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Convexity, plurisubharmonicity and the strong
maximum modulus principle in Banach spaces

Anne-Edgar Wilke

Abstract. – In this article, I first try to make the known analogy between convexity
and plurisubharmonicity more precise. Then I introduce a notion of strict plurisubhar-
monicity analogous to strict convexity, and I show how this notion can be used to study
the strong maximum modulus principle in Banach spaces. As an application, I define a
notion of Lp direct integral of a family of Banach spaces, which includes at once Bochner
Lp spaces, `p direct sums and Hilbert direct integrals, and I show that under suitable
hypotheses, when p <∞, an Lp direct integral satisfies the strong maximum modulus
principle if and only if almost all members of the family do. While this statement can
be considered as a rewording of several known results, the proof given in this article
has the advantage of being short, enlightening and unified.

1 Introduction

1.1 Convexity and plurisubharmonicity
Plurisubharmonic functions (psh, for short) were introduced independently by Oka
[23, p. 40] and Lelong [19, p. 306, déf. 1]. Since the origins of the theory, it has been
observed that there is a certain analogy between convex functions and psh functions;
in fact, Oka called the latter pseudoconvex functions. To make this analogy apparent,
Bremermann [4, pp. 34-38] collected a list of properties satisfied by convex functions,
and showed that for each of them, there is a corresponding property satisfied by psh
functions.

Here are Bremermann’s main ideas, slightly reformulated. A continuous function
f : R→ R is said to be convex, or sublinear, if for all compact intervals I ⊂ R and for
all affine functions α : I→ R, the inequality f ≤ α holds on I as soon as it holds on the
boundary of I. A continuous function f : Rn→ R is said to be convex, or plurisublinear,
if for all affine maps γ : R→ Rn, the composition f ◦ γ is convex.

In the same way, an upper semicontinuous function f : C→ R∪ {−∞} is said to
be subharmonic if for all connected, smoothly bounded compact sets K ⊂ C and for all
functions α : K→ R continuous and harmonic in the interior of K, the inequality f ≤ α
holds on K as soon as it holds on the boundary of K. An upper semicontinuous function
f : Cn → R∪ {−∞} is said to be plurisubharmonic if for all affine maps γ : C→ Cn,
the composition f ◦ γ is subharmonic.

As Bremermann remarks, convexity and plurisubharmonicity can be defined more
quickly in the following way. A continuous function f : Rn→ R is convex if and only if
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for all affine maps γ : R→ Rn,

f (γ(0))≤
f (γ(−1)) + f (γ(1))

2
.

This amounts to asking that the value of f ◦ γ at the centre of the unit ball of R
be less than its mean on the sphere. Similarly, an upper semicontinuous function
f : Cn→ R∪ {−∞} is psh if and only if for all affine maps γ : C→ Cn,

f (γ(0))≤
1

2π

∫ 2π

0

f (γ(ei t))dt,

which amounts to asking that the value of f ◦ γ at the centre of the unit ball of C be
less than its mean on the sphere.

From the above discussion, it is tempting to conclude, as does Bremermann, that
the analogy between convex functions and psh functions is obtained by replacing Rn

with Cn, real affine maps with complex affine maps, and sublinearity conditions with
subharmonicity conditions. Yet I want to show that this dictionary misses an essential
point and therefore is unsatisfactory.

Indeed, a fundamental result, due to Lelong [19, p. 325, n° 17], states that psh
functions are stable under composition with a holomorphic map, from which one can
define the notion of psh function on a holomorphic manifold. This result does not
appear in Bremermann’s list, which is understandable, since from his point of view,
there is no analogous result for convex functions.

In fact, the natural domain of a convex function is a real affine space, while the
natural domain of a psh function is a holomorphic manifold, or even a complex analytic
space. Therefore, real affine maps do not correspond to complex affine maps, but rather
to holomorphic maps.

Thus it is preferable to define the notion of psh function in the following way. If X
is a holomorphic manifold, an upper semicontinuous function f : X→ R∪ {−∞} is
said to be psh if for all holomorphic maps γ : D→ X,

f (γ(0))≤
1

2π

∫ 2π

0

f (γ(ei t))dt,

where D ⊂ C is the closed unit disc, with the understanding that a map defined on D is
holomorphic if it extends to a holomorphic map on a neighbourhood of D.

In the case X = Cn, if f satisfies this inequality for all affine maps γ : D→ Cn, then
f is psh: this is the contents of Lelong’s result. But this fact is best seen, not as a
definition, but rather as a characterisation, valid in a special case, and which is far from
obvious. We will not need it in this article.

Beyond the aesthetic aspect, a good understanding of the analogy between convexity
and plurisubharmonicity enables one to obtain certain non-trivial results about psh
functions by adapting the proofs of the corresponding, usually easier, statements
concerning convex functions. I hope that the results presented in this article will serve
to illustrate this phenomenon.
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1.2 Strict plurisubharmonicity
A continuous function f : Rn→ R is strictly convex if for all non-constant affine maps
γ : R→ Rn,

f (γ(0))<
f (γ(−1)) + f (γ(1))

2
.

According to Bremermann’s dictionary, this suggests the following definition. An upper
semicontinuous function f : Cn → R ∪ {−∞} is strictly psh if for all non-constant
affine maps γ : C→ Cn,

f (γ(0))<
1

2π

∫ 2π

0

f (γ(ei t))dt.

This is indeed, with a different formulation, Carmignani’s definition [5, pp. 285-286,
def. 1.1 and 1.2] 1. However, this definition is very unsatisfactory: indeed, we will
see an example showing that the class of functions thus obtained is not stable under
composition with a biholomorphism.

It is therefore preferable, according to the principles explained above, to say that
an upper semicontinuous function f : X→ R∪ {−∞} on a holomorphic manifold X is
strictly psh if for all non-constant holomorphic maps γ : D→ X,

f (γ(0))<
1

2π

∫ 2π

0

f (γ(ei t))dt.

We will see several results showing that strict plurisubharmonicity, thus defined, is a
natural notion, analogous to strict convexity.

In the real case, there exists a stronger notion than strict convexity: a function
f : Rn → R is said to be strongly convex if it can be written locally as the sum of a
convex function and a C 2 function ε such that d2ε is a positive definite symmetric
bilinear form at every point.

The analogous notion in the complex case is the following: a function f : X →
R∪ {−∞} is said to be strongly psh if it can be written locally as the sum of a psh
function and a C 2 function ε such that ∂ ∂ ε is a positive definite hermitian form at
every point.

Unfortunately, it is a common practice in the literature to call strongly psh functions
strictly psh. This situation is unhappy, because strong plurisubharmonicity is analogous
to strong convexity, and not to strict convexity.

We will now define three classes of holomorphic manifolds corresponding to the
three notions of plurisubharmonicity introduced above.

Definition. Let X be a holomorphic manifold. A continuous function f : X→ R is called
an exhaustion function if for all a ∈ R, the set {x ∈ X | f (x) ≤ a} is compact. The
manifold X is said to be pseudoconvex (resp. strictly, strongly pseudoconvex) if there
exists a psh (resp. strictly, strongly psh) exhaustion function on X.

1After changing Carmignani’s definition 1.1 so that strictly subharmonic functions are assumed to be
finite on a dense subset, and correcting definition 1.2, which erroneously omits the hypothesis w 6= 0.
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For example, the maximum principle implies that every psh function on a compact
holomorphic manifold is constant on each connected component. Such a manifold is
therefore pseudoconvex, but not strictly pseudoconvex as soon as it has a component of
non-zero dimension. On the other hand, Cn and all its closed submanifolds are strongly
pseudoconvex. I will show in a future work that strictly pseudoconvex manifolds come
up naturally in reduction theory.

I do not know the answer to the following question.

Question. Does there exist a strictly pseudoconvex holomorphic manifold which is not
strongly pseudoconvex?

1.3 The strong maximum modulus principle in Banach spaces
An R-Banach space E is said to be strictly convex if every affine map γ : [−1; 1]→ E
whose image is contained in the unit sphere is constant.

By analogy, it might be tempting to say that a C-Banach space E is strictly convex in
the complex sense if every affine map γ : D→ E whose image is contained in the unit
sphere is constant. This definition was strongly suggested by Thorp and Whitley [24],
and explicitly given by Globevnik [14, p. 175, def. 1].

However, the analogy turns out to be more satisfying if one asks instead that every
holomorphic map γ : D→ E whose image is contained in the unit sphere be constant. In
this case, in order to keep the terminology consistent, we will say that E is strictly psh.

The main result of Thorp and Whitley [24, p. 641, th. 3.1], slightly reformulated,
is that both definitions are actually equivalent, that is, that E is strictly psh if and only
if every affine map γ : D→ E whose image is contained in the unit sphere is constant.
But it is preferable to see this fact, not as a definition, but rather as a non-trivial
characterisation. We will not need it in this article.

Beyond the analogy with strictly convex spaces, the importance of strictly psh spaces
lies in the fact that a C-Banach space is strictly psh if and only if it satisfies the strong
maximum modulus principle, that is, if and only if every holomorphic map from a
connected manifold X to E whose norm has a local maximum is constant.

Strict convexity of an R-Banach space can be characterised in the following way:
(E,‖·‖) is strictly convex if and only if for every (or for one) increasing, strictly convex
map ψ : R+→ R, the composition ψ ◦ ‖·‖ is strictly convex. The analogous statement
for a C-Banach space is the following: (E,‖·‖) is strictly psh if and only if for every (or
for one) strictly convex map ψ : R∪ {−∞}→ R∪ {−∞}, the composition ψ ◦ log‖·‖
is strictly psh.

These two results will give us simple characterisations of strict convexity and strict
plurisubharmonicity of Lp direct integrals, that I will now present.

1.4 Direct integrals
The notion of direct integral used in this article is rather basic, but sufficient to include
at once Bochner Lp spaces, `p direct sums and Hilbert direct integrals. One may consult
[15, pp. 61-62] and [9, pp. 683-686] for a more elaborate theory.
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Let (S,Σ,µ) be a measure space, let E = (Es)s∈S be a measurable family, in a sense
that we will define, of real or complex Banach spaces, and let p ∈ [1;∞]. A section
of E is an element of the product

∏

s∈S Es. Given a section σ satisfying an appropriate
measurability condition, let ‖σ‖p be the p-norm of the function s 7→ ‖σ(s)‖Es

; explicitly,

‖σ‖p =















�∫

S

‖σ(s)‖p
Es

dµ(s)

�
1
p

if p <∞,

ess sup
s∈S

‖σ(s)‖Es
if p =∞.

(1)

Then σ is said to be p-integrable if ‖σ‖p <∞, and the Lp direct integral of the family
E is defined to be the space of p-integrable sections, up to equality almost everywhere,
equipped with the norm ‖·‖p. It is a Banach space, denoted Lp(E ).

If the family E is constant, equal to E, then Lp(E ) is the Bochner space Lp(S,Σ,µ; E).
In the case where E has dimension 1, one recovers Lebesgue Lp spaces.

Suppose that the σ-algebra Σ is discrete, that µ is the counting measure and that
the Es are pairwise distinct. Then Lp(E ) is essentially the `p direct sum of the family E ,
denoted `p(E ); more precisely, Lp(E ) is the closed subspace of `p(E )whose elements are
the sections with countable support, which coincides with `p(E ) except when p =∞
and the set of those s ∈ S such that Es is non-zero is uncountable.

Finally, Hilbert direct integrals correspond to the case where p = 2 and each Es is
equal to one of the spaces `2

n, for n ∈ N, or to `2
∞.

Here are now the results promised. For conciseness purposes, the statements are
slightly less general than what will be proved in the article.

Theorem 1. Suppose that µ is σ-finite, that E is a discrete measurable family of R-Banach
spaces, and that 1< p <∞. The direct integral Lp(E ) is strictly convex if and only if Es

is strictly convex for almost all s.

Theorem 2. Suppose that µ is σ-finite, that E is a discrete measurable family of C-Banach
spaces, and that 1≤ p <∞. The direct integral Lp(E ) is strictly psh if and only if Es is
strictly psh for almost all s.

The notion of discrete family which appears in these statements is, as we will see,
insignificant in practice: indeed, when µ is σ-finite, the existence of a non-discrete
measurable family cannot be proved in ZFC.

Even if we will prove theorems 1 and 2 through entirely parallel methods, it is
important to note that the statements themselves are not rigorously analogous. Indeed,
definition (1) is problematic in this respect, because the true complex analogue of ‖·‖Es

is log‖·‖Es
, and not ‖·‖Es

. An examination of the proofs reveals that this discrepancy is
the origin of the difference between the hypothesis 1< p <∞ in the real case and the
hypothesis 1≤ p <∞ in the complex case.

Let us now give a few immediate consequences of theorems 1 and 2.

Corollary 3. Suppose that µ is non-zero and σ-finite and that 1< p <∞, and let E be
an R-Banach space. The Bochner space Lp(S,Σ,µ; E) is strictly convex if and only if E is.
In particular, the Lebesgue space Lp(S,Σ,µ;R) is strictly convex.
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Corollary 4. Suppose that µ is non-zero and σ-finite and that 1≤ p <∞, and let E be
a C-Banach space. The Bochner space Lp(S,Σ,µ; E) is strictly psh if and only if E is. In
particular, the Lebesgue space Lp(S,Σ,µ;C) is strictly psh.

Corollary 5. Suppose that S is countable, that 1< p <∞, and that the Es are R-Banach
spaces. Then `p(E ) is strictly convex if and only if Es is strictly convex for all s.

Corollary 6. Suppose that S is countable, that 1≤ p <∞, and that the Es are C-Banach
spaces. Then `p(E ) is strictly psh if and only if Es is strictly psh for all s.

It is not difficult to see that corollaries 5 and 6 imply the same statements without
the countability hypothesis on S. Taking this remark into account, it turns out that
theorem 1 is a consequence of corollaries 3 and 5, and that theorem 2 is a consequence
of corollaries 4 and 6: indeed, we will see that Lp direct integrals are in fact `p direct
sums of Bochner Lp spaces. Thus one sees that the notion of direct integral is a means
to state and prove results about `p direct sums and Bochner spaces in a unified way.

Corollary 5 was proved by Day [7, p. 314] [8, p. 520, th. 6] through a simple and
direct method, which can also give corollary 3, as the author remarks [8, p. 521]. This
method can actually be used to prove theorems 1 and 2 when 1< p <∞, but probably
not in the general case, as we will see in the appendix.

Corollary 6 was proved by Jamison, Loomis and Rousseau [18, p. 205, th. 3.15
and p. 208, th. 4.2]. The case 1 < p <∞ is dealt with through a method due to V.
and I. Istrăţescu [17, p. 424, th. 2.4], using Thorp and Whitley’s results and Lumer’s
theory of semi-scalar products. The method used for p = 1 in fact works for all values
of p, but on the other hand it does not yield corollary 4, because it relies on an explicit
description of the dual space of `1(E ) which does not hold in general for Bochner spaces
[10, p. 98, th. 1].

Finally, corollary 4 was proved by Thorp and Whitley when E= C, and by Dilworth
[11, p. 499, th. 2.5] in the general case, using Thorp and Whitley’s results. It is
essentially his method that we will follow to prove theorem 2, but in a conceptual
framework which makes the proof more enlightening, shorter and less technical, and
avoids appealing to Thorp and Whitley’s work.

1.5 Organisation of the article and generalities
The two first sections of part 2 give a few basic facts about convex and psh functions,
emphasising the striking parallelism between the two theories, which is apparent in
definitions as well as in statements and proofs.

The third section proves a form of Jensen’s inequality which is used in the next
section. This result is known, at least in similar contexts.

The last section of part 2, essentially independent from the rest of the article, contains
two results which are intended to show that the notion of strict plurisubharmonicity is
natural and analogous to strict convexity.

Part 3 deals with strictly convex and strictly psh spaces, again insisting on the
parallelism between both theories, and shows the connection to the strong maximum
modulus principle.
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Part 4 develops the notion of direct integral, and, as an application of the concepts
introduced in the article, proves theorems 1 and 2. Finally, the appendix proves the
same theorems again in the case 1< p <∞ using Day’s method.

Recall that a map defined on the closed unit disc D ⊂ C is said to be holomorphic if
it extends to a holomorphic map on a neighbourhood of D.

We will use the fact that the origin of a topological vector space on a non-discretely
valued field has a fundamental system of neighbourhoods whose members are balanced,
that is, stable under multiplication by scalars of absolute value less than 1 [3, I, p. 7,
prop. 4].

A topological affine space is an affine space E whose direction −→E is a topological
vector space. In this case, there is a unique topology one E such that for all x ∈ E, the
bijection −→E → E which maps v to x + v is a homeomorphism.

We will call a topological vector space whose topology can be defined by a norm a
normable space.

The holomorphic manifolds considered in this article are sets equipped with a
holomorphic atlas whose charts have target an open set in a complete C-normable
space. Please refer to [1] or [12, pp. 7-16] about these manifolds.

For Bochner integration theory and Bochner Lp spaces, one may consult the intro-
ductory text [6, pp. 397-404] and the more detailed expositions [10, pp. 41-52] and
[16, pp. 1-30]. Let us remark that Bochner theory, in full generality, enables one to
integrate functions defined on a measure space with values in a complete normable
space.

Acknowledgements. – I am very grateful to Karim Belabas for his guidance
throughout the preparation of this work, and to INRIA for its financial support. Thanks
also to Sébastien Boucksom for his comments on an early version of this article.

2 Functions

2.1 Convex functions
Definition. Let E be a topological R-affine space and X ⊂ E a convex subset. A continu-
ous function f : X→ R is said to be convex if for all affine maps γ : [−1;1]→ E with
values in X,

f (γ(0))≤
f (γ(−1)) + f (γ(1))

2
. (2)

f is said to be strictly convex if the inequality (2) is strict as soon as γ is non-constant.

Proposition 7. Let E1 and E2 be two topological R-affine spaces, X1 ⊂ E1 and X2 ⊂ E2

convex subsets, ϕ : E1→ E2 a continuous affine map such thatϕ(X1) ⊂ X2, and f : X2→ R
a convex function. The composition f ◦ϕ is convex. If ϕ is injective and f is strictly convex,
then f ◦ϕ is strictly convex.

Proof. Immediate.
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Proposition 8 (Maximum principle). Let E be a topological R-affine space and X ⊂ E
a convex open subset. Every convex function f : X → R having a global maximum is
constant.

Proof. Indeed, let M be the maximum of f , and let U = {x ∈ X | f (x) = M}. It is a
non-empty closed set; if we show that it is also open, then we will be able to conclude
that U = X by connectedness.

Thus, let x ∈ U, and let V be a balanced neighbourhood of the origin in −→E such
that x + V is contained in X. Let y ∈ x + V, and let γ : [−1; 1] → E be given by
γ(t) = x + t(y − x); it is an affine map with values in X such that γ(0) = x and
γ(1) = y . Since f is convex,

f (γ(0))≤
f (γ(−1)) + f (γ(1))

2
.

The left side of this inequality is M, and the right side is at most M, since f (γ(−1)) and
f (γ(1)) are at most M. Hence we have equality; therefore, f (γ(−1)) = f (γ(1)) =M,
so f (y) =M, which means that y ∈ U, and finally x + V ⊂ U.

2.2 Plurisubharmonic functions
Definition. Let X be a holomorphic manifold. An upper semicontinuous function
f : X→ R∪ {−∞} is said to be psh if for all holomorphic maps γ : D→ X,

f (γ(0))≤
1

2π

∫ 2π

0

f (γ(ei t))dt. (3)

f is said to be strictly psh if the inequality (3) is strict as soon as γ is non-constant.

Remark. The integral is a well-defined element of R∪ {−∞}, because f is bounded
above on every compact set by semicontinuity.
Remark. In the case where X is an open subset of a complete C-normable space E, if f
satisfies the inequality (3) for all affine maps γ : D→ E with values in X, then f is psh:
see [19, p. 325, n° 17] when E has finite dimension, and [20, p. 172, th. 4.3] in the
general case. On the other hand, it can happen that the inequality (3) is strict for all
non-constant affine maps without f being strictly psh, as the following example shows.
Example. Let f : C→ R∪ {−∞} be a strictly psh function, and let π : C2→ C be the
projection on the second factor. The composition f ◦π is psh by proposition 9, but
not strictly psh, because its composition with the affine map γ : z 7→ (z, 0) is constant.
Let ϕ : C2→ C2 the biholomorphism given by ϕ(z1, z2) = (z1, z2

1 + z2). The preceding
discussion shows that the composition f ◦π ◦ϕ is psh, but not strictly psh. However, if
γ : z 7→ (az + b, cz + d) is an affine map such that

( f ◦π ◦ϕ)(γ(0)) =
1

2π

∫ 2π

0

( f ◦π ◦ϕ)(γ(ei t))dt,

then π ◦ϕ ◦ γ is constant, since f is strictly psh. Thus the map z 7→ (az + b)2 + cz + d
is constant. This implies a = c = 0, so γ is constant.
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Proposition 9. Let X1 and X2 be two holomorphic manifolds, ϕ : X1→ X2 a holomorphic
map and f : X2 → R ∪ {−∞} a psh function. The composition f ◦ ϕ is psh. If the
differential of ϕ is injective outside a discrete subset of X1 and f is strictly psh, then f ◦ϕ
is strictly psh.

Proof. The first claim is immediate. Thus, suppose that dϕ is injective outside a discrete
set D ⊂ X1 and that f is strictly psh, and let γ : D→ X1 be a holomorphic map such
that

( f ◦ϕ)(γ(0)) =
1

2π

∫ 2π

0

( f ◦ϕ)(γ(ei t))dt.

Since f is strictly psh, ϕ ◦γ is constant, so for all z ∈ D, (ϕ ◦γ)′(z) = dϕ(z)(γ′(z)) = 0.
Thus the restriction of γ to the open set U = {z ∈ D | γ′(z) 6= 0} has values in D,
which is discrete; therefore, γ is constant on each connected component of U, hence its
derivative is zero, so U =∅ and γ is constant on D, and thus on D by continuity.

Proposition 10 (Maximum principle). Let X be a connected holomorphic manifold. Every
psh function f : X→ R∪ {−∞} having a global maximum is constant.

Proof. Indeed, let M be the maximum of f , and let U = {x ∈ X | f (x) = M}. It is
a non-empty set, which is closed since f is upper semicontinuous and the condition
f (x) =M is equivalent to f (x)≥M. We will see that U is open, from which we will be
able to conclude that U = X by connectedness.

Thus, let x ∈ U, and let V be a balanced open neighbourhood of the origin in a
complete C-normable space and ϕ a biholomorphism between V and an open neigh-
bourhood of x , satisfying ϕ(0) = x . Let y ∈ ϕ(V), and let γ : D → X be given by
γ(z) = ϕ(z ·ϕ−1(y)); it is a holomorphic map such that γ(0) = x and γ(1) = y . Since
f is psh,

f (γ(0))≤
1

2π

∫ 2π

0

f (γ(ei t))dt.

The left side of this inequality is M, and the right side is at most M, since all the values
f (γ(ei t)) are at most M. Hence we have equality; therefore, for almost all t ∈ [0;2π],
f (γ(ei t)) =M. By semicontinuity, this relation actually holds for all t, so in particular
f (y) =M, which means that y ∈ U, and finally ϕ(V) ⊂ U.

2.3 Jensen’s inequality
Lemma 11. Let E be a topological R-affine space and X ⊂ E a convex open subset, and
let f : X → R be a convex function and x0 ∈ X. There exists a continuous affine map
α : E→ R such that α≤ f and α(x0) = f (x0). If f is strictly convex, then α and f only
coincide at x0.

Proof. Define
C= {(x , t) ∈ E×R | x ∈ X and f (x)< t}.

It is a convex open subset of E × R, which does not contain the point (x0, f (x0)).
According to the Hahn-Banach theorem [3, II, p. 39, th. 1], there exists a closed
hyperplane containing (x0, f (x0)) and not intersecting C. This amounts to saying
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that there exists a continuous affine map α : E→ R and a real number λ such that
α(x0) = λ f (x0) and for all (x , t) ∈ C, α(x)< λt.

We observe that λ 6= 0: indeed, there exists t ∈ R such that (x0, t) ∈ C, so if λ was
zero, we would have both α(x0) = 0 and α(x0)< 0. Thus, by replacing α by λ−1α, one
reduces to λ = 1, in which case the two desired properties α ≤ f and α(x0) = f (x0)
are satisfied.

Let x ∈ X such that α(x) = f (x), and let γ : [−1; 1]→ E be the affine map such
that γ(−1) = x0 and γ(1) = x . Its image is contained in X. Since α is affine and f is
convex,

α(γ(0)) =
α(γ(−1)) +α(γ(1))

2
, f (γ(0))≤

f (γ(−1)) + f (γ(1))
2

. (4)

The inequality α(γ(0)) ≤ f (γ(0)) and the equalities α(x0) = f (x0) and α(x) = f (x)
show that the inequality (4) is an equality. Thus if f is strictly convex, then γ is constant,
so x = x0.

Lemma 12 (Jensen’s inequality). Let E be a complete R-normable space, X ⊂ E a convex
open subset, and f : X→ R a convex function. Let also (S,Σ,µ) be a measure space of
total mass 1 and η : S→ E an integrable map with values in X. The integral

∫

S
ηdµ

belongs to X, and

f

�∫

S

ηdµ

�

≤
∫

S

f ◦ηdµ.

If equality holds and f is strictly convex, then η is essentially constant.

Proof. Let m=
∫

S
ηdµ. That m belongs to X can be seen by writing X as an intersection

of open half-spaces thanks to the Hahn-Banach theorem [3, II, p. 39, th. 1]. According
to lemma 11, there exists a continuous affine map α : E → R such that α ≤ f and
α(m) = f (m). We have

f

�∫

S

ηdµ

�

= α

�∫

S

ηdµ

�

=

∫

S

α ◦ηdµ

≤
∫

S

f ◦ηdµ.

If equality holds, then α ◦η and f ◦η coincide almost everywhere. In the case where
f is strictly convex, lemma 11 then shows that η equals m almost everywhere.

2.4 Relations between convexity and plurisubharmonicity
Theorem 13. Let E be a complete C-normable space and X ⊂ E a convex open subset, and
let f : X→ R be a continuous function. If f is convex, then f is psh, and if f is strictly
convex, then f is strictly psh.
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Proof. Suppose that f is convex and let γ : D→ X be a holomorphic map. According to
Cauchy’s formula and Jensen’s inequality,

f (γ(0)) = f

�

1
2π

∫ 2π

0

γ(ei t)dt

�

≤
1

2π

∫ 2π

0

f (γ(ei t))dt.

This shows that f is psh. If equality holds, in the case where f is strictly convex, γ is
essentially constant on the circle, and thus constant on D by analytic continuation, so
f is strictly psh.
Remark. Theorem 13 shows in particular that every continuous real linear form f :
E→ R is psh. Of course, this special case is a direct consequence of Cauchy’s formula,
which does not require Jensen’s inequality.
Theorem 14. Let E be a complete C-normable space. Let σ be a continuous anti-linear
involution of E, and let ER be the real subspace of E fixed by σ, so that E = ER ⊕ iER.
Denote πR : E→ ER the projection along iER onto ER. Let fR : ER→ R be a continuous
function, and let f = fR ◦πR. Then fR is convex if and only if f is psh, and fR is strictly
convex if and only if f is strictly psh.

Proof. Suppose that fR is convex and let γ : D→ E be a holomorphic map. According
to Cauchy’s formula and Jensen’s inequality,

f (γ(0)) = f

�

1
2π

∫ 2π

0

γ(ei t)dt

�

= fR

�

1
2π

∫ 2π

0

πR(γ(e
i t))dt

�

≤
1

2π

∫ 2π

0

f (γ(ei t))dt.

This shows that f is psh. If equality holds, in the case where fR is strictly convex, πR ◦γ
is essentially constant on the circle, and thus constant by continuity, and this constant
is (πR ◦ γ)(0). If λ : ER → R is a continuous linear form, the same facts are true for
λ ◦πR ◦γ. So this function, which is psh on D, has a maximum; thus it is constant. We
deduce that πR ◦ γ is itself constant on D. Therefore, at every point of D, the image of
the differential of γ is a complex subspace of E contained in iER; but such a subspace is
necessarily zero, thus γ is constant, so f is strictly psh.

Conversely, suppose that f is psh and let γ : [−1;1]→ ER be an affine map. Let
λ : [−1; 1]→ R the linear map such that

λ(1) =
fR(γ(−1))− fR(γ(1))

2
,

and let g = fR ◦ γ+λ, so that

g(0) = fR(γ(0)), g(−1) = g(1) =
fR(γ(−1)) + fR(γ(1))

2
. (5)

11



Let U ⊂ C be the open set defined by the equation −1 < Re(z) < 1, and let U be its
closure. There exists a unique complex affine map eγ : U→ E extending γ; moreover,
πR ◦ eγ= γ ◦Re, so f ◦ eγ= fR ◦ γ ◦Re. Thus the function g ◦Re= f ◦ eγ+λ ◦Re is psh
on U. According to the maximum principle, thanks to the equalities (5),

fR(γ(0))≤
fR(γ(−1)) + fR(γ(1))

2
.

This shows that fR is convex. If equality holds, then g ◦Re is constant on U, so f ◦ eγ
cannot be strictly psh; in the case where f is strictly psh, we deduce that eγ is constant,
thus γ is also constant, so fR is strictly convex.

Corollary 15. A continuous function f : C→ R which is constant on every vertical line is
psh (resp. strictly psh) if and only if its restriction to R is convex (resp. strictly convex).

3 Spaces

3.1 Strictly convex spaces
Proposition 16. Let (E,‖·‖) be a normed R-vector space. The function ‖·‖ : E→ R is
convex.

Proof. This is an immediate consequence of the triangle inequality.

Theorem 17. Let (E,‖·‖) be a normed R-vector space. The following conditions are
equivalent:

1. Every affine map γ : [−1; 1]→ E whose image is contained in the unit sphere is
constant.

2. For all increasing, strictly convex maps ψ : R+ → R, the composition ψ ◦ ‖·‖ is
strictly convex.

3. There exists an increasing, strictly convex mapψ : R+→ R such that the composition
ψ ◦ ‖·‖ is strictly convex.

Proof. Suppose condition 1, and let ψ : R+→ R be an increasing, strictly convex map
and γ : [−1; 1] → E an affine map. By successively using the convexity of ‖·‖, the
monotonicity of ψ and the convexity of ψ, one obtains

ψ(‖γ(0)‖)≤ψ
�‖γ(−1)‖+ ‖γ(1)‖

2

�

≤
ψ(‖γ(−1)‖) +ψ(‖γ(1)‖)

2
.

If equality holds, by using the strict monotonicity and the strict convexity of ψ, one
obtains ‖γ(0)‖= ‖γ(−1)‖= ‖γ(1)‖. Therefore, the function ‖·‖ ◦ γ, which is convex,
has a maximum in the interior of [−1; 1]; thus it is constant. So the image of γ is
contained in a sphere, so γ is constant. This proves condition 2.

12



Condition 2 trivially implies condition 3; suppose that the latter is satisfied and
let ψ : R+ → R be an increasing, strictly convex map such that ψ ◦ ‖·‖ is strictly
convex, and γ : [−1; 1]→ E whose image is contained in the unit sphere of ‖·‖. The
composition ψ ◦ ‖·‖ ◦ γ is constant, so γ is constant by the strict convexity of ψ ◦ ‖·‖,
whence condition 1.

Definition. If the conditions of theorem 17 are satisfied, then (E,‖·‖) is said to be
strictly convex.

3.2 Strictly plurisubharmonic spaces
Proposition 18. Let (E,‖·‖) be a C-Banach space. The function log‖·‖ : E→ R∪ {−∞}
is psh.

Proof. Let γ : D→ C be a holomorphic map, and for r ∈ [0; 1], let N(r) be the number
of zeros of γ whose modulus is less than r. According to Jensen’s formula,

log|γ(0)|=
1

2π

∫ 2π

0

log|γ(ei t)|dt −
∫ 1

0

N(r)
r

dr.

This proves the result when E= C and ‖·‖= |·|; now our aim is to reduce to this case.
Let γ : D→ E be a holomorphic map. According to the Hahn-Banach theorem [3, II, p.
67, cor. 1], there exists a continuous linear form λ : E→ C of norm at most 1 such that
λ(γ(0)) = ‖γ(0)‖. We have

log‖γ(0)‖= log|λ(γ(0))|

≤
1

2π

∫ 2π

0

log|λ(γ(ei t))|dt

≤
1

2π

∫ 2π

0

log‖γ(ei t)‖dt.

Definition. A map ψ : R∪ {−∞}→ R∪ {−∞} is said to be convex if it is continuous
and its restriction to R is finite and convex. If in addition ψ|R is strictly convex, then ψ
is said to be strictly convex.

Remark. Every convex (resp. strictly convex) map ψ : R ∪ {−∞} → R ∪ {−∞} is
increasing (resp. strictly increasing).

The next result is a variation of Jensen’s inequality for functions with values in
R∪ {−∞}.

Lemma 19. Let (S,Σ,µ) be a measure space of total mass 1 and f : S→ R ∪ {−∞}
a measurable function bounded from above, and let ψ : R∪ {−∞} → R∪ {−∞} be a
convex map. We have

ψ

�∫

S

f dµ

�

≤
∫

S

ψ ◦ f dµ.

Moreover, if ψ is strictly convex and both sides are finite and equal, then f is essentially
constant.
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Proof. Let m=
∫

S
f dµ ∈ R∪ {−∞}. A slight extension of lemma 11 shows that there

exists a continuous map α : R∪ {−∞}→ R∪ {−∞} whose restriction to R is affine,
such that α≤ψ and α(m) =ψ(m). We have

ψ

�∫

S

f dµ

�

= α

�∫

S

f dµ

�

=

∫

S

α ◦ f dµ

≤
∫

S

ψ ◦ f dµ.

If both sides are finite and equal, then α ◦ f and ψ ◦ f coincide almost everywhere.
Suppose that ψ is strictly convex. If m is finite, then α and ψ only coincide at m and
possibly at −∞; but in this case f is finite almost everywhere, thus f equals m almost
everywhere. If m= −∞, then ψ(−∞) ∈ R and α is constant, equal to ψ(−∞), so α
and ψ only coincide at −∞, thus f equals −∞ almost everywhere.

Theorem 20. Let (E,‖·‖) be a C-Banach space. The following conditions are equivalent:

1. Every holomorphic map γ : D→ E whose image is contained in the unit sphere is
constant.

2. For all strictly convex mapsψ : R∪{−∞}→ R∪{−∞}, the compositionψ◦ log‖·‖
is strictly psh.

3. There exists a strictly convex map ψ : R ∪ {−∞} → R ∪ {−∞} such that the
composition ψ ◦ log‖·‖ is strictly psh.

Proof. Suppose condition 1, and let ψ : R∪ {−∞}→ R∪ {−∞} be a strictly convex
map and γ : D→ E a holomorphic map. By successively using the fact that log‖·‖ is
psh, the monotonicity of ψ and lemma 19, one obtains

ψ(log‖γ(0)‖)≤ψ

�

1
2π

∫ 2π

0

log‖γ(ei t)‖dt

�

≤
1

2π

∫ 2π

0

ψ(log‖γ(ei t)‖)dt.

If equality holds, according to lemma 19, the function log‖·‖ ◦ γ is essentially constant
on the circle, thus constant by continuity; moreover, by using the strict monotonicity
of ψ, we see that this constant is log‖γ(0)‖. Therefore, the function log‖·‖ ◦ γ, which
is psh on D, has a maximum; thus it is constant. So the image of γ is contained in a
sphere, so γ is constant. This proves condition 2.

Condition 2 trivially implies condition 3; suppose that the latter is satisfied and let
ψ : R∪{−∞}→ R∪{−∞} be a strictly convex map such that ψ◦ log‖·‖ is strictly psh,
and γ : D→ E whose image is contained in the unit sphere of ‖·‖. The composition
ψ ◦ log‖·‖ ◦ γ is constant, so γ is constant since ψ ◦ log‖·‖ is strictly psh, whence
condition 1.
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Definition. If the conditions of theorem 20 are satisfied, then (E,‖·‖) is said to be
strictly psh.
Remark. Thorp andWhitley [24, p. 641, th. 3.1] proved that if condition 1 of theorem 20
is satisfied for all affine maps γ : D→ E, then (E,‖·‖) is strictly psh.
Proposition 21. A C-Banach space (E,‖·‖) which is strictly convex as an R-Banach space
is strictly psh.

Proof. Indeed, if there exists an increasing, strictly convex map ψ : R+→ R such that
ψ ◦ ‖·‖ is strictly convex, then ψ ◦ ‖·‖ = ψ ◦ exp◦ log‖·‖ is strictly psh according to
theorem 13; so we can conclude by using theorem 20, since ψ ◦ exp : R∪ {−∞} →
R∪ {−∞} is strictly convex.

3.3 Plurisubharmonicity and strong maximum modulus principle
Definition. A C-Banach space (E,‖·‖) satisfies the strong maximum modulus principle
if every holomorphic map η from a connected holomorphic manifold X to E such that
‖η‖ has a local maximum is constant.
Proposition 22. AC-Banach space (E,‖·‖) satisfies the strongmaximummodulus principle
if and only if it is strictly psh.

Proof. If (E,‖·‖) satisfies the strong maximum modulus principle, then clearly every
holomorphic map γ : D→ E whose image is contained in the unit sphere is constant,
so (E,‖·‖) is strictly psh.

Conversely, suppose that (E,‖·‖) is strictly psh, let X be a connected holomorphic
manifold and η : X → E a holomorphic map such that ‖η‖ has a local maximum at
x ∈ X, and let us show that η is constant.

By analytic continuation, it is enough to show that η is constant near x . Thus
we can assume that ‖η‖ has a global maximum at x , in which case this function is
constant, since it is psh; moreover, we can assume that there exists a biholomorphism
ϕ between a balanced open neighbourhood of the origin in a complete C-normable
space and X, satisfying ϕ(0) = x . Now let y ∈ X. The holomorphic map γ : D → E
given by γ(z) = η(ϕ(z ·ϕ−1(y))) is constant, since its image is contained in a sphere;
in particular, γ(0) = γ(1), that is, η(x) = η(y), which proves that η is constant.

4 Direct integrals
In this part, we let K denote R or C.

4.1 Measurability
Let (S,Σ,µ) be a measure space and E = (Es)s∈S a family of K-Banach spaces, and
define

ΦE = {Es | s ∈ S}, ΠE =
∏

s∈S

Es, ΩE =
∐

E∈ΦE

E.
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Equip ΦE with the discrete σ-algebra, ΠE with the product topology, and ΩE with the
disjoint union topology and with the corresponding Borel σ-algebra.
Remarks. ΠE is canonically identified with a closed subset of ΩS

E . Also, ΩE is metrisable,
as a disjoint union of metrisable spaces [2, IX, p. 16].

Definition. If E , seen as a map from S to ΦE , is measurable, then it is said to be a
measurable family of K-Banach spaces.

Definition. A section of E is an element of ΠE . A measurable section of E is a section
which, seen as a map from S to ΩE , is measurable.

Definition. Let σ be a measurable section of E , and let σ(S)∗ ⊂ ΩE be the set of its
non-zero values.

• If σ(S)∗ is finite, then σ is said to be simple.

• If σ(S)∗ is separable, then σ is said to be strongly measurable.

Proposition 23. If the family E has a measurable section, then it is measurable.

Proof. Indeed, if σ is a measurable section of E , then for all subsets X ⊂ ΦE , the inverse
image of the open set

∐

E∈X E ⊂ ΩE under σ is E−1(X); thus this set is measurable, so E
is measurable.

Proposition 24. For each E ∈ ΦE , let vE be an element of E. For all measurable sections σ
of E , the map S→ R+ given by s 7→ ‖σ(s)− vEs

‖Es
is measurable.

Proof. For all E ∈ ΦE , the map ‖· − vE‖E is continuous on E. The maps ‖· − vE‖E induce
a continuous map ΩE → R+, which is thus measurable. By composing this map with
a measurable section σ of E , one obtains the map defined in the statement, which is
therefore measurable.

Corollary 25. For all measurable sections σ of E , the map s 7→ ‖σ(s)‖Es
is measurable.

Proposition 26. The set of measurable sections and the set of strongly measurable sections
of E are sequentially closed in ΠE .

Proof. Let (σn)n∈N be a convergent sequence of measurable sections. Its limit σ is
measurable, as a pointwise limit of measurable functions with values in a metrisable
space [6, p. 245, prop. 8.1.10].

If in addition the σn are strongly measurable, then for all n ∈ N, σn(S)∗ is separable;
thus the union

⋃

n∈Nσn(S)∗ is also separable, as well as its closure; but the latter contains
σ(S)∗, which is therefore separable. So σ is strongly measurable.

Notation. Given E ∈ ΦE , A ∈ Σ such that E is identically E on A, and v ∈ E, we will
denote σA,v the section of E which has value v on A and zero elsewhere.

Theorem 27. Suppose that E measurable.

1. The simple sections of E are the finite sums of sections of the form σA,v. In particular,
the set of simple sections is a vector subspace of ΠE .
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2. Every strongly measurable section of E is the limit of a sequence (σn)n∈N of simple
sections such that for all n ∈ N and for all s ∈ S, ‖σn(s)‖Es

≤ ‖σ(s)‖Es
.

In particular, the set of strongly measurable sections is the sequential closure of the
set of simple sections; thus it is a vector subspace of ΠE .

Proof of assertion 1. For all simple sections σ,

σ =
∑

v∈σ(S)∗
σAv ,v,

where Av = σ−1({v}). Conversely, consider a section of the form

σ =
∑

i∈I

σA i ,vi
,

where I is a finite set. After rearranging, we can assume that the A i are non-empty and
pairwise disjoint and that the vi are non-zero and pairwise distinct. Denote A the union
of the A i. Given any subset Z ⊂ ΩE , we have

σ−1(Z) =

�

⋃

vi∈Z

A i

�

∪
�

E−1({E ∈ ΦE | 0E ∈ Z})\A
�

,

which shows that σ is measurable. Moreover, σ(S)∗ = {vi | i ∈ I} is finite, so σ is a
simple section.

Proof of assertion 2. Let σ be a strongly measurable section of E , let D ⊂ σ(S)∗ be a
dense countable subset, and let (vn)n∈N be an enumeration of the set Q×D of non-zero
rational multiples of elements of D. For n ∈ N and s ∈ S, define

Rn(s) = {k ∈ J0; nK | vk ∈ Es and ‖vk‖Es
≤ ‖σ(s)‖Es

}.

If Rn(s) = ∅, define σn(s) = 0Es
; otherwise, let k be the smallest element of Rn(s)

minimising the quantity ‖σ(s)−vk‖Es
, and defineσn(s) = vk. Then ‖σn(s)‖Es

≤ ‖σ(s)‖Es
,

and the sequence (σn)n∈N converges to σ.
Moreover, for all n ∈ N and for all k ∈ J0; nK, the set An,k = σ−1

n ({vk}) is defined
by the condition vk ∈ Es and by inequalities involving the quantities ‖σ(s)‖Es

and
‖σ(s) − vl‖Es

, for l ∈ J0; nK. Thus, thanks to proposition 24, it is measurable, so
σn =

∑n
k=0σAn,k ,vk

is a simple section.

4.2 Integrability
Henceforth, we assume that E is measurable, and we fix p ∈ [1;∞].

Definition. Let σ be a measurable section of E . We denote ‖σ‖p the p-norm of the
function s 7→ ‖σ(s)‖Es

. We say that σ is p-integrable if ‖σ‖p <∞.

Proposition 28. The set L p(E ) of strongly measurable p-integrable sections of E is a
vector subspace of ΠE , and ‖·‖p is a seminorm on L p(E ), whose kernel is the space N (E )
of strongly measurable sections equal to zero almost everywhere.

17



Proof. The fact that the function ‖·‖p on the space of strongly measurable sections is
positive, homogeneous and satisfies the triangle inequality comes from the correspond-
ing properties for the norms ‖·‖Es

and for the p-norm of real measurable functions. This
shows that L p(E ) is a vector subspace of ΠE and that ‖·‖p is a seminorm on L p(E ).
The fact that the kernel of ‖·‖p is N (E ) again comes from the corresponding property
for the p-norm of real measurable functions.

Definition. The Lp direct integral of the family E , denoted Lp(E ), is the quotient
L p(E )/N (E ), equipped with the norm ‖·‖p.

Example. If the family E is constant, equal to E, then Lp(E ) is the Bochner space
Lp(S,Σ,µ; E). In particular, if E=K, then Lp(E ) is the Lebesgue space Lp(S,Σ,µ;K).
Example. Suppose that Σ is discrete, that µ is the counting measure, and that the Es are
pairwise distinct. Then Lp(E ) is the closed subspace `p

cnt(E ) of `p(E ) whose elements
are the sections with countable support. Note that `p

cnt(E ) = `p(E ) except when p =∞
and the set of those s ∈ S such that Es is non-zero is uncountable.
Example. When all the Es are Hilbert spaces, L2(E ) is a Hilbert space. In particular,
one recovers the notion of direct integral of Hilbert spaces, as it is defined in [22, pp.
22-27]. Indeed, given a fieldH of Hilbert spaces along with a coherence α, according
to the terminology of that book, one obtains canonically a family E whose terms are
equal to one of the spaces `2

n, for n ∈ N, or `2
∞. If H is Borel, then E is measurable,

and L2(µ;H ,α) is identified with L2(E ).
The next result generalises the first two examples above.

Theorem 29. For E ∈ ΦE , let SE = E−1({E}), and denote ΣE and µE the restriction of Σ
and µ to SE. There exists a canonical isometric isomorphism

Lp(E )' `p
cnt
�

(Lp(SE,ΣE,µE; E))E∈ΦE
�

.

Proof. First, for σ ∈ ΠE and E ∈ ΦE , denote σE : SE→ E the restriction of σ to SE. The
map σ 7→ (σE)E∈ΦE is an isomorphism

ΠE '
∏

E∈ΦE

ESE .

Next, the image of the space of strongly measurable sections under this isomorphism
is the space of families with countable support of strongly measurable sections.

Indeed, if σ is strongly measurable, then (σE)E∈ΦE is a family of strongly measurable
sections, which has countable support since σ(S)∗ is separable. Conversely, if (σE)E∈ΦE
is a family with countable support of strongly measurable sections, the measurability
of E implies that for all E ∈ ΦE , the section of E obtained by extending σE by zero is
strongly measurable. Therefore, σ is strongly measurable, being the sum of a countable
family of strongly measurable sections.

Finally, if σ is strongly measurable, then

‖σ‖p =




�

‖σE‖p

�

E∈ΦE





p.
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Thus one obtains an isometric isomorphism

L p(E )' `p
cnt
�

(L p(SE,ΣE,µE; E))E∈ΦE
�

.

To conclude, it remains only to take the quotient in both sides by the kernel of the
corresponding seminorm.

Definition. The family E is said to be discrete if the image measure of µ under E
is concentrated on the set of singletons of positive measure. That is, if X = {E ∈
ΦE | µ(SE) = 0}, then µ(E−1(X)) = 0.

Remark. Suppose that µ is σ-finite and that E is not discrete. Then there exists a
measurable subset of E−1(X) with finite non-zero measure. The image measure under
E of the restriction of µ to this subset is a finite non-zero measure on ΦE , for which
every singleton has measure zero. This implies that the cardinal of ΦE is greater than
or equal to some inaccessible cardinal [13, pp. 58-59]. Therefore, when µ is σ-finite,
the existence of a measurable, non-discrete family E cannot be proved in ZFC. Thus, in
practice, all measurable families are discrete in this situation.

Proposition 30. Suppose that µ is σ-finite and that E is discrete. Then for almost all
s ∈ S, there exists an isometric embedding Es→ Lp(E ).

Proof. One only has to show that every E ∈ ΦE such that µ(SE)> 0 can be imbedded into
Lp(E ). Now, if this condition is satisfied, since µ is σ-finite, there exists a measurable
subset A ⊂ SE of finite non-zero measure, and the map which associates to each v ∈ E
the class of µ(A)− 1

pσA,v in Lp(E ) is an isometric embedding.

4.3 Completeness of direct integrals
Definition. Let X be a separable topological space, and let σ : X→L p(E ) be a map
such that σ(·)(s) : X→ Es is continuous for all s ∈ S. We call σ a parametric section,
and we denote ‖σ‖p the p-norm of the function s 7→ supx∈X‖σ(x)(s)‖Es

.

Remark. This function is measurable, because if (xn)n∈N is a dense sequence of points
of X, then supx∈X‖σ(x)(s)‖Es

= supn∈N‖σ(xn)(s)‖Es
.

Theorem 31. Let (σn)n∈N be a sequence of parametric sections such that
∑∞

n=0‖σn‖p <∞.
There exists a parametric section σ : X→L p(E ) such that

lim
N→∞









σ−
N
∑

n=0

σn









p

= 0.

Moreover, for almost all s ∈ S, the series of functions
∑∞

n=0σn(·)(s) : X → Es converges
normally to σ(·)(s).

Proof. Let f : S→ [0;∞] be the measurable function defined by

f (s) =
∞
∑

n=0

sup
x∈X
‖σn(x)(s)‖Es

.
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We have ‖ f ‖p ≤
∑∞

n=0‖σn‖p <∞, so f is finite almost everywhere. For x ∈ X and
s ∈ S, define

σ(x)(s) =











∞
∑

n=0

σn(x)(s) if f (s)<∞,

0 otherwise.

For all s ∈ S such that f (s)<∞, we have

sup
x∈X









σ(x)(s)−
N
∑

n=0

σn(x)(s)









Es

≤
∞
∑

n=N+1

sup
x∈X
‖σn(x)(s)‖Es

.

Therefore,








σ−
N
∑

n=0

σn









p

≤
∞
∑

n=N+1

‖σn‖p

−−−→
N→∞

0.

Finally, σ is a parametric section having all the properties claimed.

Corollary 32. Lp(E ) is a K-Banach space.

Proof. Indeed, theorem 31 applied to a one-point space X shows that every absolutely
convergent series of elements of Lp(E ) is convergent, from which the result follows
according to [2, IX, p. 37, cor. 2].

4.4 Strict convexity of direct integrals
In this section, we assume that K= R.

Lemma 33. For every affine map γ : [−1;1]→ Lp(E ), there exists a parametric section
eγ : [−1;1]→L p(E ) lifting γ such that for all s ∈ S, the map eγ(·)(s) : [−1; 1]→ Es is
affine.

Proof. There exist elements γ0 and γ1 of Lp(E ) such that for all t ∈ [−1;1],

γ(t) = γ0 + tγ1.

Let eγ0 and eγ1 be elements of L p(E ) lifting γ0 and γ1, and for t ∈ [−1;1], define

eγ(t) = eγ0 + teγ1.

Then eγ is a lifting of γ satisfying the required conditions.

Theorem 34. Suppose that 1< p <∞.

1. If Es is strictly convex for almost all s ∈ S, then Lp(E ) is strictly convex.

2. Suppose that µ is σ-finite and that E is discrete. If Lp(E ) is strictly convex, then Es

is strictly convex for almost all s ∈ S.
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Proof. Suppose that Es is strictly convex for almost all s, and let us show that Lp(E ) is
strictly convex. According to theorem 17, this amounts to assuming that ‖·‖p

Es
is strictly

convex for almost all s, and we have to show that ‖·‖p
p is strictly convex.

Let γ : [−1;1]→ Lp(E ) be an affine map, and let eγ be a lifting of γ satisfying the
statement of lemma 33. We have

‖γ(0)‖p
p =

∫

S

‖eγ(0)(s)‖p
Es

dµ(s)

≤
∫

S

‖eγ(−1)(s)‖p
Es
+ ‖eγ(1)(s)‖p

Es

2
dµ(s)

=
‖γ(−1)‖p

p + ‖γ(1)‖
p
p

2
.

If equality holds, then for almost all s,

‖eγ(0)(s)‖p
Es
=
‖eγ(−1)(s)‖p

Es
+ ‖eγ(1)(s)‖p

Es

2
,

thus eγ(·)(s) is constant for almost all s, so γ is constant. This proves assertion 1.
Assertion 2 is a consequence of proposition 30.

4.5 Strict plurisubharmonicity of direct integrals
In this section, we assume that K= C.
Lemma 35. For every holomorphic map γ : D→ Lp(E ), there exists a parametric section
eγ : D → L p(E ) lifting γ such that for almost all s ∈ S, the map eγ(·)(s) : D → Es is
holomorphic.

Proof. There exists a sequence (γn)n∈N of elements of Lp(E ) and a real number r > 1
such that

∑∞
n=0 rn‖γn‖p <∞ and for all z ∈ D,

γ(z) =
∞
∑

n=0

znγn.

Let (eγn)n∈N be a sequence of elements ofL p(E ) lifting (γn)n∈N. According to theorem 31,
applied to the topological space rD and to the parametric sections z 7→ zn

eγn, there
exists a parametric section eγ : D → L p(E ) lifting γ such that for almost all s ∈ S,
∑∞

n=0 rn‖eγn(s)‖Es
<∞, and for all z ∈ D,

eγ(z)(s) =
∞
∑

n=0

zn
eγn(s).

Then eγ is a lifting of γ satisfying the required conditions.
Lemma 36 ([21, p. 122, lemma 9.2]). Let K be a compact metric space and Y a
metrisable topological space, equipped with their Borel σ-algebrasB(K) andB(Y), and
let f : K × S → Y. Suppose that f (x , ·) : S → Y is measurable for all x ∈ K and that
f (·, s) : K→ Y is continuous for all s ∈ S. Then f is measurable with respect to the product
σ-algebraB(K)×Σ.
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Proof. For n ≥ 1, let K =
∐

i∈In
Kn,i be a finite partition of K into Borel subsets of

diameter less than 1
n , and for i ∈ In, let xn,i ∈ Kn,i. Let fn : K× S→ Y defined by

fn(x , s) =
∑

i∈In

1Kn,i
(x) f (xn,i, s),

where 1Kn,i
is the indicator function of Kn,i. Then fn is measurable with respect to

B(K)×Σ and the sequence ( fn)n≥1 converges pointwise to f , which implies the desired
result according to [6, p. 245, prop. 8.1.10].

Theorem 37. Suppose that µ is σ-finite and that 1≤ p <∞.

1. If Es is strictly psh for almost all s ∈ S, then Lp(E ) is strictly psh.

2. Suppose that E is discrete. If Lp(E ) is strictly psh, then Es is strictly psh for almost
all s ∈ S.

Proof. Suppose that Es is strictly psh for almost all s, and let us show that Lp(E ) is
strictly psh. According to theorem 20, this amounts to assuming that ‖·‖p

Es
is strictly

psh for almost all s, and we have to show that ‖·‖p
p is strictly psh.

Let γ : D→ Lp(E ) be a holomorphic map, and let eγ be a lifting of γ satisfying the
statement of lemma 35. We have

‖γ(0)‖p
p =

∫

S

‖eγ(0)(s)‖p
Es

dµ(s)

≤
∫

S

1
2π

∫ 2π

0

‖eγ(ei t)(s)‖p
Es

dt dµ(s)

=
1

2π

∫ 2π

0

‖γ(ei t)‖p
p dt,

thanks to lemma 36, applied to the function (t, s) → ‖eγ(ei t)(s)‖p
Es
, and to Fubini’s

theorem. If equality holds, then for almost all s,

‖eγ(0)(s)‖p
Es
=

1
2π

∫ 2π

0

‖eγ(ei t)(s)‖p
Es

dt,

thus eγ(·)(s) is constant for almost all s, so γ is constant. This proves assertion 1.
Assertion 2 is a consequence of proposition 30.

A Day’s method
The purpose of this appendix is to prove theorems 34 and 37 again, under the hypothesis
1< p <∞, by Day’s method [8, p. 520, th. 6]. In both cases, we will not come back
to assertion 2, which is a consequence of proposition 30.

Proof of theorem 34. Let us begin by observing that a normed R-vector space (E,‖·‖)
is strictly convex if and only if for all affine maps γ : [−1; 1] → E, the equalities
‖γ(0)‖= ‖γ(−1)‖= ‖γ(1)‖ imply γ(−1) = γ(1).
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Now let γ : [−1;1] → Lp(E ) be an affine map, let eγ be a lifting of γ satisfying
the statement of lemma 33, let eρ : [−1;1] → L p(S,Σ,µ;R) be the map defined by
eρ(t)(s) = ‖eγ(t)(s)‖Es

, and let ρ : [−1; 1]→ Lp(S,Σ,µ;R) be the composition of eρ and
the quotient map. For all s ∈ S, since eγ(·)(s) is affine and ‖·‖Es

is convex,

eρ(0)(s)≤
eρ(−1)(s) + eρ(1)(s)

2
. (6)

Therefore,

‖γ(0)‖p = ‖ρ(0)‖p

≤








ρ(−1) + ρ(1)
2









p

≤
‖ρ(−1)‖p + ‖ρ(1)‖p

2

=
‖γ(−1)‖p + ‖γ(1)‖p

2
.

If ‖γ(0)‖p = ‖γ(−1)‖p = ‖γ(1)‖p, then we have equality, so the inequality (6) is an
equality for almost all s; moreover,









ρ(−1) + ρ(1)
2









p

= ‖ρ(−1)‖p = ‖ρ(1)‖p. (7)

Since Lp(S,Σ,µ;R) is strictly convex, the equalities (7) imply ρ(−1) = ρ(1). Therefore,
for almost all s, eρ(0)(s) = eρ(−1)(s) = eρ(1)(s), that is, ‖eγ(0)(s)‖Es

= ‖eγ(−1)(s)‖Es
=

‖eγ(1)(s)‖Es
. If Es is strictly convex for almost all s, this shows that γ(−1) = γ(1), so

Lp(E ) is strictly convex.
Lemma 38. Let (E,‖·‖) be a strictly convex R-Banach space, (S,Σ,µ) a measure space of
total mass 1, and η : S→ E an integrable map. We have









∫

S

ηdµ









≤
∫

S

‖η‖dµ.

If equality holds and ‖η‖ is constant, then η is essentially constant.

Proof. The inequality is clear. Suppose that equality holds and that ‖η‖ is constant,
and let ψ : R+→ R be an increasing, strictly convex map. We have

ψ

�







∫

S

ηdµ









�

=ψ

�∫

S

‖η‖dµ

�

=

∫

S

ψ(‖η‖)dµ.

Lemma 12 then shows that η is essentially constant, since ψ◦‖·‖ is strictly convex.
Proof of theorem 37. Let us begin by observing that a C-Banach space (E,‖·‖) is strictly
psh if and only if for all holomorphic maps γ : D→ E, the equalities ‖γ(0)‖= ‖γ(z)‖,
for |z|= 1, imply that γ is constant on the circle.
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Now let γ : D→ Lp(E ) be a holomorphic map, let eγ be a lifting of γ satisfying the
statement of lemma 35, let eρ : D→L p(S,Σ,µ;R) be the map defined by eρ(z)(s) =
‖eγ(z)(s)‖Es

, and let ρ : D → Lp(S,Σ,µ;R) be the composition of eρ and the quotient
map. For almost all s ∈ S, since eγ(·)(s) is holomorphic and ‖·‖Es

is psh,

eρ(0)(s)≤
1

2π

∫ 2π

0

eρ(ei t)(s)dt. (8)

Therefore, thanks to lemma 36, applied to the function (t, s) 7→ eρ(ei t)(s), and to the
result [16, p. 26, prop. 1.2.25] about pointwise calculation of integrals with values in
an Lp space,

‖γ(0)‖p = ‖ρ(0)‖p

≤








1
2π

∫ 2π

0

ρ(ei t)dt









p

≤
1

2π

∫ 2π

0

‖ρ(ei t)‖pdt

=
1

2π

∫ 2π

0

‖γ(ei t)‖pdt.

If ‖γ(0)‖p = ‖γ(z)‖p for |z| = 1, then we have equality, so the inequality (8) is an
equality for almost all s; moreover, for |z|= 1,









1
2π

∫ 2π

0

ρ(ei t)dt









p

= ‖ρ(z)‖p. (9)

Since Lp(S,Σ,µ;R) is strictly convex, the equalities (9) and lemma 38 imply that ρ is
essentially constant on the circle. Thus there exists a dense sequence (zn)n∈N of points
of the circle such that for all n ∈ N, for almost all s ∈ S, eρ(zn)(s) = eρ(z0)(s). We deduce
that for almost all s, for all n ∈ N, eρ(zn)(s) = eρ(z0)(s); so, by continuity, for almost all s,
for |z|= 1, eρ(0)(s) = eρ(z)(s), that is, ‖eγ(0)(s)‖Es

= ‖eγ(z)(s)‖Es
. If Es is strictly psh for

almost all s, this shows that γ is constant on the circle, so Lp(E ) is strictly psh.
Remark. In the proof of theorem 34, the strict convexity of Lp(S,Σ,µ;R) and the
equalities (7) enable one to conclude that ρ(−1) = ρ(1); the reason is that there exists
an affine map [−1; 1]→ Lp(S,Σ,µ;R) agreeing with ρ at −1 and 1. In the proof of
theorem 37, if there existed a holomorphic map D→ Lp(S,Σ,µ;C) agreeing with ρ on
the circle, one could use the strict plurisubharmonicity of this space and the equalities
(9) to conclude that ρ is constant on the circle, in which case the reasoning would
remain valid for p = 1. Unfortunately, this is not the case a priori, which suggests that
Day’s method cannot be used to prove theorem 37 in full generality.
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