Arturo Mendoza

Orestis Friderikos

Roger Trullo

Emmanuel Baranger

Design of Artificial Neural Networks for Damage Estimation of Composite Laminates: Application to Delamination Failures in Ply Drops

Keywords: Manifold learning, Artificial Neural Networks (ANN), Nonlinear finite element analysis, Damage mechanics, Neural architecture learning

This work proposes a data driven approach which utilizes Artificial Neural Networks (ANN) in conjunction with parametric non-linear finite element analysis. The aim is to provide a low cost numerical counterpart to the expensive experimental testing of advanced composite laminates. The training data of ANN are obtained from physical based modeling of the damage evolution and associated delamination failures of ply drops. In contrast to a black-box ANN modeling approach, the core of this study concerns the development of a method for determining an optimal neural architecture. More specifically, we employed a random search handcrafted methodology for the neural net topology learning based on exploration and experimentation. This methodology is enhanced by a detailed statistical analysis used to make inferences about the procedural generation of architectures. In the same context, a series of experiments are performed to obtain an optimal set of hyperparameters to achieve a good performance in the training dataset. Furthermore, a visualization of the respective manifolds of the ANNs hidden layers is provided using two popular dimensionality reduction techniques, namely PCA and t-SNE, so as to transform the network layer output data into 2D representations. Additional tests, among others, regarding the network ability to generalize to unseen data, showed that the optimal well-trained neural network is accurate and robust enough for near real-time predictions of the various damage evolution patterns, and outperforms other data driven methods under comparison.

Introduction

The main goal of the high-speed thermoforming Quilted Stratum Process (QSP [START_REF] Guillon | QSP : An innovative process based on tailored preformsfor low cost and fast production of optimized thermoplastic composite parts[END_REF] is to produce loadand weight-optimized multi-oriented, multi-thickness net shape composite parts. The pilot QSP production manufacturing line is a multi-step laminate optimization procedure. As the process title name indicates, "Quilted" refers to the precut patches of thermoplastic tape, while "Stratum" refers to their orientation and layering. Despite the great versatility of composite design offered by the QSP, significant challenges arise for assembling the discontinuous composite layers (patches) of various orientations and shapes. Moreover, the presence of numerous patches with variable thicknesses are responsible for interlaminar composite failures, namely delamination initiation/growth mechanisms of the internal ply drop-off laminates.

To circumvent the damage failure issues addressed above, providing robust and accurate prediction tools for the QSP design is of paramount importance. It is worth noting that high efficiency design and manufacturing technologies are progressively targeting on reducing the expensive laboratory experiments with fast and low cost numerical simulations. This is due to the advances in numerical methods, modeling techniques and high performance computing which enable simulations of advanced composite structures with significant accuracy. Nevertheless, design and manufacturing optimization still remain impractical due to the computational burden of the exploration of vast design spaces. Indeed, as it is often encountered in engineering, the design space is a result of combination of many parameters which leads to long-running simulations.

Data-driven models, also known as metamodels are employed to provide surrogates of high demanding numerical simulations. These approximations are created using data directly derived from a given set of physics based simulation models covering different points in the design space [START_REF] Queipo | Surrogate-based analysis and optimization[END_REF]. In these cases, a smooth solution of the nonlinear simulations is assumed (i.e., nonexistence of strong discontinuities or sudden jumps). As such, the problem is alike to "manifold learning" over a multidimensional parametric design space. As such, it is possible to interpolate for any combination of design parameters with reasonable effectiveness, i.e., providing a faithful response in a much reduced computation time. Metamodeling techniques rely on a dataset obtained by an efficient sampling of the design space which is addressed via Design of Computer Experiments (DCE).

In a previous work by Friderikos et al. [START_REF] Friderikos | Regularized least squares for the building of a sizing criterion based on damage mechanics[END_REF], a data driven approach combining regularized regression models and finite element analysis was developed to minimize the exhaustive experimental testing as well as to control the complexity of damage patterns of thermoplastic QSP composite laminates. This methodology was shown to be able to predict the damage evolution of internal ply drop laminates. It was found, that these laminates are one of the key substructures that drove the failure mechanisms in a large scale composite structure of interest. The challenge in the above analysis was to model the actual physical behavior of the laminate, and thus to provide accurate failure predictions with high level of confidence. Specifically, least squares regression (classical and multistage) were enhanced either with Tikhonov (L 2 -norm penalty function) or Truncated Singular Value Decomposition (TSVD) regularization to combat overfitting due to superfluous regressors. The study considered the delamination initiation and premature damage growth mechanisms under various material, geometrical and loading conditions which define the design variables under consideration. To this end, high nonlinear FEM simulations have been utilized for the prediction of the complex failure modes. As stated by Friderikos et al. [START_REF] Friderikos | Regularized least squares for the building of a sizing criterion based on damage mechanics[END_REF], even though only delamination failure is taken into account, other interlaminar mechanisms described at the meso-scale can be incorporated into the FEM model as well. Moreover, the proposed methodology therein can be applied to other critical laminate substructures, i.e., skin-stiffener joints, external ply drops, corners, etc.

There have been numerous works on manifold learning for composite structures. An overview of how different types of machine learning algorithms can be applied to accelerate composite research is presented in Chen and Gu [START_REF] Chen | Machine learning for composite materials[END_REF]. As stated by the authors, this framework is envisioned to revolutionize approaches to design and optimize composites for the next generation of materials with unprecedented properties. In the following we refer to a non-exhaustive literature review on manifold learning focusing on ANN. A procedure has been developed for characterizing and detecting four different types of delaminations in composite structures using a combination of analysis techniques, a strain-based damage index, ANN and genetic algorithms [START_REF] Deenadayalu | Characterization and Detection of Delamination in Composite Laminates Using Artificial Neural Networks[END_REF]. ANN are utilized for predicting the presence of embedded delaminations in terms of their size, shape and location in fiber reinforced plastic composite laminates using natural frequencies [START_REF] Chakraborty | Artificial neural network based delamination prediction in laminated composites[END_REF]. In the above work, finite element models have been used to generate natural frequencies to train a neural network. In [START_REF] Kesavan | Damage detection in T-joint composite structures[END_REF], ANN enable the identification of delamination failures of fiber-reinforced polymer T-joints within a structural health monitoring system. The real-time system was found to be capable to detect the presence of multiple delaminations and also to determine their location and extent in the T-joint, regardless of the applied load. Moreover, a synergetic integration of system identification and supervised machine learning for the assessment of delaminations in piezobonded laminated composites is proposed in [START_REF] Khan | Assessment of delaminated smart composite laminates via system identification and supervised learning[END_REF]. In [START_REF] Di Benedetto | Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites[END_REF], prediction models for the energy absorption capability of commingled composites in the context of crashworthiness have been developed using ANN. In the above study, a regression model derived from experimental results generated the input database for training the ANN. Another study employed an ANN model for predicting the residual strength of carbon fiber reinforced composites (CFRCs) after low-velocity impact [START_REF] Yang | Artificial Neural Network (ANN)-Based Residual Strength Prediction of Carbon Fibre Reinforced Composites (CFRCs) After Impact[END_REF]. A FEM model was developed addressing intra-laminar damage and inter-laminar delamination, to estimate lowvelocity impact (LVI) and compression-after-impact responses of CFRCs which trained an ANN model. Two alternative modelling approaches for describing fatigue delamination growth in polymer-based fiberreinforced composites are discussed in [START_REF] Allegri | Modelling fatigue delamination growth in fibre-reinforced composites: Power-law equations or artificial neural networks?[END_REF]. In this study, single hidden layer ANN with the support of self-similarity principles are proposed as an alternative to semi-empirical power laws. A feed-forward neural network and a Radial Basis neural network are applied to predict the fatigue life of CFRCs subjected to variable amplitude block loadings with different negative and positive stress ratios [START_REF] Altabey | Fatigue life prediction for carbon fibre/epoxy laminate composites under spectrum loading using two different neural network architectures[END_REF]. For solving fatiguerelated engineering problems for FRP structures, the applicability of modelling stiffness degradation with an ANN is investigated in [START_REF] Tao | Application of neural network to model stiffness degradation for composite laminates under cyclic loadings[END_REF]. A neural ordinary differential equation is then adopted which enables a continuous prediction of the stiffness over the cycle-domain. A novel numerical technique for modelling fatigue delamination growth in fiber reinforced composites which is based on coupling two twin cohesive zone models with a single-hidden-layer ANN is presented in [START_REF] Zhang | Embedding artificial neural networks into twin cohesive zone models for composites fatigue delamination prediction under various stress ratios and mode mixities[END_REF]. The simulation approach proposed can describe composites fatigue delamination under negative and positive stress ratios and the full range of mode mixities.

Besides the aforementioned case studies, comprehensive reviews of ANN for modeling and predicting the mechanical behavior of fiber-reinforced polymeric composite materials are given in [START_REF] Zhang | Artificial neural networks applied to polymer composites: a review[END_REF][START_REF] Kadi | Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks -A review[END_REF].

In this work, a data driven approach has been developed using the dataset derived from nonlinear FE analysis of ply-drop laminates provided by Friderikos et al. [START_REF] Friderikos | Regularized least squares for the building of a sizing criterion based on damage mechanics[END_REF]. The aim is to construct a metamodel by implementing ANN as they become relatively competitive to conventional regression models for high nonlinear applications, multi-dimensional and big data. One of the key challenges of using ANN for manifold learning in mechanical simulations is that, unlike other fields (e.g., computer vision), there are no readyto-use solutions. In particular, to the best of the authors' knowledge, there are no existing neural network architectures for damage estimation of composite laminates. Thus, most works in the field use trivial neural network architectures without any justification. Undoubtedly, for any given application there are many possible architectures that can serve as optimal solutions. In contrast with traditional approaches of giving a "one-shot" solution, a random search handcrafted strategy is proposed to attain such a neural network architecture search and hyperparameter tuning for achieving optimal architectures. Starting from an appropriate number of random generated architectures which obey specific topological constraints, the overall method consists of several evaluation steps. The goal in each step is to determine the subset of architectures that are the most capable of a predefined task, as for example in describing the manifold in which the training dataset resides on. The choice made here is to exploit partial training rather the most computationally expensive choice to fully train a network, resulting to a considerable reduction of the computational cost. The neural architecture search is further augmented by a detailed statistical analysis to asses the validity of the assumptions as well as to uncover hidden patterns and trends. Thus, unlike a black-box solution, this approach provides a better understanding over the set of decisions at the procedural generation of architectures, and furthermore it is flexible and open for any further improvement. Moreover, due to the growing interest in the field of ANN topology learning over the last years, such as the automated Neural Architectures Search (NAS) methods, the authors believe that this last contribution is of significant importance.

One of the benefits of metamodeling using finite element analysis and ANN is the ability to explore new design configurations for a novel structure. This approach is expected to pave the way for new computational strategies based on a concept of "damage databases" associated with advanced laminates. Moreover, it can make the design process more intelligent by establishing various sizing criteria, getting near real-time predictions of laminate failure in unseen data, understanding/visualizing hidden trends, performing fast design space exploration and discover patterns in the data. Furthermore, determination of the feasible combination of design parameters that will bring out optimal structural properties can be provided. Additionally, since the metamodel aids in identifying the key structural parameters that require further exploration, it can help with minimizing the sensitivity of a particular design to certain types of failures. In cases where more accuracy is critical, a more precise response can be derived using finite element analysis. We will show that the constructed metamodel using an optimized ANN can give accurate near real-time predictions for the complex engineering problem under consideration.

The remainder of this paper is organized as follows: section 2 illustrates the nonlinear FE simulations of the ply drop laminates and the evaluation of damage functions associated to delamination failures. It also presents the Design of Computer Experiments as well as a thorough statistical analysis of the obtained data. Then section 3, introduces ANN by providing the derivation and formulation of the fundamental concepts in a rigorous and compact framework. The core part is from section 4 up to section 6 where we present the developed greedy neural architecture search algorithm for the identification of an optimal architecture. After a random generation procedural of neural architectures, we focus on each of the several steps by giving all significant details of the related experiments. Next, section 7 covers the experiments for fine-tuning of the optimal network using different training protocols. The optimized model is tested on the complete dataset, and furthermore is adapted to the other damage evolution functions via transfer learning in section 8. An insight of the data transformation through the high dimensional spaces of the hidden layers is gained by applying two popular dimensionality techniques in Section 9. Moreover, in the same section, the optimized model is tested against unseen data and compared with another competing machine learning method. Finally, section 10 highlights the main results, some important outcomes and future research perspectives.

Simulation of Experiments

This section presents a general overview of the finite element modeling and the DCE conducted by Friderikos et al. [START_REF] Friderikos | Regularized least squares for the building of a sizing criterion based on damage mechanics[END_REF] since the dataset obtained therein are re-purposed for the present analysis.

Ply drop model

Tapered laminates have gained much deserved attention due to their structural tailoring capabilities, damage tolerance, significant weight savings, and potentially low-cost manufacturing (e.g., QSP [START_REF] Guillon | QSP : An innovative process based on tailored preformsfor low cost and fast production of optimized thermoplastic composite parts[END_REF]). These structures are formed by dropping some composite plies at pre-defined positions over the rest of the laminate. Unfortunately, the presence of material and geometric discontinuities at ply drop region may initiate interlaminar failure at interfaces, thus leading to significant loss of structural integrity.

A complex composite part of this type may present a plethora of ply drop regions, each with different geometric and material characteristics. For such reason, it was proposed to develop a parametric finite element ply drop model that could capture this variability as well as represent the geometrical worst-case scenario. Such consideration consists of three composite plies with a right triangle-shaped resin pocket, since this latter is the most prone to delamination [START_REF] Allegri | A simplified approach to the damage tolerance design of asymmetric tapered laminates. Part I: Methodology development[END_REF]. In the general case of multilayered internal ply drops, a convenient choice is to use a representation of the "n-composite plies" into an equivalent single orthotropic ply which results in the model shown in figure 1. Additionally, the resin pocket is considered as a void to increase the stress intensity factors. Then, thin section delamination is favored, while the onset and growth of interlaminar cracks in the thick section are both unaffected by the material and geometrical properties of the resin pocket [START_REF] Cui | An Experimental and Analytical Study of Delamination of Unidirectional Specimens with Cut Central Plies[END_REF][START_REF] Petrossian | Parametric study of delamination in composites with discontinuous plies using an analytical solution based on fracture mechanics[END_REF].

The parametric model is shown in figure 1 alongside the geometric design variables for the ply drop thicknesses t i and fiber orientation angles θ i , with i = 1, 2, 3. As it can be seen, the tapered angle and the length of the cohesive zones are fixed. Additionally, the model also shows the loading variables u 1 and u 2 that prescribe displacements, as well as u 3 that prescribes rotation. These loading conditions are applied to the right-most edge of both plies in thin ply drop section.

As such, the design space to be explored is defined by the nine design variables θ i , t i and u i for i = 1, 2, 3. The methodology employed by Friderikos et al. [START_REF] Friderikos | Regularized least squares for the building of a sizing criterion based on damage mechanics[END_REF] consists in sampling each of the three sub-spaces independently and subsequently generating all the possible combinations of variables. First, the design space for the fiber orientations angles is limited to θ i ∈ [0, 90]

• and Latin hypercube sampling (LHS) [START_REF] Mckay | A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF] is employed in order to obtain 40 samples. This statistical sampling method ensures that each sample is the only one in each axis-aligned hyperplane that contains it, hence optimizing coverage of the design space. Next, the design space for the ply drop plies thicknesses imposes the following design constraints:

t 1 ∈ [0.2, 4.6] mm, t 2 ∈ [0.2, 2.0] mm, t 3 ∈ [0.2, 4
.6] mm and t 1 + t 2 + t 3 ≤ 5 mm. Then 20 samples are also obtained using the LHS method. Finally, the loading design space is constrained to the surface of an ellipsoid with major axes 0.5 mm, 0.5 mm and 10 • , each corresponding to u 1 , u 2 and u 3 accordingly. The polar and azimuth angles of the ellipsoid are uniformly sampled for a total of 62 points. Figure 2 shows the constraints and sampling of the design subspaces which amounts to a total of 49600 sample points (62 × 40 × 20) in the complete design space.

3 mm 5 mm Figure 2: Visual representation of the constraints and sampling of the three design subspaces t i , θ i and u i . The color reference corresponds to the average number of steps s each combination of design variables achieves (regardless of the variables in other subspaces). The diamond shaped points are additional validation points that will be employed in section 9

t 1 t 2 t 3 θ 1 θ 2 θ 3 15 • u 1 u 2 u 3

Damage Criterion

The chosen criterion must evaluate the integrity of the structure due to damage accumulation as a result of delamination in the cohesive zones. This requires the stiffness loss to be evaluated along a set of reference directions while the structure is subjected to a loading state. Then, a natural choice of sizing criterion has been defined using the Directional Stiffness Loss (DSL) under a Linear Perturbation Analysis (LPA) scheme. The diagram in figure 3 displays the necessary steps for obtaining the DSL values under the LPA scheme.

The LPA scheme consists in dividing a general nonlinear simulation into S smaller LPA steps. Each of these is composed of: (i) a loading step, (ii) an unloading step, and (iii) three linear perturbation steps. The s-th (nonlinear) loading step takes the structure from an initial state G (0) to a loaded one G (s) by applying a fraction of the final load, defined as :

û(s) i = u i • s S (1)
for s ∈ [1, S]. Next, the unloading step applies the opposite load to revert the structure to the initial state G (0) . At this point three linear perturbation steps take the structure to independently achieved states G (s)

i , for i = 1, 2, 3. Each perturbation applies a load of ũi = 0.008 units (either mm or rad). Afterwards, the structure is reverted to the initial state G (0) so that the next LPA step can carry on with the analysis.

After each perturbation ũi , the structural stiffness K of the laminate associated with the secant modulus (i.e., the slope) is computed. For the s-th LPA step, it is defined as

K (s) i = R i ũi (2)
with the corresponding reaction force or moment R i calculated from the sum of all the reactions on nodes belonging to the left-most edge of all plies in the thick ply drop section. Additionally, a reference K (0) i is computed before any nonlinear load is applied to the structure (i.e., an initial intact state). Finally, the DSL is estimated as

DSL (s) i = 1 - K (s) i K (0) i (3)
It should be clear how, using these DSL functions as design criteria, a percentage of stiffness loss (e.g., 10%) could be defined as a design limit.

G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8 K 0
Loading steps Unloading steps

0 1 2 3 4 5 6 7 8 Step s DSL 1 DSL 2 DSL 3 K 0 K 0 K 6 1 R 1 G (6) 1 G (0) 1 K 0 K 0 K 6 2 R 2 G (6) 2 G
(0) 2 0 0.2 0.4 0.6 0.8 1

K 0 K 0 K 6 3 Displacement u [10 -2 mm] R 3 G (6) 3 G (0) 3

Simulation Results

The Finite Element (FE) implementation of the 2D parametric model is carried out using the Surface-Based Cohesive Behavior approach (Abaqus [START_REF] Systèmes | Abaqus Version 6.14.2, User's Manual[END_REF]), hence no cohesive interface is needed. The FE mesh is composed of 2300 linear quadrilateral plane stress elements (CPS4R) of 0.1 mm size for a total of 2563 nodes. Additionally, a transformation of the material axes determines the full anisotropic tensor for each ply; thus, taking into account the different fiber orientations. The LPA approach is pursued using S = 8 steps. Then, given the 49600 sample points covering the design space, a total of 396800 LPA steps are taken. For each of these, the 3 DSL functions (aligned with u 1 , u 2 and u 3) are computed. The FE simulations are parallelized across multiple nodes in a cluster. They are run on Intel Xeon Silver 4116 (2.10GHz) CPUs with 24 cores and 252 GB of memory. Each simulation takes on average 30 minutes.

From the total of 49600 combinations of design variables, 81% of those reach the final 8th LPA step. The remaining 19% of cases are evenly distributed amongst simulations that reached from 1 up to 7 steps. As figure 2 shows, on average every combination of design variables reaches the 7th LPA step, and at worst, the 4th one. It can be further observed that an inverse relationship between t 3 and the number of successful steps is present. After careful examination of the simulation database files, it was determined that interpenetration occurred between the bottom edge of the third ply and the right edge of the second ply which was not considered in the model. This situation becomes more severe when coupled with compressive loading in u 1 (negative) or counterclockwise rotation in u 3 (positive). These few edge cases have been resolved for future studies by introducing a penalty contact constraint for the master-slave surfaces in question.

Finally, from the histograms of the obtained DSL values by reference direction shown in figure 4, it is clear that most simulations result in low damage values. Also, it is clear that, while the highest DSL values are achieved for rotation (i = 3), on average the vertical displacement (i = 2) achieves higher values. It is also clear that the lowest stiffness loss encountered by the structure corresponds to the horizontal displacement (i = 1). For illustrative purposes, the delamination failure of the ply drop for a new combination of design variables (validation point 5 in section 9) is shown in figures 5 and 6. The delamination is evident in figure 5 with the top-most ply almost detached from both the thick and thin laminate sections. Moreover, the

3 respectively, reveal delamination between the bottom and mid-plies. Figure 6: Illustration of linear perturbation steps applied to a structure after the G (8) state has been reached. The displacement fields have been applied to the mesh with a scale factor of 30 and different components (u i) shown for each case

Artificial Neural Networks

Artificial Neural Networks (ANN) are machine learning models which can learn from data without requiring careful handcrafting of features [START_REF] Bishop | Neural Networks for Pattern Recognition[END_REF][START_REF] Haykin | Neural Networks: A Comprehensive Foundation[END_REF]. They can be thought as parametrized function estimators that, for a given dataset D = {(x 1 , y 1), . . . (x N , y N)} of example pairs, allow to model a mapping function f from an input space X to an output space Y: f : X → Y. The objective in supervised learning then, is to find the best function f * from a set of functions F.

We can then define a cost function L(f (x n), y n) that measures how good a particular mapping f is for a given example pair (x n , y n). If we further assume that the data comes from a joint probability distribution p(x, y), the expected cost also known as risk, can be defined as:

R(f) = E p(x,y) [L(f (x), y)] (4)
In practice, we typically do not know beforehand this distribution; however, we can approximate the expectation in equation (4) by Monte Carlo sampling by making the assumption that samples (x i , y i) are independent and identically distributed:

r(f) = 1 N N i=1 L(f (x i), y i) for(x i , y i) ∼ p(x, y) (5)
This is known as the empirical risk [START_REF] Vapnik | Principles of risk minimization for learning theory[END_REF] and is at the heart of several machine learning based algorithms including neural networks, also called the loss function. In this particular case, the set F is defined by all functions that can be represented as a composition of differentiable parametrized simple functions which are known as layers, that is:

f (ω, x) = f m (ω m , f m-1 (ω m-1 , . . . f 1 (ω 1 , x) . . .)) (6)
Each layer is then a specific function f i with parameters ω i where its output can be computed by taking as input the output of the previous layer:

z i = f i (ω i , z i-1) (7)
On the other hand, in order to make the framework more expressive and to model complex relationships, the functions include nonlinearities. Note that if this was not the case, i.e., if all layers were linear functions, the whole composition of functions would be equivalent to using only one linear function. In our case we would have then :

f i (ω i , x) = g • h(ω i , x) (8)
where h(ω i , x) is a linear transformation of the form h(ω i , x) = ω i x. In this case, if x ∈ R d and ω i is a k × d matrix, the function h will be a linear projection h : R d → R k . Each row of ω i is also called a neural unit, and will basically output a scalar after being dot-producted with the input to the layer; which means that one can think of the layer as a set of k neural units. In equation (8), g(x) is the nonlinearity term where currently the most commonly used function is the Rectified Linear Unit (ReLU) defined as:

g(x) = max(0, x) (9)
Variants like the Parametric Leaky ReLU [START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF] may also be used, in which case its parameter α can be either set fixed or learned during training:

g(x) = x if x > 0 αx otherwise (10
)
With the definition of the set F, the problem then becomes that of finding the function that minimizes the loss function which is as an optimization problem. In particular, we want to find the function f * that minimizes the loss:

f * = arg min f ∈F r(f) (11)
Since our functions are parametrized, the ultimate objective is to find the parameters that minimize the loss. On the other hand, since we restrict the functions to be differentiable (including the loss), the gradient of the cost with respect to the parameters can be computed as ∂r ∂θi , ∀i. To do so, one can use the chain rule of derivatives starting from the outer function (last layer) and propagating the gradients towards the inner function (first layer). Then, the gradient of the risk with respect to the input of each layer is computed as:

∂r ∂z i-1 = ∂r ∂z i ∂z i ∂z i-1 (12)
We can then use that result in order to obtain ∂r ∂θi :

∂r ∂θ i = ∂r ∂z i ∂z i ∂θ i (13
)
This procedure is known as backpropagation, and it allows computing gradients at a given point efficiently. These gradients can then be used in an optimizer like gradient descent in order to explore the space F.

Given the gradient of the loss with respect to the parameters, several algorithms are available to iteratively update them in order to optimize the loss function. One of the simplest algorithms is called Gradient Descent. The idea is to initialize the parameters at a given value; either randomly or with some prefixed-values, and evaluate the loss function. Given this value, we can then compute the gradients which basically gives a vector pointing to the direction of the greatest change. This means if we make a small change to the current values of the parameters in that direction the loss function is expected to increase. Since in our case we are trying to minimize the loss, we can make an update in the negative direction of the gradient giving the following update rule:

θ t+1 = θ t -γ∇r(f (θ t)) (14)
Here γ is a scalar indicating how large the steps should be, and it is a parameter known as the learning rate. We expect then that by executing the previous update a number of iterations to end up with a good set of parameters. Some extensions to the basic algorithm have proven to be useful in practical cases. For example, in Adaptive Moment Estimation (Adam), instead of updating the parameters with the value of the gradient at a given time step, the gradient used is rather an exponential moving average of it. That means that we keep track of the past gradient values and, based on them, we compute an estimation of the moments (first and second). Details of the algorithm can be found in [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]. On the other hand, it can be seen that to compute the update, we need to evaluate the loss in equation (5) which includes the whole dataset. Instead, one can compute an estimation of the loss by taking a random subset of the samples at each iteration (called a mini-batch), which in turn will provide an estimate of the gradient. The number of required iterations to use the full dataset is equivalent to one epoch. This depends on the size of the minibatch, typically called batch size. This version of the algorithm is known as Stochastic Gradient Descent and is the most commonly used in practice. It has the advantage of efficiently handling large datasets while also adding some randomness to the updates which can be convenient in optimization problems.

Overview of the method

When using ANN, one of the first tasks to tackle is the choice of the network architecture i.e., the best combination of structural and training hyperparameters. To the best of our knowledge, this is one of the first attempts to address the specific problem of damage estimation for composite laminates using ANN. Hence, it is not clear how to select an "optimal" network architecture for the task. Meanwhile, in some fields, like computer vision for natural images, many "off-the-shelf" architectures are available Some renowned examples include state-of-the-art networks (e.g., U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], ResNet [START_REF] He | Deep residual learning for image recognition[END_REF]) which show impressive performance on a wide variety of problems. It would seem apparent that possibly they could be adapted to our particular problem. However, most of these networks which are developed for images impose input and output layers with dimensions not compatible to our specific case. In this work, these dimensions correspond to 9 and 1, as mentioned in section 5, and thus are too small for any available network. On the other hand, Neural architecture Search [START_REF] Elsken | Neural architecture search: A survey[END_REF][START_REF] Kyriakides | An introduction to neural architecture search for convolutional networks[END_REF] (NAS) methods have been employed for automating network design. These approaches include among others, Bayesian optimization [START_REF] Bergstra | Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures[END_REF][START_REF] Snoek | Practical Bayesian optimization of machine learning algorithms[END_REF], reinforcement learning [START_REF] Baker | Designing neural network architectures using reinforcement learning[END_REF][START_REF] Zoph | Neural architecture search with reinforcement learning[END_REF], genetic approaches [START_REF] Schaffer | Combinations of genetic algorithms and neural networks: A survey of the state of the art[END_REF][START_REF] Kitano | Designing Neural Networks using Genetic Algorithms with Graph Generation System[END_REF], pruning approaches [START_REF] Han | Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding[END_REF] and convolutional neural fabrics [START_REF] Saxena | Convolutional neural fabrics[END_REF]. Indeed, the above methods have been successfully used to design networks that achieve state-of-the-art results in computer vision and natural language processing (NLP) tasks [START_REF] Elsken | Neural architecture search: A survey[END_REF]. While any of these methods could lead to a good performing architecture, doing so could contradict one of the goals of the present contribution: to provide insight into developing a neural network solution. Moreover, to the best of our knowledge, NAS methods have not yet been employed for this particular task. Hence, there exists no benchmark to which compare them to.

For such reason, in this work we propose a simple easy-to-follow approach for obtaining the "optimal" set of hyperparameters (including neural network architecture) for the regression task in hand. This method follows a greedy strategy: the set of parameters is progressively built by selecting, at each step, the best set of solutions and carrying them forward. Of course, this approach has a potential drawback of falling into a local optimum (instead of a global one). In order to alleviate this issue, it is proposed to not carry forward only the best solutions, but also some suboptimal ones which are randomly chosen. Then, if these suboptimal solutions are still underperforming in the following step, it is safe to assume that the selection of parameters was a good one. Additionally, without any prior information, it is evident that many architectures are indeed capable of performing the regression task efficiently. To this end, a simplicity principle is followed: given to equivalent solutions, the simplest one should be preferred. This strategy, analogous to the Occam's razor, should provide an objective metric when similar solutions are available.

Our method consists of two main stages: identification of a neural network architecture (in section 6) and identification of a training protocol and learning hyperparameters (in section 7). The first stage relies on a random procedural generation of architectures and their successive ranking to choose the best one. This process is based on the exploration-exploitation trade-off of the (infinite) search space of possible architectures. The second stage, seeks the set of training conditions which are the most favorable for the chosen architecture. The set of optimal parameters will be obtained by the assembly of independently found optimal parameters. During the first stage, that of obtaining a neural network architecture, the initial training conditions will continue to improve while the number of architectures to evaluate will decrease. As such, the ranking of architectures will stem from the sequential ranking of short training runs [START_REF] Elsken | Neural architecture search: A survey[END_REF]. In this case, each training run will "limit" the training conditions in different aspects. For example, one of the evolving conditions will be the amount of training points available at each stage: these will increase as the number of selected architectures will decrease.

Creation of dataset

The choice made here is to gather the LPA steps from all computations of the design space into one "big" dataset. Thus, no distinction will be made about the particular LPA step at which the evolution of the DSL function is evaluated. To this end, the loads û(s) i corresponding to regular intervals of a given final applied load u i , are used as independent loads instead of considering them as an ensemble of a specific FE simulation (see equation (1)).

The advantage of this strategy is that no special treatment is needed to handle the model and loading variable combinations that did not reach the final LPA step. As such, each sampling point of the design space can provide up to S = 8 input points. On the other hand, the clear disadvantage of this approach is that the notion of damage evolution for a given set of model variables is lost. However, it stands to reason that if the manifold is properly captured by the neural network, it should be capable of capturing it too.

Therefore, the input space X contains the vectors x ∈ R 9 obtained by the concatenation of all possible combinations of the design variables normalized so that they will be bounded to the range [-1, +1]:

x = [û (s) 1 , û(s) 2 , û(s) 3 , θ 1 , θ 2 , θ 3 , t 1 , t 2 , t 3] (15)
Next, different output spaces Y can be considered. As it was previously introduced, the method presented herein will first address the third damage function DSL 3 related to rotational loading during the LPA steps, and subsequently adapt (transfer) the findings to the remaining other two. Then, unless stated otherwise, the output space that will be mostly employed will be defined by the scalars y = DSL 3 .

Finally, the effective dataset D all is composed of the N all = 356273 successful LPA evaluations amongst the 396800 simulations that were defined in the design of experiments (see section 2). Moreover, this dataset is split into a training D train and a test D test dataset using randomization and a 75-25% split. As such, N train = 267205 and N test = 89068 denote the number of samples of each dataset, respectively.

Identification of a neural architecture

Procedural generation of architectures

The aim of this step is to generate random neural net architectures that respect some "topological" constraints. This allows an exploration-exploitation trade-off of the search space. The random search approach aids in reducing any human bias and discovering innovative architectures. However, some drawbacks are the high computational resources and the non-directional search for the optimal solution.

In the present case three topological constraints are imposed. The first one concerns the network connectivity, since only fully connected feed forward networks will be considered. This type of networks connect every output unit from a previous layer to every input unit in the following one. Any architecture of this type can be fully described by a vector A. Here A i denotes the number of units in the i-th layer for i ∈ [1, a] and a the number of layers of the corresponding architecture. Considering the dimensions of the input and output spaces, the input and output layers for all architectures are fixed to A 1 = 9 and A a = 1 units. Moreover, all units will use the Leaky ReLU activation function. The second topological constraint imposes that the architectures follow an "up-and-down" pattern. Starting from the first layer, each layer will monotonically increase (in number of units) up to a certain pivot layer. This can be considered as the "left side" of the network. Then, from this pivot layer, all layers will monotonically decrease down to the output layer. Similarly, this can be considered as the "right side" of the network.

The motivation behind this second topological constraint is to encourage a separation of tasks between each side of the network. Since the left side increases in size, the input data is transformed in spaces of progressively higher dimensions, also known as basis expansion. One can assume that this side handles the encoding of the input data into an embedding space (also called latent space) that can help to improve the separability of the data. Then, the right side should only be concerned with the regression task i.e., predicting the damage value. It is important to note that the network learns to optimize both steps simultaneously: embedding and regression. Hence, the found embedding process will be the best for the found regression process and vice-versa. They both rely on each other for jointly minimizing the imposed loss function. It can be assumed that the embedding is performed in such a manner that the data is represented in the most "useful" form for the regression task.

Finally, the third topological constraint concerns networks of different depths i.e., number of layers, and different widths i.e., number of units per layer. The architectures will have at least a min = 4 layers and at most a max = 17 layers and, each layer will have at most A max = 100 units. This constraint limits the networks sizes up to "manageable" sizes. Some examples of architectures that respect the imposed constraints are:

•] with a = 10 layers These have been generated using the procedure GetArchitecture described in algorithm 1. It employs the helper function RandomInteger(r min ,r max) that returns a random integer from a bounded uniform distribution with limits [r min , r max].

Using this algorithm, a total of C 1 = 1000 architectures are created. These are summarized in figure 7. As it can be seen, most of the generated architectures have an average of Ā = 37 units and an average number of learnable parameters of w = 21796. These are calculated for a given architecture as

w = a-1 i=1 (A i + 1) • A i+1 (16)
since they consider the weights and bias terms for all layers. Additionally, it is clear from figure 7 that the procedure favors smaller networks rather than bigger ones (in width). However, it does not present any bias towards shallow or deep networks as it can be seen from the almost uniform histogram of the number of layers a.

Algorithm 1: Procedural generation of architectures

Function GetArchitecture(a min , a max , A max): a ← RandomInteger(a min , a max) // number of layers p ← RandomInteger(2 , a -1) // pivot layer

for i ← 1 to p -1 do A lef t i ← RandomInteger(9, A max) end A lef t ← SortVectorAscending(A lef t) A p ← MaxValue(A lef t) for i ← 1 to a -p -1 do A right i ← RandomInteger(1, A p) end A right ← SortVectorDescending(A right) A ← {9, A lef t , A right , 1} // assemble return A 10

Representation capabilities

The goal of this step is to choose the subset of architectures that are the most capable of describing the manifold in which the training set resides on. This process constitutes an efficient filter for discarding architectures either too simple that they cannot capture the manifold, or too complex that they require considerably more effort in order to properly do so.

Thus, the networks are tasked with overfitting a tiny subset constructed by randomly taking 0.15% samples of the training dataset D train . This consists of N tiny = 401 training points. Given that the goal is to evaluate the architecture capabilities of replicating the input dataset, no validation dataset is needed. Due to the small size of the dataset N tiny , the training is performed with no mini-batches (i.e., batch size 100%). The solutions will be ranked according to their Mean Square Error (MSE) when predicting on the same tiny training set. This is defined as

M SE = 1 N N i=1 (y i -ỹi) 2 (17)
for a target y i and a predicted value ỹi , where N is the number of training points (here N tiny).

The training is carried out using an Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] and a default initial learning rate of γ = 1 × 10 -2 . Moreover, due to the unbalanced nature of the dataset, the loss function employed here will use an L 2 norm metric alongside with a linear weighting scheme. The construction of this loss function is detailed in section 7.3. It is important to note that these default parameters will be used in following sections unless stated otherwise. The experiments are parallelized across multiple nodes in a cluster (30 nodes). They are run on NVIDIA Quadro M4000 (800 MHz) and P4000 (1227 MHz) GPUs, both with 8 GB of memory. Each experiment at this stage takes on average 15 seconds.

The histogram of MSE values for the C 1 = 1000 architectures is shown in figure 8. As it can be seen, there are two clusters of architectures. From those, the left-most cluster is of interest since it corresponds to architectures that perform the best. The response of some architectures belonging to this cluster, shown in figure 9, demonstrates the desired "replicating" behavior. This type of plot compares the sorted target y values as a continuous line, with the predicted ỹ values as scattered points. In such sense, the horizontal axis denotes the number of points in the corresponding dataset (here N tiny = 401), while the vertical axis denotes the corresponding damage values. Furthermore, this plot highlights the "unbalanced" nature of the dataset with respect to the damage values (see figure 4).

On the other hand, the right-most cluster is populated by under-performing architectures (Figure 10) where the networks only predict a constant value regardless of the input value. This constant value of ŷ = 0.23 corresponds to the least squares solution to the weighted loss function in use here (L 2 loss with a linear weighting scheme).

Besides these striking differences between the responses for the left-most and right-most clusters, as the stacked bar plot in figure 7 shows, they also differ in terms of architecture. Indeed, most of these under performing networks are the deepest (number of layers a) or wider (number of learnable parameters w). A reason for this trend could be that "excessively" big architectures cannot be reliably trained with such "tiny" amount of data in comparison to the number of parameters. However, running this step with a bigger dataset would defeat the purpose of finding the architectures that perform the best under constrained conditions.

Finally, the 100 networks with the lowest MSE are selected for the next step. These are those with an MSE < 1.73 × 10 -5 , the 10th percentile. Additionally, from the remaining 900 "sub-optimal" architectures, 25 of them are randomly selected. These will used for validating the selection made at this step. It is expected that these 25 latter configurations will under-perform the former 100 in the next stage. As such, a new subset of C 2 = 125 architectures is formed.

The statistics of these architectures C 2 = 125 are shown in figure 11. While one can observe the certain bias towards the shallow architectures [START_REF] Hodas | Doing the impossible: Why neural networks can be trained at all[END_REF], it can be seen from the number of parameters w, which follows a similar trend as in figure 7, that some deep architectures do show a good performance.

Robustness to data availability

The objective of this step is to choose the subset of architectures that systematically make good predictions on different parts of the manifold. As such, it guarantees that the network will be capable of generalizing and correctly interpolating (or extrapolating) when necessary. This feature is desirable in the present case, since the effective dataset does not include all the points prescribed in the original design space (see section 2).

Then, the selected architectures will be those that not only can capture the manifold (previous step), but do so in a robust manner. To this effect, a k-fold cross-validation procedure is used for estimating the model behavior on unseen parts of the dataset. This particular method of cross-validation allows reducing variability in the desired estimation since multiple (k) rounds of cross-validation are performed. The k-fold procedure consists in splitting a source dataset K into k subsets of equal size

K = k i=1 K i K i ∩ K j = ∅, ∀ i = j (18)
Then, each model M j will use the subset ∀i =j K i during training. Clearly, these training subsets are unique for each model. Next, each independently trained model is validated by predicting on the parts of the dataset unseen to it. That is, the model M j will be judged by its performance on the subset K j . If all the predictions for all models are gathered for a given architecture, a single prediction for the entire dataset can be obtained (since K = K i). Indeed, one can consider these k models M j as a single "metamodel" M for the given architecture. For such reason, the MSE prediction of the metamodel M will be employed for ranking the architectures.

In this second set of experiments, a small dataset of N small = 2672 points (1% of the training dataset D train) is randomly sampled and split into k = 3 folds. The settings for training are the same with those used in the previous step (e.g., batch size 100%). Additionally, some basic divergence and convergence analyses are implemented. The former monitors if the prediction on the validation set is constant despite the input 0.5 (as in figure 10). In this case, divergence is triggered after 30 consecutive epochs in which the prediction on the validation set has a standard deviation lower than 1 × 10 -2 . The latter analysis, inspects convergence over a 100 epoch window. Convergence is declared after this period if the epoch-to-epoch improvement for the prediction on the validation set is smaller in absolute value than 1 × 10 -6 . If any of these cases is reached, the simulation is stopped, otherwise it will carry up to a maximum of 10000 epochs. The time required to compute a single experiment in this step is on average 3 minutes. The histogram of the MSE values shown in figure 12 illustrates four clusters. It is clear that most of the architectures previously categorized as "suboptimal" are still under-performing since they are mostly present in the three right-most clusters. Interestingly, five of these architectures can be seen to have a performance equivalent to that of the average of the cluster. The most performant amongst thee 25 architectures is shown in figure 13 alongside other architectures from the same left-most cluster (from the 100 optimal ones). This simple comparison of prediction capabilities as measured by the MSE, is not very insightful on its own. However, by inspecting the training evolution, shown in figure 14, the difference between architectures is striking. This plot displays the average error metric (i.e., the loss) between the k = 3 folds as it evolves at each epoch. It also displays, in the shaded area, the envelope of error metrics over all folds (i.e., the minimum and maximum values per epoch). The other architectures (that were amongst the previously 100 selected) converge up to 3 and 6 times faster than the "suboptimal" one. Moreover, the shaded area for the suboptimal network is wider, which implies that each fold behaves differently. This analysis on the overall MSE performance and training evolution validates the selection made in the previous step.

Finally, from the initial C 2 = 125 architectures of this step, the best 13 are selected. These are those with an MSE < 1.48 × 10 -3 , the 10th percentile. Again, from the remaining 112 "suboptimal" architectures, 3 architectures are randomly chosen. These form the C 3 = 16 architectures that will be used in the next step. Figure 11, displays the distribution of these selected architectures. It can be seen that they constitutive a representative sample of architectures as they cover most of the architecture types (e.g., big, small, deep, shallow).

Robustness to training conditions

The goal of this step is to select the architectures that are capable of systematically producing good results for different learning rate values. In these set of experiments, the learning rate is chosen as subject of study because it is one of the most important training hyperparameters to tune [START_REF] Wilson | The need for small learning rates on large problems[END_REF]. Large learning rates appear to help the model locate regions of large-scale optima, while smaller learning rates help the model to focus on particular local optima. From a practical point of view, while small values help to avoid overshooting, they can cause the process to get stuck in local minimum or take too long to descend. Then, it is important to investigate the effects of the learning rate on the architectures and to build an intuition about the dynamics of the learning rate on model behavior.

In this experiment, the learning rate γ values to be explored are obtained by sampling 50 Γ values from a normal distribution N (µ = 0.5, σ = 0.15) and applying the following mapping

γ = γ min • γ max γ min Γ (19
)
with γ min = 5 × 10 -5 and γ max = 5 × 10 -2 , in order to bound them to the interval [γ min , γ max].

For this set of experiments, a medium size dataset with N medium = 133602 points (50% of the training dataset D train) is constructed by random sampling. The settings for training are the same with those used in the previous stage (e.g., using k = 3 folds). The only exception is that a batch size of 5% is used here in consideration of the much larger dataset. A batch size of 100% as previously would be unfeasible. Indeed, the current medium dataset is 50 times bigger than the previous tiny dataset. Then, considering the C 3 = 16 architectures to evaluate and the 50 learning rate γ values to explore for each, a total of 800 experiments are carried out. Each of these experiments takes on average 96 minutes.

Just as previously, the "metamodel" generated from the k-fold cross validation will provide the MSE values for each architecture. Here, the feature of interest is the evolution of MSE values with respect to learning rate values. Indeed, architectures that maintain a low MSE for the longest range of learning rates are the most desirable. In order to properly quantify this feature, the average MSE value over all learning rate values is computed for each architecture, this is shown in figure 15. It should be noted that the previously "suboptimal" architectures are also under-performing in the present task.

From the initial C 3 = 16 architectures, the best 2 are selected i.e., [START_REF] Di Benedetto | Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites[END_REF]74,81,99,98,71,[START_REF] Krizhevsky | One weird trick for parallelizing convolutional neural networks[END_REF][START_REF] Allegri | A simplified approach to the damage tolerance design of asymmetric tapered laminates. Part I: Methodology development[END_REF][START_REF] Guillon | QSP : An innovative process based on tailored preformsfor low cost and fast production of optimized thermoplastic composite parts[END_REF] and [START_REF] Di Benedetto | Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites[END_REF]77,78,82,89,[START_REF] Di Benedetto | Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites[END_REF][START_REF] Guillon | QSP : An innovative process based on tailored preformsfor low cost and fast production of optimized thermoplastic composite parts[END_REF]. These have a MSE < 2 × 10 -4 , the 10th percentile. Given that both architectures display a similar stable behavior, another criterion is needed. Hence, the second architecture [START_REF] Di Benedetto | Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites[END_REF]77,78,82,89,[START_REF] Di Benedetto | Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites[END_REF][START_REF] Guillon | QSP : An innovative process based on tailored preformsfor low cost and fast production of optimized thermoplastic composite parts[END_REF] is chosen for the next stages due to its smaller size (w = 21539 hyperparameters versus w = 35446).

Identification of a training protocol

In the previous section, different experiments were carried out in order to select an optimal architecture. Here, the task will be to identify the most appropriate learning hyperparameters. These include the learning rate γ, the batch size ξ, a learning rate scheduler, as well as different loss function formulations.

While most of these hyperparameters can be studied independently, the learning rate and batch size are strongly coupled. Hence, these latter will be studied together. As a result, this section aims at providing the optimal set of parameters to be employed in the following sections.

Just as previously, the default parameters to be used in the following set of experiments are: batch size of 5%, k-fold cross-validation with k = 3 folds, and a loss function constructed with an L 2 -error metric and a linear weighting scheme. Additionally, from the proposed neural net search, the architecture [9, 77, 78, 82, 89, 9, 1] was selected.

Finally, if not specified otherwise, the experiments in this section will employ the complete training dataset D train (N train = 267205 points).

Learning rate and batch size

To understand the coupling between these two hyperparameters, a grid search strategy is employed. First, the same n γ = 50 learning rate γ values explored in the previous section will be also employed here. Then, the batch size ξ values to be explored are obtained by linearly sampling n ξ = 8 values Ξ from the range [0, ln(50)] and applying the mapping

ξ = 0.01e Ξ (20)
For this set of experiments, the medium size dataset N medium = 133602 points (50% of the training dataset D train) is used. Then, in order to explore every possible combination of the learning rate and batch size values, a total of 400 experiments are carried out. Each of these experiments takes on average 42 minutes. The MSE results shown in figure 17 are very enlightening. A clear relationship between the learning rate and batch size was found: as the batch size increases, the range of "good" learning rates decreases. Moreover, for an increase in batch size ξ by a factor κ, an increase in learning rate γ by a factor √ κ guarantees a good performance. This simple rule-of-thumb has been explored in previous works [START_REF] Krizhevsky | One weird trick for parallelizing convolutional neural networks[END_REF].

Finally, a learning rate of γ = 1 × 10 -3 and a batch size of ξ = 1% are selected for the following steps. This combination of parameters corresponds to the lowest overall MSE. For illustration purposes, figure 18 shows the performance of different batch sizes for a fixed learning rate of γ = 1 × 10 -3 .

Learning rate evolution

As previously described, the learning rate is the factor by which the current optimization point is changed in the direction of the gradient (descent). Hence, a too big learning rate could lead to a validation metric to stop improving since it would cause the descent to overshoot the minimum point. On the other hand, a too small learning rate will lead to a slow convergence requiring many epochs to attain a reasonable optimum. We then explore the use of a learning rate scheduler to dynamically adjust it during training.

The scheduler employed here aims at reducing the current learning rate γ whenever a plateau on the validation metric is detected. Here, the validation metric is the loss function evaluated on the validation dataset for each fold (at each epoch) L val . Then, its stagnation can be identified with a threshold τ = 2.0 × 10 -5 when:

L curr val > L best val • (1 -τ) (21)
Then, if no improvement is seen for a "patience" π number of epochs, the learning rate is reduced by a pre-defined factor α:

γ new = γ • α (22)
The following experiments will explore the optimum values for the patience π and the factor α. The patience π values are obtained by linearly sampling n π = 10 values Π from the range [0, 4] and applying the following mapping:

π = 5e Π (23)
Additionally, for the factor α, n α = 9 values are linearly sampled from the range [0.1, 0.9]. Each of these 90 experiments takes on average 36 minutes and the overall results are summarized in figure 19. It becomes clear that the predominant parameter is the patience π, with a similar performance across simulations for values of patience π > 50. The selected values for the scheduler are patience π = 72 and factor α = 0.5. For illustration purposes, the learning evolution for different patience π values for a constant factor α = 0.1 is shown in figure 20. It is interesting to observe that for small patience π values the training Figure 19: MSE values for different parametrizations of the learning rate scheduler as a function of patience π and factor α (interpolated for visualization purposes). The chosen combination of parameter values is highlighted achieves convergence, while for larger values it would seem that the training loss could still decrease (yet validation loss stagnates). However, this leads to less inconsistent results over epochs and amongst folds (wider envelopes, ragged average loss).

Loss function exploration

As mentioned earlier, the dataset has an unbalanced nature. For this reason we turn our attention into the definition of the loss function in order to make it take into account this issue. More precisely, we define the loss function L based on an error metric L and a weighting scheme W :

L(y, f (x)) = L(f (x), y) • W (y) (24)
For the following experiments, two error metrics will be explored: the "classical" L 2 -norm and the Huber loss L δ . The latter is often employed in regression problems since it is more robust to outliers. It is defined as a C 0 continuous function with a quadratic part for small values of yf (x), and a linear part for larger ones:

L δ (y, f (x)) = 1 2 (y -f (x)) 2 for |y -f (x)| ≤ δ δ|y -f (x)| -1 2 δ 2 otherwise (25)
The weighting schemes to be explored are based on a linear mapping, a logarithmic mapping and a sigmoid mapping. A linear mapping R lin is one that bounds any input vector r to the given lower and upper bounds, r min = 0.01 and r max = 0.6, following

R lin (r) = r -r min r max -r min + r min (26)
a logarithmic mapping is given by R log (r) = ln(r + r min)

and a sigmoid (or logistic) mapping is given by

R sigm (x) = 1 1 + e -15•x (28)
Then, the five weighting schemes to be considered can be constructed as:

W none (y) = 1 (29)
W ide (y) = y (30)

W lin (y) = R lin (y) (31)
W log (y) = R lin • R log (y) (32)
W sigm (y) = R lin • R sigm (y) (33)
so that W lin (y), W log (y) and W sigm (y) are all bounded to the same range [r min , r max], as shown in figure 21.

It therefore becomes clear how they contribute to "balance" the dataset. Indeed, for high damage values, any small or big prediction error is magnified to a large value. This magnification effect for the few points with high damage values compensates the many more points with smaller damage values. Then, in order to properly explore the weighting schemes and error metrics, an estimation of the optimal δ value for the Huber loss is required. As such, different δ = 10 p values with 15 p values linearly sampled from the range [-4, 4] are to be explored. As previously, the MSE from the metamodel is employed for selecting the optimal parametrization. Here, this corresponds to a δ = 1.4 × 10 -3 , as shown in figure 22.

Next, the ten possible combinations of the two loss functions and the five weighting schemes are explored. The obtained MSE values, listed in table 1, designate the Huber metric L δ and the logarithmic scheme W log as the best combination. In general, the logarithmic scheme W log outperforms the rest other schemes regardless of the error metric. Similarly, the Huber metric L δ does so regardless of the weighting scheme (except for the W ide case). Thus, the combination of logarithmic scheme W log and Huber loss L δ with δ = 1.4 × 10 -3 are selected for the following steps. All simulations on this step take on average 23 minutes.

Construction of the final models

All previous experiments have allowed us to compute a good set of hyperparameters for which we have achieved a good performance in the training set in a cross validation setting. In tables 2 and 3 we show a summary of all these previous experiments as well as the hyperparameters found at each step.

Construct the final model for one damage function

The previous steps, summarized in table 2 lead to the chosen optimal architecture [9, 77, 78, 82, 89, 9, 1]. Similarly, the analyses summarized in table 3 lead to the optimal set of hyperparameters listed therein. The goal is now to perform a final experiment where this optimized model is trained on the complete training dataset D train (N train = 267205 points). The performance is then measured on the testing set D test (N test = 89068), unlike to previous experiments where cross validation was employed. Training this model takes around 50 minutes.

Its training evolution is shown in figure 23. Moreover, the prediction results on the training and test datasets are shown in figure 24. The results obtained on both datasets are remarkably similar. This shows that the model has learned to generalize from the training data onto unseen points (testing data) with great accuracy. Additionally, the dispersion of predicted values around the target values (i.e., yŷ), shown in figure 25, is relatively small. Also, it is slightly skewed towards positive errors: 124242 negative cases versus 142963 positive cases and 41923 negative cases versus 47146 positive cases in the training ant testing validation datasets, respectively. This implies that in most cases the model over-estimates the damage value (i.e., it errs on the side of caution). Having trained a high performance predicting model of DSL 3 values, in this section we explore the model capabilities to learn DSL 1 and DSL 2 . Moreover, we will also explore the possibility of adapting the model learned for the damage function DSL 3 to this new problem. This latter scenario can be considered a special case of transfer learning. Then, the first objective of this section is similar to the previous one. Two distinct models will be trained using the optimal set of parameters listed in table 3 for the selected architecture [START_REF] Di Benedetto | Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites[END_REF]77,78,82,89,[START_REF] Di Benedetto | Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites[END_REF][START_REF] Guillon | QSP : An innovative process based on tailored preformsfor low cost and fast production of optimized thermoplastic composite parts[END_REF]. However, the second one starts with the trained model from the previous section for the damage function DSL 3 . Here, the network learnable parameters w (weights and biases) are not initialized randomly, but taken from the existing network.

From this point, these parameters can be further trained to adapt them to the new targets. Moreover, if the embedding process learned for DSL 3 is general enough it could simply be re-purposed for the new targets without requiring further learning. This can be achieved by "freezing" some network layers so that their parameters will not be optimized during training.

Then, for each target DSL function, seven scenarios can be explored: with random initialization, and with initialization but freezing from 0 up to 5 layers. The models are trained on the complete training dataset D train (N train = 267205 points). It should be noted that, while the input space X is the same in previous experiments, the output spaces Y are not. They will be defined by the scalars y = DSL 1 and y = DSL 2 , respectively. It is important to mention that, unlike the "classical" application of transfer learning, the dataset for both tasks (the initial learning and the transfer learning) is the same. Hence, no big improvements are to be expected (in training time or performance). However, it does constitute a good experiment for evaluating the representativity of the learned manifold.

The results for the MSE on the training dataset for these experiments are shown in figure 26. Simulations take on average 40 minutes. For both DSL functions, the initialization with the pre-trained model for DSL 3 is slightly beneficial and does not constitute a considerable improvement over a random initialization. This situation worsens for cases in which more than two layers are frozen as it seems that the initialization causes the optimization to be stuck at a local minimum. The final chosen models are those with only initialization and no frozen layers. The predictions for these models on the test dataset are shown in figure 27. These two, along with the model from the previous stage, constitute the three "final" networks for predicting on all three DSL functions. After achieving a high performance in the prediction task, we now aim to investigate the inner-workings of the neural network, i.e., the transformation of data into spaces with different dimensions. The selected architecture A = [9, 77, 78, 82, 89, 9, 1] is composed of a = 7 layers and trained with DSL 3 data. As such, there exist a set of 6 parameters ω i that control the linear relationships between activation units. Then, following equation (8), it is possible to compute the output for each layer z i . Moreover, by considering the test dataset D test with N test = 89068 points, the outputs of the first 6 layers can be assembled into the matrices Z i ∈ R Ntest×Ai . Clearly, these outputs are contained in high dimensional spaces which makes their analysis not straightforward. For this reason, we employ dimensionality reduction techniques so as to transform the matrices Z i into 2D representations Ẑi ∈ R Ntest×2 . As such, the respective manifolds can be easily visualized. Two dimensionality reduction techniques will be explored: PCA [START_REF] Hotelling | Analysis of a complex of statistical variables into principal components[END_REF] and t-SNE [START_REF] Van Der Maaten | Visualizing data using t-SNE[END_REF].

Finally, it is important to recall one of the topological constraints imposed during the generation of architectures step; the "up-and-down" pattern which is present in the selected architecture. As such, one can assume that the first 5 layers are tasked with progressively encoding the input data into the higherdimensional latent space (expressed in the pivot layer). And, only the last 2 layers are concerned with the regression task. If these assumptions are valid, one should be able to observe a progressive "unwrapping" of the input space up to a latent space that neatly arranges the data points.

PCA

Principal Component Analysis (PCA) [START_REF] Hotelling | Analysis of a complex of statistical variables into principal components[END_REF] is a popular parametric and linear dimensionality reduction technique. It consists in finding the hyper-plane that maximizes the variance of the projected data. The principal components can be computed using a singular value decomposition

V i Σ 2 i V i = Z i Zi (34
)
where Zi is obtained after mean-centering Z i , and Σ i and V i are the respective (sorted) eigenvalues and eigenvectors. Then, the partial projection matrix V

(2) i can be obtained by truncating V i up to the second eigenvector (column). As such, the projected data is obtained by Ẑi = Zi V

i . These projections are shown in figure 28 following a color-scale that indicates the corresponding (output) DSL 3 values. It should be noted that these damage values are not used for the PCA, and they are shown here only for visualization purposes. From the linear projections shown in figure 28, the non-linear nature of the underlying manifolds is evident and diverse. However, as the embedding progresses (through the layers of the network), the manifolds are progressively "unwrapped". Such is clear in the projection matrices Ẑ5 and Ẑ6 . The former corresponds to the pivot layer and the latter to the penultimate layer whose dimension coincides with that of the input (A 1 = A 6). They demonstrate a remarkable organization of the data that, as the color-scale indicates, can be directly mapped to the damage value.

It is important to note that the choice of a 2D visualization using PCA limits the insight into the complete manifolds. Indeed, as figure 29 shows, the remaining principal components do contain some nonnegligible variance of the data for all layers up to the pivot layer. But, due to practical reasons, the present analysis only concerns the first two. Furthermore, figure 29 also shows that the manifold corresponding to Ẑ6 condenses most of its variance in its first principal components. Then, given that PCA is a linear projection method, it is possible to affirm that this last manifold is mostly linear.

t-SNE

The t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm [START_REF] Van Der Maaten | Visualizing data using t-SNE[END_REF] is a popular non parametric and nonlinear dimensionality reduction technique. It consists in minimizing the (Kullback-Leibler) divergence between two probability distributions, i.e., making them as "similar" as possible. The probability distributions considered here concern the dataset in the original high dimensional input space and the dataset in the desired low dimensional output space. These distributions embed the pair-wise similarity for each pair of points (in the respective spaces).

As such, given an initial dataset Z i , t-SNE randomly creates a dataset Ẑi in the desired output space (e.g., 2D). Then, the data points in Ẑi are progressively moved so that their pair-wise similarity reassembles that of Z i (i.e., minimization of the divergence). For such reason, t-SNE not only produces different results each time it is run (random initialization), but also tends to form spurious clusters. Given that such "clusters" 10 -3

10 -1 diag(Σ 2) Z 1 Z 2 Z 3 Z 4 Z 5 Z 6
Figure 29: Magnitude of eigenvalues for the matrices Z i ∈ R Ntest×Ai can also appear in non-clustered data (as in the present case), they should be carefully considered. These resulting Ẑi datasets are shown in figure 30 following a color-scale that indicates the corresponding (output) DSL 3 values. From the scatter plot corresponding to Ẑ1 , it is clear that the input space X is embedded in a complex manifold. In this case, t-SNE interprets this high dimensional manifold as a "ball" in which the points are not organized in any fashion. The 2D spaces that correspond to the layers leading up to the pivot layer Ẑ5 progressively organize the data points into "clusters" that are directly related to the corresponding damage values. Indeed, points with similar damage values are mapped closed together. It is important to recall that these damage values are not used for the t-SNE, they are shown here only for visualization purposes.

Finally, the last 2D space Ẑ6 shows, as expected, a clear organization of points according to the damage levels. Note that the regression task in this manifold is much simpler than that of the input space X .

Results on new validation points

All the experiments performed so far have been done on the complete dataset D all and no consideration was made in keeping all points belonging to a single LPA analysis together. As such, for a given design point, the (up-to) 8 points at which the damage functions were computed could be split in both the training ant test datasets.

The aim of this section is to display the predictive capabilities of the neural network approach on some real case scenarios. It is important to note that this section does not seek to provide a "statistical" representation of the networks performances. For such, the test dataset with N test = 89068 is much better suited.

Then, the damage evolution for 6 new unseen points (not included in the previous datasets) will be explored. These points are sampled using the same strategy as described previously in section 2. It is also worth noting that, to avoid an over-optimistic evaluation of the model, these points should be well distributed over the design space and not in close proximity with the original sample points. The distance between each of these new validation points and their respective nearest neighbors in the D train dataset is computed. Moreover, in order to better gauge these distances, the average distance between points d in the training dataset is first computed. This distance d = 2.11 is obtained by averaging the distance from multiple randomly sampled data point pairs in the test dataset. These values, shown in table 4, validate the choice of these new points for showcasing the model performance. For illustration purposes, the simulation results for the validation point 5 are shown in figures 5 and 6.

Concerning the neural network predictions, the intermediate loads ûi are not computed "only" at the S = 8 steps defined by the LPA approach. Instead, 160 intermediate points are computed so as to provide a "continuous" prediction of the damage evolution. Figure 31 shows the predicted damage evolution curves alongside the reference FE solutions for each of the 6 validation plots. These plots demonstrate the high accuracy of the neural net predictions. It also displays the flexibility the network, since it is capable of capturing the diverse types of damage evolution curves.

A remarkable aspect of these plots is the consistency of the curves. As it was previously stated, the strategy adopted here for the datasets construction completely disregards the notion of damage evolution. However, the predicted curves respect not only a continuity constraint, but they conform to monotonically increasing functions. This latter is a highly desirable behavior that represents the real world constraints and it is captured by the neural network without explicitly including it. Indeed, the FE computed DSL 2 evolution for validation point 1 seems to not follow this trend for the last two LPA steps. This bizarre phenomenon was observed for 0.04% cases in the training dataset and appears to be originated from numerical instabilities. Yet, the neural network correctly ignores this occurrences and provides more "reasonable" predictions.

It is interesting to highlight the case of the validation point 3. As previously described (in section 2), some simulations fail to achieve the last LPA step. Here, even if the FE simulation aborted earlier, the neural network can predict for the conditions that correspond to these missing cases. Moreover, the predicted values can also be described as "reasonable" given that no further information is given.

It is worthy to note that network failed to provide accurate results for validation points in which very low damage values occurred. However, these cases are not of considerable importance for two main reasons. First, the damage level predictions of the neural network are of the same magnitude with the reference FE solution. And second, from the design point of view, these low damage magnitudes leave the laminate structure almost intact. In conclusion, the higher the damage value is (and therefore the more critical), the better the neural network predicts its trend. Figure 32: Prediction performance on the test dataset D test for a polynomial model [START_REF] Friderikos | Regularized least squares for the building of a sizing criterion based on damage mechanics[END_REF] and the neural network developed here

Comparison with previous method

This section introduces a direct performance comparison with one of the Regularized Linear Least Squares (LLS) methods developed by Friderikos et al. [START_REF] Friderikos | Regularized least squares for the building of a sizing criterion based on damage mechanics[END_REF] for the same problem investigated here. For this experiment, we employed a 5-th order polynomial regression model of the input variables using only the combinations that include at least one of the loading variables u i . As such, the final polynomial expression involves a total of 1540 regressors. Unlike, the optimal neural network obtained here has a total of w = 21539 parameters. The solution to the LLS problem is carried out with a truncated singular value decomposition (TSVD) regularization.

The performance of the polynomial model is compared to that of the neural network using the test dataset D test shown in figure 32 for the third damage function DSL 3 . The LLS solution achieves a MSE = 1.9 × 10 -3 , much higher than that of the neural network of MSE = 6.90 × 10 -5 . Also, given that no constraint is imposed on the polynomial, the LLS solution is polluted with negative values. Such is not the case for the neural network, since its last activation unit is followed by a Leaky ReLU (that heavily favors positive values). In general, it can be seen that the solution provided by the neural network approach outperforms that of the polynomial one.

Conclusions and perspectives

We presented a data driven approach which utilizes ANN and finite element analysis for predicting the early stages of damage evolution of composite ply drops. Using a database created from FEM simulations we showed that ANN are capable of giving state-of-the-art solutions in comparison to other competitive machine learning methods. The core of this study is the development of a neural net exploration that is able to quickly determine a high performing architecture with a good set of hyperparameters for the task at hand. Unlike a black-box approach that forbids any future improvement, the proposed methodology provides deep insight into determining an optimal neural network solution by utilising an effective statistical analysis. Moreover, it allows a more profound understanding of each step along the way, and it is easily extensible and open to different types of improvements. We further confirmed the network generalization robustness to unseen cases which are randomly sampled from the design space.

The findings showed here presents a high-performing approach in the field of composites design which also provides several research perspectives. One exciting area of future research is how to leverage learning even with limited amount of data, i.e., finite element simulations in our case. Contrary to the vast amount of data used herein, a methodology of gradually reducing the size of the data set could be used. This would allow investigating the change of model performance regarding the learning of model parameters, prediction accuracy and overfitting. Additionally, in contrast to the transfer learning approach used for the other damage evolution functions, another option is possible. This is to design an optimal ANN architecture capable of predicting all damage functions at the same time, rather than one at a time. Finally, an interesting alternative would be to consider the damage evolution steps in a temporal sequence, instead of predicting them independently of time. Indeed, by employing Recursive Neural Networks (RNN) which are capable to process time series data, the damage evolution can be obtained in a temporal sequence which may result in higher prediction accuracy.

Figure 1 :

 1 Figure 1: Diagram of the parametric ply drop laminate model, including model and loading design variables

Figure 3 :

 3 Figure 3: Top left: Division of a general nonlinear simulation into S = 8 LPA steps, Bottom left: Evaluation of the DSL functions at each loading state G (s) , Right: LPA for the computation of the secant modulus at the initial G (0) i and a loaded state G (s) i

3 Figure 4 :

 34 Figure 4: Histogram of the obtained DSL values per reference direction

Figure 5 :

 5 Figure 5: Illustration of delamination failure for a simulation that has reached the G (8) state (i.e., after the nonlinear loading). The displacement field is applied to the mesh and each component u 1 and u 2 is shown on the left and right sides respectively

Figure 7 :

 7 Figure 7: Stacked bar plot of histograms concerning the C 1 = 1000 random generated architectures. The light (resp. dark) color corresponds to the left-most (resp. right-most) cluster identified in figure 8

Figure 8 :

 8 Figure 8: Histogram of the MSE values for the C 1 = 1000 architectures. Left: histogram for the complete range of MSE values. Right: histogram for small MSE values (i.e., the left-most cluster)

 43 × 10 -6 [9, 73, 87, 44, 43, 35, 19, 16, 1]

Figure 9 :- 2 [9 ,

 929 Figure 9: Prediction results for some of the C 1 = 1000 architectures showing a good performance (left-most cluster)

Figure 10 :Figure 11 :

 1011 Figure 10: Prediction results for some of the C 1 = 1000 architectures showing a sub-optimal performance (right-most cluster)

Figure 12 :

 12 Figure 12: Histogram of the MSE values for the C 2 = 125 architectures. The light color corresponds to the 25 architectures previously identified as suboptimal, still under performing in this step

 53 × 10 -3 [9, 49, 84, 59, 48, 46, 11, 1] MSE = 1.50 × 10 -3 [9, 71, 70, 64, 49, 31, 20, 529 × 10 -3 [9, 85, 82, 70, 63, 51, 20, 1]

Figure 13 : 6 10 - 5 10 - 4 MSE = 1 .

 136541 Figure 13: Prediction results for some of the C 2 = 125 architectures. The top-right architecture achieves the lowest MSE amongst the 25 previously deemed suboptimal architectures

Figure 14 :

 14 Figure 14: Training evolution for some of the C 2 = 125 architectures. The top-right architecture achieves lowest MSE amongst the 25 previously deemed suboptimal architectures

Figure 15 : 4 MSE = 1 . 4 [2 MSE = 2 .

 1541422 Figure 15: Average value of MSE for each of the C 3 = 16 architectures (horizontal axis clipped for clarity).The light color corresponds to the 3 architectures previously identified as sub-optimal, still under performing in this step

Figure 16 : 4 • 10 - 4 Figure 17 :

 16410417 Figure 16: Evolution of MSE versus learning rate γ for the best four out of the C 3 = 16 architectures

Figure 18 :

 18 Figure 18: Performance of some models for different batch sizes ξ and learning rate of γ = 1 × 10 -3

Figure 20 :

 20 Figure 20: Training and validation evolution for some networks for different values of patience π using a constant factor α = 0.1. The solid lines and shaded areas display the average and envelope of the error metric for the training and validation subsets. The training error is, by construction, lower than the validation one. The dashed lines denote the epochs at which the learning rate scheduler was triggered (i.e., plateau detected on the validation loss)

Figure 21 :Figure 22 :

 2122 Figure 21: Representation of the weighting schemes W ide (y), W lin (y), W log (y) and W sigm (y)

Figure 23 :

 23 Figure 23: Evolution of the training loss during neural network training alongside with epochs at which the scheduler is triggered

Figure 24 :Figure 25 : 2 Figure 26 :

 2425226 Figure 24: Prediction of the neural network on the training D train (left) and test D test (right) datasets

Figure 27 :

 27 Figure 27: Prediction on the D test dataset for both neural networks trained on DSL functions

Figure 28 :

 28 Figure 28: Principal component projections of the test dataset D test at corresponding layers.

Figure 30 :

 30 Figure 30: t-SNE applied on test dataset D test at corresponding layers.

3 Figure 31 :

 331 Figure 31: Graphical comparison between the reference FE solutions and the predicted damage functions DSL for the 6 validation points. Note that the vertical axes are not common to all plots

 [START_REF] Di Benedetto | Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites[END_REF] 68, 91, 90, 78, 70, 64, 58, 51,[START_REF] Krizhevsky | One weird trick for parallelizing convolutional neural networks[END_REF][START_REF] Bergstra | Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures[END_REF][START_REF] Di Benedetto | Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites[END_REF][START_REF] Deenadayalu | Characterization and Detection of Delamination in Composite Laminates Using Artificial Neural Networks[END_REF][START_REF] Guillon | QSP : An innovative process based on tailored preformsfor low cost and fast production of optimized thermoplastic composite parts[END_REF] with a = 14 layers •[START_REF] Di Benedetto | Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites[END_REF] 49,[START_REF] Van Der Maaten | Visualizing data using t-SNE[END_REF][START_REF] Hodas | Doing the impossible: Why neural networks can be trained at all[END_REF][START_REF] Snoek | Practical Bayesian optimization of machine learning algorithms[END_REF][START_REF] Haykin | Neural Networks: A Comprehensive Foundation[END_REF][START_REF] Cui | An Experimental and Analytical Study of Delamination of Unidirectional Specimens with Cut Central Plies[END_REF][START_REF] Altabey | Fatigue life prediction for carbon fibre/epoxy laminate composites under spectrum loading using two different neural network architectures[END_REF][START_REF] Yang | Artificial Neural Network (ANN)-Based Residual Strength Prediction of Carbon Fibre Reinforced Composites (CFRCs) After Impact[END_REF][START_REF] Di Benedetto | Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites[END_REF][START_REF] Kesavan | Damage detection in T-joint composite structures[END_REF][START_REF] Deenadayalu | Characterization and Detection of Delamination in Composite Laminates Using Artificial Neural Networks[END_REF][START_REF] Guillon | QSP : An innovative process based on tailored preformsfor low cost and fast production of optimized thermoplastic composite parts[END_REF] with a = 13 layers •[START_REF] Di Benedetto | Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites[END_REF][START_REF] Altabey | Fatigue life prediction for carbon fibre/epoxy laminate composites under spectrum loading using two different neural network architectures[END_REF] 46, 69, 70, 81, 79, 75,[START_REF] Allegri | A simplified approach to the damage tolerance design of asymmetric tapered laminates. Part I: Methodology development[END_REF][START_REF] Guillon | QSP : An innovative process based on tailored preformsfor low cost and fast production of optimized thermoplastic composite parts[END_REF]

Table 1 :

 1 MSE values (in 10 -5) for all definitions of loss functions

		L 2	L δ
	W none	7.4	7.2
	W ide	10.1 13.9
	W lin	9.7	8.7
	W log	7.6	6.9
	W sigm	7.8	7.4

Table 2 :

 2 Summary of architecture ranking steps (section 6)

	Step Points Batch size k-folds Exp. Time Architectures
		N	ξ (%)			(min)	C
	1	401	100	-1000	0.25	1000
	2	2672	100	3	125	3	125
	3	133602	5	3	800	96	16

Table 3 :

 3 Summary of training steps (section 7)

	Step	points batch size k-folds Exp. Time Optimized
		N	ξ (%)			(min) hyperparameters
	4	133602	-	3	400	42 γ = 1 × 10 -3 ξ = 1%
	5	267205	5%	3	90	36 π = 72
						α = 0.5
	6	267205	5%	3	25	23 δ = 1.4 × 10 -3 W log and L δ

Table 4 :

 4 Design variables for the new validation points (in mm and rad units) and distance d to their nearest neighbor. The average distance between points in the training dataset is d = 2.11

		u 1	u 2	u 3	θ 1	θ 2	θ 3	t 1	t 2	t 3	d
	1	-0.1	0.4	0.1	35.0 64.1 58.6	2.1 0.6 1.1	2.58
	2	0.3	0.4	0.0	22.1 36.3	1.8	0.3 0.9 3.3	3.01
	3	0.3 -0.2 -0.1	4.6 72.1 62.8	1.9 1.5 1.3	2.73
	4	0.1	0.0 -0.2	13.6 53.8 19.8	0.2 2.0 1.3	2.07
	5	-0.4	0.0	0.1	89.5 64.2	9.9	3.1 1.3 0.4	3.29
	6	0.1	0.1	0.2	20.6 29.3 85.9	1.5 0.4 1.5	2.36

Acknowledgements

This work is supported by the Composite Innovation Openlab (COMPINNOV), a common laboratory between CETIM, LMT, GeM Nantes and CNRS INSIS. OF acknowledges the financial support from this entity.