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Abstract The Zirconium and Hafnium concentrations in worldwide fumaroles fed by magmatic fluids
reveal that the Zr/Hf ratio is inversely related to the temperature of emission. Lower Zt/Hf ratio values below
the chondritic signature are found in fluids having the highest temperature while super-chondritic Zr/Hf ratio
values are found in lower temperatures. Sub-chondritic values of the Zr/Hf ratio may be related to larger
volatility of Hf-chloride gas species with respect to Zr-Cl gas species, while super-chondritic ratios may
correspond to fluid-rock processes resulting from cooling of uprising magmatic fluids. We propose that sub-
chondritic Zr/Hf ratio values in fumaroles associated with high temperature may be an appropriate marker of
fast magmatic rising representing a new sensitive tool for volcanic risks strategies.

Plain Language Summary Understanding volcanoes dynamics is critical in evaluating volcanic
risks and fundamental for the Earth system comprehension. The behavior of trace elements and their isotopes

in fumaroles can be explored for evaluating imminent volcanic actions. Because of large crystal-chemical
similarities of Zr and Hf in rocks and minerals, the Zr-Hf ratio is nearly constant to 36.6 + 2.9 in meteorites and
primitive rocks (“‘chondritic” reference.) We found that fumarole fluids at 1060°C—1084°C have sub-chondritic
Zr/Hf signature (Zr/Hf between 24 and 29) when fast degassing of magma occurs while, fumarole fluids of
lower temperature have super-chondritic or chondritic Zr/Hf values according to the intensity of rock-fluid
interaction processes. The Zr/Hf ratio of fumarole fluids can be used as a new tool for volcanic risk evaluation
as possible tracer of fast magmatic arriving.

1. Introduction

Fumaroles release natural fluids at the surface of volcanic areas allowing indirect investigations of melt trans-
fer in volcanic plumbing systems. When magma rises, the composition of associated gas may change because
of processes of magma degassing, temperature decreasing, fluids-rock exchanges, and shallow fluid mixing
(Oppenheimer et al., 2014; Paonita et al., 2012). Variations in the volcanic gas composition may provide an
understanding of quiescence to unrest transition announcing the arrival of potential volcanic events (Aiuppa
et al., 2007; Oppenheimer et al., 2014; Paonita et al., 2016). Zirconium and hafnium are twin refractory trace
elements with chemical coherence during magma crystallization reflecting the same ionic charge and almost the
same radius (Niu, 2012; Shannon, 1976). They have a constant ratio in chondrites (the more abundant meteor-
ites) corresponding to the so-called constant “chondritic” value of 36.6 + 2.9 (Bau, 1996; Censi, Inguaggiato,
et al., 2017; Censi et al., 2020; Jochum et al., 1986). Chondritic Zr/Hf values are often observed in pristine
magmatic rocks. Zr/Hf values far from the chondritic range have been observed in hydrothermally altered rock
(Iveson et al., 2018; Tiepolo et al., 2003) and in evolving peraluminous granites (Irber, 1999). Hydrothermal
fluids usually show super-chondritic Zr/Hf values (Censi et al., 2015; Censi, Raso, et al., 2017; Inguaggiato
et al., 2015, 2016) because hydrolysis shares differently Zr and Hf aqueous complexes enhancing absorption of
Hf onto surfaces of neogenic minerals (Byrne, 2002; Shikina et al., 2018). Zirconium and hafnium concentrations
in magmatic fluids have been measured in condensates from fumarole fluids between 100°C and about 1,100°C
(Taran et al., 1992, 1995, 2018; Garofalo, 2006; van Hinsenberg et al., 2015; Zelenski & Bortnikova, 2005;
Zelenski et al., 2013, 2014). Obtained results showed an almost similar Zr and Hf behavior apparently refractory
during the magmatic degassing (Zelenski et al., 2013, 2021).
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Table 1

Analyzed Zr and Hf Concentrations and Calculated Standard Deviations on Five Fractions of NASS-6 Standard Reference
Seawater (Canadian National Research Council) Compared With Values Measured in the Previous Studies (Censi

et al., 2020; Raso et al., 2013)

Reference* This study

Censi
Raso et al. (2013) et al. (2020) NASS-6.1 NASS-6.2 NASS-6.3 NASS-64 NASS-6.5 Mean +o

ng 1!
Hf 0.89 + 0.02 0.7 +0.12 0.77 0.84 0.87 0.77 0.82 0.81 0.05
Zr 23+3 220+ 1.5 22.9 22.7 23.0 22.8 23.3 229 021
Zr/Hf 25.6 31.0 29.8 27.1 26.3 29.7 28.3 282 1.57

Note. Data are given in ng 17!

Here, we have explored the Zr/Hf signature of deep fluid transported to the Earth's surface through the “volcanic
plumbing system” (Burchardt, 2018), analyzing the amount of zirconium and hafnium of volcanic fumaroles in a
wide range of temperature, composition, and tectonic settings.

2. Materials and Methods

The temperature of fumaroles is measured immediately before gas sampling using a type-K thermocouple. Vol-
canic gases are sampled using a quartz tube put into the fumarole as much as possible joined to a consecutive
double-walled (Dewar) quartz tube coming out of the fumarole. The double-walled quartz tube is used to reduce
the thermal exchange between fumarole fluids and atmosphere avoiding the condensation of fumarole fluids
along the tube wall before the condensed. The Dewar quartz tube is joined to the condenser flask filled with the
NH,OH 4N solution (Sortino et al., 2006). In the condenser, water vapor, and other acid species react with the
ammonia solution providing the best collection of fumarole fluids and condensates of reasonable quality (Zelen-
ski et al., 2014). Concentrations of Zr and Hf are analyzed from a 100-ml aliquot of the collected condensate, fil-
tered (through Millipore™ membranes with 0.22 pm porosity), and then transferred to a polytetrafluoroethylene
(PTFE) vessel. The vessel is placed on a hot plate (about 50°C) for removing any NH,OH trace and concentrating
the remaining fraction to 5 ml final volume. Finally, 500 pl of a 10% HNO, solution are added before ICP-MS
(Agilent 7500cc) analysis. Each solution is measured three times and ICP-MS analyses are carried out with a
classical external calibration approach using 2% Tl solution (1 pg 17!) as internal standard to compensate for any
signal instability. The ICP-MS is equipped with a Micromist™ nebulizer, a Scott spray chamber, a three-channel
peristaltic pump, an autosampler, and an octupole reaction system to remove any spectral interference. The lab
treatment of studied samples is carried out in a laminar flow clean bench to minimize contamination while all
sampling materials were previously cleaned with high purity grade reagents (Baker Ultrex I1®). All plasticware
used during sampling collection and treatment are cleaned with a 1:10 high purity HNO, hot solution.

To recognize if the collection procedure of fumarole condensates may involve Zr and Hf chemical exchanges
between fumarole fluid and sampling tubes, we analyzed five aliquots (0.5 L each) of NASS-6 standard reference
seawater (distributed by the National Research Council of Canada). These were boiled in the lab and the resulting
vapor was transferred to a condenser flask using the same quartz tube previously used for collection of fumarole
fluids. Condensate NASS-6 aliquots were put in a hot plate to remove any trace of NH,OH. Successively, solution
pH was regulated to 8 adding HNO, (2M) solution. Finally, we added an excess of FeCl, (1%) solution to induce
precipitation of solid Fe(OH),. Zr and Hf were removed from the solution during Fe(OH), deposition. This new-
ly formed solid was collected by membrane filter (Millipore™ manifold filter diameter 47 mm, pore size 0.45
pm) and then dissolved in HCl (3M) solution. The later solution was diluted and analyzed by ICP-MS with an
external calibration procedure (Raso et al., 2013). Results were compared to references (Censi et al., 2020; Raso
et al., 2013) as reported in Table 1.

The used method for collecting fumarole fluids is widely exploited and considered among the best available
(Zelenski et al., 2014). Nevertheless, two alkaline condensates from Bocca Grande fumarole (Phlegrean Fields)
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Table 2

Temperature, Sampling Time, Zr, Hf Concentrations and Zr/Hf Weight Ratio
Measured in Two Alkaline Condensates From the Bocca Grande Fumarole
(164°C) in Phlegrean Fields

Phlegrean Fields — Bocca Grande fumarole 06.14.2013

were collected June 14, 2013 at 10:25 and 12:40, respectively and analyzed
to assess the reproducibility of the overall procedure. Related analyses are
reported in Table 2.

Analyses of HCI, HF, and CO,, by ionic chromatography (Dionex OnGuard®

II H Cartridge), were carried out from a 5-ml aliquot of the alkaline conden-

Time 10:25 12:30 10:25  12:30  sate solution. The remaining volatile gas fraction, passing through the solu-
ng 1-! tion and accumulated in the vacuum head-space of the flask, was analyzed for
- - He, H,, 0,, N,, CO, CH, by gas chromatography (PerkinElmer Clarus 500).
I X}
6.383 294,056 293,039 46.1 449 All the tubes fo.rmmg the sampling line from tl¥e fufnarole to the condenser
M 203548 455 flask were previously prewashed and left overnight in 30% HNO, and after-
ean ’ ’ ward 4 N NH,OH ultrapure solutions.
+s 719 0.79
T°C 164

3. Data

Note. Mean values are those reported in Table 3 with asterisks.

Fumaroles investigated in this study occur worldwide (Figure 1) and have

variable chemical composition and temperature according to the different
geodynamic domains. Table 2 shows the gas composition and concentration of Zr and Hf of the corresponding
condensates (see methods for sampling and analytical determinations). We tentatively distinguished between
low-medium temperature fumaroles ranging between 82 and 421°C from high-temperature fumaroles spanning
between 430°C and 1084°C.

Low-medium temperature fumaroles occur at Vulcano (Aeolian Islands), Phlegrean Fields, Tenerife (Canary Is-
lands), and Fogo (Capo Verde Islands), where fluids were sampled between 2012 and 2014 (Table 3). High-tem-
perature fumaroles located in Pallas, Kudryavy, Mutnovsky and Tolbachik (Russia), Erta-Ale (Ethiopia), Ka-
wah [jen (Indonesia), and Momotombo (Central America) volcanoes were sampled between 1990 and 2016
(Garofalo, 2006; Taran et al., 1995, 2018; van Hinsberg et al., 2015; Zelenski & Bortnikova, 2005; Zelenski
etal., 2013, 2014).

4. Results and Discussion

The distribution of the Zr/Hf ratio as a function of the HF/HCI ratio in alkaline condensate solutions is reported
in Figure 2. We found that below 430°C (Figure 2a), Phlegrean Fields, Fogo Tenerife, and Vulcano Group 1
fumaroles have Zr/Hf ratio close to the chondritic value without clear relation with to HF/HCI ratio. In fuma-
role of Vulcano Group 2, the Zr/Hf ratios have variable super-chondritic values increasing as the HFI/HCI ratio

Vulcano

. } 7\%

90° W 0° 90° E 180° E

Figure 1. Location of studied fumaroles (in yellow) and those compared from references (in white). The map is redrawn
from Ocean Data View™ software (Schlitzer, 2015).

CENSI ET AL.

30f9



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Geophysical Research Letters

10.1029/2021GL094674

Table 3

Temperature, Sampling Date, HF, HCI, Hf, Zr Concentrations and Derived Zr/Hf Weight Ratio Measured in Alkaline Condensates From Studied Fumaroles or
Reported From Previous Studies (See References). bld: Below the Detection Limit, nd: Not Determined, *: Mean Values Assessed From Two Analyzed Condensates

Collected the Same Day at 10:25 and 12:40 Reported in Table 2

Fumaroles fed by magmatic fluids

Sampling date HF HCI Hf Zr
Volcanic system T°C mm.dd.yyyy mmol mol-1 HF/HC1 pgl-1 Zr/Hf References
Vulcano Island (Group 1) 421 10.24.2013 0.14 2.54 0.06 9.3 288 31 This study
261 10.24.2013 0.07 1.30 0.05 7.7 266 34
421 09.06.2013 0.09 0.63 0.14 28.3 1,099 39
351 03.01.2013 0.26 2.41 0.11 47.5 1,846 39
254 08.05.2013 0.22 2.56 0.08 22 99 46
242 03.01.2013 0.21 3.53 0.06 41.0 2,115 52
Phlegrean Fields 164 05.16.2013 0.01 0.18 0.08 0.4 20 50
164 06.14.2013 0.02 0.25 0.08 6.5% 293* 45%
145 06.14.2013 0.01 0.17 0.05 6.1 303 49
Fogo Island 199 03.22.2014 0.07 0.30 0.24 7.7 320 42
266 03.22.2014 bld 0.15 nd 14.7 571 39
285 03.22.2014 bld 0.16 nd 11.2 409 37
Tenerife Island 82 03.12.2014 0.01 0.13 0.06 7.6 367 48
Erta Ale 1,084 6.10 4.40 0.72 0.4 10 29 Zelenski et al. (2013)
Tolbachik 1,060 13.70 5.00 0.36 0.9 21 24 Zelenski et al. (2014)
Pallas 720 5.10 1.60 0.31 4.9 64 13 Taran et al. (2018)
656 4.63 0.91 0.20 1.1 60 55
Momotombo 776 168.70 12.84 0.08 5.9 117 20 Garofalo (2006)
761 246.48 30.53 0.12 0.1 3 35
759 219.80 26.11 0.12 0.7 20 28
616 225.92 25.79 0.11 0.1 2 23
614 198.59 20.79 0.10 0.2 7 30
600 229.66 18.16 0.08 0.1 2 33
478 3.16 0.00 0.02 0.2 7 31
Kawah [jen 490 0.47 0.07 0.15 0.5 20 40 van Hinsberg
420 0.90 0.02 0.02 0.8 31 39 etal. (2015)
Fumaroles fed by mixed magmatic and shallow (meteoric/hydrothermal) fluids
Vulcano Island (Group 2) 251 10.24.2013 0.14 0.42 0.33 9.9 640 65 This study
377 09.06.2013 0.44 1.59 0.28 2.7 202 74
374 03.01.2013 0.40 1.61 0.25 44 392 89
265 03.01.2013 0.40 0.51 0.78 22 257 119
378 10.24.2013 0.36 1.08 0.33 2.6 244 94
365 03.01.2013 0.47 0.54 0.88 1.4 228 163
416 08.02.2013 0.92 2.09 0.44 5.1 574 112
Mutnovsky 507 3.40 3.64 1.07 0.9 55 61 Zelenski and
450 4.59 0.84 0.18 15 92 61 Bortnikova (2005)
410 3.85 0.80 0.21 0.7 56 80
CENSIET AL. 40f9
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Table 3
Continued

Fumaroles fed by magmatic fluids

Volcanic system T°C

Sampling date HF HCl Hf Zr

mm.dd.yyyy mmol mol-1 HF/HC1 Zr/Hf References

pg l-1

940
825
605
535

Kudryavy

241.69
361.97

58.31
382.54

8.63
26.84
5.53
24.21

0.04 10.0
0.07 16.0
0.09 7.0
0.06 15.0

980 98
1,280 80
650 93
1,200 80

Taran et al. (1995)

raises. Above 430°C (Figure 2b), fumaroles from Erta-Ale, Tolbachik, Pallas, and Kawah [jen have sub-chon-
dritic or chondritic values irrespective of the HF/HCI ratio while in Kudryavy and Mutnovsky, Zr/Hf ratios are
super-chondritic for a quite constant HF/HCI ratio below 0.2. Given HCI and HF are the main possible metal
transport in fumarole media, our findings indicate that at lower temperatures, the sub-chondritic Zr/Hf values are
not related to the HCI/HF ratio, while super-chondritic ratios are positively related to HF/HCI ratio. At higher
temperature, however, super-chondritic Zr/Hf ratios are found independent of the HF/HCI ratio.

Figure 3 shows that the Zr/Hf ratio is inversely related to the temperature when fumaroles have sub-chondritic
signature as in Momotombo, Pallas, Erta-Ale, and Tolbachik systems. Chondritic Zr/Hf values are in Kawah
ITjen, Vulcano (Group-1), and Fogo fumaroles while slightly super-chondritic values are in Vulcano (Group-1),
Phlegrean Fields, and Tenerife fumaroles. Fluids from Erta-Ale and Tolbachik have a higher temperature close
to 1050, corresponding to magma degassing directly from visible fresh fractures and lava-lakes (Zelenski
et al., 2013). The identified sub-chondritic signature of the Zr/Hf ratio at the highest temperatures indicates that
here Hf is partitioned into the fumarolic gas relative to Zr. The degassing of magma could reflect possible larger
volatility of Hf-bearing species compared to Zr gaseous species. Recent results of experimental Zr and Hf sepa-
ration from mixed melted salts reveal that HfCl, gas species are significantly more volatile compared to ZrCl, gas
species (Xu et al., 2016). We propose that the observed fractionation in Tolbachik and Erta-Ale fumaroles can
result from the strong affinity of Hf toward Cl-compared to Zr toward Cl~ in agreement with different acid-base
properties of these two metal ions (Shikina et al., 2015).

However, even if Zr-Hf fractionation through the magmatic degassing generates sub-chondritic Zr/Hf values,
possible extensive interactions between Zr-depleted uprising volcanic fluids and pristine magmatic rocks of chon-
dritic signature may progressively enhance the Zr/Hf ratio of fluids (Agashev et al., 2008; Yaxley et al., 1998).
Furthermore, interactions between uprising magmatic fluids and host-rocks generate progressive fluid cooling
with possible volatility changing that may destabilize Zr and Hf gaseous complex-ions (Larsen, 1970; Pas-
tor, 1999; Pershina et al., 2002; Postma et al., 2015, 2017; Shikina et al., 2015; Xiao et al., 2014; Xu et al., 2016).
These two processes may explain variations of the linear of Zr/Hf temperature trend tentatively displayed in
dished line (1) of Figure 3.

Our results also show that super-chondritic Zr/Hf ratios of fumarole fluids may not be simply related to temper-
ature as in Kudryavy, Mutnovsky, and Vulcano Group 2. Previous investigations indicated that Vulcano Group
2 fumaroles are fed by mixing between magmatic gas and hydrothermal vapor (Nuccio et al., 1999; Nuccio &
Paonita, 2001). Similarly, Kudryavy and Mutnovsky fumaroles may result from mixing between hot magmatic
fluids and meteoric waters (Taran et al., 1992, 1995, 2018). Mixing between magmatic and shallow meteoric/
hydrothermal fluids can be represented by hyperbolic trends (Langmuir et al., 1978). We estimate a possible
end-member representative of Zr/Hf and temperature conditions of magmatic fluids by Zr/Hf ratio and tempera-
ture measured in Erta-Ale and Tolbachik fumaroles. This end-member can be connected by two hyperbolas to two
different end-members EM1 and EM2 corresponding to the variation of Zr/Hf ratios of hot hydrothermal fluids
corresponding to several aquifers from volcanic areas (Censi et al., 2015; Censi, Raso, et al., 2017; Inguaggiato
etal., 2015, 2016; Sasmaz et al., 2021; Zuddas et al., 2018). Consequently, the grey area of Figure 3 corresponds
to Vulcano (Group-2), Kudryavy, and Mutnovsky fumaroles generated by variable mixing proportion between
magmatic and shallow meteoric/hydrothermal fluids.

The results of this study broaden our knowledge of the geochemical behavior of Zr and Hf through natural
unexplored volcanic degassing fluids underlining a different behavior between Hf and Zr in gaseous halides.
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Figure 2. Zr/Hf ratio and HF/HCI concentrations measured in alkaline condensates collected from Vulcano, Phlegrean
Fields, Fogo, Tenerife fumaroles compared with data from Erta-Ale (Zelenski et al., 2013), Tolbachik (Zelenski et al., 2013),
Pallas (Taran et al., 2018), Momotombo (Garofalo, 2006), Kawah Ijen (van Hinsberg et al., 2015), Kudryavy (Taran

et al., 1995) and Mutnovsky (Zelenski & Bortnikova, 2005). Fluids are discriminated according to the fumarole temperature
below 430°C (a) and above 430°C (b). At Vulcano, fumaroles are differentiated in Group-1 fluids with Zr/Hf values unrelated
to the HF/HCI ratio and Group-2 fluids where Zr/Hf values progressively increase with HF/HCl ratio. The error bar on Zr/Hf
values corresponding to 0.8 units (Table 2) falls within the size of the symbol.

Fundamentally, the difference between Zr and Hf, “twin” elements, is related to the fully occupied 4f orbital driv-
ing “softer” Hf behavior compared to Zr (Pearson, 2005). This property is explicit in gas geochemical reactions
of fumaroles as Hf softness involves larger volatility of its halides, while in aqueous fluids Hf softness enhances
the hydrolysis of Hf aqueous complexes and surface reactivity. In rock minerals, the fully occupied 4f Hf orbital
results in very similar Zr and Hf ionic radii. Accordingly, a coherent behavior of Zr and Hf is observed during
the mineral crystallization (Bau, 1996; Jochum et al., 1986; Nebel et al., 2010; Pfiander et al., 2007). Likewise,
chondrite formation results from condensation of the primordial nebula at different temperatures fractionating Zr
and Hf as a function of the volatilities (Lodders et al., 2009; Patzer et al., 2010), explaining the large geochemical
coherence of Zr and Hf and different reactivity by 4f electron occupancy of hafnium atomic structure.
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Figure 3. Zr/Hf ratio as a function of fumarole temperature. Fluids collected from fumaroles fed by magmatic fluids at
Phlegrean Fields, Fogo, Tenerife, Vulcano (Group-1), Erta-Ale (Zelenski et al., 2013), Tolbachik (Zelenski et al., 2013),
Pallas (Taran et al., 2018), Momotombo (Garofalo, 2006) and Kawah Ijen (van Hinsberg et al., 2015) show Zr/Hf values
inversely correlated with the temperature. Fluids collected from fumaroles fed by magmatic fluids mixed with other fluids
originated from shallow meteoric/hydrothermal at Vulcano (Group-2), Kudryavy (Taran et al., 1995) and Mutnovsky
(Zelenski & Bortnikova, 2005) show super-chondritic Zr/Hf values unrelated to the temperature. These points fall falling
along with hyperbolic arrays (dotted red curves). These arrays depict possible mixing paths between a magmatic end-member
(EM) and some hydrothermal end-members (EM-1, EM-2, EM-3, and EM-4). The dotted black line (1) is the best fit of Zr/Hf
versus temperature values in fumaroles fed by magmatic fluids. The equation is: y = —0.025x + 48.6 (r = 0.68; Ty > Tasy ).
The error bar on Zr/Hf values corresponding to +0.8 units (Table 2) falls within the size of the symbols.

5. Conclusions

The significant temperature rise of a fumarole system always represents an indicator of the energy flux resulting
from magma chamber to the Earth's surface. If fumaroles are mainly fed by the magmatic gas, the temperature
should be coupled with the decrease of the Zr/Hf ratio in fumarole as depicted through the observed Zt/Hf versus
temperature relationship. We evidenced that more Zr/Hf ratio is sub-chondritic, closer fluids are to the magma
degassing magma indicating possible vicinity of magma chamber. The results of this observational study reveal
that the Zr/Hf ratio of fumarole fluids is a promising indicator for establishing volcanic risk strategies.

Data Availability Statement

The geochemical data set obtained through this study was uploaded to the Earthchem FAIR aligned repository
(www.earthchem.org) and will be available for download at the EarthChem Library. The required link to the data
set is: Censi et al. (2021). Zr, Hf, and gas concentrations in volcanic fumarole fluids, Version 1.0. Interdiscipli-
nary Earth Data Alliance (IEDA). https://doi.org/10.26022/IEDA/112026. Accessed 17 June 2021.
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