooling layers and one dense layer are used with MNIST, FMNIST, and Caltech face/motorbike. More254
details about the different architectures are presented in Table 1.255

Table 1. The architectures used in the experiments of STDP-based networks

Dataset Parameters
Architecture

Conv1 Pool1 Conv2 Pool2 Fc1

CIFAR-10
filters (w, h, n) (5, 5, 128) — — — —
padding (w, h) (0, 0) — — — —
stride (w, h) (1, 1) — — — —

MNIST & FMNIST
filters (w, h, n) (5, 5, 32) (2, 2) (5, 5, 128) (2, 2) (4, 4, 1024)
padding (w, h) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
stride (w, h) (1, 1) (2, 2) (1, 1) (2, 2) (1, 1)

Face/Motor
filters (w, h, n) (5, 5, 32) (7, 7) (17, 17, 64) (5, 5) (5, 5, 128)
padding (w, h) (5/2, 5/2) (7/2, 7/2) (17/2, 17/2) (5/2, 5/2) (5/2, 5/2)
stride (w, h) (1, 1) (6, 6) (1, 1) (5, 5) (1, 1)

Note: w = width, h = height, n = number

256

In Table 2, we can see the effect of compressing the network using our approach on different datasets.257
We observe, in particular, the network classification rate, the compression rate on each layer, the duration258
of the training and testing phase, number of spikes per layer, and number of synaptic updates per layer.259
Finally, the comparison is made between the compressed network and the baseline (the same model without260
compression).261

Table 2. Accuracy, compression, and layers activity (spikes & synaptic updates) for STDP-based networks
Accuracy ± std Compression/layer Simulation time Spikes/layer Synaptic updates/layer

CIFAR-10 baseline 54.63 ± 0.37 — 2:21:34 5x106 7.5x108

compressed 53.45 ± 0.28 19.91 2:13:33 5x106 1.6x107

Face/Motor baseline 98.43 ± 0.10 — 0:41:51 39996|40000|40000 1999810|3.69x108|6.40x107

compressed 87.82 ± 0.49 44.12|46.00|45.77 0:36:31 39995|40000|40000 429385|5.16x107|8.22x106

MNIST baseline 98.18 ± 0.07 — 2:29:56 3982386|5954200|6x106 1.99x108|4.76x109|1.22x1010

compressed 96.55 ± 0.11 42.43|27.17|13.16 2:48:16 3988197|5950494|6x106 4.13x107|5.67x107|1.24x108

FMNIST baseline 84.65 ± 0.21 — 3:50:05 5604907|5999531|6x106 2.80x108|4.79x109|1.22x1010

compressed 83.50 ± 0.31 50.25|27.17|13.17 3:52:29 5609543|5999693|6x106 1.35x107|5.51x107|1.24x108

By analyzing Table 2, we can see that in terms of the STDP-based networks performance, we have262
a small loss when compressing on some datasets and a considerable one on Face/Motor. Moreover, for263
the compression rate, we can observe that compression is not that high (19%) for a single-layer network264
(CIFAR-10). On the other hand, for multi-layer networks, we can see the compression rate for each layer.265
However, it is interesting that despite using different datasets, the compression rate is higher at the first266
layer, decreases when going deeper (MNIST & FMNIST), and is more stable in the case of Face/Motor.267
Furthermore, we can see a slight change in the simulation time when we use compression due to applying it268
during the training and the SVM (not concerned with compression) training part, which is time-consuming.269
Finally, for the layer activity (spikes & synaptic updates), we do not see a difference in spikes activity in270
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the last layer. However, some compressed layers have more activity than the baseline, which differs from271
what we expected. Furthermore, for the synaptic updates, we can see an apparent decrease in the activity of272
all layers of the compressed network, which is expected due to the compression.273

Table 3. Max pruning threshold θ effect on the accuracy and compression for STDP-based networks
Max pruning threshold θ

0.3 0.4 0.5 0.6 0.7

CIFAR-10 Accuracy ± std 53.45 ± 0.28 53.01 ± 0.33 53.49 ± 0.28 53.58 ± 0.45 53.71 ± 0.41
Compression/layer 19.91 19.80 19.97 19.61 19.91

Face/Motor Accuracy ± std 87.82 ± 0.49 89.29 ± 0.30 89.79 ± 0.61 90.50 ± 0.47 90.95 ± 0.37
Compression/layer 44.12|46.00|45.77 41.56|47.67|47.26 42.93|48.73|47.49 41.62|49.41|47.24 42.87|49.85|47.56

MNIST Accuracy ± std 96.55 ± 0.11 96.64 ± 0.19 96.88 ± 0.19 96.78 ± 0.18 96.80± 0.34
Compression/layer 42.43|27.17|13.16 42.12|27.22|13.16 41.43|27.22|13.17 41.75|27.18|13.16 43.00|27.29|13.16

FMNIST Accuracy ± std 83.50 ± 0.31 83.41 ± 0.11 83.44 ± 0.23 83.46 ± 0.19 83.61 ± 0.40
Compression/layer 50.25|27.17|13.17 50.68|27.25|13.17 50.56|27.17|13.17 50.31|27.23|13.10 50.18|27.25|13.17

In Table 2, we set the max pruning threshold θ = 0.3 for the experiments. The selection of θ can impact274
the network compression since it defines the highest possible pruning threshold value, and if we set it275
too high (θ = 1), the compression will destroy the network. Moreover, the value of θ may vary from one276
application to another and from one dataset to another. In Table 3, we explore the effect of increasing θ277
up to 0.7 on the network performance and compression rate. The experiments are applied using the same278
network architectures and the same datasets.279

In Table 3, we can see that by increasing the maximum pruning threshold value θ, the compression rate is280
stable with a small increase in the network performance, which is visible on all the datasets. Therefore, for281
the STDP-based networks, we do not see a clear improvement in compression by increasing the maximum282
pruning threshold value θ. Regarding the network performance, we can see that the best-recorded accuracy283
across the experiments does not always use a specific θ value and changes from one dataset to another.284

To understand why the compression rate is low on the STDP-based networks even when increasing the285
max pruning threshold and the accuracy is lower, we need to take a look at the threshold mechanism used286
in the network. The threshold mechanism is essential in the network for learning, and it helps the network287
maintain activity in the different layers by updating the threshold of the neurons. Therefore, any other288
mechanism that may affect the spike activity in the network may negatively impact the network by changing289
the neuron threshold, the synaptic weights, or the input value. In our work, the progressive compression,290
when applied, will reduce the number of synapses and reinforce the remaining synapses, affecting the291
synaptic weights and input value and conflicting with the existing threshold adaptation mechanism, which292
explains the low compression rate in the STDP-based networks, and the loss in accuracy. Moreover, in293
Table 2, we noticed that the spikes activity increases in the compressed network. Such an increase is now294
justified due to the threshold mechanisms reducing the threshold as a reaction to the compression.295

In Figure 4 (A), we can see how the thresholds of neurons behave when we apply the compression.296
Therefore, it is visible that when the compression is applied (the red dotted line), there is a visible change297
in the thresholds, which is the threshold adaptation mechanism reaction that we mentioned before. In298
Figure 4 (B), we can see how the synaptic weights of one neuron are being updated due to the compression299
and the threshold adaptation. As we can see in the figure, the weights are initially between zero and one.300
However, once we compress the network after each epoch, we can see how the weights are being removed301
(going to zero), and at the same time, the other weights are going to one. This behavior remains the same302
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Figure 4. The threshold adaptation and progressive compression impact on (A) the thresholds of the
neurons and (B) single neuron weights activity

even when we increase the maximum pruning threshold value θ, which also explains the low compression303
rate.304

3.2 Surrogate Gradient-based networks305

In the Surrogate Gradient-based networks, we train the network for 100 epochs. We use a similar306
architecture with parameters similar to STDP-based networks, with one additional dense layer to replace307
the SVM. Regarding datasets, we use MNIST, FMNIST, CIFAR-10, and Caltech face/motorbike. Table 4308
presents more details about the used architectures.309

Table 4. The architectures used in the experiments of SG-based networks

Dataset Parameters Architecture
Conv1 Pool1 Conv2 Pool2 Fc1 Fc2

MNIST, FMNIST, CIFAR-10
filters (w, h, n) (5, 5, 32) (2, 2) (5, 5, 128) (2, 2) 1024 10
padding (w, h) (0, 0) (0, 0) (0, 0) (0, 0) — —
stride (w, h) (1, 1) (2, 2) (1, 1) (2, 2) — —

Face/Motor
filters (w, h, n) (5, 5, 32) (7, 7) (17, 17, 64) (5, 5) 128 2
padding (w, h) (3, 3) (3, 3) (9, 9) (2, 2) — —
stride (w, h) (1, 1) (6, 6) (1, 1) (5, 5) — —

Note: w = width, h = height, n = number

Table 5 shows the compression effect on different datasets using SG-based networks. We observe, in310
particular, the network classification rate, the compression rate on each layer, the simulation time, and the311
number of trainable parameters. Moreover, we can compare the compressed network (θ = 0.3) and the312
baseline based on those points.313

We can see in Table 5 a slight decrease in the network accuracy when compressing. Compared to the314
baseline, we can see that for CIFAR-10 and FMNIST, we have a more significant loss (2%) and a minor315
loss for Face/Motor and MNIST. Moreover, in terms of the compression rate, we can see that compression316
varies from one layer to another, getting bigger once we move more profoundly in the network, which is317
observed in all the datasets. Furthermore, we can see that we have a slightly short simulation time in the318
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Table 5. Accuracy, compression, and layers activity (spikes & synaptic updates) for SG-based networks
Accuracy ± std Compression/layer Simulation time Trainable params

CIFAR-10 baseline 59.87 ± 0.45 — 1:30:08 3,391,840
compressed 57.82 ± 0.16 33.42|55.36|72.71|67.65 1:22:23 952,210

Face/Motor baseline 97.60 ± 1.11 — 0:30:28 1,036,320
compressed 96.17 ± 2.94 26.88|55.92|51.14|61.56 0:26:32 461,144

MNIST baseline 99.05 ± 0.13 — 0:55:14 2,210,592
compressed 98.69 ± 0.14 41.25|85.31|73.31|66.22 1:08:13 1,008,487

FMNIST baseline 85.63 ± 0.37 — 0:55:46 2,210,592
compressed 83.21 ± 0.47 28.25|55.83|60.32|64.02 1:19:17 901,983

case of some datasets (CIFAR-10 and Face/Motor). However, for MNIST and FMNIST, we have a longer319
simulation time. Finally, for the trainable parameters, we can see that we have a considerable decrease in320
trainable parameters for all the datasets due to the compression.321

Table 6. Positive and negative pruning threshold effect on the accuracy and compression for SG-based
networks, by updating θ value

θ value
0.3 0.4 0.5 0.6 0.7

CIFAR-10 Accuracy ± std 57.82 ± 0.16 56.91 ± 1.06 57.18 ± 0.67 57.32 ± 0.76 56.49 ± 0.71
Compression/layer 33.42|55.36|72.71|67.65 41.50|61.51|72.32|72.44 48.13|66.73|80.06|75.25 52.96|70.78|79.91|76.71 58.38|78.01|85.24|77.92

Face/Motor Accuracy ± std 96.17 ± 2.94 97.93 ± 0.83 96.63 ± 1.06 96.92 ± 1.12 97.13 ± 1.34
Compression/layer 26.88|55.92|51.14|61.56 39.63|58.11|51.32|64.45 43.50|87.68|52.82|68.75 50.00|82.02|66.66|69.84 50.25|80.64|75.68|69.69

MNIST Accuracy ± std 98.69 ± 0.14 98.69 ± 0.08 98.61 ± 0.25 98.51 ± 0.41 98.64 ± 0.21
Compression/layer 41.25|85.31|73.31|66.22 42.63|84.04|67.05|69.60 41.88|63.15|65.17|76.68 44.25|68.54|73.26|79.71 48.13|73.40|78.65|80.06

FMNIST Accuracy ± std 83.21 ± 0.47 83.18 ± 0.96 83.65 ± 0.69 83.17 ± 0.66 83.66 ± 0.56
Compression/layer 28.25|55.83|60.32|64.02 35.75|61.52|59.88|72.34 39.38|64.97|68.91|77.41 43.63|88.88|78.77|81.36 48.50|77.48|81.29|80.23

In Table 6, we explore the effect of increasing/decreasing the maximum/minimum pruning threshold value322
θ+ and θ− by increasing the value of θ (used in equation 5) up to 0.7 on the SG-based network performance323
and compression rate. Moreover, we apply the experiments using the same network architecture.324

We can see from Table 6 that by increasing the value of θ, the compression rate is growing, and some325
layers are compressed more than 80%. Furthermore, we can see that the compression rate increases when326
going more profound in the network, which is also the case in STDP-based networks. In terms of the327
network accuracy, we can see a slight improvement in some cases (Face/Motor and FMNIST) and a small328
decrease (less than 2%) in others (CIFAR-10 and MNIST). Therefore, for the SG-based networks, we see329
a clear compression improvement by increasing the θ value. Finally, we can see that the best-recorded330
accuracy across the experiments does not use a specific θ value. The selection of this value may also depend331
on the used dataset and architecture.332

In Table 7, we compare our work (STDP-based and SG-based) with existing works regarding accuracy333
and compression rate. Although in our work, we focus on providing a pruning technique that reduces the334
loss in performance and does not improve the state-of-the-art (SOTA) performance, we can see that the335
network’s performance depends on the training mechanism and the network architecture. Our work reports336
accuracy close to SOTA with some datasets (MNIST and Face/Motor) and worst in others (FMNIST and337
CIFAR-10), which may be due to the small size of the network or the lack of hyperparameters tuning.338
Moreover, let’s compare the two types of networks used in our work. We can see that SG-based networks339
do better in network performance and compression rate than STDP-based networks. Finally, We can see340
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Table 7. Accuracy and compression compared to existing works
Training Architecture Accuracy ± std Pruning technique Compression

CIFAR-10

Our work STDP + SVM 1 conv layer 53.71 ± 0.41 PP & DSWR 19.91
Our work Surrogate Gradient 2 conv-pool + 2 fc layer 57.82 ± 0.16 PP & DSWR 57.29
(Deng et al., 2021) Surrogate Gradient 7 conv + 2 fc layer 89.15 ADMM-based 50.00
(Chen et al., 2021) Surrogate Gradient 6 conv + 2 fc layer 92.54 Grad R 71.59

Face/Motor

(Nguyen et al., 2021) STDP + SVM 3 conv-pool layer 95.70 Static threshold 92.83
Our work STDP + SVM 2 conv-pool + 1 fc layer 90.95 ± 0.37 PP & DSWR 46.76
Our work Surrogate Gradient 2 conv-pool + 2 fc layer 97.93 ± 0.83 PP & DSWR 53.38
(Zhang et al., 2022) Back-propagation 2 conv-pool + 3 fc layer 99.50 — —

MNIST

Our work STDP + SVM 2 conv-pool + 1 fc layer 96.88 ± 0.19 PP & DSWR 27.27
Our work Surrogate Gradient 2 conv-pool + 2 fc layer 98.69 ± 0.14 PP & DSWR 66.52
(Chen et al., 2021) Surrogate Gradient 2 fc layer 98.59 Grad R 74.29
(Diehl et al., 2015) ANN-SNN Conversion 2 conv-pool + 1 fc layer 99.14 — —

FMNIST

Our work STDP + SVM 2 conv-pool + 1 fc layer 83.61 ± 0.40 PP & DSWR 30.20
Our work Surrogate Gradient 2 conv-pool + 2 fc layer 83.66 ± 0.56 PP & DSWR 71.88
(Ranjan et al., 2020) Back-propagation 2 conv + 1 pool + 2 fc layer 89.00 — —
(Zhang et al., 2022) Back-propagation 2 conv-pool + 3 fc layer 90.1 — —

that different pruning techniques have been used in the existing works, and most of them report a highly341
compressed network.342

3.3 Layer-based Progressive Compression343

From the experimental results that we presented in Table 2, Table 3, Table 5, and Table 6 we can see344
that in the case of multi-layer SNN, we get a higher compression rate in the deeper layers compared to345
the first one. Moreover, in the previous experiments, we used the same α value (α = 0.05 for STDP-based346
networks, and α+ = 0.005, α− = −0.005 for SG-based networks), which represents the initial pruning347
threshold value across all layers. Therefore, we test in this section a layer-based progressive compression348
by studying the effect of having an increasing α when going more deep in the network on the performance349
and compression rate. In our experiments, We increase the α value (α = 0.05 for STDP-based networks,350
and α+ = 0.005, α− = −0.005 for SG-based networks) each time we go to the next layer in the network,351
and we test on the same multi-layer architectures used with MNIST, FMNIST, and Caltech face/motorbike.352
We can see the evolution of the pruning threshold on three different network layers in Figure 5. For the353
STDP-based networks (Figure 5 (A)), we can see that the pruning threshold value does not increase after354
crossing the θ value set to 0.7 for all layers, and the time required to cross the threshold rises when going355
deeper in the network. Moreover, the last possible pruning threshold value equals or exceeds θ. For the356
SG-based networks (Figure 5 (B)), we can see that for each layer, we have two thresholds, the maximum357
pruning threshold θ is different from one layer to another due to the weights range being different from358
one layer to another. Moreover, we can see that the first layer is the first to cross θ, while the last layer359
threshold is still increasing, which is the opposite of the STDP-based networks.360

In Table 8, we run the same experiments using a fixed α and layer-based α for ten times, and we record361
the results in terms of compression per layer and network performance.362

We can see in Table 8 that using a layer-based α allows a higher compression rate compared to a fixed α363
in both cases (STDP-based and SG-based). Moreover, the performance is maintained and slightly improved364
in the case of STDP-based networks. On the other hand, a slight loss in accuracy is recorded for the365
SG-based networks (around 2%), which can be due to the high rate of compression recorded in some366
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Figure 5. Layer-based pruning threshold activity using convolutional SNN for (A) STDP-based networks
and (B) SG-based networks

Table 8. Layer-based compression compared to having a fixed α
Accuracy ± std Compression/layer

STDP-Based

Face/Motor Fixed α 90.95 ± 0.37 42.87|49.85|47.56
Layer-based α 91.56 ± 0.30 42.87|50.04|50.16

MNIST Fixed α 96.80 ± 0.34 43.00|27.29|13.16
Layer-based α 97.26 ± 0.18 43.00|27.30|13.17

FMNIST Fixed α 83.61 ± 0.40 50.18|27.25|13.17
Layer-based α 83.76 ± 0.24 50.25|27.24|13.16

SG-Based

Face/Motor Fixed α 97.13 ± 1.34 50.25|80.64|75.68|69.69
Layer-based α 94.82 ± 2.99 53.75|98.45|90.76|87.81

MNIST Fixed α 98.64 ± 0.21 48.13|73.40|78.65|80.06
Layer-based α 97.99 ± 1.70 75.00|80.69|95.01|95.57

FMNIST Fixed α 83.66 ± 0.56 48.50|77.48|81.29|80.23
Layer-based α 82.24 ± 1.64 50.25|82.03|93.29|91.05

internal layers. Finally, we can see for the STDP-based networks that the compression did not increase367
even with a layer-based α due to the issue we mentioned in Section 3.1.368

3.4 Compressed Network On The SpiNNaker Board369

To evaluate the effectiveness of the proposed approach in neuromorphic implementation, we transfer the370
learned weights of a baseline and compressed STDP-based network from csnn-simulator to SpiNNaker to371
observe the network activity in both cases. We use a network of two fully-connected layers of 50 and 128372
neurons, which we train for 10 epochs, and We use the MNIST dataset for this experiment.373

The trained weights are transferred to the PyNN model without additional adaptation (neuron model or374
other hyperparameters) compared to the original network used in csnn-simulator. Moreover, it is worth375
mentioning that for the sake of simplicity, the transfer learning to SpiNNaker concerns only the synapses376
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in this work. Therefore, using the same neuron type and looking for an optimized configuration and377
hyperparameters will be discussed in future work.378

Figure 6. (A) spikes accumulated activity in the output layer. (B) and (C) represent spikes per layer for
four inputs in the case of baseline and compressed STDP-based network, respectively

In Figure 6 (A), we compare the accumulated spikes for the baseline and the compressed model for379
25 second. As a result, we can see how the gap between the two use cases starts growing when moving380
forward in the simulation. Moreover, in Figure 6 (B) and (C), we can check spikes activity during 120 ms381
(four digits) for the two layers of the network. Therefore, we see a difference in spikes activity in the two382
use cases, with a drop in the spikes activity of the output layer for the compressed network (especially the383
first input). However, in the first layer, the difference between the two use cases is not very visible. Hence,384
Figure 6 shows the effect of the compression approach on the network activity compared to the baseline385
when using the SpiNNaker board.386

Table 9. Spikes activity and energy estimation on SpiNNaker
# of Spikes (L1) # of Spikes (L2) Energy (J)

Baseline 999, 786 2, 559, 907 28.48× e−3

Compressed 999, 827 2, 158, 839 25.27× e−3

In Table 9, we compare the number of spikes per layer for the baseline and the compressed network387
using the MNIST test set (10k digits) and report the estimated energy in both cases. In terms of spikes388
activity, since spikes generation depends on many factors but essentially on synapses for propagation,389
we observe a drop in the number of spikes in second layer (almost 16%) when compressed. Moreover,390
regarding the energy consumption of SpiNNaker, based on literature (Painkras et al., 2013; Stromatias et al.,391
2014; Sugiarto et al., 2016; van Albada et al., 2018; Stromatias et al., 2013), a significant fraction of the392
total power for different stages of simulation is spent on the idle mode. Moreover, the reported energy per393
synaptic event for LIF neurons equals 8 nJ. Therefore, compressing saves approximately 3.2× e−3 Joule,394
which means 11.068 uW less power consumption (for simulation time = 290 s).395
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4 CONCLUSION

This paper presents the progressive compression for convolutional spiking neural networks, which we396
train using STDP+SVM or Surrogate gradient. The proposed approach, an extension of the PP & DSWR397
for shallow networks, is tested with complex architecture on a classification task with multiple datasets.398
We also test the resulting network on the SpiNNaker board by transferring the final weights. Using this399
approach, we got an average layer compression of more than 70% in some datasets when using SG-based400
networks, with some layers highly compressed than others (more than 80%). Moreover, we discuss the401
low compression rate recorded when using STDP-based networks due to the combination of the threshold402
adaptation mechanism and the progressive compression, which did not help the network maintain a403
reasonable classification and compression rate.404

Furthermore, the layer-based approach discussed in this work provides extra compression (up to 98%)405
without a significant loss in the network performance (less than 3%). For some datasets, we record a406
tiny improvement in the network performance. Finally, the tests we conducted on the SpiNNaker board407
by analyzing the two use cases (baseline and compressed) show a noticeable decrease in the spikes408
activity when we apply the compression, which will allow the implementation of bigger models in a409
resource-constrained architecture.410

Regarding compression in neural networks, we can use different techniques targeting synapses and411
other network components. Therefore, the work we presented, which concerns the synapses, can easily be412
combined with other methods (neuron compression, weight quantization, etc.) to improve the compression413
even more. Finally, as future works, a detailed parameters exploration for the different parameters in414
the model or the two formulas (α & β) can improve the compression, testing this approach on networks415
trained with other surrogate gradient methods, more complex datasets, and different tasks (other than416
image classification). For SpiNNaker, a more profound analysis of the compression effect and parameters417
exploration is needed when training onboard, with a clear report on the energy and the performance of the418
resulting network.419
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