
HAL Id: hal-03826726
https://hal.science/hal-03826726v1

Preprint submitted on 24 Oct 2022 (v1), last revised 1 Sep 2023 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable program clone search through spectral analysis
Tristan Benoit, Jean-Yves Marion, Sébastien Bardin

To cite this version:
Tristan Benoit, Jean-Yves Marion, Sébastien Bardin. Scalable program clone search through spectral
analysis. 2022. �hal-03826726v1�

https://hal.science/hal-03826726v1
https://hal.archives-ouvertes.fr

Scalable Program Clone Search
Through Spectral Analysis

Tristan Benoit
Université de Lorraine, NRS,

LORIA,
F-54000 Nancy, France

tristan.benoit@loria.fr
,

Jean-Yves Marion
Université de Lorraine, CNRS,

LORIA,
F-54000 Nancy, France

jean-yves.marion@loria.fr
,

Sébastien Bardin
CEA LIST

Universite Paris-Saclay
Saclay, France

sebastien.bardin@cea.fr

Abstract—We consider the problem of program clone search,
i.e. given a target program and a repository of known programs
(all in executable format), the goal is to find the program in the
repository most similar to our target program – with potential
applications in terms of reverse engineering, program clustering,
malware lineage and software theft detection. Recent years have
witnessed a blooming in code similarity techniques, yet most of
them focus on function-level similarity while we are interested in
program-level similarity. Consequently, these recent approaches
are not directly suited to program clone search, being either too
slow to handle large code bases, not precise enough, or not robust
against slight variations introduced by compilation or source code
versions. We introduce Programs Spectral Similarity (PSS), the
first spectral analysis dedicated to program-level similarity. PSS
reaches a sweet spot in terms of precision, speed and robustness.
Especially, its one-time spectral feature extraction is tailored for
large repositories of programs, making it a perfect fit for program
clone search.

I. INTRODUCTION

Binary code similarity approaches identify similarities or
differences [27] between pieces of assembly code (e.g., basic
blocks, binary functions or whole programs). We focus on
program-level similarities (coined program similarity in the
following), that is, computing a similarity index between whole
programs which is capable of telling at which degree two
programs are similar. Searching similarities between x86 or
ARM binaries over a large program repository is necessary
when the original program written in source code is unavail-
able, which happens with commercial off-the-shelf (COTS),
legacy programs, firmware and malware. Program similarity
has a range of real-world applications such as malware analysis
[5], [15], [47], [62] (e.g., lineage, clustering, detection), patch
and firmware analysis [64], or software theft detection [48].

Given its potential applications and challenges, this field of
research has been extremely active over the last two decades,
starting from the pioneering work of Dullien in 2004 [18],
[19] on call-graph isomorphism and the popular BinDiff tool
for recognizing similar binary functions among two related
executables. Other approaches include for example symbolic
methods [24], graph-edit distances [29], [35] and matching
techniques [5], [62]. Interestingly, the last five years have seen
a strong trend toward machine learning based approaches to
binary function similarity [16], [42], [45], [63], [65].

Program clone search. Given a query composed of a target
program and a repository, the program clone search ranks

repository programs by their similarity to the target program.
The search is successful if the most similar program is a clone
of the target program. These clones could have been (i)
compiled from the same source code with a different compiler
chain, or (ii) produced using a slightly different version of the
source code. The case of obfuscation is left as future work.

The challenges. Program clone search presents specific chal-
lenges compared to standard function similarity. (1) As already
stated, it requires comparing programs, i.e. much larger objects
than functions, hence similarity checks must be scalable in
typical program sizes; (2) We do not consider two programs
taken in isolation, but a target program and a (possibly large)
program repository, hence the need for very efficient similarity
checks that will be iterated over all the programs in the
repository; (3) The repository could contain similar but slightly
different programs, due to variations in compiler optimizations
or code versions. Clone search must be robust to such vari-
ations; (4) Finally, the technique must work equally well on
stripped binary codes (where symbols have been removed at
compile time) and handle the case where external function
names are unavailable, for example IoT device firmware.

All these constraints do not fit well with prior work
on similarity, as state-of-the-art is increasingly focused on
function-level similarities 1, with unclear scalability toward the
program-level case.

For example, we found in our experiments that SMIT
[29] takes more than 43 hours to compute a similarity index
between the main library of Geany and the cp command (see
Section V-G, Table X), while DeepBinDiff [17] is reported
to take 10 minutes to compute basic bloc matching on small
binaries from the Coreutils package.

Problem and goal. From the program clone search point of
view, there is a strong need for a binary-level program-level
similarity technique that is precise, robust to slight variation,
and fast enough to be able to operate over large code bases.
This is exactly what we want to address in this paper.

Our proposal. We explore the application of spectral graph
analysis [12] to the problem of program clone search. It seems
a very good starting point as, on graphs, it is both cheap
and competitive against graph-edit distances [57] in terms of

1According to Haq and Caballero [27], since 2014, among 40 binary code
similarity approaches, only 7 approaches have taken programs as input.

precision. Yet, programs are not standard graphs: on the one
hand programs seen as graphs can be very large (especially
at the binary level), while on the other hand they are highly
structured due to their function hierarchy.

We take advantage of this specificity and propose Program
Spectral Similarity (PSS), the first spectral analysis tailored
to program similarity.

The techniques extract eigenvalues related features from
both function call graphs and control flow graphs, and take
advantage of a preprocessing step (done once for the whole
program repository) to achieve similarity checks in time linear
in the number of functions of the program (done for each
program in the repository), making it a perfect fit for program
clone search – most prior works are at least quadratic.

We experimentally show that PSS outperforms state-of-
the-art approaches and is resilient to slight syntactic code
variations. In our experiments, a program clone search with
PSS takes on average 2s, all the time being spent in the
preprocessing phase that scales very well on large repositories,
while the time for similarity checks is extremely low (close to 0
in our experiments). As a comparison, the function embedding
Gemini [63] requires more than 15 minutes per clone search.

We set up a strong comprehensive evaluation framework
(13 competitors and 3 baselines) to systematically compare
PSS with state-of-the-art methods, covering graph-edit dis-
tance [23], [29], N-grams [28], vector embedding [16], [42],
[45], [63], standard spectral methods [23] and matching al-
gorithms [5], [62]. Our experiments cover three benchmarks
along two dimensions (optimization levels and code versions)
and comprise diverse open-source projects along with classical
Coreutils, Findutils, Diffutils and Binutils packages for a total
of 1,108 programs. We investigate four scenarios, revealing
the impact of confounding factors such as optimization level
or code version as well as the impact of the number of clones
inside a repository. After this comprehensive evaluation, we
investigate two case studies on the most promising approaches:
(1) a classification of 19, 959 IoT malware, and (2) large
repositories (up to 84, 992) of Windows programs. All this
evaluation framework will be publicly made available.

Finally, this systematic study leads as well to a few notable
side results: (i) First, we found out that (what we call) the
function set method (FunctionSet), a mere Jaccard distance
over the set of external function names, actually performs very
well on medium size repositories of standard Linux binaries
where such external names are available (Section V) – PSS
ranks still second in that case and beats other methods relying
on external names. (ii) Second, our experiments (Section V)
show that some state-of-the-art techniques perform worse than
basic baselines, based for example on code size. (iii) Third,
the case studies on Windows binaries and IoT malware show
that in these settings the function set method is less efficient
than PSS (Sections VI-VII). (iv) Fourth, a large benchmark of
Windows binaries demonstrates PSS ability to scale up to large
repositories (Section VII). A clone search on a repository of
size 84, 992 takes 15.51 seconds (2.09s for similarity checks),
very close to the 14.53 seconds necessary on a repository of
size 42, 648 (1.04s for similarity checks) – and 13, 97 seconds
for size 21, 113 (0.52s for similarity checks).

Contribution. As a summary, this paper makes the following
contribution:

• A novel technique named PSS for code similarity
(Section IV), tailored to program clone search over
large repositories. PSS is the first spectral technique
tailored to program-level similarity. Especially, PSS
takes advantage of a preprocessing step to perform
latter similarity checks in time linear w.r.t. the number
of functions in the program, making it a perfect fit for
program clone search over large repositories;

• A comprehensive evaluation framework for program
clone search m evaluation (Section V), encompassing
over 1, 108 Linux programs, four scenarios, three
baselines and 13 state-of-the-art methods – 9 of
them being reimplemented. The complete framework
is available online, which is rare in this field [44].
Moreover, we add two case studies on the classifi-
cation of 19,959 IoT malware (Section VI) and on
84,992 Windows programs (Section VII);

• Experimental evidence (Sections V,VI and VII) that
PSS reaches a sweet spot in terms of speed, precision
and robustness, making it a perfect fit for program
clone search, where prior works in the field are more
specialized to function-level similarity evaluation;

• The identification of the simple FunctionSet method
as the best alternative for program clone search on
medium repositories of standard Linux binaries (Sec-
tion V) when external function names are available.
To the best of our knowledge, this is the first time
this simple technique is identified in the context of
code similarity;

• The highlight that some state-of-the-art approaches
seem to be inferior or at best roughly equivalent to
very basic baselines (Section V). In recent prior work,
only Xu et al. [62] consider comparisons to baselines.
There is a call to action here for the community.

Besides providing a novel and efficient method for program
clone search, our results shed new light on prior work on
code similarity. Primarily, we introduce the program clone
search application scenario and show that it behaves differ-
ently enough than the well-studied pairwise function similarity
setting, requiring dedicated methods. Also, we are the first
to pinpoint the separation in prior work between techniques
using external function names and those which do not, and
identify the simple FunctionSet method as competitive when
external function names are available. Finally, we show that
some prior methods are not better in our setting than basic
baselines. These baselines should be systematically considered
in further experimental evaluations for code similarity.

We believe that these results pave the way for novel
research directions in the field, as well as for revisiting current
evaluation practices.

Our implementations and benchmarks are available at:

https://github.com/sppunderreview/PSS.

2

II. PROBLEM STATEMENT AND MOTIVATING EXAMPLE

A. Program clone search procedure

Program

Similarity
Checks

Query Preprocessing Features
Repository

1: svn
2: git
3: cmp
........

0.82
0.65
0.49
....

Similarity Metric

svn

Fig. 1: Architecture of a program clone search procedure.

Given an unknown target program P and a program
repository R, the goal is to identify a clone of P in R.

A clone of a program P is defined as follows:

• A program Q compiled from the same source code S
as P , but with a different compiler toolchain is a clone
of P . For example, P has been compiled with GCC
v9.1 using the optimization level O0 from the source
code S, and Q has also been built from S using the
same compiler but another optimization level, say O3;

• A program Q compiled from another version of P
source code is a clone of P . For example, both
instances of the git application compiled from two
source code versions, say v2.35.2 and v2.37.1, are
clones.

In the last case, we have to be a bit careful. Indeed, we can
only consider incremental versions of an application or library,
not major revisions that completely change the source code.

Figure 1 illustrates a clone search procedure architecture.
Note that all along, we suppose that there is no exact copy of
P in the repository R. The repository is a database containing
enough information for a clone search procedure. As a result,
in practice, a repository is quite an extensive program database
w.r.t. the application domain (firmware, plagiarism, malware,
etc.).

An evaluation of clone search procedures should take into
consideration the three criteria below in order to be realistic:

• The efficiency w.r.t. both the size of the unknown
target program and the size of the repository,

• The robustness not only to compiler toolchains but
also to slight program variations coming from different
source code versions,

• The ability to deal with stripped programs. Moreover,
external symbols are not necessarily available when
dealing with firmware, lightweight obfuscations, or yet
from payload extracted from packers [11].

As we said previously, the main difference between pro-
gram clone search and function clone search is the size of the
binary codes, which is much larger in the case of programs.

At a high level, all program clone search procedures work
in a similar way. The repository is already built, and the query
process is divided into three steps:

1) Query preprocessing. Upon query, we receive the
target program P . We can perform some preprocess-
ing at this step, extracting relevant features for the
rest of the procedure;

2) Similarity checks. For each program Q ∈ R, we
perform a similarity check with a similarity metric
M on (P,Q) – possibly taking advantage of the
preprocessing – and record the computed similarity
index M(P,Q);

3) Decision. The program Qbest with the highest sim-
ilarity index is considered the most similar. The
program clone search is successful if Qbest is a clone
of P . Otherwise, it is a failure.

B. Motivating example

Let us consider a repository containing 83 programs from
open-source projects including Bash, Coreutils, Dia, Diffutils,
Graphviz, Geany, Git, Lua, Make, OpenSSH, OpenSSL, Perl,
Ruby, SDL, SVN, and VLC. Now, let us imagine our goal is to
find a clone of an unknown library, say the VLC core library
compiled by GCC v9.3 with optimization level O0, inside this
repository. If the program search clone procedure returns the
correct answer, we will know the library name.

We consider five prior approaches to this problem: the un-
supervised function embedding Asm2Vec [16], the pre-trained
function embedding model SAFE [45], the graph-edit distance
method SMIT [29], the matching method CGC of Xu et al.
[62] and the N-gram method MutantX-S of Hu et al. [28]. More
tools and techniques will be considered in the experimental
evaluation, cf. Section V.

Note that in order to obtain a similarity index between
programs from function embedding methods (here, Asm2Vec
and SAFE), we define as the similarity metric F (P, P ′) :=
−
∑

x∈embeds(P) miny∈embeds(P ′) ∥x− y∥2.

TABLE I: Clone search results.

Framework Success Rank of the Similarity Query
first clone checks preprocessing

runtime runtime
Asm2Vec [16] 11 1h 13m 0s
SAFE [45] 9 10h 27m 0s
SMIT [29] 52 59h 0s
CGC [62] 11 2h 18m 0s
MutantX-S [28] 15 0s 0s

PSS 1 0s 35s

The VLC core library is in the repository in three different
versions built with GCC but at different optimization levels.
Table I reports the results, that we compared with our own
approach named PSS. Query prepossessing runtime does not
consider the disassembly step, which is fast and common to
all techniques.

As we can see, no approach but PSS is successful here.
SAFE is the second best one here, ranking a clone of the target
among the nine most similar programs. That is clearly not
satisfactory, as it means that a human expert would have to
look at nine programs before finding a real clone. Also, as
expected, function-oriented similarity techniques suffer from a
clear scalability issue here since they all take more than one

3

hour to complete the search. Moreover, the GED method and
the matching method take also far too long.

Our novel PSS method indeed finds the clone as the most
similar program. Moreover, Table I shows that while the
technique has a preprocessing runtime of 35 seconds, after
that the similarity checks runtime is negligible. As a result,
PSS can scale up to large repositories with good precision.

III. BACKGROUND

Graph similarity, GED and spectral distance. As programs
can be naturally seen as graphs, any good notion of graph
similarity is in principle a good candidate for a good program
similarity metric.

Graph-edit distance (GED) is such a good notion [25].
GED is the smallest cost of an edit path between two graphs,
i.e. the smallest transformation going from one of the graphs to
the other. Graph edit operations typically include removing or
adding a vertex or an edge. And, indeed, in our setting clones
do have small graph-edit distances (GED). For example, this
is visible in Figure 4, where the approach GED-0 is quite
accurate compared to others.

Yet, the main drawback of GED is that it is NP-hard.
Worst, usual approximations have a complexity of O(n3) [59]
where n is the number of nodes in the graph, which is far too
expensive for graphs coming from programs. As an example,
the graph-edit distance method SMIT [29] is the slower of all
the tested methods in the results shown in Table I, with 59
hours of computation (our method takes 35 seconds).

The spectral distance between graphs provides an interest-
ing trade-off, as it gives a rough approximation of the graph-
edit distance between graphs [61] for an affordable linear cost
once eigenvalues are computed.

Spectral Graph Analysis. An undirected graph G = (V,E)
of n vertices is represented by an n× n adjacency matrix A,
where ai,j is one if (Vi, Vj) ∈ E and zero otherwise. Let di
be the degree of the vertex Vi.

It is useful to compute the Laplacian matrix [12] of G, a
positive semi-definite matrix defined as follows:

Li,j :=

{
di if i = j and di ̸= 0
−1 if i ̸= j and Ai,j ̸= 0
0 otherwise

An eigenvalue λ and its corresponding eigenvector u⃗ is a
solution to the equation: (L− λI) u⃗ = 0⃗.

The spectrum is the set {λ1(G), λ2(G), . . . , λ|G|(G)}
where λ1(G) ≥ λ2(G) ≥ . . . ≥ λ|G|(G) and where |G| is the
number of vertices in G. The enhanced Lanczos algorithm [51]
computes the spectrum in time O(dn2), where d is the average
degree of G.

The starting motivation for using graph spectrum is that
two isomorphic graphs have the same spectrum; however, the
converse is not true. Nevertheless, the spectrum may be used
to compare graph similarities. For this, we define the spectral

distance between G1 and G2 (analogous to [32]):

sD(G1, G2) :=

√√√√min(|G1|,|G2|)∑
i=1

(λi(G1)− λi(G2))
2

IV. PROGRAM SPECTRAL SIMILARITY (PSS)

Spectral analysis is appealing for program similarity. Yet, a
program has an enormous number of instructions, or even basic
blocs, that are interconnected. Applying spectral analysis to the
whole control flow would be too costly. Moreover, applying
spectral analysis to the call graph only is unlikely to capture
critical aspects of function behaviours.

To remedy these issues, our key insight is that a program
has more structure than a mere graph: there is a call graph
over functions while local functions hold their own control
flow graph. We propose to take advantage of this hierarchical
structure to inspire a quick and stable similarity metric called
Program Spectral Similarity (PSS). The PSS method is based
on the combination of two measures.

• The first measure is the spectral distance between
call graphs, including both internal and external calls.
Intuitively, when a program evolves, its call graph
remains relatively stable. Moreover, compiler opti-
mizations have a negligible effect on the call graph
compared to the instruction level, except for some
internal functions that may be inlined;

• The second measure is a coarse spectral analysis of
function control flow graphs, simply considering their
number of edges.

The PSS method is then decomposed into two parts:
preprocessing and similarity checks.

A. Preprocessing

Program Disassembly Extraction

Call Graph

CFG

CFGCFG

CFG

Spectrum

Edges Edges

Edges Edges

Scaling to
Unit lenght

Scaling to
Unit lenght

v

w

Fig. 2: PSS preprocessing.

.mempcpy

mempcpy

main

sub_403780

.exit

.bindtextdomain sub_402380 .setlocale

.getopt_long .__fprintf_chk

Fig. 3: A call graph.

Given a program P , the preprocessing first begins by
building the function call graph CG of P , including local and

4

external (API) calls. An example of a function call graph is
given in Figure 3. It contains external calls such as a call to
mempcpy as well as local functions such as sub_403780.
Then for each local function in P , the preprocessing constructs
its control flow graph (CFG). The set of all local function CFG
is noted as FG = {F1, . . . , Fk}. Disassembly is implemented
by running the IDA Pro disassembler v7.5 along with a script
from the Kam1n0 assembly analysis platform 2. See the recent
survey of Pang et al. [53] on disassembling.

From this, we extract two key features of P .

• From the symmetric adjacency matrix of CG, we
compute the spectrum Λ = {λ1(CG), . . . , λn(CG)},
and we compute v⃗ := Λ

∥Λ∥2
, the normalized spectrum

of the call graph;

• We compute the number of edges E = (e1, e2, . . . , ek)
from each control flow graph Fi in FG in descending
order, that is e1 ≥ e2 ≥ . . . ≥ ek, and we normalize
E as previously w⃗ := E

∥E∥2
. Note that the number of

edges is kind of a spectral measure since it is related
to the spectrum by the relation 2× ei =

∑
λj(Fi).

Recall that || · ||2 is the Euclidean norm.

B. Similarity check

Given two programs, P0 and P1, the preprocessing step
has computed features (v⃗0, w⃗0) from P0, and (v⃗1, w⃗1) from
P1. The similarity check outputs a similarity index between
P0 and P1 by averaging two measures.

The first measure is related to call graphs:

sCG(P0, P1) :=
√
2−

√√√√min(|v⃗0|,|v⃗1|)∑
i=0

(v0,i − v1,i)
2

The second one is related to function control flow graphs:

sFG(P0, P1) :=
√
2−

√√√√min(|w⃗0|,|w⃗1|)∑
i=0

(w0,i − w1,i)
2

where |u⃗| is the dimension of the vector u⃗.

Then, the similarity metric PSS is defined as:

PSS(P0, P1) :=
sCG(P0, P1) + sFG(P0, P1)

2
√
2

C. Complexity

Recall that a repository is a database of preprocessed pro-
grams. A given unknown target program is first preprocessed,
then its features are used to check its similarity index with all
the preprocessed programs in the repository.

Complexity of our method. Graphs and Laplacian matrices
are sparse in our application domain, offering quick eigenval-
ues computation. Nevertheless, the complexity of the query
prepossessing, described in Section IV-A, is still O(dn2),
where n is the number of functions and d is the average number

2https://github.com/McGill-DMaS/Kam1n0-Community

TABLE II: Complexity of program clone search procedures

Framework Class Similarity † Query ‡
check preprocessing

SMIT [29] GED O(n4) O(dn)

CGC [62] Matching O(n4) O(dn)
MutantX-S [28] N-gram O(1) O(i)

Asm2Vec [16] Functions ML O(n2) O(n)
Gemini [63] Functions ML O(n2) O(n)
SAFE [45] Functions ML O(n2) O(n)

αDiff [42] Functions ML O(n2) O(n)

DeepBinDiff [17] ML O(n3m3) no preproc.

PSS Spectral O(n) O(dn2)

n: number of functions in the program d: average number of calls per function
m: number of basic blocks in a function i: number of instructions in the program

† between two programs ‡ performed once for the whole clone search

of calls per function. However, once such prepossessing is
done, the complexity of a similarity check, described in
Section IV-B, is O(n).

Comparison with prior work. That is in contrast with
function embedding methods which have a similarity check
complexity of O(n2) on this problem using a direct adaptation
(see Section II-B for further details). Moreover, DeepBinDiff
[17] contains a step with a linear assignment between basic
blocs with a complexity of O(n3m3). Worse, both the graph-
edit distance approximation SMIT [29] and the matching
method of Xu et al. [62] have a complexity of O(n4). However,
the complexity of MutantX-S [28], designed to scale up to large
repositories, is only O(1) – yet experiments show its precision
is not fully satisfactory.

On the other hand, prior work preprocessing usually con-
sists either in loading a call graph or in running a neu-
ral network on each function. In any case, methods whose
preprocessing performs no spectral analysis have negligible
preprocessing runtime. Still, as a similarity check is performed
on every preprocessed program in the repository, the cost of
similarity checks quickly dominates the cost of preprocessing,
as highlighted in our experiments.

V. SYSTEMATIC EVALUATION

We now evaluate the potential of PSS in terms of precision,
speed and robustness – the ability to overcome slight changes
in the source code or in the compilation chain. These experi-
ments are complemented by two other studies on IoT malware
(Section VI) and large Windows repositories (Section VII).

We consider here the following Research Questions:

RQ1 What are the most precise methods for clone search?
RQ2 What are the most robust methods for clone search?
RQ3 What are the fastest methods for clone search?
RQ4 What is the impact of each PSS component?
RQ5 Does external function names enhance PSS ?

A. Summary of our main results

Before presenting the experimentation details, we highlight
the key results from this study. In Figure 4, we present a plot
of different frameworks over precision, robustness and speed.

5

(a) with external function names (b) without external function names

Fig. 4: Precision (blue), robustness (orange), and speed (green) of all frameworks. Note that what is displayed is the inverse of
the runtime. The larger the green bar, the shorter the calculation time is. (see Appendix A for methodology)

• When external function names are not available, our
novel spectral method PSS reaches a sweet spot re-
garding the trade-off between precision, robustness
and speed. It does not need any training phase, scales
very well to large repositories and is among the most
robust techniques. Therefore, it is the best candidate
for intensive program clone search;

• Interestingly, when external function names are avail-
able, the function set method – which simply com-
pares sets of external function names, is by far the
fastest and most precise technique on medium-sized
repositories. This is the first time such a point is
highlighted in the literature, and it sheds a new light
on prior work in the field. Note that in this context,
PSS still ranks second and beats all other approaches
relying on external function names but FunctionSet.

Moreover, this large study allows us to highlight that
prior work in the field, mostly focused on function-level
similarity, is not adapted to program clone search. Function
embedding methods and graph-edit distance have relatively
good precision, yet these two classes of methods are far too
slow in this context. Furthermore, function embedding methods
are not robust to slight variations induced by optimization
levels or code versions. Matching methods are relatively slow,
and while robust, they lack precision. Direct adaptations of
graph-based spectral methods are fast and relatively robust but
lack precision. Lastly, N-gram methods are fast and relatively
precise but lack robustness.

B. Datasets

We collect six datasets, allowing us to compare multiple
methods along different optimization levels and code versions.

• Coreutils Versions (CV): We extract four different
versions of 87 unique source codes from the popular
Coreutils package for a total of 348 programs. The
elapsed time between the oldest and newest versions is
13 years. Each program is compiled with optimization
level O3;

• Coreutils Options (CO): We extract from the Core-
utils package a total of 104 unique source codes.
Each source code is compiled with four different
optimization levels (O0, O1, O2, and O3);

• Utils Versions (UV): On the one hand, we extract four
versions of 15 unique source codes from the Binutils
package. Each program is compiled with optimization
level O2. On the other hand, we extract four versions
of 4 source codes from the Diffutils package and four
versions of 3 source codes from the Findutils package.
Each program is compiled with optimization level O3;

• Utils Options (UO): We obtain 88 programs by com-
piling the latest versions of the precedent 22 unique
source codes with 4 optimization levels;

• Big Versions (BV): From 16 open-source projects 3,
we obtain four different versions of 21 unique source
codes for a total of 84 programs. The elapsed time
between the oldest and newest versions of a source
code is usually four years. Programs are compiled with
each project default optimization level;

• Big Options (BO): With the latest versions of the
precedent 21 unique source codes, we obtain 84 pro-
grams by compiling them with 4 optimization levels.

Each program is given a version level (i.e., V0, V1, V2 or
V3) depending on its relative code version.

Compilation. Packages Coreutils, Diffutils, and Findutils have
been taken from the DeepBinDiff [17] dataset. Thus, they
were compiled with GCC v5.4 on the x86 architecture. Other
packages and projects were compiled using GCC v9.4 on the
x86 architecture. More compilers and architectures will be
considered in Sections VI and VII.

Table III presents the characteristics of each dataset (lines
Repository S-* are for scenarios, cf. Section V-C). The CO
and CV datasets contain hundreds of small programs, which
are hard to separate as they share functionalities and origins.
On the other hand, the BO and BV datasets contain less than
a hundred programs from different projects that are larger.
For instance, the average program in the CV dataset contains
164 functions, while the average program in the BO dataset
contains 2,930 functions. As a whole, the complete dataset
contains 1,108 binary programs (obtained from 277 original
source codes) with a total of 811,275 functions. Note that we

3Open-source projects includes: Bash, Coreutils, Dia, Diffutils, Graphviz,
Geany, Git, Lua, Make, OpenSSH, OpenSSL, Perl, Ruby, SDL, SVN, and VLC.

6

TABLE III: Datasets characteristics.

Dataset CV CO UV UO BV BO
Size (Mo) 18 22 82 91 114 97
#Projets 1 1 3 3 16 16
Unique source codes 87 104 22 22 21 21
Options per source code 1 4 1 4 1 4
Versions per source code 4 1 4 1 4 1
#Programs 348 416 88 88 84 84
Repository S-I 87 104 22 22 21 21
Repository S-II 173 207 43 43 41 41
Repository S-III 347 415 87 87 83 83
Average n 164 219 1222 1456 2160 2930
Average m 9 7 19 18 12 11

n: Number of functions, m: Number of basic blocs in a function CFG
Repository S-X: Number of programs inside a repository in scenario X

will also consider much larger datasets in Sections VI and VII
(up to 80k programs).

C. Methodology

Instead of putting every dataset in a repository, we break
them into test fields for more fine-grained results – test fields
being themselves grouped into scenarios.

A test field (T,R) is composed of targets T and repository
R. We note Oi as (i) the optimization level Oi as well as (ii) a
set of programs compiled with Oi. For instance, the test field
(O0, O3) from the CO dataset contains first the set of every
Coreutils binary compiled with O0 as targets and secondly a
repository of every Coreutils binary compiled with O3.

By measuring success at the level of test fields, we can
study multiple scenarios. For instance, in an easy scenario,
the repository only contains clones compiled with another
optimization level. On the other hand, the repository could
contain programs compiled with the same optimization level.
As a result, it is harder to find a clone because sharing
an optimization level increases similarities. Therefore, clone
search procedures should deal with such scenarios, which is
why robustness is a key property.

Measures of success. Program clone search is an information
retrieval task. The standard evaluation metrics of information
retrieval are precision and recall. Because very few programs
are similar, we focus on top-1 recall.

We define the function Recall@1(M,a,R), equal to one
if and only if a clone of a is the most similar program in the
repository R, as ranked by the similarity metric M .

Let Score(M,F) be the score of a similarity metric M
on test field set F . We take the average Recall@1 for every
target in each test field. We define:

Score(M,F) :=
∑

(T,R)∈F

∑
a∈T

Recall@1(M,a,R \ {a})
|T | × |F |

Scenario I. In the first scenario, a repository contains pro-
grams sharing the same optimization (or version) level. The
corresponding target set contains programs sharing another
optimization (or version) level.

We break each dataset CO, UO, and BO into 12 test fields:
(Oi, Oj),∀ i, j such that 0 ≤ i, j ≤ 3 and i ̸= j. Likewise,

we break each dataset CV, UV, and BV into 12 test fields:
(Vi, Vj),∀ i, j such that 0 ≤ i, j ≤ 3 and i ̸= j. In Table III,
we add the number of programs in a repository for each dataset
in the first scenario (S-I).

The first scenario is the simplest, as similarities between
optimization or versions cannot trick a similarity metric.

Scenario II. In the second scenario, a repository contains
programs with two different optimization (or version) levels.
The corresponding target set is equal to the repository.

We break each dataset CO, UO, and BO into 6 test fields:
(Oi ∪ Oj , Oi ∪ Oj),∀ i, j such that 0 ≤ i, j ≤ 3 and i < j.
Likewise, we break each dataset CV, UV, and BV into 6 test
fields: (Vi∪Vj , Vi∪Vj),∀ i, j such that 0 ≤ i, j ≤ 3 and i < j.
In Table III, we add the number of programs in a repository
for each dataset in the second scenario (S-II).

The second scenario is more challenging, as more pro-
grams are in the repository. Besides, similarities between
optimization or version could trick a similarity metric.

Scenario III. In the third scenario, a repository contains every
program in the dataset. The corresponding target set is equal
to the repository.

We transform each dataset into a unique test field. For
instance, the CO dataset is transformed into the test field
(O,O) where O := O0 ∪ O1 ∪ O2 ∪ O3. In Table III, we
add the number of programs in a repository for each dataset
in the third scenario (S-III).

The third scenario is intermediate in terms of challenge.
On the one hand, similarities between optimizations or version
levels could trick a similarity metric. But on the other hand,
there are three clones in a repository.

Scenario IV. In the fourth scenario, we combine datasets CV,
UV, and BV into a unique test field (V, V) where V := V0 ∪
V1 ∪ V2 ∪ V3. This test field has a repository of 520 programs
with 130 unique source codes. Likewise, we combine datasets
CO, UO, and BO into a unique test field (O,O) where O :=
O0 ∪ O1 ∪ O2 ∪ O3 This test field has a repository of 588
programs with 147 unique source codes.

By combining our datasets, this scenario represent more
computationally-demanding clone searchs (larger datasets are
considered in Sections VI and VII).

D. Competitors

We evaluate 13 competitors, 3 baselines and a new heuristic
(cf. Table IV). 8 of these frameworks have been adapted
(A) to the case of program clone search, as it was not their
primary objective (e.g., function embedding). Moreover, 9 had
to be reimplemented (R) because the original implementation
was unavailable. As highlighted by Marceli et al. [44], code
similarity artifacts are rarely available, and even when they
are, they are often incomplete.

Baseline. We first investigate basic heuristics such as Bsize,
the size of the program, and Dsize, the size of the disas-
sembled program. For instance, the similarity metric Bsize is
defined as Bsize(a, b) := −|a− b|, where a and b are program
sizes in bits. We also consider a crude shape of the call graph.

7

Let n1 and e1 (respectively n2 and e2) be the number of
vertices and edges of the first (respectively second) call graph.
Then the similarity measure Shape is defined as:

Shape(n1, e1, n2, e2) :=
min(n1, n2)

max(n1, n2)
× min(m1,m2)

max(m1,m2)

Standard spectral methods. From the spectral method devel-
oped by Fyrbiak et al. [23], we derive two methods. The first,
SCG (A) (R), is based on the call graph. Let X and Y be the
two spectrums in descending order of Laplacians of the two
call graphs. There is a normalization X ′ := X/X0 and Y ′ :=

Y/Y0. Then: SCG(X ′, Y ′) := −
∑min(|X′|,|Y ′|)

i=0 |X ′
i − Y ′

i |.

Likewise, we derive a method based on the control flow
graph, SCFG (A) (R). Instead of the spectrum from the call
graph, we select the top 1000 eigenvalues from a reduced
control flow graph as vectors X and Y .

Graph-edit distance. We implement various basic GED-
based methods. First, we implement GED-0 (A) (R), a basic
computation of the GED applied between call graphs. The
algorithm goes back to the work of Sanfeliu and Fu [57].

Second, we implement GED-Labels (A) (R), a computa-
tion of the GED between call graphs with labels. The algorithm
is presented by Fyrbiak et al. [23]. They apply it to labeled
hardware circuits. In our application, labels are sets of external
function names.

Third, we implement the specific GED computation of
Hu et al. [29] called SMIT (R). It combines mnemonics
similarities, matching based on external function names, and a
particular Hungarian algorithm. However, we do not integrate
the indexing tree of SMIT as it was designed for scenarios
where many clones were present in the repository. Moreover,
while the usage of an indexing tree improves efficiency, it is
less precise than computing all distances.

Matchings. We reproduce the isomorphic test ISO (R) from
Bai et al. [5]. In the algorithm, when it cannot find equivalent
functions between the two programs, it either stops there or
continues. We have chosen to continue. As we will see later,
this choice leads the algorithm to always answer that two
graphs are similar. However, stopping would have made the
algorithm always answer that two graphs are different.

We also compare with the matching algorithm CGC (R)
from Xu et al. [62]. This algorithm needs three parameters
along with a complete classification of mnemonics. The first
parameter is a threshold for mnemonics similarities. The sec-
ond is a threshold for length similarity. The last is a threshold
for degree similarities. After preliminary work, we set them to
respectively 0.45, 0.18 and 0.3.

N-gram. We reproduce MutantX-S (R) from the work of Hu et
al. [28]. Each program is represented by the frequencies of 4-
grams obtained from the opcode sequence. These frequencies
are embedded into a 4096 dimensions vector by hashing.

Function embeddings . We are interested in evaluating binary
function embeddings. Function embeddings methods allow
transforming a program into a set of embedding vectors,
each one representing a binary function. We define a simple

TABLE IV: Methods included in the comparison.

Framework Class A R Similarity EF
check

Bsize Baseline O(1)
Dsize Baseline O(1)
Shape Baseline O(1)
SCG [23] Spectral O(n)
SCFG [23] Spectral O(n)

GED-0 [57] GED O(n3)
GED-Labels [23] GED O(n3)
SMIT [29] GED O(n4)

ISO [5] Matching O(n2)
CGC [62] Matching O(n4)
MutantX-S [28] N-gram O(1)

Asm2Vec [16] Function ML O(n2)
Gemini [63] Function ML O(n2)
αDiff [42] Function ML O(n2)
SAFE [45] Function ML O(n2)

DeepBinDiff [17] ML O(n3m3)

FunctionSet Heuristic O(n)
PSS Spectral O(n)

A: Adapted for program clone search
R: reimplemented

EF: External function names are required

similarity metric to compare programs using such sets. Let a
and b be the two sets of embedding vectors and F the similarity
metric. We define: F (a, b) := −

∑
x∈a miny∈b ∥x− y∥2.

We consider Asm2Vec (A) [16]. We employ a training
strategy inspired by the original paper. In fact, we compute
function embeddings in the context of the second scenario.
For each test field, we take programs with the highest opti-
mization (or version) level as material for words and function
embeddings for training. Other programs are only trained to
produce function embeddings. Training lasts 50 epochs with
an initial learning rate of 0.05, a window size of 2, 25 negative
samples for each positive sample, and the number of random
walks set to 10. The final embedding size is 200.

We take Gemini (A) embedding from Xu et al. [63] in an
optimistic setting. We build a version of our dataset retaining
function names and employ these as ground truth. We learn
over this training set for 50 epochs with five as the iterative
level, a learning rate of 0.0001, a network depth of two, and
a batch size of one. Then we extract embedding vectors on
usual datasets. The embedding dimension is 64.

Moreover, we adapt the embedding of Massarelli et al. [45]
with SAFE (A). We use a pre-trained model made available by
one of the authors 4. The embedding dimension is 100.

Lastly, we introduce αDiff (A) (R) from the framework
of Liu et al. [42]. It is tailored at binary function similarity
between versions. We sample 25% of the αDiff dataset 5 as
our training set. We learn over this training set for 20 epochs,
with a learning rate of 0.001, and set the forgetting factor to
0.9. The batch size of positive pairs is 100, and 200 semi-hard
negative pairs are generated at each epoch. The framework
αDiff proposes a distance between functions that incorporates
external function names and in-out degrees in the call graphs.

DeepBinDiff. The framework DeepBinDiff from Duan et al.
[17] attempts to match basic blocs between two binaries. The

4https://github.com/facebookresearch/SAFEtorch
5https://twelveand0.github.io/AlphaDiff-ASE2018-Appendix

8

similarity metric computes the number of matched basic blocs
by DeepBinDiff between two programs. Due to its runtime, we
were unable to perform experiments, and it is only considered
inside the research question about speed.

Heuristic: Function set method. Xu et al. [62] describe a
simple method that first matches functions between two pro-
grams by using only external function names and mnemonics
similarities. Then, the similarity measure is computed by a
distance over the two function sets. We simplify this idea and
invent the similarity metric FunctionSet, which computes the
Jaccard similarity index6 between external function names. Let
Fa be the external function names set of a program a. The
similarity metric is: FunctionSet(a, b) := |Fa∩Fb|

|Fa∪Fb| .

We present in Table IV the characteristics of the different
methods considered here. We register the time complexity of
a similarity check between two programs. We note as n the
number of functions and m the number of basic blocs in a
function CFG. We indicate whether the method requires ex-
ternal function names. Note that machine learning approaches
require a learning phase. Moreover, Gemini and GCG require
manual classification of mnemonics.

E. RQ1: Evaluation of Precision

TABLE V: (RQ1) Scores of methods across scenarios.

Framework Scenario Scenario Scenario Average
I II III

Bsize 0.28 0.19 0.26 0.24
Dsize 0.28 0.20 0.29 0.26
Shape 0.36 0.26 0.35 0.32
SCG 0.39 0.32 0.46 0.39
SCFG 0.10 0.07 0.12 0.09
GED-0 0.47 0.36 0.48 0.44
GED-Labels 0.49 0.37 0.54 0.47
SMIT 0.08 0.07 0.11 0.08
ISO 0.03 0.02 0.02 0.02
CGC 0.39 0.28 0.41 0.36
MutantX-S 0.49 0.30 0.46 0.42
Asm2Vec 0.64 0.15 0.15 0.31
Gemini 0.55 0.29 0.40 0.41
αDiff 0.54 0.28 0.38 0.40
SAFE 0.60 0.27 0.38 0.42
Random 0.03 0.02 0.03 0.03
FunctionSet 0.90 0.62 0.76 0.76
PSS 0.51 0.38 0.52 0.47

In each column, there are two numbers in bold. The one in italic indicates the best
method without using external function names, and the other one is the overall best
method. For example, in scenario II, FunctionSet is the best method with external

function names and PSS without. This notation will be used in all tables:
best method without external function names - overall best method

Methods. First, we compute the scores of each method in the
three scenarios for each dataset. Complete results are present
in Tables XV, XVI, and XVII (appendix). We report average
scores for each scenario in the summary Table V.

Secondly, we compute the scores of each method in the
fourth scenario. We report the results in Table VI. Because
of the size of the repositories (slightly more than 200 Mb),
we have only evaluated the most interesting methods of each
class.

Results. We notice that the function set method is the most
powerful method in all scenarios, with a global average of

6https://en.wikipedia.org/wiki/Jaccard index

TABLE VI: (RQ1) Scores of methods in scenario IV.

Framework Version Option Average
Shape 0.24 0.16 0.20
SCG 0.42 0.23 0.32
SCFG 0.09 0.08 0.08
GED-0 0.43 0.23 0.33
GED-Labels 0.49 0.47 0.48
CGC 0.26 0.20 0.23
MutantX-S 0.49 0.18 0.33
Gemini 0.42 0.17 0.30
SAFE 0.35 0.16 0.26
Random 0.01 0.00 0.00
FunctionSet 0.67 0.72 0.70
PSS 0.48 0.36 0.42

best method without external function names
overall best method

0.76. Another method that uses external function names, GED-
Labels, is the second-best in the second scenario with an
average of 0.37 and the third scenario with an average of 0.54.

On the other hand, without methods using knowledge about
external function names, embedding methods perform well.
For instance, the embedding method Asm2Vec is first in the first
scenario with an average of 0.64. Overall, our spectral method
is best without access to external function names, with 0.47
on average. It is as precise as the second-best method using
external function names.

We note that in the fourth scenario, the N-gram method
MutantX-S performs slightly better than PSS when search-
ing for clones with different versions. However, our spectral
method stands above MutantX-S by 0.18 when searching
for clones with different options. This suggests that N-gram
methods do not handle well compiler optimization change.

In this scenario again, PSS is the best method without exter-
nal function names with an average of 0.42, while FunctionSet
leads otherwise with an average of 0.70.

We note that only two methods using external function
names outperform other methods, namely FunctionSet and
GED-Labels. Among methods using external function names,
these are methods that rely the most heavily on it.

Conclusion (RQ1)

PSS globally outperforms all methods that do not use ex-
ternal function names. In case external function names are
available, PSS obtains the second best result (even though it
does not take advantage of the extra information). Finally, it
is worth noticing that the very simple FunctionSet method
clearly outperforms all competitors in this setting.

F. RQ2: Evaluation of Robustness

We consider the robustness of a similarity metric as its
resistance to the impact of shared properties such as optimiza-
tion level or version level. Ideally, because the optimization
level does not influence semantics, sharing optimization level
should not contribute to a higher similarity index. Therefore,
we will evaluate how similarities computed by each method
are influenced by shared optimization or version level.

Methods. During each clone search, we rank each program
in the repository from the most similar to the least similar,

9

according to a similarity metric. In the second scenario, we
can split this rank into a list A containing programs with
the same optimization (or version) level and a list B with
programs containing a different optimization (or version) level.
Our hypothesis H is that programs are closer to the others
that share the same optimization levels (or version levels).
Statistically speaking, it means that programs in list A have
better ranks than programs in list B. We can compute a rank-
biserial correlation. We perform this process for each clone
search in the second scenario. We gather different rank-biserial
correlation distributions for every framework.

TABLE VII: (RQ2) Average rank-biserial correlation for H .

Framework CV CO UV UO BV BO
Bsize 0.17 0.07 -0.02 0.03 -0.03 -0.04
Dsize 0.11 0.02 -0.02 0.06 -0.04 -0.04
Shape 0.15 0.10 -0.03 0.06 -0.04 -0.04
SCG 0.10 0.19 -0.01 0.08 -0.04 -0.04
SCFG 0.23 0.30 0.15 0.17 -0.02 -0.02
GED-0 0.22 0.25 -0.02 0.05 -0.04 -0.04
GED-Labels 0.16 0.21 -0.01 0.08 -0.04 -0.04
SMIT -0.15 -0.58 -0.16 -0.46 0.00 -0.07
ISO 0.00 0.00 0.01 0.01 0.00 0.00
CGC 0.19 0.32 0.08 0.07 -0.04 -0.08
MutantX-S 0.39 0.63 0.05 0.28 -0.04 0.08
Asm2vec 0.99 1.00 0.49 0.65 0.32 0.45
Gemini 0.76 0.96 0.19 0.37 -0.04 0.06
αDiff 0.60 0.93 0.19 0.33 -0.04 0.09
SAFE 0.81 0.98 0.20 0.38 -0.04 0.11
Random 0 0 0 0 0 0
FunctionSet 0.39 0.37 0.08 0.22 -0.04 0.02
PSS 0.06 0.13 0.02 0.09 -0.04 -0.02

Average rank-biserial correlation less than 0.16

Results. We report average correlations in Table VII.

In datasets CV and CO, the embedding methods Asm2Vec,
Gemini, and SAFE provide a very high correlation for our
hypothesis. For instance, clone searches done with the embed-
ding method Asm2Vec attain an average correlation of 0.99 on
CV and 1.00 on CO. The embedding method αDiff provides a
moderately high correlation of 0.60 on CV but a very high
correlation of 0.93 on CO. We note that the function set
method has a moderate correlation of 0.39 on CV and 0.37
on CO. Our spectral method has a small correlation of 0.06
on CV and 0.13 on CO. While, the N-gram method MutantX-
S has a moderately high correlation of 0.39 on CV, it has
a correlation of 0.63 on CO. Other methods provide small
correlations inferior to 0.35 for the hypothesis.

In datasets UV and UO, the embedding method Asm2Vec
provides moderately high correlations for our hypothesis, with
0.49 on UV and 0.65 on UO. However, other embedding
methods provide a moderate correlation. For example, Gemini
provides a correlation of 0.19 un UV and 0.37 on UO. Our
spectral method has a small correlation of 0.02 on UV and
0.09 on UO. Finally, we note that the function set method has
small correlations of 0.08 on UV and 0.22 on UO. The rest
of the method provides small correlations inferior to 0.30.

In datasets BV and BO, the embedding method Asm2Vec
provides a moderate correlation for our hypothesis with 0.32
on BV and 0.45 on BO. Our spectral method has correlations
of −0.04 on BV and 0.02 on BO. Other methods provide small
correlations inferior to 0.11.

We note that SMIT provides negative correlations on
all datasets. We believe Asm2Vec to be less robust due to
its specific training phase. This highlights the need to train
function embeddings methods on diverse binaries.

Conclusion (RQ2)

PSS is robust to both optimization levels and program ver-
sions. Especially, it is robust even on the smaller binaries of
the Coreutils and Utils datasets, where function embedding
methods are confused by optimization levels and versions.

G. RQ3: Evaluation of Speed

The evaluation here is systematic, but on limited size
benchmarks. We conduct an additional scalability analysis on
much larger benchmarks (up to 80k) in Section VII.

Because of running times, we could not experiment on
DeepBinDiff [17] with our datasets. Indeed even on a dataset
containing small programs, such as Coreutils Versions (CV),
DeepBinDiff has an average running time of a bit more
than 10 minutes per similarity check. Therefore, it would
take approximately 348 × 347 × 630s ≈ 21, 130h to apply
DeepBinDiff to the whole CV dataset. Moreover, running
DeepBinDiff with Perl and Code::Blocks as inputs crashes
because it would require 245 GB of memory.

TABLE VIII: (RQ3) Learning time.

Framework Total learning Time per epoch
Asm2Vec 443.8h 2.96h
Gemini 17.15h 1235s
αDiff 58.69h 2.93h

We report learning time of ML-based approaches in Ta-
ble VIII. Because Asm2Vec was trained for every test field, it
has a much longer learning phase. However, the learning time
per epoch to learn one element is similar to αDiff.

TABLE IX: (RQ3) Preprocessing time.

Framework Total Maximum Average
SCG 18m13s 4m59s 2s
SCFG 42h37m 36m31s 4m42s
PSS 18m 4m44s 2s

We report the total preprocessing runtime of spectral meth-
ods in Table IX. The total preprocessing runtime is equal in
every scenario because in each scenario we preprocess once
every program. Other techniques preprocessing are negligible
and thus not recorded. Since IDA disassembling is common
to all frameworks, we do not incorporate its runtime.

While the complexity of eigenvalue decomposition is high,
it takes less than twenty minutes to extract all features from
every dataset with our method. On the other hand, performing
eigenvalue decomposition on the complete control flow graph
(SCFG) takes almost two days of computation, even when
extracting only the top 1000 eigenvalues.

We report in Table X the average time per clone search
in Scenario III, including preprossessing time. We also report
the time to compute a similarity index between two programs,
called a similarity check. The third scenario allows capturing

10

TABLE X: (RQ3) Runtimes in scenario III.

Time per Time per
Framework Total Clone Search Similarity Check

Avg (Min,Max) Avg (Max)
Bsize 7s 0s (0s,0s) 0s (0s)
Dsize 6s 0s (0s,0s) 0s (0s)
Shape 1m47s 0s (0s,1s) 0s (0s)
SCG 18m14s 2s (0s,4m59s) 0s (0s)

SCFG 42h37m 4m42s (0s,36m31) 0s (0s)
GED-0 107h20m 12m19s (7s,5h35m) 8s (27m44s)
GED-Labels 61h51m 6m57s (6s,3h55m) 4s (5m24s)
SMIT 4513h58m 8h53m (19s,1100h52m) 6m23s (43h32m)
ISO 0s 0s (0s,0s) 0s (0s)
CGC 224h19m 25m44s (12s,4h2m) 18s (27m1s)
MutantX-S 4s 0s (0s,0s) 0s (0s)
Asm2vec 87h39m 9m50s (7s,4h10m) 14s (22m0s)
Gemini 134h56m 15m30s (3s,5h57m) 11s (17m37s)
αDiff 840h8m 1h31m (2m3s,34h21m) 1m4s (2h10m)
SAFE 859h28m 1h36m (1m6s,33h10m) 1m8s (1h36m)
FunctionSet 3s 0s (0s,0s) 0s (0s)
PSS 18m3s 2s (0s,4m44s) 0s (0s)

TABLE XI: (RQ3) Runtimes in scenario IV.

Time per Time per
Framework Total Clone Similarity

Search Check
(Min,Max) (Min,Max)

Shape 5m (0s,2s) (0s,0s)
SCG 18m16s (0s,4m59s) (0s,0s)

GED-0 487h41m (5m52s,40h1m) (0s,27m44s)
GED-Labels 288h35m (4m28s,16h45m) (0s,5m46s)
CGC 516h33m (36s,14h5m) (0s,27m1s)
MutantX-S 8s (0s,0s) (0s,0s)
Gemini 322h42m (29s,11h31m) (0s,17m37s)
SAFE 2135h20m (3m58s,49h34m) (0s,1h36m)
FunctionSet 6s (0s,0s) (0s,0s)
PSS 18m6s (0s,4m44s) (0s,0s)

the runtime for each dataset. Again, we give equal weight to
each dataset in the average computation, meaning that despite
Coreutils datasets containing more binaries, their low runtime
does not have a disproportionate impact. For a clone search
in the third scenario, our spectral method only takes two
seconds, nearly everything in the prepossessing. That is similar
to the adapted spectral method for call graph SCG. Embedding
methods take from nine minutes with Asm2Vec to one hour and
36 minutes with SAFE. Methods based on graph-edit distance
do better but still require at least six minutes per clone search.
The N-gram method MutantX-S is very fast and takes only
four seconds in total, it is second to the FunctionSet method
in terms of speed.

We report in Table XI the average time per clone search
in scenario IV (2 repositories of more than 500 programs),
including prepossessing time. The total runtime for PSS does
not increase by more than three seconds compared to the
runtime in scenario III. That is in sharp contrast with SAFE,
whose runtime increases from 859 hours to 2135 hours.
Section VII reports additional evidence of the scalability of
PSS over large repositories (up to 80k programs).

Conclusion (RQ3)

PSS provides a fast similarity metric, with no learning
phase and a reasonable prepossessing time. While not the
fastest, our method still scales very well with repository
size. Note as well that FunctionSet is the second fastest
among all methods.

H. RQ4: Impact of PSS components

The PSS method can be thought of as a combination of
two components. The first component is the comparison of
eigenvalues of the function call graph. The corresponding
similarity metric is simCG. The second component is the
comparison of numbers of edges from control flow graphs.
The corresponding similarity metric is simFG. We now seek
to evaluate the impact of each of these components separately.

Results. Table XVIII (appendix) reports global average scores
across each dataset. simFG performs better than simCG on

CV by 0.03 and on CO by 0.08. On the other hand, simCG is
better than simFG on other datasets. For instance, simCG has
a score of 0.77 on BO while simFG attains 0.60. Table XIX
(appendix) reports average scores along scenarios. Still, PSS
performs better than each component taken in isolation in every
scenario, with a global average of 0.46, while simCG has an
average of 0.42 and simFG has an average of 0.39.

Conclusion (RQ4)

PSS is an excellent midpoint between two extrema in
each scenario. On the one hand, component simCG is
critical on the Utils and Big datasets. On the other hand,
component simFG is key on the Coreutils datasets. Thus,
we hypothesize that the numbers of edges from control
flow graphs matter more in minor programs.

I. RQ5: Impact of external function names

We have seen that the FunctionSet method, which merely
compares the set of external function names, is really powerful.
In Appendix B, we demonstrate that combining PSS with
FunctionSet does not bring any improvement on this dataset.

Conclusion (RQ5)

On medium-sized repositories where external function
names are available, FunctionSet is already so precise that
combining it with PSS brings nothing.

VI. CASE STUDY: IOT MALWARE

This case study aims to compare PSS and other clone
search methods in the setting of IoT malware classification
– thus we do not consider approaches specialized in IoT
malware classification [2], [3], [26], [49], [60]. We consider
those competitors achieving high scalability and at least some
precision in Section V, namely Bsize, Dsize, Shape, SCG,
MutantX-S and FunctionSet.

Dataset. We consider 19,959 IoT malware samples from
MalwareBazaar7, submitted between March 2020 and May

7https://bazaar.abuse.ch/

11

2022. Appendix C provides more details on this dataset, which
spans 8 architectures (mostly ARM, cf. Figure 6).

Ground Truths. Using available meta-data from antivirus
reports and YARA rules, we split the data into three families
of clones: 12,357 Mirai, 5,842 Gafgyt, and 1,760 Tsunami.

TABLE XII: Results on IoT malware.

Framework Score Time per clone search (s)
Bsize 0.821 0.144
Dsize 0.795 0.153
Shape 0.682 0.073
SCG 0.813 0.268
MutantX-S 0.871 0.778
Random 0.478 0
FunctionSet 0.624 0.031
PSS 0.888 0.411

best method

Results. In Table XII, we report scores as well as the average
time per clone search in seconds. PSS has a score of 0.888. As
expected, FunctionSet does not perform well on IoT firmware,
with a score of 0.624 (only very few external names are
available). Moreover, PSS takes only 0.411s per clone search
on a repository of 19,959 IoT malware.

Conclusion (IoT malware)

On IoT malware, PSS is the most precise method and is
faster than MutantX-S.

VII. CASE STUDY: LARGE REPOSITORIES

The goal of this study is to demonstrate further how
well PSS scales up to large repositories. As in the previous
case study, we compare against Bsize, Dsize, Shape, SCG,
MutantX-S and FunctionSet.

Dataset. We assemble the repository R80k of 84,992 pro-
grams running under Windows operating systems (x86, Visual
Studio). This amount to more than 50 GB of raw programs.
These programs range from Windows XP libraries to Windows
10 executables. There have been 30,621 security updates over
twenty years. Samples are divided by target platform (e.g.,
Windows 7). We consider 10,717 applications that do not
belong to a specific target platform to be part of the common
platform application target platform. Appendix D gives more
details on this dataset.

Ground Truths. We consider that two programs sharing both
(i) file names and (ii) target platforms are clones.

Repositories. To study how frameworks scale, we decompose
R80k into two additional smaller repositories: R40k with
42,646 programs, and R20k with 21,113 programs. Our de-
composition guarantees that each repository contains either all
clones of a program or no clones of this program. In total,
49,443 programs have a clone (R40k: 24,983, R20k: 12,083).

Precision. In Table XIII, we present the scores of each
framework. PSS has the best score on all three repositories,
with 0.4736 on R80k. Unexpectedly, FunctionSet has low
scores here, e.g. only 0.4255 on R80k. Actually, FunctionSet
is second in terms of precision on R20k, but third on R40k

TABLE XIII: Scores on large repositories.

Framework Score on R80k Score on R40k Score on R20k
Bsize 0.1955 0.2593 0.3122
Dsize 0.4447 0.4719 0.4616
Shape 0.3873 0.4507 0.4808
SCG 0.4418 0.4971 0.5092
MutantX-S 0.4731 0.5316 0.5521
Random 0.0001 0.0002 0.0002
FunctionSet 0.4255 0.4979 0.5521
PSS 0.4736 0.5406 0.5705

best method

TABLE XIV: Time per clone search on large repositories

Repositories R80k R40k R20k
Framework Total QP SC Total QP SC Total QP SC
Bsize 0.58 0.00 0.58 0.30 0.00 0.30 0.17 0.00 0.17
Dsize 0.58 0.00 0.58 0.30 0.00 0.30 0.15 0.00 0.15
Shape 0.28 0.00 0.28 0.14 0.00 0.14 0.07 0.00 0.07
SCG 14.05 13.02 1.03 13.60 13.08 0.52 13.31 13.05 0.26
MutantX-S 2.96 0.00 2.96 1.57 0.00 1.57 0.76 0.00 0.76
FunctionSet 2.01 0.00 2.01 1.00 0.00 1.00 0.50 0.00 0.50
PSS 15.51 13.42 2.09 14.53 13.49 1.04 13.97 13.45 0.52

Time in seconds, QP: Query Preprocessing, SC: Similarity Checks

and fifth on R80k. Actually, it turns out that, as the number of
programs increases, combinations of API calls are more and
more disconnected from similarity – intuitively, the number of
combinations of API calls increases less than the number of
programs at some point. On R20k, 50.80% of queries have
another program with the same API call combination in the
repository (R40k: 55.49%, R80k: 61.77%). Also, while on
R20k 18.59% of the equalities between API call combinations
correspond to program clones, it drops to 8.64% on R40k and
4.67% on R80k.

Scaling. Table XIV presents the average time per clone search
on each repository. PSS takes 13.97s per clone search on R20k,
while MutantX-S takes 0.76s. However, PSS spends 13.45s
on query preprocessing and 0.52s on performing similarity
checks. On R40k, whose size is 2x the size of R20k, PSS takes
14.53s per clone search with 13.49s on query preprocessing.
The time spent on query preprocessing is stable because it
depends on the data distribution of targets. On the other hand,
the average time spent on similarity checks for each framework
is linear to the repository size, and 50% slower for Mutant-X-S
compared to PSS. In Figure 13 (appendix), we perform linear
regressions of average time per clone search w.r.t. repository
size. We estimate here that PSS would be faster than MutantX-
S for repository sizes superior to 1.5 million samples.

Conclusion (Large Repositories)

PSS is the most precise method on huge repositories of
Windows programs, while FunctionSet has poor precision.
Moreover, PSS shows excellent scaling abilities due to its
very fast similarity checks.

VIII. RELATED WORKS

Binary code similarities are extensively studied. As a testi-
mony, the review of Haq and Caballero [27] reports numerous
input and output granularities on which to study similarities.

12

A. Pioneering approaches

The pioneering work of Dullien in 2004 [18] introduced
a graph-based program diffing approach that constructs a call
graph isomorphism. A follow-up [19] extended it to match
basic blocks inside matched functions. These two results are
the basis for the popular BinDiff program diffing plugin for
the IDA disassembler. BinDiff aims to recognize similar binary
functions among two related executables. In 2006, Kruegel
et al. [37] presented an approach based on coloring small
graphs with fixed size from the control flow graph to identify
structural similarities between different worm mutations. In
2008, Gao et al. proposed BinHunt [24] to find differences
between two versions of the same program. BinHunt employs
symbolic execution with a constraint solver to prove that
two basic blocks implement the same functionality. However,
symbolic execution and theorem proving are expensive.

B. Program similarity

The few recent works about program-level similarity [47],
[64] have already been thoroughly discussed. Still, we can
mention a few more approaches.

N-gram methods compare instruction sequences [28], [33],
[48], [58]. While we could have employed more fine-grained
methods than MutantX-S [28] – for example Exposé [48]
considers trigrams inside a function matching, it quickly leads
to serious scalability issues.

Some other works explore similarities based on dynamic
executions and input-output observations [4], [31], [41], [46].
Nevertheless, it is hard to thoroughly explore the execution
space with dynamic traces – leading to poor precision, and
handling large code repositories requires to automate the task
of detecting the sources of input and output of all programs
in the repository, which can be very complicated.

Bruschi et al. [9] tackle the problem of detecting some
malware inside a program by matching control flow graphs.
But, again, this approach suffers from scalability issues (in the
size of the programs) and is thus not amenable to the search
over large code repositories.

The symbolic method by Luo et al. [43] is robust to
simple obfuscations as well as simple changes. However, the
running time of symbolic execution is a critical issue on
large programs, and anti-analysis obfuscation hinders symbolic
approaches [7], [52].

We have already discussed matching approaches [5], [62].
While Xu et al. [62] studied a metric that compared function
mnemonics and external function names, they found that their
more complex matching was better. On the other hand, we
found that simplifying it by comparing only the set of external
function names is better than their matching. A few other
matching approaches have been proposed [8], [39], sharing
the same strengths and weaknesses.

C. Function similarity

The last five years have seen a tremendous increase in
the popularity of binary function similarity with machine
learning [16], [42], [45], [63], [65]. Yet, as already discussed,

these methods lead to poor scalability when applied to a
program similarity setting.

More expensive methods than function embeddings do
exist. Notably, dynamic analysis seeks to build upon the
semantics of binary codes instead of their mere structural
properties. BinGo [10] analyzes various execution traces with
concepts such as pruning. The work of Hu et al. [30] em-
ulates binary functions to create semantic signatures. Pewny
et al. [54] propose to translate binary code to an intermediate
representation. This representation allows observing inputs and
outputs of basic blocs. These frameworks suffer from the al-
ready mentioned pitfalls of dynamic execution: the exploration
is either imprecise or very slow. Furthermore, it is unclear
how to lift these methods to the case of program similarity, as
comparing all functions between multiple codes is costly.

Built on the idea of intermediate representation, several
approaches [14], [38], [55] perform simplification before com-
paring. In FirmUp [13], the matching between intermediate
representations incorporates multiple functions. The formula
has to be transformed into an embedding. The larger the code
segment it represents, the less precise the embedding is.

Finally, other feature selection methods have been investi-
gated: Rendez-vous [34] extracts statistical features at various
granularities, while discovRE [20] and Genius [21] extract
features such as the number of arithmetic instructions. Note
that Gemini [63] leverages static features from Genius into a
machine learning framework.

D. Graph similarity

A key question in program similarity is how to compare
graphs efficiently. New suggestions for graph similarities in-
clude novel graph kernels [22], [36], [50] and the use of
machine learning to approximate intractable properties such as
graph-edit distance [6], [40], [56]. Recently, the work of Bay-
Ahmed et al. [1] introduced a new graph similarity metric
incorporating both spectral information from the Adjacency
Matrix and from the Laplacian.

IX. CONCLUSION

We consider the problem of searching program clones in
large code repositories. While many works have been devoted
to function similarity, the few existing techniques for program
similarity suffer either from scalability issues over such large
code bases, or low precision or low robustness to slight code
variations. We propose a novel method called Program Spectral
Similarity (PSS) that reaches a sweet spot in terms of precision,
speed and robustness. Especially, PSS is shown to perform
much better than prior approaches in the program clone search
setting.

Interestingly, while we are primarily interested in a setup
where external function names are not available (e.g., static
libraries, lightweight obfuscation), we show that when they are
available, a simple distance between sets of external function
names beats by far all other approaches considered on medium-
sized repositories of standard Linux binaries, PSS being still
the second one in that setting.

This work opens up several immediate questions, including
in particular the following two that seem promising. First,

13

spectral analysis provides a set of methods that may enhance
clone search heuristics by adding extra features. Second,
external function detection seems to have been underestimated
and may be ”a fast and dirty” approach for program clustering.

REFERENCES

[1] H. A. B. Ahmed, A.-O. Boudraa, and D. Dare-Emzivat, “A joint spec-
tral similarity measure for graphs classification,” Pattern Recognition
Letters, 2019.

[2] H. Alasmary, A. Khormali, A. Anwar, J. Park, J. Choi, A. Abusnaina,
A. Awad, D. Nyang, and D. Mohaisen, “Analyzing and detecting
emerging internet of things malware: A graph-based approach,” IEEE
Internet of Things Journal, 2019.

[3] M. Alhanahnah, Q. Lin, Q. Yan, N. Zhang, and Z. Chen, “Efficient
signature generation for classifying cross-architecture iot malware,”
in 2018 IEEE Conference on Communications and Network Security
(CNS), 2018.

[4] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, “Graph-
based malware detection using dynamic analysis,” Journal in Computer
Virology, 2011.

[5] J. Bai, Q. Shi, and S. Mu, “A malware and variant detection method
using function call graph isomorphism,” Security and Communication
Networks, 2019.

[6] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “Simgnn:
A neural network approach to fast graph similarity computation,” in
Proceedings of the 12th ACM International Conference on Web Search
and Data Mining, 2019.

[7] S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and A. Pretschner,
“Code obfuscation against symbolic execution attacks,” in Proceedings
of the 32nd Annual Conference on Computer Security Applications,
2016.

[8] M. Bourquin, A. King, and E. Robbins, “Binslayer: Accurate compar-
ison of binary executables,” in Proceedings of the 2nd ACM SIGPLAN
Program Protection and Reverse Engineering Workshop, 2013.

[9] D. Bruschi, L. Martignoni, and M. Monga, “Detecting self-mutating
malware using control-flow graph matching,” in International Con-
ference on Detection of Intrusions and Malware, and Vulnerability
Assessment, 2006.

[10] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and H. B. K.
Tan, “Bingo: Cross-architecture cross-os binary search,” in Proceedings
of the 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2016.

[11] B. Cheng, J. Ming, E. A. Leal, H. Zhang, J. Fu, G. Peng, and J.-Y. Mar-
ion, “Obfuscation-Resilient executable payload extraction from packed
malware,” in 30th USENIX Security Symposium (USENIX Security 21),
2021.

[12] F. Chung, Spectral graph theory. American Mathematical Society,
1997.

[13] Y. David, N. Partush, and E. Yahav, “Firmup: Precise static detection
of common vulnerabilities in firmware,” in Proceedings of the 23th
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2018.

[14] Y. David and E. Yahav, “Tracelet-based code search in executables,” in
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2014.

[15] P. Deshpande and M. Stamp, “Metamorphic malware detection using
function call graph analysis,” MIS Review, 2016.

[16] S. H. H. Ding, B. C. M. Fung, and P. Charland, “Asm2vec: Boosting
static representation robustness for binary clone search against code
obfuscation and compiler optimization,” IEEE Symposium on Security
and Privacy (SP), 2019.

[17] Y. Duan, X. Li, J. Wang, and H. Yin, “Learning program-wide code
representations for binary diffing,” in 27th Network and Distributed
System Security Symposium, 2020.

[18] T. Dullien, “Structural comparison of executable objects,” Workshop on
Detection of Intrusions and Malware & Vulnerability Assessment, 2004.

[19] T. Dullien and R. Rolles, “Graph-based comparison of executable
objects,” SSTIC, 2005.

[20] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovre: Efficient
cross-architecture identification of bugs in binary code,” in NDSS, 2016.

[21] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016.

[22] A. Feragen, N. Kasenburg, J. Petersen, M. de Bruijne, and K. Borg-
wardt, “Scalable kernels for graphs with continuous attributes,” 26th
International Conference on Neural Information Processing Systems,
2013.

[23] M. Fyrbiak, S. Wallat, S. Reinhard, N. Bissantz, and C. Paar, “Graph
similarity and its applications to hardware security,” IEEE Transactions
on Computers, 2020.

[24] D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically finding se-
mantic differences in binary programs,” in Proceedings on International
Conference on Information and Communications Security, 2008.

[25] X. Gao, B. Xiao, D. Tao, and X. Li, “A survey of graph edit distance,”
Pattern Analysis and Applications, 2010.

[26] H. HaddadPajouh, A. Dehghantanha, R. Khayami, and K.-K. R. Choo,
“A deep recurrent neural network based approach for internet of things
malware threat hunting,” Future Generation Computer Systems, 2018.

[27] I. U. Haq and J. Caballero, “A survey of binary code similarity,” ACM
Computing Surveys (CSUR), 2021.

[28] X. Hu, S. Bhatkar, K. Griffin, and K. G. Shin, “Mutantx-s: Scalable
malware clustering based on static features,” in Proceedings of the 2013
USENIX Conference on Annual Technical Conference, 2013.

[29] X. Hu, T. cker Chiueh, and K. G. Shin, “Large-scale malware indexing
using function-call graphs,” in Proceedings of the ACM Conference on
Computer and Communications Security, 2009.

[30] Y. Hu, Y. Zhang, J. Li, and D. Gu, “Binary code clone detection
across architectures and compiling configurations,” in IEEE/ACM 25th
International Conference on Program Comprehension (ICPC), 2017.

[31] J. Jang, M. Woo, and D. Brumley, “Towards automatic software lineage
inference,” in Proceedings of the 22nd USENIX Conference on Security,
2013.

[32] I. Jovanović and Z. Stanić, “Spectral distances of graphs,” Linear
Algebra and its Applications, 2012.

[33] B. Kang, T. Kim, H. Kwon, Y. Choi, and E. G. Im, “Malware
classification method via binary content comparison,” in Proceedings
of the 2012 ACM Research in Applied Computation Symposium, 2012.

[34] W. M. Khoo, A. Mycroft, and R. Anderson, “Rendezvous: A search
engine for binary code,” in 10th Working Conference on Mining
Software Repositories (MSR), 2013.

[35] O. Kostakis, J. Kinable, H. Mahmoudi, and K. Mustonen, “Improved
call graph comparison using simulated annealing,” in Proceedings of
the ACM Symposium on Applied Computing, 2011.

[36] N. M. Kriege, P.-L. Giscard, and R. C. Wilson, “On valid optimal
assignment kernels and applications to graph classification,” in 30th
International Conference on Neural Information Processing Systems,
2016.

[37] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Poly-
morphic worm detection using structural information of executables,”
International Workshop on Recent Advances in Intrusion Detection,
2006.

[38] A. Lakhotia, M. D. Preda, and R. Giacobazzi, “Fast location of similar
code fragments using semantic ’juice’,” in Proceedings of the 2nd ACM
SIGPLAN Program Protection and Reverse Engineering Workshop,
2013.

[39] Y. R. Lee, B. Kang, and E. G. Im, “Function matching-based binary-
level software similarity calculation,” in Proceedings of the 2013
Research in Adaptive and Convergent Systems, 2013.

[40] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,” in 36th
International conference on machine learning, 2019.

[41] M. Lindorfer, A. Di Federico, F. Maggi, P. M. Comparetti, and
S. Zanero, “Lines of malicious code: Insights into the malicious soft-
ware industry,” in Proceedings of the 28th Annual Computer Security
Applications Conference, 2012.

14

[42] B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou,
“αdiff: Cross-version binary code similarity detection with dnn,” in
33rd IEEE/ACM International Conference on Automated Software En-
gineering (ASE), 2018.

[43] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applica-
tions to software and algorithm plagiarism detection,” IEEE Transac-
tions on Software Engineering, 2017.

[44] A. Marcelli, M. Graziano, X. Ugarte-Pedrero, and Y. Fratantonio, “How
machine learning is solving the binary function similarity problem,” in
31st USENIX Security Symposium (USENIX Security 22), 2022.

[45] L. Massarelli, G. A. D. Luna, F. Petroni, L. Querzoni, and R. Baldoni,
“Function representations for binary similarity,” IEEE Transactions on
Dependable and Secure Computing, 2021.

[46] J. Ming, D. Xu, Y. Jiang, and D. Wu, “Binsim: Trace-based semantic
binary diffing via system call sliced segment equivalence checking,” in
USENIX Security Symposium, 2017.

[47] J. Ming, D. Xu, and D. Wu, “Memoized semantics-based binary diffing
with application to malware lineage inference,” in IFIP Advances in
Information and Communication Technology, 2015.

[48] B. H. Ng and A. Prakash, “Expose: Discovering potential binary code
re-use,” in 37th IEEE Annual Computer Software and Applications
Conference, 2013.

[49] H.-T. Nguyen, Q.-D. Ngo, and V.-H. Le, “A novel graph-based approach
for iot botnet detection,” International Journal of Information Security,
2020.

[50] G. Nikolentzos, P. Meladianos, S. Limnios, and M. Vazirgiannis, “A
degeneracy framework for graph similarity,” in Proceedings of the
27th International Joint Conference on Artificial Intelligence, IJCAI-
18, 2018.

[51] I. Ojalvo and M. Newman, “Vibration modes of large structures by an
automatic matrix-reduction method,” Aiaa Journal - AIAA J, 1970.

[52] M. Ollivier, S. Bardin, R. Bonichon, and J.-Y. Marion, “How to kill
symbolic deobfuscation for free (or: Unleashing the potential of path-
oriented protections),” in Proceedings of the 35th Annual Computer
Security Applications Conference, 2019.

[53] C. Pang, R. Yu, Y. Chen, E. Koskinen, G. Portokalidis, B. Mao, and
J. Xu, “Sok: All you ever wanted to know about x86/x64 binary
disassembly but were afraid to ask,” in 2021 IEEE Symposium on
Security and Privacy (SP), 2021.

[54] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in IEEE Symposium on
Security and Privacy, 2015.

[55] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow, “Leveraging
semantic signatures for bug search in binary programs,” in Proceedings
of the 30th Annual Computer Security Applications Conference, 2014.

[56] P. Riba, A. Fischer, J. Lladós, and A. Fornés, “Learning graph edit
distance by graph neural networks,” Pattern Recognition, 2021.

[57] A. Sanfeliu and K.-S. Fu, “A distance measure between attributed rela-
tional graphs for pattern recognition,” IEEE Transactions on Systems,
Man, and Cybernetics, 1983.

[58] I. Santos, F. Brezo, J. Nieves, Y. K. Penya, B. Sanz, C. Laorden, and
P. G. Bringas, “Idea: Opcode-sequence-based malware detection,” in
Engineering Secure Software and Systems, F. Massacci, D. Wallach,
and N. Zannone, Eds., 2010.

[59] F. Serratosa, “Fast computation of bipartite graph matching,” Pattern
Recognition Letters, 2014.

[60] J. Su, D. V. Vasconcellos, S. Prasad, D. Sgandurra, Y. Feng, and
K. Sakurai, “Lightweight classification of iot malware based on image
recognition,” in 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), 2018.

[61] R. C. Wilson and P. Zhu, “A study of graph spectra for comparing
graphs and trees,” Pattern Recognition, 2008.

[62] M. Xu, L. Wu, S. Qi, J. Xu, H. Zhang, Y. Ren, and N. Zheng, “A
similarity metric method of obfuscated malware using function-call
graph,” Journal of Computer Virology and Hacking Techniques, 2013.

[63] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural
network-based graph embedding for cross-platform binary code simi-

larity detection,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017.

[64] Z. Xu, B. Chen, M. Chandramohan, Y. Liu, and F. Song, “Spain:
Security patch analysis for binaries towards understanding the pain
and pills,” in IEEE/ACM 39th International Conference on Software
Engineering (ICSE), 2017.

[65] J. Yang, C. Fu, X.-Y. Liu, H. Yin, and P. Zhou, “Codee: A tensor
embedding scheme for binary code search,” IEEE Transactions on
Software Engineering, 2021.

APPENDIX

15

TABLE XV: Scores of methods in scenario I.

Framework CV CO UV UO BV BO
Bsize 0.07 0.06 0.42 0.36 0.31 0.48
Dsize 0.07 0.04 0.37 0.38 0.34 0.49
Shape 0.05 0.04 0.46 0.28 0.58 0.72
SCG 0.15 0.07 0.54 0.36 0.63 0.58
SCFG 0.12 0.08 0.07 0.07 0.13 0.10
GED-0 0.14 0.11 0.58 0.45 0.72 0.82
GED-Labels 0.28 0.25 0.55 0.34 0.71 0.78
SMIT 0.03 0.01 0.09 0.09 0.14 0.10
ISO 0.01 0.01 0.06 0.06 0.02 0.04
CGC 0.12 0.12 0.61 0.44 0.58 0.48
MutantX-S 0.43 0.14 0.63 0.35 0.83 0.53
Asm2vec 0.49 0.38 0.75 0.57 0.85 0.77
Gemini 0.55 0.35 0.57 0.38 0.87 0.59
αDiff 0.24 0.26 0.74 0.61 0.85 0.56
SAFE 0.51 0.41 0.74 0.42 0.91 0.64
Random 0.01 0.01 0.05 0.05 0.05 0.05
FunctionSet 0.85 0.86 0.90 0.91 0.95 0.96
PSS 0.28 0.25 0.57 0.43 0.78 0.73

best method without external function names
best method overall

TABLE XVI: Scores of methods in scenario II.

Framework CV CO UV UO BV BO
Bsize 0.04 0.04 0.30 0.25 0.18 0.32
Dsize 0.04 0.02 0.27 0.24 0.27 0.38
Shape 0.03 0.01 0.27 0.12 0.51 0.65
SCG 0.10 0.03 0.39 0.30 0.58 0.53
SCFG 0.08 0.03 0.06 0.03 0.12 0.10
GED-0 0.11 0.02 0.35 0.28 0.67 0.75
GED-Labels 0.16 0.19 0.40 0.23 0.62 0.65
SMIT 0.02 0.00 0.08 0.07 0.14 0.10
ISO 0.01 0.01 0.03 0.03 0.02 0.02
CGC 0.05 0.04 0.39 0.24 0.51 0.42
MutantX-S 0.14 0.01 0.37 0.13 0.79 0.38
Asm2vec 0.01 0.00 0.03 0.02 0.45 0.37
Gemini 0.15 0.01 0.23 0.05 0.83 0.46
αDiff 0.06 0.00 0.32 0.16 0.74 0.41
SAFE 0.08 0.01 0.25 0.06 0.81 0.42
Random 0.01 0.00 0.02 0.02 0.02 0.02
FunctionSet 0.39 0.52 0.55 0.52 0.87 0.89
PSS 0.16 0.10 0.36 0.28 0.75 0.63

best method without external function names
best method overall

A. Global evaluation

We consider that a higher average score noted in Table V
induces a better precision. Moreover, we assume that lower
absolute correlations for hypothesis H , noted in Table VII,
induce robustness. Finally, we consider that a low total running
time in scenario III, noted in Table X, induces speed. Each
dimension is then transformed using five quartiles to a uniform
distribution.

TABLE XVII: Scores of methods in scenario III.

Framework CV CO UV UO BV BO
Bsize 0.10 0.10 0.35 0.36 0.25 0.39
Dsize 0.06 0.04 0.33 0.39 0.37 0.58
Shape 0.05 0.01 0.38 0.20 0.71 0.76
SCG 0.29 0.06 0.45 0.42 0.77 0.76
SCFG 0.22 0.07 0.08 0.06 0.18 0.18
GED-0 0.31 0.04 0.41 0.41 0.83 0.87
GED-Labels 0.38 0.43 0.53 0.32 0.80 0.80
SMIT 0.06 0.01 0.09 0.09 0.23 0.15
ISO 0.00 0.01 0.03 0.02 0.04 0.01
CGC 0.12 0.10 0.49 0.38 0.71 0.65
MutantX-S 0.38 0.02 0.48 0.30 0.92 0.67
Asm2vec 0.00 0.00 0.02 0.02 0.42 0.45
Gemini 0.31 0.04 0.30 0.12 0.95 0.68
αDiff 0.19 0.00 0.38 0.25 0.87 0.62
SAFE 0.20 0.02 0.32 0.12 0.94 0.64
Random 0.01 0.01 0.03 0.03 0.04 0.04
FunctionSet 0.61 0.69 0.65 0.69 0.96 0.92
PSS 0.39 0.24 0.39 0.42 0.90 0.77

best method without external function names
overall best method

TABLE XVIII: (RQ4) Scores of PSS components across
datasets.

Component CV CO UV UO BV BO
simCG 0.20 0.07 0.45 0.41 0.77 0.77
simFG 0.23 0.15 0.40 0.28 0.71 0.60
PSS 0.28 0.20 0.44 0.38 0.81 0.71

best component, best metric

TABLE XIX: (RQ4) Scores of PSS components across scenar-
ios.

Component Scenario Scenario Scenario Scenario Average
I II III IV

simCG 0.47 0.37 0.49 0.35 0.42
simFG 0.40 0.31 0.47 0.37 0.39
PSS 0.51 0.38 0.52 0.42 0.46

best component, best metric

16

B. RQ5: Impact of external function names

We have seen that the FunctionSet method, which merely
compares the set of external function names, is really powerful.
We investigate if we can combine PSS with FunctionSet.

Methods. We define the new similarity metric SFS, as:

SFS(α, a, b) := αFunctionSet(a, b) + (1− α)PSS(a, b)

SFS goes from FunctionSet to SFS when α increases. We
compute the scores of SFS in relation to α.

Fig. 5: Score of SFS along scenarios when α increases.

Results. Figure 5 shows that, in the first three scenarios, the
average score is reduced when α increases. The three curves
are close to decreasing monotonously. There is no trade-off
leading to a significant advantage over FunctionSet.

C. IoT case study

Fig. 6: Architectures of IoT malware.

The preprocessing of SCG took 1152s in total, while
the preprocessing of PSS took 1002s. For each architecture,
MutantX-S requires writing a specific algorithm that extracts
OPCode bytes from an instruction.

D. Large repositories case study

Fig. 7: Distribution of target platforms.

Figure 7 shows that most programs are security patches
seconded by common platform applications. Then come
platform-specific programs from Windows 10 down to Win-
dows XP.

Fig. 8: Distribution of file extensions.

Figure 8 shows that most programs are dynamic libraries
seconded by executables.

Fig. 9: Histogram of log10 of file kilobytes.

Figure 9 shows program sizes span from a few kilobytes up
to a thousand megabytes. Likewise, Figure 10 illustrates that
programs contain call graphs with a few dozen up to 100,000
nodes.

17

Fig. 10: Histogram of log10 of call graphs number of nodes.

Fig. 11: A restricted plot of call graphs average degree against
their number of nodes.

Figure 11 shows that call graphs are sparse by plotting
the average degree against the number of nodes. The vast
majority of call graphs have an average degree of less than
ten. Furthermore, the average degree does not increase with
the number of nodes.

Fig. 12: Plot of query preprocessing runtimes of PSS against
call graphs number of nodes. The red line is a second-order
polynomial regression with ordinary least squares.

Figure 12 shows the link between query preprocessing
runtime and call graph number of nodes. A regression with a
degree two polynomial achieves a high coefficient of determi-
nation of 0.806. Remind that, as seen in the last paragraph, the
average degree d is constant with n. Hence, Lanczos algorithm
running time, which has complexity O(dn2), is well predicted
by a degree two polynomial.

Fig. 13: Scaling capacity of frameworks.

Figure 13 shows for each framework the average time
per clone search in relation to the repository size. Using
linear regressions, we estimate that PSS would be faster than
MutantX-S on repository sizes superior to 1.5 million samples.

18

